CYCLOTOMIC INTEGERS

TREVOR HYDE

Let p be a prime number and ζ be a primitive p^n th root of unity. We show the following:

Proposition 1. If \mathcal{O} is the ring of integers in $\mathbb{Q}(\zeta)$, then $\mathcal{O} = \mathbb{Z}[\zeta]$.

If we let $\pi = \zeta - 1$, then what we really show is that $\mathbb{Z}[\pi]$ is the ring of integers, although this amounts to the same thing. The key to Proposition 1 is ramification. The special properties of the extension \mathcal{O}/\mathbb{Z} we use are:

- (1) \mathcal{O}/\mathbb{Z} has a totally ramified prime (π) , and
- (2) No other prime of \mathcal{O}/\mathbb{Z} ramifies.

The ring of integers \mathcal{O} is a global object but is computed locally. Property (1) of \mathcal{O}/\mathbb{Z} suffices to compute \mathcal{O} locally at (π). The value of Property (2) comes from the following Lemma:

Lemma 2. If \mathcal{O} is the ring of integers in a number field $K = \mathbb{Q}(a)$ with $a \in \mathcal{O}$, then

$$\mathcal{O} \subseteq \frac{1}{\operatorname{disc}(a)} \mathbb{Z}[a].$$

Property (2) tells us that $\operatorname{disc}(\pi) \in \mathcal{O}_Q^{\times}$ for any other prime $Q \subseteq \mathcal{O}$, hence $\mathcal{O}_Q = \mathbb{Z}[\pi]_Q$. Thus our proof consists of an entirely local analysis of \mathcal{O} at (π) combined with the global information coming from $\operatorname{disc}(\pi)$.

Lemma 3. Let ζ be a primitive p^n th root of unity, $\pi = \zeta - 1$, and φ be Euler's function. Then

$$(p) = (\pi)^{\varphi(p^n)}$$

as ideals in $\ensuremath{\mathcal{O}}$ and

$$\sqrt{\left(\operatorname{disc}(\pi)\right)} = (p)$$

as ideals of \mathbb{Z} .

Proof. From $x^{p^n} - 1 \equiv (x - 1)^{p^n} \mod p$ it follows that the minimal polynomial of $\pi = \zeta - 1$ is Eisenstein and of degree $\varphi(p^n)$, giving us the factorization of ideals

$$(p) = (\pi)^{\varphi(p^n)}.$$

Let $\ell \neq p$ be a prime. Then $p^n \mid \ell^{\varphi(p^n)} - 1$, hence the cyclic group $\mathbb{F}_{\ell^{\varphi}(p^n)}^{\times}$ of order $\ell^{\varphi(p^n)} - 1$ contains p^n distinct p^n th roots of unity. So $x^{p^n} - 1$ is separable modulo ℓ and thus ℓ does not divide $\operatorname{disc}(\zeta) = \operatorname{disc}(\pi)$.

It is not difficult to compute the discriminant precisely in this case, but here we emphasize that this is unnecessary for the proof of Proposition 1. A computation of the discriminant when n = 1 is demonstrated at the end of this note.

Date: October 22nd, 2016.

TREVOR HYDE

Lemma 4. Suppose π is an algebraic integer, \mathcal{O} is the ring of integers in $\mathbb{Q}(\pi)$, and $\mathfrak{p} = (\pi)$ is a prime ideal of \mathcal{O} totally ramified in \mathcal{O}/\mathbb{Z} . Then $\mathcal{O}_{\mathfrak{p}} = \mathbb{Z}[\pi]_{\mathfrak{p}}$.

Proof. Let $d = [\mathbb{Q}(\pi) : \mathbb{Q}]$. Lemma 2 tells us that any $b \in \mathcal{O}_p$ may be written as

$$b = (a_0 + a_1 \pi + a_2 \pi^2 + \ldots + a_{d-1} \pi^{d-1}) / \operatorname{disc}(\pi),$$

with $a_i \in \mathbb{Z}_p$. We show that each a_k is divisible by $\operatorname{disc}(\pi)$, implying that $b \in \mathbb{Z}[\pi]_p$. Let v be the normalized valuation at the prime \mathfrak{p} . Then, for example, $v(\pi) = 1$ and $v(\mathbb{Z}_p) \subseteq d\mathbb{Z}$ by our assumption that \mathfrak{p} is totally ramified. Let us compute the valuation of each term in b.

$$v(a_k \pi^k / \operatorname{disc}(\pi)) = v(a_k) + k - v(\operatorname{disc}(\pi)).$$
(1)

Since v(a) is divisible by d for any $a \in \mathbb{Z}_p$, we have for each k,

$$v(a_k \pi^k / \operatorname{disc}(\pi)) \equiv k \mod d$$

Hence all the terms in b have distinct valuations modulo d, and then $0 \le k < d$ implies all terms in b have distinct valuations in \mathbb{Z} (this is my favorite part of the argument!) From $b \in \mathcal{O}_p$, the distinctness of valuations, and the non-archimedean property of v, we have for each k,

$$0 \le v(b) = \min_{j} v\left(a_{j}\pi^{j}/\operatorname{disc}(\pi)\right) \le v\left(a_{k}\pi^{k}/\operatorname{disc}(\pi)\right).$$
⁽²⁾

Combining (1) and (2) we have

$$0 \le v(a_k) + k - v\left(\operatorname{disc}(\pi)\right) \Longrightarrow \frac{v\left(\operatorname{disc}(\pi)\right)}{d} - \frac{k}{d} \le \frac{v(a_k)}{d}.$$
(3)

Both $v(\operatorname{disc}(\pi))/d$ and $v(a_k)/d$ are integers. On the other hand, $0 \le k < d$, so that $\frac{k}{d} < 1$. It follows that (3) can be strengthened to

$$\frac{v(\operatorname{disc}(\pi))}{d} \le \frac{v(a_k)}{d} \Longrightarrow v(\operatorname{disc}(\pi)) \le v(a_k),$$

which is equivalent to $\operatorname{disc}(\pi)$ dividing a_k in \mathbb{Z}_p , as we wished to show.

We now prove Proposition 1.

Proof. Lemma 2 and Lemma 3 imply that for all prime ideals $q \neq p = (\pi)$,

$$\mathbb{Z}[\pi]_{\mathfrak{q}} \subseteq \mathcal{O}_{\mathfrak{q}} \subseteq \frac{1}{\operatorname{disc}(\pi)} \mathbb{Z}[\pi]_{\mathfrak{q}} = \mathbb{Z}[\pi]_{\mathfrak{q}} \Longrightarrow \mathcal{O}_{\mathfrak{q}} = \mathbb{Z}[\pi]_{\mathfrak{q}}$$

Then Lemma 4 implies $\mathcal{O}_{\mathfrak{p}} = \mathbb{Z}[\pi]_{\mathfrak{p}}$, hence $\mathcal{O} = \mathbb{Z}[\pi]$.

We conclude this note with a computation of $disc(\zeta)$ when ζ is a *p*th root of unity. There is a quick derivation using norms and derivatives which may be found in essentially every textbook. We give an alternative derivation for the sake of a fresh perspective. A similar approach works for p^n th roots of unity, but requires more book-keeping.

Lemma 5. Let ζ be a primitive pth root of unity. Then, as ideals of \mathbb{Z} , we have

$$\left(\operatorname{disc}(\zeta)\right) = (p)^{p-2}$$

CYCLOTOMIC INTEGERS

Proof. It follows from Lemma 3 that $(\operatorname{disc}(\zeta))$ is a power of (p). To determine the power we consider the local expansion of the *p*th roots of unity at (π) . Since $x^p - 1 \equiv (x - 1)^p \mod p$, we see that the *p*th roots of unity are all congruent to 1 modulo π . The binomial theorem implies

$$(1+a\pi)^p \equiv 1 \bmod \pi^2$$

for each $a \in \mathbb{Z}/(p)$, which tells us that all the *p*th roots of unity are distinct modulo π^2 . Hence, if v is the normalized valuation at (π) , then $v(\zeta_1 - \zeta_2) = 1$ for any pair of distinct *p*th roots of unity. Recall that disc(ζ) is the discriminant of the minimal polynomial f(x) of ζ defined by

disc
$$(f) = \prod_{\alpha,\beta} (\alpha - \beta)^2$$
,

where the product is taken over all pairs of roots of f in a splitting field. There are $\binom{p-1}{2} = \frac{(p-1)(p-2)}{2}$ pairs of roots, and $(p) = (\pi)^{p-1}$ as ideals of \mathcal{O} , hence

$$\left(\operatorname{disc}(\zeta)\right) = (\pi)^{2\binom{p-1}{2}} = (p)^{p-2},$$

as ideals of \mathbb{Z} .

DEPT. OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109-1043, *E-mail address*: tghyde@umich.edu