Your browser does not support the canvas element.

Jincheng Yang

The University of Chicago

%--Paired Delimiters-- $ \newcommand{\abs}[1]{\left\lvert #1 \right\rvert} \newcommand{\ang}[1]{\left\langle #1 \right\rangle} \newcommand{\bkt}[1]{\left\lbrack #1 \right\rbrack} \newcommand{\nor}[1]{\left\lVert #1 \right\rVert} \newcommand{\pth}[1]{\left( #1 \right)} \newcommand{\set}[1]{\left\lbrace #1 \right\rbrace} \newcommand{\abset}[1]{\abs{\set{#1}}} \newcommand{\ptset}[1]{\pth{\set{#1}}} $ %--Operators-- $ \newcommand{\grad}{\nabla} \newcommand{\La}{\Delta} \renewcommand{\div}{\operatorname{div}} \newcommand{\curl}{\operatorname{curl}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\Hess}{\operatorname{Hess}} \newcommand{\mm}{\mathcal{M}} \newcommand{\inv}{^{-1}} \newcommand{\tensor}{\otimes} \newcommand{\cross}{\times} \newcommand{\weak}[1]{\xrightharpoonup{#1}} $ %--Notations-- $ \newcommand{\Vol}{\mathrm{Vol}} \newcommand{\loc}{\mathrm{loc}} \renewcommand{\dim}{\mathrm{dim}} \newcommand{\Span}{\mathrm{Span}} \newcommand{\diam}{\mathrm{diam}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\Lip}{\mathrm{Lip}} \newcommand{\dist}{\mathrm{dist}} \newcommand{\inv}{^{-1}} $ %--Algebra-- $ \newcommand{\hfsq}[1]{\frac{\abs{#1} ^2}{2}} $ %--Sets-- $ \newcommand{\R}{\mathbb{R}} \newcommand{\RR}[1]{\R ^{#1}} \newcommand{\Rd}{\RR d} \newcommand{\Rn}{\RR n} \renewcommand{\S}{\mathbb{S}} \renewcommand{\Z}{\mathbb{Z}} \newcommand{\T}{\mathbb{T}} \newcommand{\ssubset}{\subset \subset} \newcommand{\spt}{\operatorname{spt}} \newcommand{\supp}{\operatorname{supp}} \newcommand{\diam}{\mathrm{diam}} \newcommand{\diag}{\operatorname{diag}} \renewcommand{\dim}{\mathrm{dim}} \newcommand{\dimH}{\mathrm{dim} _\mathcal{H}} \newcommand{\Sing}{\mathrm{Sing}} \newcommand{\Vol}{\mathrm{Vol}} \newcommand{\inds}[1]{\mathbf1_{\set{#1}}} \newcommand{\ind}[1]{\mathbf1_{#1}} $ %--Summations-- $ \newcommand{\SUM}[3]{\sum \cnt{#1}{#2}{#3}} \newcommand{\PROD}[3]{\prod \cnt{#1}{#2}{#3}} \newcommand{\cnt}[3]{ _{#1 = #2} ^{#3} } \newcommand{\seq}[2]{\set{#1 _{#2}} _{#2}} \newcommand{\seqi}[2]{\set{#1 _{#2}} \cnt{#2}1i} $ %--Superscript and Subscript $ \newcommand{\pp}[1]{^{(#1)}} \newcommand{\bp}[1]{_{(#1)}} \newcommand{\pps}[2][1]{^{#2 + #1}} \newcommand{\bps}[2][1]{_{#2 + #1}} \newcommand{\pms}[2][1]{^{#2 - #1}} \newcommand{\bms}[2][1]{_{#2 - #1}} $ %--Notations-- $ \newcommand{\loc}{\mathrm{loc}} \newcommand{\Span}{\operatorname{Span}} \newcommand{\argmin}{\operatorname{argmin}} \newcommand{\argmax}{\operatorname{argmax}} \newcommand{\osc}{\operatorname{osc}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\Lip}{\operatorname{Lip}} \newcommand{\Leb}{\operatorname{Leb}} \newcommand{\PV}{\mathrm{P.V.}} \newcommand{\dist}{\operatorname{dist}} \newcommand{\at}[1]{\bigr\rvert _{#1}} \newcommand{\At}[1]{\biggr\rvert _{#1}} \newcommand{\half}{\frac12} $ %--Text-- $ \newcommand{\inn}{\text{ in }} \newcommand{\onn}{\text{ on }} \renewcommand{\ae}{\text{ a.e. }} \newcommand{\st}{\text{ s.t. }} \newcommand{\forr}{\text{ for }} \newcommand{\as}{\text{ as }} $ %--Differential-- $ \newcommand{\d}{\mathop{\kern0pt\mathrm{d}}\!{}} \newcommand{\dt}{\d t} \newcommand{\dx}{\d x} \newcommand{\dy}{\d y} \newcommand{\ptil}{\partial} \newcommand{\pt}{\ptil _t} \newcommand{\pfr}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\dfr}[2]{\frac{\mathrm{d} #1}{\mathrm{d} #2}} \newcommand{\ddt}{\dfr{}t} \newcommand{\pthf}[2]{\pth{\frac{#1}{#2}}} $ %--Integral-- $ \newcommand{\intR}{\int _0 ^\infty} \newcommand{\intRn}{\int _{\Rn}} \newcommand{\intRd}{\int _{\Rd}} \newcommand{\fint}{-\!\!\!\!\!\!\int} \newcommand{\intset}[1]{\int _{\set{#1}}} $ %--Greek-- $ \newcommand{\e}{\varepsilon} \newcommand{\vp}{\varphi} $ %--Norm-- $ \newcommand{\nmL}[2]{\nor{#2} _{L ^#1}} $

Research Blog

Lorentz Space

2020, April 14

The purpose of this note is to give a few equivalent definitions, \eqref{def1}, \eqref{def2}, \eqref{def3} and \eqref{def4} for Lorentz norm $L ^{p, q}$.

Distribution function and Decreasing Rearrangement

Similar as Lebesgue space, Lorentz space only cares about the height of a function and the space it occupies at each height. Let $f \in \mathcal L ^0 \pth{X, \d \mu}$ be any complex-valued measurable function. Any definition below that works for $f \ge 0$ can be generalized for complex-valued (and in general Banach space-valued) $f$ by replacing $f$ by $\abs{f}$.

Definition. The distribution function of $f$ is defined as the measure of the superlevel set, that is

\begin{align} d _f (\alpha) := \mu \pth{\set{x \in X: |f (x)| > \alpha}}, \qquad \alpha \ge 0. \end{align}

This definition is the opposite to the definition of cdf (cumulative distribution function) for a random variable that we are used to in probability. So in contrast to cdf, $d _f$ is left/lower semicontinuous, and is a decreasing function.

Definition. The decreasing rearrangement of $f$ is defined on $[0, \infty)$ by

\begin{align} f ^* (\lambda) := \inf \set{t > 0: d _f (t) \le \lambda} \end{align}

This is almost like the “inverse function” of the distribution function. It is also left/lower semicontinuous and decreasing. Notice that the superlevel set of $f ^*$ has the same measure as $f$.

One can take the following example to understand the construction of the distribution function and decreasing rearrangement. Assume the following is the graph of $f = \ind{S _1} + 4 \ind{S _2} + 2 \ind{S _3}$ where $\mu (S _1) = \mu (S _2) = \mu (S _3) = 1$.

To find its distribution function, rotate by 90 degrees and then find the measure of superlevel set at each level $\alpha$.

Finally, rotate back and flip the distribution function to obtain decreasing rearrangement.

Compare $f$ and $f ^*$, it looks like just push all the level sets to the left onto the $\alpha$ axis, and end up with something decreasing.

Layer Cake Representation and $L ^p$ Norm

The layer cake representation states the following. For $f \ge 0$,

\begin{align} \int _X f \d \mu = \int _0 ^\infty d _f (\alpha) \d \alpha. \end{align}

This comes from thinking integration over the hypograph,

\begin{align} \Omega _f = \set{(x, \alpha) \in X \times \R _+: f (x) > \alpha}. \end{align}

Therefore

\[\begin{align} \int _X f \d \mu &= \int _X \int _0 ^{f(x)} \d \alpha \d \mu \notag\\\ &= \int _{\Omega _f} \d \alpha \d \mu \notag\\\ &= \int _0 ^\infty \int _X \ind{\set{f(x) > \alpha}} \d \mu \d \alpha \notag \\\ &= \int _0 ^\infty \mu (f > \alpha) \d \alpha \notag \\\ &= \int _0 ^\infty d _f (\alpha) \d \alpha. \notag \end{align}\]

Using decreasing rearrangement, we can also think

\begin{align} \int _X f \d \mu = \int _0 ^\infty f ^* \d \lambda = \int _{\Omega _{f ^*}} \d \alpha \d \lambda. \notag \end{align}

Here $\Omega _{f ^*}$ is the hypograph of $f ^*$ (and also the hypograph of $d _f$)

\begin{align} \Omega _{f ^*} = \set{(\lambda, \alpha) \in \R _+ ^2: f ^* (\lambda) > \alpha} = \set{(\lambda, \alpha) \in \R _+ ^2: d _f (\alpha) > \lambda}. \notag \end{align}

Similarly, for $L ^p$ norm,

\begin{align} \int _X f ^p \d \mu &= \int _{\Omega _{f ^*}} \d (\alpha ^p) \d \lambda = \int _0 ^\infty d _f (\alpha) \d (\alpha ^p) = \int _0 ^\infty p \alpha ^{p - 1} d _f (\alpha) \d \alpha. \notag \end{align}

So the integral of $f ^p$ can be just thought as the $\d(\alpha ^p) \tensor \d \lambda$ measure of the hypograph.

Lorenze Space

Definition. For $p, q > 0$, we define the Lorenze norm of $f \ge 0$ by

\begin{align} \label{def1} \nor{f} _{L ^{p, q}} ^q = \int _{\Omega _{f ^*}} \d (\alpha ^q) \d \pth{\frac pq \lambda ^{\frac qp}} = \int _{\Omega _{f ^*}} \lambda ^{\frac qp - 1} \d (\alpha ^q) \d \lambda. \end{align}

That is, we change the measure we put on domain, and put $L ^q$-typed measure on range. If we integrate $\lambda$ first, we end up with

\[\begin{align} \nor{f} _{L ^{p, q}} ^q &= \int _0 ^\infty \frac pq \bkt{d _f (\alpha)} ^{\frac qp} q \alpha ^{q - 1} \d \alpha \notag \\\ &= p \int _0 ^\infty \bkt{d _f (\alpha)} ^{\frac qp} \alpha ^{q} \frac{\d \alpha}\alpha \label{split} ,\\\ \nor f _{L ^{p,q}} &= p ^\frac1q \nor{\alpha [d _f (\alpha)] ^\frac1p} _{L ^q \pth{\R _+, \frac{\d \alpha}\alpha}} . \label{def2} \end{align}\]

If we integrate $\alpha$ first, we end up with

\[\begin{align} \nor f _{L ^{p, q}} ^q &= \int _0 ^\infty [f ^* (\lambda)] ^q \lambda ^{\frac qp - 1} \d \lambda \notag \\ &= \int _0 ^\infty \lambda ^{\frac qp} [f ^* (\lambda)] ^q\frac{\d \lambda}\lambda \notag ,\\ \nor f _{L ^{p, q}} &= \nor{\lambda ^{\frac1p} f ^* (\lambda)} _{L ^q \pth{\R _+, \frac{\d \lambda}\lambda}}. \label{def3} \end{align}\]

Dyadic Decomposition in Range

We decompose $f \ge 0$ by range as the following. Let $E _k = \set{f > 2 ^k}$ denote a sequence of nested dyadic level sets, and define

\[\begin{align*} f _k &= 2 ^{k-1} \ind{E _{k + 1}} + (f - 2^{k - 1})(\ind{E _k} - \ind{E _{k + 1}}) \\\ &= f(\ind{E _k} - \ind{E _{k + 1}}) + 2 ^k \ind{E _{k + 1}} - 2^{k - 1} \ind{E _k} . \end{align*}\]

Then $f = \sum _{k \in \mathbb Z} f _k$, $f _k$ is supported in $E _k$, and $f _k$ is comparible to $2 ^k \ind{E _k}$:

\[\begin{align*} \frac12 2 ^k \ind{E _k} \le f _k \le \frac32 2 ^k \ind{E _k}. \end{align*}\]

Decomposition

Now we also split the integral \eqref{split} dyadically,

\[\begin{align*} \frac1p \nor{f} _{L ^{p, q}} ^q &= \int _0 ^\infty \bkt{d _f (\alpha)} ^{\frac qp} \alpha ^{q} \frac{\d \alpha}\alpha \notag \\\ &= \sum _{k \in \Z} \int _{2 ^k} ^{2 ^{k + 1}} \bkt{d _f (\alpha)} ^{\frac qp} \alpha ^{q} \frac{\d \alpha}\alpha .\notag \\\ \end{align*}\]

Since $d _f$ is decreasing,

\[\begin{align*} 2 ^{kq} \bkt{d _f \pth{2 ^{k + 1}}} ^{\frac qp} \lesssim \int _{2 ^k} ^{2 ^{k + 1}} \bkt{d _f (\alpha)} ^{\frac qp} \alpha ^{q} \frac{\d \alpha}\alpha \lesssim 2 ^{kq} \bkt{d _f \pth{2 ^{k}}} ^{\frac qp}. \notag \end{align*}\]

By definition of $E _k$,

\[\begin{align*} 2 ^{kq} \mu\pth{E _{k + 1}} ^{\frac qp} \lesssim \int _{2 ^k} ^{2 ^{k + 1}} \bkt{d _f (\alpha)} ^{\frac qp} \alpha ^{q} \frac{\d \alpha}\alpha \lesssim 2 ^{kq} \mu\pth{E _{k}} ^{\frac qp}. \notag \end{align*}\]

Since $\nor{f _k} _{L ^p} \sim \nor{2 ^k \ind {E _k}} _{L ^p} = 2 ^k \mu \pth{E _k} ^{\frac 1p}$,

\[\begin{align*} \nor{f _{k + 1}} _{L ^p} ^q \lesssim \int _{2 ^k} ^{2 ^{k + 1}} \bkt{d _f (\alpha)} ^{\frac qp} \alpha ^{q} \frac{\d \alpha}\alpha \lesssim \nor{f _k} _{L ^p} ^q. \notag \end{align*}\]

By taking the summation over $k$, we obtain an equivalent way of defining $L ^{p, q}$ norm,

\[\begin{align} \label{def4} \nor f _{L ^{p, q}} \sim _{p,q} \nor{ \set{\nor{f _k} _{L ^p}} _{k \in \Z}} _{\ell ^q}. \end{align}\]

Recent Posts

22 Jan 2021

De Giorgi

14 Apr 2020

Lorentz Space