Your browser does not support the canvas element.

Jincheng Yang

The University of Chicago

%--Paired Delimiters-- $ \newcommand{\abs}[1]{\left\lvert #1 \right\rvert} \newcommand{\ang}[1]{\left\langle #1 \right\rangle} \newcommand{\bkt}[1]{\left\lbrack #1 \right\rbrack} \newcommand{\nor}[1]{\left\lVert #1 \right\rVert} \newcommand{\pth}[1]{\left( #1 \right)} \newcommand{\set}[1]{\left\lbrace #1 \right\rbrace} \newcommand{\abset}[1]{\abs{\set{#1}}} \newcommand{\ptset}[1]{\pth{\set{#1}}} $ %--Operators-- $ \newcommand{\grad}{\nabla} \newcommand{\La}{\Delta} \renewcommand{\div}{\operatorname{div}} \newcommand{\curl}{\operatorname{curl}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\Hess}{\operatorname{Hess}} \newcommand{\mm}{\mathcal{M}} \newcommand{\inv}{^{-1}} \newcommand{\tensor}{\otimes} \newcommand{\cross}{\times} \newcommand{\weak}[1]{\xrightharpoonup{#1}} $ %--Notations-- $ \newcommand{\Vol}{\mathrm{Vol}} \newcommand{\loc}{\mathrm{loc}} \renewcommand{\dim}{\mathrm{dim}} \newcommand{\Span}{\mathrm{Span}} \newcommand{\diam}{\mathrm{diam}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\Lip}{\mathrm{Lip}} \newcommand{\dist}{\mathrm{dist}} \newcommand{\inv}{^{-1}} $ %--Algebra-- $ \newcommand{\hfsq}[1]{\frac{\abs{#1} ^2}{2}} $ %--Sets-- $ \newcommand{\R}{\mathbb{R}} \newcommand{\RR}[1]{\R ^{#1}} \newcommand{\Rd}{\RR d} \newcommand{\Rn}{\RR n} \renewcommand{\S}{\mathbb{S}} \renewcommand{\Z}{\mathbb{Z}} \newcommand{\T}{\mathbb{T}} \newcommand{\ssubset}{\subset \subset} \newcommand{\spt}{\operatorname{spt}} \newcommand{\supp}{\operatorname{supp}} \newcommand{\diam}{\mathrm{diam}} \newcommand{\diag}{\operatorname{diag}} \renewcommand{\dim}{\mathrm{dim}} \newcommand{\dimH}{\mathrm{dim} _\mathcal{H}} \newcommand{\Sing}{\mathrm{Sing}} \newcommand{\Vol}{\mathrm{Vol}} \newcommand{\inds}[1]{\mathbf1_{\set{#1}}} \newcommand{\ind}[1]{\mathbf1_{#1}} $ %--Summations-- $ \newcommand{\SUM}[3]{\sum \cnt{#1}{#2}{#3}} \newcommand{\PROD}[3]{\prod \cnt{#1}{#2}{#3}} \newcommand{\cnt}[3]{ _{#1 = #2} ^{#3} } \newcommand{\seq}[2]{\set{#1 _{#2}} _{#2}} \newcommand{\seqi}[2]{\set{#1 _{#2}} \cnt{#2}1i} $ %--Superscript and Subscript $ \newcommand{\pp}[1]{^{(#1)}} \newcommand{\bp}[1]{_{(#1)}} \newcommand{\pps}[2][1]{^{#2 + #1}} \newcommand{\bps}[2][1]{_{#2 + #1}} \newcommand{\pms}[2][1]{^{#2 - #1}} \newcommand{\bms}[2][1]{_{#2 - #1}} $ %--Notations-- $ \newcommand{\loc}{\mathrm{loc}} \newcommand{\Span}{\operatorname{Span}} \newcommand{\argmin}{\operatorname{argmin}} \newcommand{\argmax}{\operatorname{argmax}} \newcommand{\osc}{\operatorname{osc}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\Lip}{\operatorname{Lip}} \newcommand{\Leb}{\operatorname{Leb}} \newcommand{\PV}{\mathrm{P.V.}} \newcommand{\dist}{\operatorname{dist}} \newcommand{\at}[1]{\bigr\rvert _{#1}} \newcommand{\At}[1]{\biggr\rvert _{#1}} \newcommand{\half}{\frac12} $ %--Text-- $ \newcommand{\inn}{\text{ in }} \newcommand{\onn}{\text{ on }} \renewcommand{\ae}{\text{ a.e. }} \newcommand{\st}{\text{ s.t. }} \newcommand{\forr}{\text{ for }} \newcommand{\as}{\text{ as }} $ %--Differential-- $ \newcommand{\d}{\mathop{\kern0pt\mathrm{d}}\!{}} \newcommand{\dt}{\d t} \newcommand{\dx}{\d x} \newcommand{\dy}{\d y} \newcommand{\ptil}{\partial} \newcommand{\pt}{\ptil _t} \newcommand{\pfr}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\dfr}[2]{\frac{\mathrm{d} #1}{\mathrm{d} #2}} \newcommand{\ddt}{\dfr{}t} \newcommand{\pthf}[2]{\pth{\frac{#1}{#2}}} $ %--Integral-- $ \newcommand{\intR}{\int _0 ^\infty} \newcommand{\intRn}{\int _{\Rn}} \newcommand{\intRd}{\int _{\Rd}} \newcommand{\fint}{-\!\!\!\!\!\!\int} \newcommand{\intset}[1]{\int _{\set{#1}}} $ %--Greek-- $ \newcommand{\e}{\varepsilon} \newcommand{\vp}{\varphi} $ %--Norm-- $ \newcommand{\nmL}[2]{\nor{#2} _{L ^#1}} $

Research Blog

Drag and lift

2023, December 02

Let $K _t = K + t u _\infty$ be an object moving with constant horizontal velocity $u _\infty$. It experiences a thrust force and gravity $F _{\text{thrust}} \parallel u _\infty$ and $F _{\text{gravity}} \perp u _\infty$. Fluid around it obeys the Navier-Stokes equation:

\[\begin{align} & \pt u + u \cdot \grad u = \div (-p \,\Id + \tau), \qquad \div u = 0 \\ & u \at{\partial K _t} = u _\infty, \qquad u \at{|x| = \infty} = 0. \end{align}\]

Here $\tau = 2 \nu D u$ is the deviatoric stress tensor, and $-p\,\Id$ is the volumetric stress tensor. $\div \tau = \nu \La u$. Make a change of variable:

\[\begin{align*} v (t, x) &= u (t, x + t u _\infty) - u _\infty \\ \pi (t, x) &= p (t, x + t u _\infty) \\ R (t, x) &= \tau (t, x + t u _\infty) = 2 \nu D v. \end{align*}\]

Then $v, \pi$ solves

\[\begin{align*} & \pt v + v \cdot \grad v + \grad \pi = \div R, \qquad \div v = 0 \\ & v \at{\partial K} = 0, \qquad v \at{|x| = \infty} = -u _\infty. \end{align*}\]

Total force exerted by the fluid to body: ($n$ is inward of $K _t$)

\[F = \int _{\partial K _t} (p \,\Id - \tau) n \d S = \int _{\partial K} (\pi \,\Id - R) n \d S = F _{\text{form}} + F _{\text{skin}}.\]

Form force is

\[F _{\text{form}} = \int _{\partial K} \pi n \d S = F _{\text{form drag}} + F _{\text{form lift}}.\]

Skin force is

\[F _{\text{skin}} = -\int _{\partial K} R n \d S = -2 \nu \int _{\partial K} D v \d S = - \nu \int _{\partial K} \nabla v + \nabla v ^\top \d S = -\nu \int _{\partial K} \partial _n v \d S = F _{\text{skin drag}} + F _{\text{skin lift}}.\]

If $u$ has fast decay, then

\[F \cdot u _\infty = \int _{\partial K _t} u _\infty ^\top (p \,\Id - \tau) n \d S = \int _{\partial K _t} u ^\top (p \,\Id - \tau) n \d S = \int _{\RR3 \setminus K _t} \div ((p \,\Id - \tau) ^\top u) \d x.\]

Here

\[\begin{align*} \div ((p \,\Id - \tau) ^\top u) &= \div (p \,\Id - \tau) \cdot u + (p \,\Id - \tau) : \grad u \\ &= (-\pt u - u \cdot \nabla u) \cdot u + p \div u - 2 \nu D u : \nabla u \end{align*}\]

So

\[F \cdot u _\infty = -\int _{\RR3 \setminus K _t} (\pt + u \cdot \grad) \frac{|u| ^2}2 \dx - 2 \nu \int _{\RR3 \setminus K _t} |D u| ^2 \d x.\]

If the total energy is conserved, then

\[\int _{\RR3 \setminus K _t} (\pt + u \cdot \grad) \frac{|u| ^2}2 \dx = \int _{\partial K _t} \hfsq u (u \cdot n) \dx = \int _{\partial K _t} \hfsq {u _\infty} (u _\infty \cdot n) \dx = 0.\]

So we have

\[F \cdot u _\infty = F _{\text{drag}} \cdot u _\infty = -2 \nu \int _{\RR3 \setminus K _t} |D u| ^2 \dx = -2\nu \int _K |D v| ^2 \dx.\]

There are two types of integration by part:

\[\begin{align} u \cdot \La u &= \div(\grad u ^\top u ) - |\grad u| ^2. \\ u \cdot \La u &= -u \cdot \curl \omega = \div (u \cross \omega) - |\omega| ^2 \\ \notag \implies 2 u \cdot \La u &= \div (-(S u) \omega) - |S u| ^2. \end{align}\]

Here $S u = \frac12 (\grad u - \grad u ^\top)$, $\grad u = D u + S u$. Note that $|\grad u| ^2 = |S u| ^2 + |D u| ^2$ and $2 u \cross \omega = (Su) u$. So we have a third identity:

\[-u \cdot \La u = \div ((D u) u) - |D u| ^2.\]

Recent Posts

22 Jan 2021

De Giorgi

14 Apr 2020

Lorentz Space