University of Chicago VIGRE REU 2009
- 2009 REU: Announcement and description of the program
(pdf)
(dvi)
- 2009 REU: Application
(doc)
- 2009 REU: Abstracts of the course offerings
(pdf)
- 2009 REU: Additional abstracts added May 26
(pdf)
- 2009 REU: Schedule for weeks 1 and 2
(pdf)
- 2009 REU: Schedule for weeks 3 and 4
(pdf)
- 2009 REU: Schedule for weeks 5 and 6
(pdf)
- 2009 REU: Schedule for weeks 7 and 8
(pdf)
- 2009 REU: Acceptance Form for the Apprentice program
(pdf)
(dvi)
- 2009 REU: Acceptance Form for the YSP/SESAME full program
(pdf)
(dvi)
- 2009 REU: Undergraduate participants by program, with mentors
(pdf)
- 2009 REU: Alphabetical list of undergraduates, with mentors
(pdf) 2009 REU: List of courses, with graduate student assistants
(pdf)
- 2009 REU: Alphabetical list of graduate mentors, with mentorees
(pdf)
Materials for the Apprentice Program
- Lecture notes for Abert's first three talks, texed by Aaron Marcus
(pdf)
- More up to date notes for Abert and Babai's Apprentice talks are on Babai's Apprentice web page
(APPweb page)
Laci Babai's Discrete Mathematics and REU web pages
- Lecture notes, texed by Spencer Dowdall
(pdf)
Notes and references for MAY/ANNO
- Lecture notes, updated July 21, texed by Claire Tomesch and Rolf Hoyer
(pdf)
- Preliminary lecture notes (from 2006, with much material not done in 2009)
(pdf)
- K-theory and Hopf invariant one notes
(pdf)
- A certain Concise book (see Chapter 1 for fundamental groups)
(pdf)
- Gorodentsev's Homological Algebra problem sheets
(webpage)
- Corrected first problem set
(pdf)
- Awodey's book ``Category theory''
(pdf)
- Eugenia Cheng's category theory notes
(web page)
Tex Help
- Template for texing REU papers (use the tex file)
(tex)
(pdf)
- LaTeX -- A document preparation system
(web page)
2009 REU: PARTICIPANT PAPERS -- FULL PROGRAM (some INTERMEDIATE)
- Dylan Allegretti. Differential forms on noncommutative spaces.
(pdf)
- John Binder. Tate's thesis on zeta functions on number fields.
(pdf)
- Patricia M. Brent. Classification of root systems.
(pdf)
- Michael Calderbank. Elliptic curves and cryptography.
(pdf)
- Je-ok Choi. Hilbert's Nullstellensatz and its application to graph theory.
(pdf)
- Beau Dabbs. Markov chains and mixing times.
(pdf)
- Isaac Davis. An introduction to nonstandard analysis.
(pdf)
- Marcello Delgado. General abstract nonsense.
(pdf)
- Jonathan Emberton. Multidimensional Schr\"odinger operators and spectral theory.
(pdf)
- Jonathan James Gleason. The $C^*$-algebraic formalism of quantum mechanics.
(pdf)
- Patrick Greene. De Rham cohomology, connections, and characteristic classes.
(pdf)
- Namita Gupta. Explaining bifurcations.
(pdf)
- Ariel Hafftka. Differential topology and the Poincare-Hopf theorem.
(pdf)
- Aaron Halper. Girth and chromatic number of graphs.
(pdf)
- Kriz Harper. Explorations of Sperner's lemma and its connections to
Brouwer's fixed point theorem.
(pdf)
- Justin Hartmann. Brownian motion.
(pdf)
- Christopher Henderson. Elementary topoi: sets, generalized.
(pdf)
- Ethan Jerzak. Second-order logic, or: how I learned to stop worrying
and love the incompleteness theorems.
(pdf)
- Adam Kaye. Complex Lie algebras.
(pdf)
- Dennis Kriventsov. The restriction problem and the Tomas-Stein theorem.
(pdf)
- Satoru Kudose. Equitable partitions and orbit partitions.
(pdf)
- Hikaru Kiyo. Poincare duality.
(pdf)
- William M. Landau. The fundamental group.
(pdf)
- Michelle Lee. Ramsey theory: Van der Waerden's theorem and the Hales-Jewett theorem.
(pdf)
- Maxwell Levine. $GL_n(\mathbf{R})$ as a Lie group.
(pdf)
- Cong Han Lim. Growth rate of groups.
(pdf)
- Melissa Lynn. Galois categories.
(pdf)
- Emily Mackevicius. Configuration spaces.
(pdf)
- James Murphy. Cardinal and ordinal numbers.
(pdf)
- Prerna Nadathur. Arrow's paradox.
(pdf)
- Peter Nelson. An introduction to schemes.
(pdf)
- Stephen Patrias. Simple closed curves on surfaces with intersection
number at most one.
(pdf)
- Vladislav Vladilenov Petkov. Modular forms and the Hilbert class field.
(pdf)
- Aaron Plavnick. Bezout's theorem on curves.
(pdf)
- David Price. Intrinsic volumes and Hadwiger's containment theorem.
(pdf)
- Wolfgang Schmaltz. The Jordan-Brouwer separation theorem.
(pdf)
- Kathy Snyder. Isometries of the hyperbolic plane.
(pdf)
- Shiv Subramaniam. Integration on manifolds.
(pdf)
- Valeriya Talovikova. Riemann-Roch theorem.
(pdf)
- Caroline Terry. $2$-dimensional topological quantum field theories and
Frobenius algebras.
(pdf)
- Brooke Ullery. An introduction to affine schemes.
(pdf)
- Daping Weng. Invariance of domain and the Jordan curve theorem in R^2.
(pdf)
- Isaac Ottoni Wilhelm. Counting self avoiding walks of length $N$.
(pdf)
- John Wiltshire-Gordon. Counting perfect matchings.
(pdf)
- Matthew Woolf. Connections.
(pdf)
- Karen Ye. Temperature theory and the thermostatic strategy.
(pdf)
- Tengren Zhang. Freudenthal suspension theorem.
(pdf)
- Alex Zorn. Discrete Morse theory on simplicial complexes.
(pdf)
2008 REU: PARTICIPANT PAPERS -- APPRENTICE and INTERMEDIATE PROGRAM
- Stephanie Avalos-Bock. Fractal geometry: the Mandelbrot and Julia sets.
(pdf)
- Samuel Bloom. Fundamental groups and Van Kampen's theorem.
(pdf)
- Tracy Boswell. Isometries of the plane.
(pdf)
- Ben Chaiken. G\"odel's completeness and incompleteness theorems.
(pdf)
- William Chan. Decidability.
(pdf)
- Guo Chen. A treatment of the Dirichlet integral via the methods of real analysis.
(pdf)
- Jia Lin Chen. Universal coefficient theorem for homology.
(pdf)
- James Courtois. Elementary applications of Fourier analysis.
(pdf)
- Jasper DeAntonio. Brouwer's fixed point theorem.
(pdf)
- Gideon Dresdner. Stoke's theorem on manifolds.
(pdf)
- Wenfei Du. Fourier analysis and the uncertainty principle.
(pdf)
- Eugenie Fuchs. Behind the intuition of tilings.
(pdf)
- Winston Gao. Field extensions and the classical compass and straight-edge constructions.
(pdf)
- Jayanth Garlapati. Complexity theory and the RSA cryptosystem.
(pdf)
- Graham Casey Gibson. On graph connectivity after path removal.
(pdf)
- Julian Hartman. Alternate proof of the spectral theorem.
(pdf)
- Riley Heckel. The prime number theorem.
(pdf)
- Willy Hu. Dynamical systems.
(pdf)
- Adam Koss. A comparison of the graphs of the chromatic and diatonic scale.
(pdf)
- Aaron McKnight. Some basic properties of Brownian motion.
(pdf)
- Mike Mei. Principal component analysis.
(pdf)
- Samuel Moy. An introduction to the theory of field extensions.
(pdf)
- Kenneth Oshita. The hexatonic systems under neo-Riemannian theory:
an exploration of the mathematical analysis of music.
(pdf)
- Neel Patel. Fourier analysis using representation theory.
(pdf)
- Alex Poniecki. The Banach contraction principle.
(pdf)
- Valer Popa. The index of a vector field as an invariant.
(pdf)
- Hannah Provenza. Group theory and the Rubik's cube.
(pdf)
- Alexandre R. Puttick. The ising model: phase transition in a square lattice.
(pdf)
- Nick Ramsey. Translation equidecomposability.
(pdf)
- Mira Scarvalone. RSA encryption and Diffie Hellman key exchange.
(pdf)
- Jay Shah. Hausdorff dimension and its applications.
(pdf)
- Al Staples-Moore. Network flows and the max-flow min-cut theorem.
(pdf)
- Daniel Straus. Electrical network theory and recurrence in discrete random walks.
(pdf)
- Joseph Zsolt Terdik. Markov chains.
(pdf)
- Alexander Tolish. The Lagrangian and Hamiltonian mechanical systems.
(pdf)
- Brad Trotter. Word theory and the musical scale.
(pdf)
- Michael Wong. Representing integers as sums of squares.
(pdf)
- Christopher Wood. Abstracting tonality: triads and uniform triadic
transformations in an atonal context.
(pdf)