Sample Solution

Jincheng Yang

October 2019

Question 4. Convert the pair of second-order equations

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+3 \frac{\mathrm{~d} z}{\mathrm{~d} t}+2 y=0, \quad \frac{\mathrm{~d}^{2} z}{\mathrm{~d} t^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} t}+2 z=0 \tag{1}
\end{equation*}
$$

into a system of 4 first-order equations for the variables

$$
\begin{equation*}
x_{1}=y, \quad x_{2}=y^{\prime}, \quad x_{3}=z, \quad x_{4}=z^{\prime} \tag{2}
\end{equation*}
$$

Solution. From (2) we know that

$$
\begin{aligned}
\frac{\mathrm{d} x_{1}}{\mathrm{~d} t} & =\frac{\mathrm{d} y}{\mathrm{~d} t}=y^{\prime}=x_{2} \\
\frac{\mathrm{~d} x_{3}}{\mathrm{~d} t} & =\frac{\mathrm{d} z}{\mathrm{~d} t}=z^{\prime}=x_{4}
\end{aligned}
$$

Since

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=y^{\prime \prime}=\frac{\mathrm{d} x_{2}}{\mathrm{~d} t}, \quad \frac{\mathrm{~d}^{2} z}{\mathrm{~d} t^{2}}=z^{\prime \prime}=\frac{\mathrm{d} x_{4}}{\mathrm{~d} t}
$$

plug into (1) we know that

$$
\begin{aligned}
& \frac{\mathrm{d} x_{2}}{\mathrm{~d} t}+3 x_{4}+2 x_{1}=0 \\
& \frac{\mathrm{~d} x_{4}}{\mathrm{~d} t}+3 x_{2}+2 x_{3}=0
\end{aligned}
$$

Therefore

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-2 x_{1}-3 x_{4} \\
\dot{x}_{3}=x_{4} \\
\dot{x}_{4}=-3 x_{2}-2 x_{3}
\end{array}\right.
$$

Question 6. Write the given system of differential equations and initial values in the form of $\dot{\boldsymbol{x}}=A \boldsymbol{x}, \boldsymbol{x}\left(t_{0}\right)=\boldsymbol{x}^{0}$.

$$
\begin{array}{ll}
\dot{x}_{1}=3 x_{1}-7 x_{2}, & x_{1}(0)=1 \\
\dot{x}_{2}=4 x_{1}, & x_{2}(0)=1 \tag{4}
\end{array}
$$

Solution. Define

$$
\boldsymbol{x}(t)=\binom{x_{1}(t)}{x_{2}(t)} .
$$

Then

$$
\dot{\boldsymbol{x}}=\binom{\dot{x}_{1}}{\dot{x}_{2}}=\binom{3 x_{1}-7 x_{2}}{4 x_{1}}=\left(\begin{array}{cc}
3 & -7 \\
4 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
3 & -7 \\
4 & 0
\end{array}\right) \boldsymbol{x} .
$$

At $t=0$,

$$
\boldsymbol{x}(0)=\binom{x_{1}(0)}{x_{2}(0)}=\binom{1}{1} .
$$

Therefore

$$
\dot{x}=\left(\begin{array}{cc}
3 & -7 \\
4 & 0
\end{array}\right) \boldsymbol{x}, \quad \boldsymbol{x}(0)=\binom{1}{1}
$$

