The University of Chicago Mathematics REU 2016

Interested in the REU but not at the University of Chicago? (Go)

An essay about Chicago's REU and DRP programs (Go)

2016 REU: Announcement and description of the program (pdf)

Course offerings, Schedules, Mentorship pairings

Tex Help

Guides to writing papers (Steve Kleiman and Dan Kleitman, MIT)


Dead links are to papers under revision

  • Fernando Al Assal. Entropy, speed and spectral radius of random walks. (pdf)
  • Frimpong A. Baidoo. L-functions on algebraic number fields. (pdf)
  • Ishan Banerjee. The Hopf invariant one problem. (pdf)
  • Diego Andres Bejarano Rayo. How do ultrafilters act on theories. The cut spectrum and treetops. (pdf)
  • Rush Brown. Irreducible representations of complex semisimple Lie algebras. (pdf)
  • Karen Butt. Elliptic curves and the Mordell-Weil theorem. (pdf)
  • Daniel Chong. Quadratic reciprocity, genus theory, and primes of the form x^2 = ny^2. (pdf)
  • Teodoro Fields Collin. Random matrix theory. (pdf)
  • Paolo Degiorgi. Cellular homology and the cellular boundary formula. (pdf)
  • Rafael Wingester Ribeiro De Oliveira. Excursions in model theory. (pdf)
  • Jacob W. Erickson. Some results for computing automorphism groups of Cartan geometries. (pdf)
  • Robert Green. Alphabet soup. (pdf)
  • Yi Guo. A counterexample to the Lovazc conjecture. (pdf)
  • Araminta Gwynne. The oriented cobordism ring. (pdf)
  • John Halliday. Castelnuovo's criterion and birational geometry of surfaces. (pdf)
  • Hung Ho. Gaussian integers. (pdf)
  • Ryan Hopkins. Nonlinear wave equations. (pdf)
  • Enya Hsiao. Canonical energy and black hole stability. (pdf)
  • Sameer Kailasa. On the Tate-Shafarevich group of a number field. (pdf)
  • Noam Kantor. Model categories: theory and applications. (pdf)
  • Zachary Kirsche Local--global methods in algebraic number theory. (pdf)
  • Daniel Kline. Elliptic curves and cryptography. (pdf)
  • Holly Mandel. What does a Lie algebra know about a Lie group? (pdf)
  • Henry Li. Some properties of integral Apollonian packings. (pdf)
  • Ryan McGaha. (pdf)
  • Alex Mine. Overview of Tate's thesis. (pdf)
  • Daniel Mitsutani. Differential topology: Morse theory and the Euler characteristic. (pdf)
  • Gwyneth Moreland. Class field theory for number fields and complex multiplication. (pdf)
  • Seth Musser. Weyl's law on Riemannian manifolds. (pdf)
  • Adele Padgett. A discussion of Keisler's order. (pdf)
  • Sun Woo Park. Rationality of zeta functions over finite fields. (pdf)
  • Raiann Rahman. Elliptic curves, the group law, and the J invariant. (pdf)
  • David Ran. Birkhoff's ergodic theorem. (pdf)
  • Julian Salazar. The representability hierarchy and Hilbert's 13th problem. (pdf)
  • Julian Salazar and Emma West. Persistent homology and the topology of motor cortical activity. (pdf)
  • Hannah Santa Cruz. A survey on the monodromy groups of algebraic functions. (pdf)
  • Isabella Scott. A conversation between model theory and graph theory. (pdf)
  • Maithreya Sitaraman. Exploring unknown spaces via nerves of coverings. (pdf)
  • Daniel Spiegel. The Hopf-Rinow theorem. (pdf)
  • Sam Spiro. Fourier analysis of Boolean functions. (pdf)
  • Matthew Steed. Development of Morse theory. (pdf)
  • James Stevens. Schur-Weyl duality. (pdf)
  • Sheel Stueber. The word and conjugacy problems. (pdf)
  • Dan Su. The Fourier transform for locally compact Abelian groups. (pdf)
  • Arthur Vale. Barriers in complexity theory. (pdf)
  • Zhengqu Wan. Geometric interpretations of curvature. (pdf)
  • Yi Wang. Using functional analysis and Sobolev spaces to solve Poisson's equation. (pdf)
  • Maeve Coates Welsh. Scissors congruence. (pdf)
  • Emma West and Julian Salazar. Persistent homology and the topology of motor cortical activity. (pdf)
  • Catherine Wolfram. Recursive derivation of 2N gon topologies. (pdf)
  • Dominic L. Wynter. An exposition of the Riemann Roch theorem for curves. (pdf)
  • Peter Xu. Arithmetic incarnations of zeta in Iwasawa theory. (pdf)
  • Arieh Zimmerman. The geometry of elliptic curves over finite fields. (pdf)


    Dead link is to a paper under revision

  • Michael Cronin. Combinatorial games and surreal numbers. (pdf)
  • Elise Darragh-Ford. Minimizing the uncertainty principle in the Weyl-Heisenberg and affine groups. (pdf)
  • Mayanka Dutta. An overview of spectral graph theory with applications. (pdf)
  • Philip Gaddy. The Stone-Weierstrass theorem and its applications to $L^2$ spaces. (pdf)
  • Katharine Gallagher. The fundamental group and Seifert-Van Kampen's theorem. (pdf)
  • Emily Gentles. Simple random walks: improbability of profitable stopping. (pdf)
  • Max Goldberg. Automorphism groups and spectra of circulant graphs. (pdf)
  • Evan Gorstein. Solving and computing the discrete Dirichlet problem. (pdf)
  • Charles Homans. On the group-theoretic properties of the automorphism groups of various graphs. (pdf)
  • Amin Idelhaj. The Sylow theorems and their applications. (pdf)
  • Tali Khain. Fractals and dimension. (pdf)
  • Jordan Laune. Applications of probability theory to graphs. (pdf)
  • Benjamin Ledeaux. Vaught's theorem: the finite spectrum of complete theories in aleph_0. (pdf)
  • Chia-Hsun Lee. Mathematical foundations of topological quantum computation. (pdf)
  • Jingjing (Jenny) Li. Spectral theory and applications. (pdf)
  • Can Liu. Ramsey theory. (pdf)
  • Shirong Liu. Polya's urn and the martingale convergence theorem. (pdf)
  • Phillip Lo. A combinatorial approach to the Brouwer fixed point theorem. (pdf)
  • Mantas Ma\v{z}eika. The singular value decomposition and low rank approximation. (pdf)
  • Katherine Monson. Finite Fourier analysis and Dirichlet's theorem. (pdf)
  • Daniel Morrison. An introduction to percolation theory and its physical applications. (pdf)
  • Joseph Redeker. Lie groups and Lie algebras. (pdf)
  • Jae Hyung Sim. The fundamental group and CW complexes. (pdf)
  • Christopher Stith. The fundamental groups and connections to covering spaces. (pdf)
  • Squid Tamar--Mattis. Planar graphs and Wagner's and Kuratowski's theorems. (pdf)
  • Cheuk To Tsui. Graphs with large girth and large chromatic number. (pdf)
  • Jenny Wang. Geometric constructions and algebraic field extensions. (pdf)
  • Christopher Wilson. A brief introduction to ZFC. (pdf)
  • Younggeun Yoo. Kakutani's fixed point theorem and minimax theorem in game theory. (pdf)
  • Ruby Zhang. Lubotzky--Phillips--Sarnak Ramanujan graphs and collision resistant hashing. (pdf)
  • Yujie (Annika) Zhang. Classification of surfaces. (pdf)

    Miscellaneous program links

  • Link to Angela Wu's 2016 Apprentice Program web page: (Go)
  • First analysis problem set (pdf)
  • Second analysis problem set (pdf)
  • Third analysis problem set (pdf)
  • Topology: a book in progress: selected readings to be recommended (pdf)
  • First topology problem set (pdf)
  • Second topology problem set (pdf)
  • From the web: problem set on normalization (pdf) Solution set in Simplicial Objects book, Section 22
  • Homological algebra primer (pdf)
  • From last year: Notes on homology of posets (pdf)
  • From last year: Notes on Mayer-Vietoris sequences (pdf)
  • Julian Salazars' draft notes on the algebraic topology course (pdf)
  • Links to past REUs

    2016 REU: Application for University of Chicago students (pdf)

    Completed U of C applications should be returned to E314.

    2016 REU: Application for non-University of Chicago students (pdf)

    This is a template for your Research Statement to be uploaded to your application.

    To apply, go to MathPrograms:

    Acceptance forms