Your browser does not support the canvas element.

Jincheng Yang

The University of Chicago

%--Paired Delimiters-- $ \newcommand{\abs}[1]{\left\lvert #1 \right\rvert} \newcommand{\ang}[1]{\left\langle #1 \right\rangle} \newcommand{\bkt}[1]{\left\lbrack #1 \right\rbrack} \newcommand{\nor}[1]{\left\lVert #1 \right\rVert} \newcommand{\pth}[1]{\left( #1 \right)} \newcommand{\set}[1]{\left\lbrace #1 \right\rbrace} \newcommand{\abset}[1]{\abs{\set{#1}}} \newcommand{\ptset}[1]{\pth{\set{#1}}} $ %--Operators-- $ \newcommand{\grad}{\nabla} \newcommand{\La}{\Delta} \renewcommand{\div}{\operatorname{div}} \newcommand{\curl}{\operatorname{curl}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\Hess}{\operatorname{Hess}} \newcommand{\mm}{\mathcal{M}} \newcommand{\inv}{^{-1}} \newcommand{\tensor}{\otimes} \newcommand{\cross}{\times} \newcommand{\weak}[1]{\xrightharpoonup{#1}} $ %--Notations-- $ \newcommand{\Vol}{\mathrm{Vol}} \newcommand{\loc}{\mathrm{loc}} \renewcommand{\dim}{\mathrm{dim}} \newcommand{\Span}{\mathrm{Span}} \newcommand{\diam}{\mathrm{diam}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\Lip}{\mathrm{Lip}} \newcommand{\dist}{\mathrm{dist}} \newcommand{\inv}{^{-1}} $ %--Algebra-- $ \newcommand{\hfsq}[1]{\frac{\abs{#1} ^2}{2}} $ %--Sets-- $ \newcommand{\R}{\mathbb{R}} \newcommand{\RR}[1]{\R ^{#1}} \newcommand{\Rd}{\RR d} \newcommand{\Rn}{\RR n} \renewcommand{\S}{\mathbb{S}} \renewcommand{\Z}{\mathbb{Z}} \newcommand{\T}{\mathbb{T}} \newcommand{\ssubset}{\subset \subset} \newcommand{\spt}{\operatorname{spt}} \newcommand{\supp}{\operatorname{supp}} \newcommand{\diam}{\mathrm{diam}} \newcommand{\diag}{\operatorname{diag}} \renewcommand{\dim}{\mathrm{dim}} \newcommand{\dimH}{\mathrm{dim} _\mathcal{H}} \newcommand{\Sing}{\mathrm{Sing}} \newcommand{\Vol}{\mathrm{Vol}} \newcommand{\inds}[1]{\mathbf1_{\set{#1}}} \newcommand{\ind}[1]{\mathbf1_{#1}} $ %--Summations-- $ \newcommand{\SUM}[3]{\sum \cnt{#1}{#2}{#3}} \newcommand{\PROD}[3]{\prod \cnt{#1}{#2}{#3}} \newcommand{\cnt}[3]{ _{#1 = #2} ^{#3} } \newcommand{\seq}[2]{\set{#1 _{#2}} _{#2}} \newcommand{\seqi}[2]{\set{#1 _{#2}} \cnt{#2}1i} $ %--Superscript and Subscript $ \newcommand{\pp}[1]{^{(#1)}} \newcommand{\bp}[1]{_{(#1)}} \newcommand{\pps}[2][1]{^{#2 + #1}} \newcommand{\bps}[2][1]{_{#2 + #1}} \newcommand{\pms}[2][1]{^{#2 - #1}} \newcommand{\bms}[2][1]{_{#2 - #1}} $ %--Notations-- $ \newcommand{\loc}{\mathrm{loc}} \newcommand{\Span}{\operatorname{Span}} \newcommand{\argmin}{\operatorname{argmin}} \newcommand{\argmax}{\operatorname{argmax}} \newcommand{\osc}{\operatorname{osc}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\Lip}{\operatorname{Lip}} \newcommand{\Leb}{\operatorname{Leb}} \newcommand{\PV}{\mathrm{P.V.}} \newcommand{\dist}{\operatorname{dist}} \newcommand{\at}[1]{\bigr\rvert _{#1}} \newcommand{\At}[1]{\biggr\rvert _{#1}} \newcommand{\half}{\frac12} $ %--Text-- $ \newcommand{\inn}{\text{ in }} \newcommand{\onn}{\text{ on }} \renewcommand{\ae}{\text{ a.e. }} \newcommand{\st}{\text{ s.t. }} \newcommand{\forr}{\text{ for }} \newcommand{\as}{\text{ as }} $ %--Differential-- $ \newcommand{\d}{\mathop{\kern0pt\mathrm{d}}\!{}} \newcommand{\dt}{\d t} \newcommand{\dx}{\d x} \newcommand{\dy}{\d y} \newcommand{\ptil}{\partial} \newcommand{\pt}{\ptil _t} \newcommand{\pfr}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\dfr}[2]{\frac{\mathrm{d} #1}{\mathrm{d} #2}} \newcommand{\ddt}{\dfr{}t} \newcommand{\pthf}[2]{\pth{\frac{#1}{#2}}} $ %--Integral-- $ \newcommand{\intR}{\int _0 ^\infty} \newcommand{\intRn}{\int _{\Rn}} \newcommand{\intRd}{\int _{\Rd}} \newcommand{\fint}{-\!\!\!\!\!\!\int} \newcommand{\intset}[1]{\int _{\set{#1}}} $ %--Greek-- $ \newcommand{\e}{\varepsilon} \newcommand{\vp}{\varphi} $ %--Norm-- $ \newcommand{\nmL}[2]{\nor{#2} _{L ^#1}} $

Research Blog

Vector-Valued Maximal Function

2020, November 07

For $f \in L ^1 _\loc (\Rn)$, we can define

\begin{align*} \mm f (x) := \sup _{r > 0} \fint _{B _x (r)} |f (y)| \d y. \end{align*}

$ \newcommand{\vf}{\boldsymbol f} \newcommand{\vg}{\boldsymbol g} \newcommand{\vb}{\boldsymbol b} \newcommand{\vM}{\boldsymbol{\mathcal M}} $

Consider the space of function sequence $\vf = \set{f _j} \cnt j1\infty \in \pth{L^p (\Rn)} _\tensor$, define

\begin{align*} | \vf (x) | = \pth{ \SUM j1i |f _j (x)| ^2 } ^\half = \nor{\set{f _j (x)} \cnt j1\infty} _{\ell^2} \end{align*}

We say $\vf \in L ^p$ if $\abs{\vf} \in L ^p (\Rn)$, or $\nor{\vf} _{L ^p} = \nor{f _j (x)} _{L ^p _x \ell ^2 _j}$.

Vector-valued maximal operator $\vM$ is defined by

\begin{align*} \vM \vf (x) = \pth{ \SUM j1\infty |\mm f _j (x)| ^2 } ^\half = \nor{\set{\mm f _j (x)} \cnt j1\infty} _{\ell^2} . \end{align*}

Then:

Let $1 \le p < \infty$, assume $\vf \in L ^p$. Then
  1. $\vM \vf$ is finite a.e.
  2. $\vM$ is weak-type $(1, 1)$.
  3. $\vM$ is strong-type $(p, p)$, $1 < p < \infty$.
The case $p = \infty$ is wrong. Think $f _j = \ind{(2 ^{j}, 2 ^{j + 1})}$.

We will prove this theorem first for $p = 2$, then for $p = 1$, then for $p \in (1, 2)$, then for $p \in (2, \infty)$.

Proof for $p = 2$

Case $p = 2$ is natural, because $\mm$ is bounded on $L^2$, and $L ^2 _x \ell ^2 _j = L ^2_{x, j}$.

Proof for $p = 1$

When $p = 1$, we want to prove for all $\alpha > 0$,

\begin{align*} \abset{ \vM \vf > \alpha } \le \frac A\alpha \nmL1\vf. \end{align*}

Assume $\vf \ge 0$. We have Calder'on-Zygmund decomposition, that is, we have a collection $\set{Q _k}$ disjoint cubes, $\vf = \vg + \vb = \vg + \sum _k \vb _k$, such that

  1. $\abs{\vg} = \abs{\vf} \le \alpha$ in $\Rn \setminus \bigcup _k Q _k$, and $\vg = 0$ in $Q _k$.
  2. $\vb _k$ is supported in $Q _k$, and $\fint _{Q _k} \abs{\vb _k} \le A \alpha$.
  3. $\sum _k \abs{Q _k} \le \frac A\alpha \nor\vf _{L ^1}$.

Because $\abs{\vg} \le \min \set{\alpha, \abs{\vf}}$,

\begin{align*} \abset{ \vM \vg > \frac\alpha2 } \le \frac4{\alpha ^2} \nmL2{\vM \vg} ^2 \le \frac A{\alpha ^2} \nmL2\vg ^2 \le \frac A\alpha \nmL1\vf. \end{align*}

it suffices to show

\begin{align*} \abset{ \vM \vb > \frac\alpha2 } \le \frac A\alpha \nmL1\vf. \end{align*}

Denote $\bar \vb _k = \fint _{Q _k} \vb _k \le A\alpha$, and $\bar \vb = \sum _k \bar \vb _k \ind{Q _k}$. Then

\begin{align*} \abset{ \vM \bar \vb > \frac\alpha2 } \le \frac4{\alpha ^2} \nmL2{\vM \bar \vb} ^2 \le \frac A{\alpha ^2} \nmL2{\bar \vb} ^2 \le A ^3 \sum _k |Q _k| \le \frac A\alpha \nmL1\vf. \end{align*}

Similarly

\begin{align*} \abset{ c \vM \bar \vb > \frac\alpha2 } \le \frac A\alpha \nmL1\vf. \end{align*}

We want to show that

\begin{align*} \vM \vb (x) \le c \vM \bar \vb (x) \qquad x \notin \bigcup _k Q _k ^* \end{align*}

where $Q _k ^* = 2 Q _k$. This would end the proof because

\begin{align*} \abset{ \vM \vb (x) > \frac\alpha2 } &\le \abset{ c \vM \bar \vb > \frac\alpha2 } + \abset{ \vM \vb (x) > c \vM \bar \vb } \\&\le \frac A\alpha \nmL1\vf + \sum _k |Q _k ^*| \\&\le \frac A\alpha \nmL1\vf. \end{align*}

To see why $c \vM \bar \vb$ bound $\vM \vb$ away from $Q _k ^*$, it suffices to prove for each coordinate,

\begin{align*} \mm b _j (x) \le c \mm \bar b _j (x) \qquad x \notin \bigcup _k Q _k ^* \end{align*}

then the $\ell ^2$ norm are controlled. Let $B = B (x, r)$, and consider

\begin{align*} \fint _B b _j (x) \d x = \frac1{|B|} \sum _k \int _{B \cap Q _k} b _j (x) \d x. \end{align*}

If $x \notin Q _k ^*, B \cap Q _k \neq \varnothing$, then $Q _k \subset 3 B$, so

\begin{align*} \fint _B b _j \d x \le \frac1{|B|} \int _{3B} b _j \d x = \frac1{|B|} \int _{3B} \bar b _j \d x \le 3 ^n M \bar b _j (x). \end{align*}

Proof for $1 < p < 2$

By Marcinkiewicz interpolation, we have all the strong type bound for $1 < p \le 2$.

Proof for $2 < p < \infty$

First we introduce the weighted maximal inequality.

Let $\mu < < \mathcal L ^n$ be absolute continuous with respect to the Lebesgue measure, that is $\d \mu = \omega (x) \d x$ for some $\omega \in L^1_{\loc}$. Then \begin{align*} \mu \ptset{ \mm f (x) > \alpha } \le \frac A\alpha \nor{f} _{L^1(\mm \omega \d x)} \end{align*} and \begin{align*} \nor{\mm f} _{L ^q(\omega \d x)} \le A _q \nor f_{L ^q (\mm \omega \d x)}. \end{align*} Here $A$ and $A _q$ are independent from $\omega$.
Proof.

The case $q = \infty$ is trivial, and the case $1 < q < \infty$ is by Marcinkiewicz interpolation.

For $x \in \set{\mm f (x) > \alpha}$, there exists $B _x$ such that

\begin{align*} |B _x| < \frac1\alpha \int _{B _x} |f (y)| \d y. \end{align*}

Then \begin{align*} \mu (5 B _x) = \int _{5 B _x} \omega \d x &\le A |B _x| \mm \omega (y), \qquad \forall y \in B _x \\& \le \frac A\alpha \int _{B _x} |f (y)| \mm \omega (y) \d y. \end{align*}

Fincally, we choose a disjoint subselection of $B _{x _k}$ such that $5 B _{x _k}$ is a covering of $\set{\mm f (x) > \alpha}$.


Back to the case $\vf = \set{f _j} \cnt j1i$, by proposition case $q = 2$ we have

\begin{align*} \nor{\mm f _j} _{L ^2(\omega \d x)} \le A _2 \nor{f _j} _{L ^2 (\mm \omega \d x)}. \end{align*}

Take $\ell ^2$ norm,

\begin{align*} \nor{\vM \vf} _{L ^2(\omega \dx)} \le A _2 \nor{\vf} _{L ^2 (\mm \omega \d x)}, \end{align*}

that is

\begin{align*} \int (\vM \vf) ^2 \omega \d x \le A \int |\vf| ^2 (\mm \omega) \d x. \end{align*}

Then by duality, set $q = \pthf p2 ^*$,

\begin{align*} \nmL p{\vM \vf} &= \nmL{\frac p2}{(\vM \vf) ^2} \\&= \sup _{\nmL q{\omega} = 1} \int (\vM \vf) ^2 \omega \d x \\& \le \sup _{\nmL q{\omega} = 1} A \int |\vf| ^2 (\mm \omega) \d x \\& \le A \nmL{\frac p2}{\vf ^2} \sup _{\nmL q{\omega} = 1} \nmL{q}{\mm \omega} \\& \le A \nmL p \vf. \end{align*}

We can replace $\ell ^2$ by $\ell ^q$ for $1 < q \le \infty$, by setting $\vM _q \vf (x) = \nor{M f _j (x)}_{\ell ^q}$. For $q < \infty$, one start the proof for $p = q$, then interpolate $(1, q)$, then bootstrap to $(q, \infty)$. For $q = \infty$, $\vM _\infty \vf \le M (|\vf| _\infty)$. However $q = 1$ doesn't work.
If $\mm \omega$ is comparible to $\omega$, then the two weights in the proposition are the same. This is called $A _1$ condition.

Recent Posts

22 Jan 2021

De Giorgi

14 Apr 2020

Lorentz Space