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 0. Introduction

 In this paper we prove the decidability of the theory of finite fields and

 of the theory of p-adic fields. This generalizes our algorithm, given in [8], for

 determining whether a system of diophantine equations has, for all primes p,

 a solution modulo p (or a p-adic solution).

 In our proof the crucial properties of finite fields are Weil's Riemann

 hypothesis for curves and Cebotarev's density theorem.

 The decidability of related theories is also obtained. These include the

 theory of almost all finite fields, the theory of prime finite fields, the theory

 of finite fields of a fixed characteristic and the theory of unramified extensions

 of p-adic fields. All the conjectures of [8] are established.

 Let Rq denote the field with q elements and let E be an elementary

 statement about rings. The basic metamathematical result is a determination

 of the set A(E) of q such that E holds in Rq. It turns out that the sets of

 * This research was in part performed while the author was supported by NSF
 Grant GP-3665.

 ** Sloan Fellow.

This content downloaded from 73.8.248.103 on Fri, 17 Apr 2020 02:08:03 UTC
All use subject to https://about.jstor.org/terms



 240 JAMES AX

 prime powers of the form A(E) have a simple characterization. If n is a

 positive integer and W is a set of divisors of n, we set

 a(n, W) = {mIged(n, m)e W} .

 MAIN THEOREM. Given E and a prime p we can find cp, np, Wp, such
 that for m > cp,

 E holds in Rpm m e a(np, Wp).

 This implies, for example, that if E holds in Rpm whenever m _ 1 mod 3,
 then E holds in Rpm for all but a finite set of m _ 2 mod 3.

 To describe the dependence of axp, np and Wp on p we have the following.

 SUPPLEMENT. We can find an integer 7r and a finite normal extension N

 of the rationals with the following properties. For p > wr we can take ap = 0
 and np, Wp so that they depend only on the decomposition subfield of N with
 respect to a prime of N above p.

 Of course there are only finitely many subfields K of N; moreover, it

 follows from Cebotarev's theorem that a subfield K of N arises infinitely

 often if and only if N is a cyclic extension of K.

 As another example of our characterization we have the following fact.

 If E holds for all prime fields, then E holds for all finite fields of sufficiently

 large characteristic.

 The principal method of proof is the algebraic investigation of certain

 infinite fields which are "like" finite fields. We recall that a field F is said to

 be quasi-finite if F shares with finite fields the properties of being perfect

 and of having precisely one extension of each degree. We call F pseudo-finite
 if in addition,

 (*) every (absolutely irreducible) variety defined over F has an F-valued

 point.

 It follows from the Riemann hypothesis that every infinite algebraic ex-

 tension of a finite field satisfies (*) and that every non-principal ultraproduct

 9I of the Rq is pseudo-finite. We will prove that pseudo-finite fields are pre-
 cisely those infinite-fields having every elementary property shared by all

 finite fields; i.e., pseudo-finite fields are the infinite models of the theory of

 finite fields.

 Actually the ultraproducts R satisfy a certain infinite dimensional ana-

 logue of (*):

 (**) for every regular extension field F of a subfield E of R such that

 #F < #R, there exists an E-monomorphism F - 9.
 We call an uncountable quasi-finite field R satisfying (**), hyper-finite.
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 FINITE FIELDS 241

 Our basic algebraic result is that two hyper-finite fields having the same

 cardinality and the same absolute numbers are isomorphic. It turns out that

 the hyper-finite fields are precisely the uncountable saturated pseudo-finite

 fields; in particular every pseudo-finite field is elementarily equivalent to a

 hyper-finite field. Thus two pseudo-finite fields are elementarily equivalent if

 and only if they have the "same" absolute numbers. (An element a of a field

 F is called an absolute number o a is algebraic over the prime field of F.)
 This implies that if E is an elementary statement, then there exists a simple

 one variable elementary systement X (i.e., an assertion about the absolute

 numbers) such that [E x] holds in every finite field. Moreover we can, in

 principle, find X using the fact the statement [E )x] is, by the Completeness
 Theorem, provable from the (recursive) axioms for pseudo-finite fields. This

 yields the Main Theorem and its Supplement.

 While the decision procedures obtained are somewhat unorthodox, this

 may be regarded as a syntactical reflection of the fact that the theories

 considered are not model complete, as is shown by example at the end of ? 8.

 Diverse applications. While we have found no striking number-theoretic

 applications of our results, certain instances of the Main Theorem and its p-

 adic analogue are not without arithmetic interest. A field is said to be C,(d) ( )

 every form of degree d in more than di variables has a non-trivial zero over

 the field.

 THEOREM A. Let i, d be positive integers, and let p be a prime. For

 each m, let Q,. be the unramified extension of the p-adic numbers of
 degree m. Then the set of m such that Qp. is C,(d) differs by a finite set
 from some a(n, W).

 A purely algebraic statement which follows from our methods is the

 following.

 THEOREM B. JIIRp13Rp I Rpp/@RPp as rings, assuming the con-
 tinuum hypothesis.

 This statement, although intrinsically uninteresting, is notable in that

 its proof seems to defy existing methods of pure algebra.

 Another discovery made during the course of this investigation is the

 following rather fundamental property of algebraic varieties.

 THEOREM C. An injective morphism of an algebraic variety into itself

 is surjective.

 This fact seems to have been noticed only in special case (e.g. for affine

 space by Bialynicki-Birula and Rosenlicht [181).

This content downloaded from 73.8.248.103 on Fri, 17 Apr 2020 02:08:03 UTC
All use subject to https://about.jstor.org/terms
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 THEOREM D. Let F be a perfect field with abelian Galois group such that

 every absolutely irreducible variety over F has an F-valued point. Then F
 is C1.

 The author is grateful to T. McLaughlin for a stimulating and profitable
 conversation on this subject.

 Notation. We continue to use Rq, A(E), a(n, W), Qp- as above. In
 addition we denote the integers by Z and the rationals by Q. If a C Z then

 Z>a denotes the m e Z such that m > a. 9P = set of primes, 2 = set of prime
 powers. We list below certain symbols. The non-standard ones are defined

 more completely when they first occur:

 Z* = set of supernatural numbers, defined in ? 1;

 (a, b) = ged (a, b) = greatest common divisor of a, b and a I b means a
 divides b for a, b e Z*;

 6(m) = the set of divisors of m e Z>0.

 If K is a field then:

 [K] = set of f e Z[X1] having a root in K;

 Abs (K) = {a e K I a algebraic over the prime field of K};
 K = an algebraic closure of K;

 c3(N/K) = the compact group of automorphisms of an algebraic extension
 N/K;

 K. denotes the unique extension of K of degree s e Z* if there is such
 ((Rp)s is written as RP.);

 A K B means A and B are K-isomorphic K-algebras.
 HI = the axioms for pseudo-finite fields.

 T T' means T and T' are elementarily equivalent.

 d= Boolean algebra on Z>0 consisting of the a(n, W) for n e Z>0 and
 W c 6(n).

 = Boolean algebra on 2 generated by the finite sets and the A(E) for
 E a (one variable) statement.

 #M denotes the cardinality of the set M.

 1. Quasi-finite fields

 We recall [3, Ch. XIII, ? 2] that a field F is called quasi-finite if F is
 perfect and has precisely one extension of each degree (in a fixed algebraic

 closure P). It then follows that every finite extension F'/F is cyclic. If
 n e Z>0, the unique extension of F of degree n will be denoted by Fe. For later
 purposes it is convenient to extend this notation to infinite algebraic extensions

 of F. Let Z* denote the set of supernatural numbers [4, Ch. I, ? 1.31, i.e.,
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 FINITE FIELDS 243

 the set of formal infinite products , ,primep(P) where n(p) e Z,0 U { tC }. If
 F'/F is algebraic and p is a prime, let n(p) = sup {m I Fpm c F'}. Then F'
 II pfl(P) defines a one-to-one correspondence between algebraic extensions of
 F and supernatural numbers s. For s e Z*, we denote the field corresponding

 to s by F,. Identifying natural numbers with their image under the obvious

 map Z>0 - Z*, this notation is consistent with the previous one. Moreover if
 we define multiplicative notions on Z* in the obvious way then for s, t e Z*

 we have that sIt F8cF, and (s, t) = 1 -.F8 FnFt = F. If , teZ>O, then
 F,, is the unique extension of F, of degree t; so F, is quasi-finite. More

 generally if s = Ilp pn(P) e Z*, then F8 is quasi-finite 4 > n(p) # Cc for all p.
 If E is a field and A, B are E-algebras then A HE B means they are E-

 isomorphic.

 LEMMA 1. Let E c F be quasi-finite fields such that E is relatively

 algebraically closed in F. Then

 FIF EEFX

 PROOF. Since E is perfect and relatively algebraically closed in F, R0E F

 is a field algebraic over F and containing an extension of each degree n over

 F, namely En 0E F.

 LEMMA 2. Let E1 c E2 c F be quasi-finite with E1 relatively algebraic-

 ally closed in F. Then F OF E2 0E2 F; in particular E2 is relatively alge-
 braically closed in F.

 PROOF. The first and last isomorphisms of the following sequence follow

 from Lemma 1.

 E2 0E2 F OF (El 0EE2) 0E2 Fp FEI0&1 E FF.

 LEMMA 3. If F is quasi-finite there exists a countable subfield E of F

 such that E is relatively algebraically closed in F and E is quasi-finite.

 PROOF. For each n e ZO let f,, e F[X0] be irreducible of degree n. Then
 any countable relatively algebraically closed subfield E of F containing the

 coefficients of the f,, works.

 LEMMA 4. Let E be a quasi-finite subfield of a quasi-finite field F.

 Suppose for each prime p there exists m(p) e Z>o and there exists an

 fp e Em(p)[Xl] such that fp is irreducible over Fm(p) of degree p and
 (p, m(p)) = 1. Then E is relatively algebraically closed in F.

 PROOF. If E is not relatively algebraically closed in F then for some

 prime p, Ep c F. Then

 Fm(p) D EpFm(p) D EpEm(p)Fm(p) = Epm(p)Fm(p)
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 244 JAMES AX

 Our hypothesis shows that Epm(pFm(p) Q Fpm.p) and this yields a contradiction.

 Remark. Without going through the details it will be convenient for

 later purposes to note that the analogues of the facts presented in this section

 remain valid if we "forget about" some primes. More precisely if S is a set

 of primes then we define a field F to be S-quasi-finite - F has one extension

 of each degree n for which p I n p e S. Then the analogues of this section
 are valid for S-quasi-finite fields.

 2. Absolutely entire algebras

 Let K be a field and R a (commutative) K-algebra. The following lemma

 is well-known.

 LEMMA 1. K (0K R is an integral domain - A OK R is an integral
 domain for every extension field A of K.

 Definition. R is absolutely entire over K k KR is an integral

 domain. If R is a field we shall follow standard terminology [6, Ch. IV, end

 of ? 10] and say that R is a regular extension of K.

 COROLLARY 1. R is absolutely entire over K A(OK R is absolutely

 entire over A for some (resp. every) extension field A of K.

 COROLLARY 2. If E and F are quasi-finite and E is relatively algebra-

 ically closed in F then F is a regular extension on E.

 COROLLARY 3. R is absolutely entire over K e R is an integral domain

 and its quotient field is a regular extension of K.

 Now let k be a cardinal and let S = K[X,: v < 1*] be the ring of
 polynomials over K in variables index by the ordinals zv < R.

 The following lemma is a direct consequence of the definitions.

 LEMMA 2. Let I be an ideal of S. Then K (K I is a prime ideal of

 K OK Si S/I is an absolutely entire K-algebra.

 Definition. I is an absolutely prime ideal of S S/I is an absolutely
 entire K-algebra.

 COROLLARY. I is absolutely prime AI is an absolutely prime ideal of
 A[X>: v < R] for some (resp. every) extension field A of K.

 PROOF. Corollary 1 to Lemma 1 together with Lemma 2.

 It follows from the finite-dimensional case [14, Ch. I, ? 7, Lem. 2], that

 there exists a smallest subfield k of K such that there exists an ideal J of

 k[X4: v < W with I = KJ. Then J = k[X,: v < Ul n I. Moreover if G is
 any set of automorphisms of K which transform I into itself then k c fixed
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 field of G.

 3. Pseudo-finite fields

 Definition. A field F is pseudo-finite 4 - F is quasi-finite and for every
 finitely generated absolutely entire F-algebra R there exists an F-algebra
 homomorphism R - F.

 Examples. Let k be a finite field. Then k is quasi-finite. In the termi-

 nology of ? 1, let s II, pf(P) be a supernatural number such that n(p) #
 for all p. Then k. is quasi-finite. If in addition n(p) # 0 for infinitely many p,
 then k8 is infinite. As we shall see, it is an easy consequence of the Riemann

 hypothesis for curves that k. is pseudo-finite. Similarly any non-principal
 ultra-product of (non-isomorphic) finite fields is pseudo-finite. On the other
 hand no finite field k is pseudo-finite. Indeed if q = Sk then

 R = k[Xo,X/<l - X0(Xq -X)>

 is an absolutely entire k-algebra and there are no k-homomorphisms Ken k.

 LEMMA 1. Let E be a subfield of a pseudo-finite field F and let R be a
 finitely generated absolutely entire E-algebra. Then there exists an E-
 algebra homomorphism R - F.

 PROOF. By Corollary 1 to Lemma 1 of ? 2, FOE R is an absolutely entire
 F-algebra. Hence there exists an F-homomorphism F OE R F. Then R
 FOE R - F is an E-algebra homomorphism.

 LEMMA 2. F is pseudo-finite ( F is quasi-finite and every absolutely
 irreducible variety V defined over F has an F-valued point (over F).

 PROOF. Since every variety V defined over F contains an affine (open)
 subvariety defined over F, we may assume V is affine. If R is the ring of
 regular functions on V defined over F, then R is a finitely generated F-

 algebra. Moreover by definition [7, Ch. II, ? 6, Def. lj, an F-valued point of
 V is precisely an F-homomorphism R -- F. The lemma follows.

 LEMMA 3. Let F be a quasi-finite field such that for every finitely
 generated absolutely entire E-algebra R, where E is a countable (or finite)

 subfield of F, there exists an E-algebra homomorphism R F. Then F is
 pseudo-finite.

 PROOF. Let S be a finitely generated absolutely entire F-algebra. We
 must show that there exists an F-algebra homomorphism S U F. Now there

 exists a positive integer n and an ideal I in F[X1, - * *, X = F[X] such that
 S OF F[XJ/I. Let g1, * , g. e F[X]. Then the subfield E of F generated
 over the prime field of F by the coefficients of g1, * * *, gn is countable or finite.
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 Set R = E[X]/J where J is the ideal of E[X] generated by g,, . * , g,. Then
 S OF R E F. By Corollary 1 to Lemma 1 of ? 2, R is an absolutely entire

 E-algebra. By hypothesis there exists an E-algebra homomorphism R -a F.

 Tensoring this with the identity map F F we therefore obtain the desired

 F-homomorphism

 S ROz E F- F.

 4. Hyper-finite fields

 Definition. A field F is hyper-finite - F is uncountable, quasi-finite
 and for every absolutely entire E-algebra R, where E is a subfield of F and

 4R < #F, there exists an E-algebra homomorphism R - F.

 Remarks. It follows from Lemma 3 of ? 3 that every hyper-finite field is

 pseudo-finite. The non-principal ultraproducts of (non-isomorphic) finite fields

 turn out to be hyper-finite. The main fact we shall eventually establish is the

 converse of this statement for hyper-finite fields of cardinality 20o.

 LEMMA 1. If E is a subfield of a hyper-finite field F and if R is an abso-

 lutely entire E-algebra such that #R < #F then there exists an E-algebra
 monomorphism R - F.

 PROOF. By Corollary 3 to Lemma 1 of ? 2, the quotient field V of R is

 an absolutely entire E-algebra. Since # V ? 8A #R < #F there exists an E-
 algebra homomorphism Vow F. The composed map Row Vow F is an E-

 algebra monomorphism.

 LEMMA 2. Let E be quasi-finite and let F, F' be extension of E such
 that

 (a) F is quasi-finite and F' is hyper-finite;
 (b) E is relatively algebraically closed in F and F';

 (c) #F'> #F.

 Then there exists an E-monomorphism F- ' , F' and for any such 9,9(F)
 is relatively algebraically closed in F'.

 PROOF. The last assertion follows from Lemma 2 of ? 1. That v exists

 follows from the definition of hyper-finite since F is absolutely entire over E

 by Corollary 2 to Lemma 1 of ? 2.

 PROPOSITION 1. Let E be quasi-finite and let F, F' be extensions of E
 such that

 (a) E is relatively algebraically closed in F and F';

 (b) F and F' are hyper-finite;

 (c) #F = #F' > #E.

 Then F H-E F'.
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 PROOF. Let B = {tA: 1 < X < j}, B' = {t: 1X < \ k} be transcendence
 bases for F and F' over E, well-ordered by the ordinals X < k = #F. For
 0 < p < k we will recursively define subfields F, of F, Fp of F' containing
 E and E-isomorphisms p,: F, -p Fp satisfying the following conditions

 ( i) Fo= Fo =E,p0 = 1E;
 (ii) #F < #Ip+~t votp < t;
 (iii) if p < p' < w then F, c Fp, andqp,| F,
 (iv) if p is an odd positive integer plus a limit ordinal (possibly 0) Fo =

 relative algebraic closure of Fp,-(t,) in F where a is smallest such that

 (v) if p is an even positive integer plus a limit ordinal, Fo = relative
 algebraic closure of Fp,1(t') where a is smallest ordinal such that t' 2 Fo_,;

 (vi) if p ? 0, is a limit ordinal F, = U,<p F,.
 Suppose 0 < X < t and we have defined Fp, Fo for 0 < p < X satisfying (i)-
 (vi) with t replaced by X. Suppose first that X is an odd positive integer plus
 a limit ordinal. Then 3 a as in (iv) since #F, < #p + o #K < #X + o #K < 8.
 Then F, as defined by (iv) is such that Fig, FA and 9;11(FA1) satisfy the
 hypothesis of Lemma 2. Hence 3 a monomorphism p2: F- F' extending
 wir and such that FA = pJ(F2) is relatively algebraically closed in F'. Thus
 we have constructed F2, F', qA. The case where X is an even positive integer
 plus a limit ordinal is similar and the limit ordinal case is even easier. Now

 set V = U<x FP. Then {p I tp e V} is a segment of the ordinals < A and
 ${pIto e V} = . Thus {pI te V}I{=lpjp < 8} and so F is algebraic/V.
 Since V is relatively algebraically closed in F because each Fo is so, V = F.
 Similarly Uo<x F' = F' and if we define F -, F' by v I F = gp, we have
 the desired isomorphism.

 Definition. If F is a field, Abs (F) = {a e F Ia is algebraic over the
 prime field of F}.

 COROLLARY. If F and F' are hyper-finite of the same cardinality then

 F F'( , Abs (F) Abs (F'), provided Abs (F) is quasi-finite.

 This last proviso will be removed in the next section.

 5. The isomorphism theorem for hyper-finite fields

 The purpose of this section is to establish the following isomorphism
 theorem on which all our results are based.

 THEOREM 1. Let F, F' be extensions of a field E such that

 (a) E is relatively algebraically closed in F and F':

 ( b) F and F' are hyper-finite;
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 (c) #F =#F' >#E.

 Then F BE F'.

 Remark. Theorem 1 differs from Proposition 1 only in that we no longer

 require E to be quasi-finite.

 As an immediate consequence of Theorem 1 we obtain the following fact.

 THEOREM 2. If F, F' are hyper-finite of the same cardinality, then

 F F' Abs (F) Abs (F').

 It follows from Lemma 3 of ? 1 that there exists a quasi-finite relatively

 algebraically closed subfield E1 of F containing E and such that #E, < #F.
 Moreover by Lemma 1 of ? 4, there exists an E-monomorphism E1 SDo > F'.
 If we knew (p(E1) was relatively algebraically closed in F', then by Propo-

 sition 1 of ? 4 could extend (p to an E-isomorphism F - F' and so establish
 Theorem 1. We have thus reduced Theorem 1 to the following fact whose

 proof is unfortunately rather complicated.

 PROPOSITION 2. Let E, F be regular extensions of a field K such that

 (a) E is quasi-finite, F is hyper-finite;

 (b) #E< #F.
 Then there exists a K-monomorphism E -> F such that (p(E) is relatively

 algebraically closed in F.

 We need some preliminary considerations. If L is any field with at most

 one extension of each degree then we can assign as in ? 1 to each algebraic

 extension L'/L a supernatural number s and write [L': L] = s. Let A be the

 set of primes p such that p 4 [K: K]. For each p e A let Cp be a generator of
 the group of all pth roots of unity in K and set 1(p) = [K(Cp) : K] - 1. Until
 further notice we assume char K X A. This restriction will be removed later.

 Thus for each p E A, F(C,), is a Kummer extension of F(C,) and so there exists
 Sp E F(Cp)p such that F(Cp)p = F(3p, 8,) and ap - SP C F(Cp). Now there exist

 unique aP' ...* a'P/ E F such that

 arp = E,=0 a,(P)AP,

 This follows from the fact that

 [F(5"P) : F] -[K(Cp) : K] = 1(p) + 1
 by disjointness. Let D be any relatively algebraically closed quasi-finite

 subfield of F containing K(a(P) : p E A, X = 0.**, I(p)) such that #D < #F.

 Let 3 denote the supernatural number fpeAA P' Since (3, [K: K]) = 1, Da
 and D(Cp : p C A) are linearly disjoint over D. For each p e A let D,(Cp) - Ho
 MP(]i) denote the matrix representation with respect to the basis 1, t, * - *, (P)
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 of the regular representation of D,(C,) over Da. Explicitly we have for all
 Uo0 ., ul(p), V0o *, Vj(p) G D, and ' G D,(Cp) that

 (U0 ... ul(p))M"(y) = (vo ... Vj(p)) 4 E UAp - ' = j v o .
 Moreover Mp(y) has entries in any subfield D' of D, such that D' D K and

 y E D'(rp). In particular, Mp(-,) has entries in K.

 LEMMA 1. For each p G A, 9(D8/Dap) is cyclic of order p. If a, is a
 generator then D is the fixed field of {'a: p G A}.

 PROOF. [Ds: Dslp = p which implies the first assertion. The second as-
 sertion now follows from the fact that D= npeA Dap.

 LEMMA 2. For p G A, there exists a unique

 p G 9(D&_iq: q G A)/Daip(Cq: q G A))

 such that -p I Ds = up.
 PROOF. This follows from the linear disjointness of D, and D(Cq q c A)

 over D.

 LEMMA 3. T'pMp(5Sp) = Mp(Tp/3) for p c A.

 PROOF. If u0, ..., Uj(p) e D, then

 (in .. ul(p.).Pmp(Sp) = 7-((uO ... u(p))Mp(/p))

 Now there exist vo, * Vj(p) G D, such that

 1?(=OAY = = ?1=o~sp .
 Thus

 '2 L=0o xcbp = R(po zp(V2)C' -
 Thus

 (U0 ... ul(p))Mp(7p(8)) -p(v ... V (p)
 = zp((U ... ul(,))Mp(/Sp)) = (u0 ...u(p)Pmp(Sp) .

 It follows that zPMP(/p) = MP(ZP/3p).

 Recall that MP(/5p) has entries in D,.

 LEMMA 4. upMp(/3p) = Mp("p)iMp(8p) for some i = i(p) G Z, for p G A.
 PROOF. By Lemma 3, upMP(13p) = TPMP(13p) = MP(z'p3p). Now (TpI5p)P

 -pA~ = = a G D(p) so 3i G Z such that z1P5p = 9p/ and the lemma
 follows.

 Now as above there exist, for each p G A,

 (p) ... x (p E, z p . .. ., (Pp G Ep

 such that UP - xl(P) x(P?'< is irreducible over E(Cp) and such that
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 Let # = #E. Then there exist y, e E for v < k such that

 E= K[x(P), y,: peA, X = 0,. **,l(p), V< < ]

 Set S = K[X(P), Y,, ZAP): : A, X = O * *... l (p), v < k]. Let I be the kernel
 of the K-surjection

 S-> E[z() :peA, X = 0, ..., I(p)] = B

 where 2(X28)') = x', *r(Y,) = yW, 2(ZP) = zv) . Since E is a regular extension
 of K and since ([B: E], [K: K]) = 1, B is a regular extension of K. Thus I
 is an absolutely prime ideal of S.

 LEMMA 5. For each p G A,

 Eal,/(z( **, Z'(p)) = Es

 and the natural restriction map (g(EI/E,81) is an iso-
 morphism.

 PROOF. Ea(z(P) , Z ( )DEa(, = z ) and so

 [Es,(zoP) *..., Z(V(P,, Zp): E] = 3(l(p) + 1)

 The lemma follows.

 LEMMA 6. There exists

 ppe e (E(z'( :qeA, X = 0, *..,l(q))/E(z' q :q A - p, q = 0, *,l (q))

 such that

 PP(ZOP) *... Z1(P)) = (z P) ... z )(p) for p e A .

 PROOF. E(z'q': q e A ~'p, X = 0. * **, Il(q)) = Es,, and Es = E(z: q e A,
 X = 0, * l ,l(q)). By Lemma 5 there exists pp e 9(Es/Ealp) such that

 i(p) Z(p)c2 = C E PP =0 2 P -R0 P

 The lemma follows.

 COROLLARY. I is transformed into itself under the substitutions of S

 defined by

 ) ..., Z()) = -(P) Z(MP(V ) = (Z(P) ... ZI()))MP(CP) for all p e A .

 Now let S = K[X, Y, Z] - > D, [X, Y. Z] be the K-monomorphism ob-

 tained by substituting for every p e A, Z(P) Z-(V

 LEMMA 7. For each g e I and each p e A there exists h e I such that

 app(g) = p(h).
 PROOF. Upp(g) is obtained from p(g) by the substitution Z(P) Z(P)MpGp)i

 for some i e Z, according to Lemma 4. By the Corollary to Lemma 6 there

 exists h e I such that g - h under the substitution Z(P) Z(P)M-,(Cp)i. Then
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 oapU(g) = p(h).

 COROLLARY. "e(I) is transformed into itself by {lp: p e A}.

 LEMMA 8. There exists an ideal J of D[X, Y, Z] such that

 DsJ = D4[X, Y, Z]p(I).

 J is absolutely prime.

 PROOF. By the remarks at the end of ? 2 and the Corollary to Lemma 1,

 J exists. Now there exists a unique D,-automorphism X of D4X, Y, Z] ex-
 tending p. X transforms D8I into D^J. Since I is absolutely prime we have
 that Dj and hence D^J is absolutely prime. Thus J is absolutely prime.

 PROOF OF PROPOSITION 2 (char K e A). D[X, Y, Z]/J is absolutely entire
 over D. Since F is hyper-finite and #Dj-X, Y, Z] _ JAo8A(#D) < #F, there
 exists, by Lemma 1 of ? 4, a D-homomorphism D[X, Y, Z] ) F with kernel

 J. Since ft fixes K[X, Y],

 I n K[X, Y] = p(i) n K[X, Y] C J n K[X, Y].

 Now K[X, Y]/I n K[X, Y] OK E so that I n K[X, Y] is a maximal ideal of
 K[X, Y]. Thus I nK[X, Y] = J nK[X, Y]. It follows that K(e(X),

 ~(Y)) O E and that there is a unique K-monomorphism E -o-- F such that
 p(x'P) = i(Xv)) and q'(y,) = i(Y,). We now claim that for p e A,

 E LA= O9XA )P

 is irreducible over F(Cp). There exist P(P(Z(P) e K[ZO'P), ***, ZI7Pj,] such that

 (CAUP ZI = P) A 1O A F(Z( )CA for p e A, X 0, *.., (p)
 Then for p e A,

 I () ( =) A = PHI () Z(wy =\ _ P) ( EA=0 XI Cp 2=0 A I/ 2_=0 AP W P

 Since xP), zAP) e Es and 1, Cp, ... *, C(P) are linearly independent over Es we have
 X -P) = P(P)(z(P)) i.e., XP - r(PZ(P)) e I. Thus

 AP) -r P()(Z(P)MP(,8P)) e M(I) _ DJn.

 Now in Ds(Cp)[X, Y, Z] we have

 (Sp EU=0 ZA CP)Cp = c(E@A= VAOP)

 where VI is the Xth entry of Z(P)MP(8P). Thus

 'SP(LIA=O Z)ACP) = P ]APo r(Z(P)MPS)4

 Hence

 = (L I() Z2( )CAP - din ) CA e D(Cp)J.

 Since u e D(CP)[X, Y, Z], we conclude u e D(CP)J. As $ extends uniquely to a
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 D(C,)-homomorphism, D(C,)[X, Y, Z] F(C,) with kernel D(C,)J, we have

 'r(Ei'=' $(Z(P))c2)P = UA(P) $(A)4 =L(P w(x(A))

 in F(iP). Since (L= $(Z,)yP)%) is a pth power in F(CP) and, since UP - a,, is
 irreducible over F(CP), our claim that UP - '(P q(x('P))C is irreducible over
 F(CP) is established.

 If q e A, let fq = Uq- q(X2 q))C , and if q 2 A is a prime, let fq be
 the irreducible polynomial in K[ U] defining an extension of K of degree q and

 let m(q) = 1. Then for all primes q, fq e 9(E)m(q)[U] is irreducible over Fm(q)

 and q } m(q). By Lemma 4 of ? 1, qp(E) is relatively algebraically closed in F.
 This completes the proof of Proposition 2 if char K X A.

 We now briefly indicate the modifications necessary to remove the re-

 striction that char K 2 A. Suppose r = char K e A. Then set l(r) = 0. There

 exists by Artin-Schreier theory ar e F and fir e Fr such that Ur -U- ar is

 irreducible over F and r - fir = ar. Instead of using linear transformations

 Z(r) > Z(r)Mr(fSr) and Zr) Zr)Mr(Cr) we use the affine transformations
 Z(r) Z(r) + Sr and Z(r) Zo+Zr) -+ 1. The proof carries through as before;
 we omit the details. We have therefore established Proposition 2 and thereby

 proved Theorem 1.

 6. The Riemann hypothesis for curves

 The Riemann hypothesis for curves as proved by Weil asserts [1, 2nd Part,

 ? IV, Th. 13, Cor. 3] that if k is a finite field with q elements, and if C is a

 complete non-singular curve of genes g defined over k, then the number N of

 k-valued points of C satisfies I N - q - 1 < 2gq"l2.

 LEMMA 1. Let Me Z,O then we can find a(M) e Z,0 with the following
 property. For all fields k such that #k > a(M) and for all

 Ai , . fm c: k[Xig .., XM]

 such that the ideal I = <f1i ..., fM> in k[X1, ..., XM] is absolutely prime,

 degfi, * , degfM < M and trans degk k[X ]/I > 1, there exist

 g, . * gfa(M) C k[Xq, ... , XJI

 of degree at most a(M) such that I' = <I, g1, ..., ga(v> is absolutely prime
 and trans degk k[X]/I' = 1.

 The principle of a demonstration of this lemma can be found in [8, ? 2; 17].

 An exact proof would be tedious though trivial and so is omitted.

 LEMMA 2. With the notation of Lemma 1, we can find fi(M) e Z>O such
 that if #k > fi(M), then V has a k-valued point.

 PROOF. The genus of the projective normalization C' of a projective
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 completion of C can be bounded by a function of M and a(M). Also the

 number of k-rational points of C' minus the number of k-rational points of C

 can be bounded by a function of M and a(M). The existence of j9(M) now

 follows from the Riemann hypothesis.

 COROLLARY. If s = flpn(P) e Z* is such that n(p) # oo for all p and
 n(p) # 0 for infinitely many p, then for any finite field k, k8 is pseudo-finite.

 7. Ultraproducts of finite fields

 A proof of the following lemma can be found in [9].

 LEMMA 1. Let f1(U, X), , * fM((U, X) e Z[U1, ***, UL, X1, *., X.]. Then
 we can find an elementary formula E( U) with U1, , UM as its free variables

 such that if k is a perfect field and ul, ... 9 UL e k, then <f1(u, X), * * .*fM(u, X)>
 is an absolutely prime ideal of k[X1, ... *, XN] ( E(u) is true in k.

 Now let k(v) be finite fields for v e Z>0 such that #k(v)) oo as 2) A . Let
 A 9 ... , fM e Z[ Ul, ... UL, X1, * * *, XN]. Let D be a non-principal ultrafilter D
 on Z>0 and let XC = flk(v)/D be the corresponding ultraproduct. Suppose

 cj(v) e k(v) are such that if c* denote the element of X represented by
 (c2(v))),ez>O for X = 1, *.., L, then

 <fi(cl,* * ..., CL* 9 XS * .. * XN)9 .. * fm( sg X)>

 is absolutely prime in [C[X1, *..., XN]. It follows from Lemma 1 that d
 {2 \<f1(c(v), X), ... , fM(c(v), X)> is absolutely prime in k(v)[X]} e D. It follows
 from Lemma 2 of ? 6 that there exists a finite subset s of Z>0 such for

 v e d - s there exist xj(v) e k(v) for j = 1, * .. , N such that fj(c(v), x(v)) =
 ... = fM(c(v), x(v)) = 0 in k(v'). Thus f1(c*, x*) = .. = fM(c*, x*) = 0 in XIC.
 We have proved the following fact, since X is quasi-finite (cf. ? 8).

 LEMMA 2. SC is pseudo-finite.

 For the remainder of this paper we assume the continuum hypothesis

 2xo= t1.
 All of our decidability and arithmetric applications can be freed of this

 assumption in several ways as in [11, ? 3] even though our proofs of isomor-

 phisms of ultraproducts (from which these applications are deduced) depend

 on the continuum hypothesis.

 PROPOSITION 3. Every non-principal ultraproduct of non-isomorphic

 finite fields is hyper-finite.

 PROOF. Let X be as above. Let E be a countable subfield of X and let

 I be an absolutely prime ideal of S = E[Xj: j e Z>o]. For n e Z>0 let In-

 I n E[X1, **, X'J. Let I. = < fi(n) ... * f 1((n)>. Then I = Us In. It suffices
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 to prove that there exist x; e DC for j e Z>0 such that f,'"(x1, *.. , x") = 0 for
 n e Z>o, y = 1, ***, M(n). Since In is absolutely prime, it follows from Lemma

 2 and Lemma 1 of ? 3 that for all n e Z>o there exist xtiff, ** , xf e DC such

 that f (i)(x * **, x (n)) = 0 for j = 1, ***, n, ,cc=1, ** , M(j). By the satu-

 ration property of X [16, Ch. IX, Th. 3] there exist xi e X for jie Z>,
 such that f,(f)(x, .*.*, xn) = 0 for n e Z>0o, = 1, *.**, M(n). (Usually the
 saturation property is formulated only for formulas with one free variable.

 But then we can find x1 such that for all n there exist xOf), . . ., n

 such that f(j'(x1, x, ( ..., x'"') = 0 for j = 1, ... , n and pu = 1, ... , M(j). Then
 applying the one variable saturation property again we get that there exists

 x2 such that for all n there exist xf, ..., x'ff etc.) This completes the proof.

 THEOREM 3. If X, X' are non-principal ultraproducts of non-

 isomorphic finite fields, then X r '. Abs (X) Abs (X').
 PROOF. This follows from Proposition 3 and Theorem 2 of ? 5 since we

 have #X = # -' = V0.

 PROPOSITION 4. An uncountable saturated pseudo-finite field is hyper-

 finite.

 PROOF. The proof is similar to the proof of Proposition 3.

 Remark. It is easy to prove Lemma 1 with "absolutely prime ideal"

 replaced by "ideal with an absolutely prime radical". Moreover it would be

 possible to use the lemma in this form at the expense of certain tedious

 complications.

 8. Elemenary equivalence of pseudo-finite fields

 As in [8, ? 4, Th. 5], there exists an elementary statement Cn such that a

 field F has precisely one extension of degree n . C. holds in F for all n e Z>0.
 Clearly there exist for all primes q an elementary statement Pq such that
 either q # 0 in F or every element in F is a qth power. Thus F is quasi-finite

 C, and Pq hold in F for all n and q. For each D, M, N e Z>0 there exist
 L = L(D, M, N) and

 Al 9 fm C Z[ U1, 9 UL9 X19 ., XN]

 comprising the "general" sequence of M polynomials of degree at most D

 in X1, ..., XN. By Lemma 1 of ?7 there exists an elementary formula

 B(D, M, N)(U1, *.. UL) in the free variables U1, *., UL such that if F is a
 field and u1, * u , 9L e F, then <f1(u, X), , fM(u, X)> is absolutely prime in
 F[X1, *..., XNI B(D, M, N)(u1, * uL) is true in F. Let E(D, M, N) be
 the elementary statement
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 v U1, * * , UL[B(D, M, N)( U1,* , UL) >

 3X1, * Xnf( Us X) = * =fJUs X) =O

 Let II = {Cn, Pq, B(D, M, N): all n, q, D, M, N}. Then F is pseudo-finite
 II holds in F. We have thus elementarily axiomatized pseudo-finite fields in

 a recursive way. Moreover each C. and Pq are true in every finite field while
 by Lemma 2 of ? 6 and Lemma 1 of ? 7 each B(D, M, N) holds in Rq for all
 but a finite set of q which we can explicitly find.

 PROPOSITION 5. Every pseudo-finite field is elementarily equivalent to

 a hyper-finite field.
 PROOF. Every field is elementarily equivalent to a saturated field (for

 example take a countable elementarily equivalent subfield and then take a

 non-principal countable ultrapower). Proposition 4 of ? 7 now implies Propo-

 sition 5 since the axioms for being pseudo-finite are elementarily expressible.

 LEMMA 1. If F, F' are algebraic extensions of a field E, then

 {f e E[X1] I f has a root in F} = {f e E[X1] I f has a root in F'} i i F iEF'.

 PROOF. The proof is easy and is carried out in [8, ? 3, Lemma 5].

 A -B means A is elementarily equivalent to B.

 LEMMA 2. Let E and F be fields. Then

 E_ F Abs (E) Abs (F) .

 PROOF. Assume E F. Then Char E = Char F. Let R be the prime

 field of E which we may regard as a common subfield of E and F. Moreover

 {f e Z[X1 I f has a root in E} = {f e Z[X1l I f has a root in F} .

 It follows from Lemma 1 that Abs (E) Abs (F).

 THEOREM 4. Let F, F' be pseudo-finite. Then

 F- F" Abs (F) sAbs (F') .

 PROOF. () follows from Lemma 2. To prove the reverse implication

 we may assume F, F' are saturated of cardinality 8t. Then F F' by
 Theorem 2 of ? 5 and Proposition 4 of ? 7. This proves the theorem.

 Definition. If F is a field, [F] = {f e Z[X,] I f has a root in F}.

 THEOREM 5. Let F be pseudo-finite. Then

 F =1H U {[Xlf (X1) = 0]: f e [F]} U {VX1f (X) # 0: f e Z[X,] - [F]}

 is a complete set of axioms for F, i.e., F' satisfies fl1F F FF'.
 PROOF. Theorem 5 is an immediate consequence of Lemma 1, 2, and

 Theorem 4.
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 Remark. These axioms are not model-complete. To verify this assertion,

 let D be a non-principal ultrafilter on 9) such that if 9k = IIPRP/D then

 Abs (9Z) Q. This is possible by Theorem 7 of ? 10; it is also easy to verify
 directly. Now set Wt' = IlR,2/D. Then 9k c- W' so that Abs (ck') = Q. It
 follows from Theorem 4, that k =_ fR' (in fact by Theorem 3 of ? 7, R -__ ).
 On the other hand [5W': 9t] = 2, so there exists r e 9t such that [3X1X, = r] is
 true in Wt' but not in 9k. Similar examples can be given in any characteristic.

 The results of the rest of this section are not used in the sequel.

 LEMMA 3. Let Si, Si be rings of cardinality at most the continuum for

 i e Z>0. Suppose that for every non-principal ultrafilter D on Z>0 we have

 JjSi1D JIS11D.

 Then o = IlS,/eS, I lISI(/S. =
 PROOF. The standard proof [16, Ch. IX, Th. 3] that the non-principal

 ultraproduct of the Si are saturated is easily modified to show that S and 5'
 are saturated. Since elementarily equivalent saturated systems of the same

 cardinality are isomorphic [16, Ch. IX, Th. 2], it suffices to prove that S _= '.

 Now if E is any elementary statement about rings, then {i I E holds in Si} and

 {i I E holds in Si} differ by a finite set; otherwise we could find an ultrafilter D

 such that E holds in precisely one of HSj1D and JIS'/D. It now follows from
 [10, Th. 3.1] that 3 _= '. This completes the proof.

 LEMMA 4. Let ki for i e Z>0 be pairwise non-isomorphic finite fields.
 For each i E Z>0, let k' be a finite extension of ki. Suppose that for all

 d E Z>1, {i: d I [k : ki]j} is finite. Then for every non-principal ultrafilter D
 on Z>O,

 X = llkj/D IFlki/D = x'
 PROOF. Let f E Z[X1] be monic. Then f has a root in X 4 h = {i: f has

 a root in ki} E D. If f has a root in ki but not in ki, then [k : ki] has a divisor
 d with 1 < d < deg (f). By our hypothesis this can happen for only finitely

 many i E Z>0. Thus h' = {i: f has a root in ki}, and h differ by a finite set. It

 follows that f has a root in X f has a root in X'.

 By Theorem 5, X _ X' and so X PK s'.

 COROLLARY. IlkllDk i IkflDke '.
 PROOF. Combine Lemmas 3 and 4.

 Example. ThReoreRm ofth iRntrducRio.
 This is Theorem B of the introduction.
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 9. The decision procedure for one variable statement.

 Definition. For n G ZO, we set &(n) = {m G ZO: m I n}.

 Definition. If n G ZO and W ci &(n), then we set

 a(n, W) = {m G ZO I gcd (n, m) G W}

 The proof of the following properties of a(n, W) is omitted.

 LEMMA 1. ( i ) If n I n', then a(n, W) = a(n', W') where

 W' = {d GZ,>: d In' and gcd (n, d)e W} .

 (ii) --a(n, W) = a(n, a(n)- WW).

 (iii) a(n, W) U a(n, W') = a(n, W U W').

 Definition. a = {a(n, W) I n G ZO, Wc a(n)}.

 COROLLARY. ( is a boolean algebra. If 9(X1, ..., X8) is an explicit

 boolean polynomial, if n, *.., n, are given positive integers, and if
 WO c( a(n,) for 6 = 1, ... , s. Then we can compute in a finite number of
 steps m G ZO and V ci &(m) such that

 op(a(n1, W1), *.**, a(n8, WT7)) = a(m, V) .

 Moreover, we can decide in a finite number of steps whether a(m, V) is ZO

 or is cofinite in ZO since

 a(m, V) = Z>o0- V = &(m) '-a(m, V)

 is cofinite in ZO.

 Remark. If a G G, then a is the finite union of (infinite) arithmetic

 progressions, but not conversely. For example, if a G (a contains

 {mZ, 0Im lmod3} then aor{mZ>0Im _2mod3}1.

 We use a bar to denote residue class.

 For convenience of language we pretend from now on that there is pre-

 cisely one field Rq of each prime power order q.

 LEMMA 2. Let f G Z[X1] be monic and let N be a finite normal extension

 of Q in which f factors completely. Suppose p is a prime such that

 p - Disc (f) and that K is the decomposition subfield of N with respect to
 some prime p of N above p. Let n = [N: K] and

 W ={[L: K] Kc Lc N, f has a root in L} .

 Then for m G Z>0, f has a root in Rpm . m G a(n, W).
 PROOF. (( ). Let w = gcd (n, m) G W.

 Since Disc (N) I Disc (f ), p is unramified in N and so 9(N/K) is cyclic of
 degree n. Thus f has a root a G L where [L: K] = w. Since a is an algebraic
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 integer, its residue class a with respect to the prime (p n L) of L is in R

 Thus f has a root in RPW and hence in Rmp
 (a~). Let Np be the completion of N with respect to p. Since p J Disc (f),

 the monic irreducible factors of f over Rp are in one-to-one correspondence
 with the monic irreducible factors of f over Qp. Since f has a root in Rpm, f

 has a monic irreducible factor g over Qp of degree w where w I m. But g
 factors completely in N c N, and [Np: Qp] = n. Thus w n n. Now O(N/K) is
 identified with 9(Np/Qp) by letting O(N/K) act on the first factor of

 N (OK Q -Qp Np,. Therefore the coefficients of g (which are in N) are fixed
 by O(N/K), i.e., g E K[X1] and g is irreducible over K. If L is the extension

 of K defined by a root a of g, then a E L, [L: K] = w and f (a) = 0. It

 follows that w E W. As w I gcd (n, m), gcd (n, m) E W. Thus m E a(n, W).

 COROLLARY 1. Let f, N, p and K be as in the lemma. Then f has a root

 in RP f has a root in K.
 PROOF. f has a root in Rp 1 G a(n, W) there exists L such that

 Kc L c N, ([L: K], n) = 1, and f has a root in L. Since [L: K] I n, the
 corollary is established.

 COROLLARY 2. Let f1, * f*, G Z[X1] be monic and let N be a finite

 normal extension of Q in which each f, factors completely. For each sub-
 field K of N such that g(W/K) is cyclic, let

 W0(K) = {[L:K] IKczLcN,f, hasarootinL} fore = 1, y s .

 Then for each prime p such that p - fl1 Disc (f0) we have for a = 1, * , s

 that fL has a root in Rpmin m G a([N: K(P)], W0(K(P))) where K(P) is the
 decomposition subfield of N with respect to any prime of N above p.

 COROLLARY 3. Let p(X1, ... , X8) be a boolean polynomial and let

 P 1L I=I Disc (f0). Then

 {m I ([X1f1(X1) O], ... , [gXlf8(Xl) = 0]) holds in Rpm}
 = p(a([N: K(P)]), W1(K(P))), ... , a([N: K(P)], WI8(KIP)) .

 COROLLARY 4. Set X = 9([X1f1(X1) = 0],*... , [gXf8(Xl) =0 ]). Then the
 following conditions are equivalent.

 (A) X holds in Rpm for all p 4 fl> Disc (f0) and for all m;
 (B) X holds in Rpm for all but a finite set of p 4 ll~ Disc (f0) and all m;

 (C) q(a([N: K], W1(K)), * , a([N: K], W8(K))) = Z > 0 for all Kc N
 such that O(N/K) is cyclic.

 PROOF. The corollary follows from the fact that every K ci N such that

 9(N/K) is cyclic is of the form K(P) for infinitely many primes p.
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 PROPOSITION 6. Let f1, ... , f8 e Z[X1] be given monic polynomials and

 let 9(X1, ... , X8) be a given boolean polynomial. Then we can decide in a

 finite number of steps whether or not

 X = 9([3Xjf1(X1) = 0], ..., [gXlf8(Xl) = 0])

 holds in Rp. for all but a finite set of p and all m. If so, we can compute
 the precise exceptional set of p.

 PROOF. We can assume that JIJ=1 Disc (f0) # 0. We then find a finite
 normal extension N of Q such that f, factors completely in N. Then we can
 find all subfields K of N such that 9(N/K) is cyclic. For each such K we can

 find W0(K) = {[L: K]: Kc( L c N, f, has a root in L}. By Corollary 3 to
 Lemma 2, x holds in Rpm for all but a finite set of p and all m

 ,ct = p(a([N: K], W1), ..., a([N: K], W8)) = Z>o

 for such K. By the Corollary to Lemma 1, we can decide in a finite number

 of steps whether or not , = Z>0. This proves the first assertion. If X holds

 for all but a finite set of p and all m, it follows that X holds for all

 -p -1 H-3 Disc (f0) = D and all m. Now let p I D. Then we can find monic
 f'(p) *... , f'(P) e Z[X1] such that p t Disc (fP)) and such that f 'PW I f, and f7 I (foP))i
 for some I where the bar denotes residue class module p. Then as above we

 can decide in a finite number of steps whether or not

 V = P([3X1f1iP'(X1) = 0], *.., [3Xift(p) = 0])

 holds in Rpm for all m. Since vp A X in each Rpm, this completes the proof.

 COROLLARY. The proposition holds if some of the f, are in Z instead of
 being monic.

 PROOF. If f, E Z, we define Disc (f0) = f0. Then again we can assume
 D = il=1f0 , O. For the case where p 4 D we replace X0 in q forf, constant
 by - X, and obtain a new boolean polynomial p'. Then

 X 4 p '([gXlgl(Xl) = 0], *..., [gXlg8(X1) = 0])

 where g, = f, if f, is monic and g,(Xl) if f, is constant. If p I D, the
 modification is similar except that X, is left alone and f, is replaced by X1 if

 f, is constant and p I g.

 Definition. By a one variable statement we mean a statement of the
 form

 P([gXlf1(Xl) = O], ... , [gXlf8(Xl) = 0])

 where 9(X1, ... , X8) is a boolean polynomial and f1, ... *, f E Z[X1] are monic
 or constant.

 We have therefore proved
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 THEOREM 6. Given a one variable statement E we can decide in a finite

 number of steps whether or not E holds in Rpm for all but a finite set of p
 and all m. If so, we can compute the precise exceptional set of p. If for

 some fixed p, E holds for all but a finite set of Rpm then E holds for all Rp m*

 A more complete statement is obtained by combining the corollary to

 Lemma 1 with the following.

 THEOREM 6'. Let X = 9([3X1f1(X1) = 0], ... [3X1f8(X1) = 0]) be a given

 one variable statement and let p be a given prime. Then we can find

 MP E Z>O and VP c a(mp) such that

 a(mP, VP) = {m X holds in Rpm}I

 If N is a finite normal extension of Q in which each f, factors completely,

 then for p # II > Disc (f0), mp and VP depend only on the decomposition
 subfield of a prime of N above p.

 10. The absolute numbers of pseudo-finite fields

 The purpose of this section is to show that the obvious necessary

 conditions for a field to be of the form Abs (L) for some non-principal

 ultraproduct L of finite fields are also sufficient. This implies that we get no

 additional fields of the form Abs (L) if we allow L to be an arbitrary pseudo-

 finite field. As we will see, this entails that every pseudo-finite field is

 elementarily equivalent to a non-principal ultraproduct of finite fields.

 We recall that the following conditions on a perfect field K are equivalent.

 (A) K has at most one extension of each degree;

 (B ) every finite extension L/K is cyclic;

 (C) 9(K/K) is procyclic.

 PROPOSITION 7. Let K be a subfield of Q such that K has at most one

 extension of each degree. Then there exists a non-principal ultraproduct

 gk of the RP, p E 5P such that K Abs (gR).
 PROOF. For each f G [K], set a(f) = A(HX3f (Xl) = 0]) n CP; for each

 g E Z[X1] - [K], set f(g) = A([ -X1g(X1) = 0]) n C?. It suffices to show that
 there is a non-principal ultrafilter D on 9) such that for each f E [K], a(f) E D
 and for each g G Z[X1] - [K], /(g) G D. For then [9R] = [K] and so by

 Lemma 1 of ? 8, Abs (ER) F Abs (K) = K. Thus it suffices to establish the
 finite intersection property for the set

 V= {a(f) I f E [K]} U {f(g) I g E Z[X1] - [K]} U C
 where C is the set of cofinite subsets of CP.

 We claim that if Ji, f2 E [K], then there exists f E [K] such that
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 a(f) - (a(fi) n a(f2)) is finite. Let ac e K be a root of fA and a e K be an
 algebraic integer such that ai E Q(a), i = 1, 2. Let f be the monic irreducible
 for a over Q. There exists a finite subset T of 9P such that if p E - T, then

 p ' Disc (f) and a,, a2 are Q-linear combinations of the powers of a with
 denominators prime to p. Let N be a finite normal extension of Q containing

 Q(ar). It follows from that if p a(f ) - T and H is the decomposition field of
 a suitable prime p of N above p then Q(a) c H. Taking residue classes modulo

 4 we obtain a root di E RP of fi, i = 1, 2. Thus a(f)f -T c ax(fi) n a(f2) which
 establishes our claim.

 Also if g1, g2 G Z[X1] - [K], then glg2 G Z[X1] - [K] and fl(g9g2) =
 ,8(gi) n 18(92).

 Hence to show V has the finite intersection property we need only show

 that if f E [K] and g e Z[X1] - [K], then af ) n m(g) is infinite.
 Let H be a finite normal extension of Q containing all roots of g. By our

 hypothesis on K, KH/K is a cyclic extension. It follows that there exists a

 subfield K1 of K finite over Q such that K1 contains a root of f and K1H/K1 is

 cyclic. Let N be a finite normal extension of Q containing K1H. A generator

 of 9(K1H/K1) extends to an automorphism z- of N. If M is the fixed field of
 7, then N/M is cyclic and K1H n M = K1. Suppose g has a root in M. Since

 g has all its roots in K1H 2 H, g has a root in K D K1 = K1H n M, a contra-

 diction. Thus g has no roots in M. Let A be the set of p such that M is the

 decomposition subfield of N of a prime above p. By Cebotarev's density

 theorem, A is infinite. Since MD K1 and K1 contains a root of f, it follows

 that A - a(f) is finite. As M has no root of g, it follows that A - f(g) is

 finite. Thus A - a(f) n f(g) is finite and so a(ff) n f(g) is infinite. This
 completes the proof.

 A more complicated proof of this result was given in [8, ? 4, Th. 5].

 PROPOSITION 7'. Every algebraic extension K of a finite field of charac-

 teristic p is isomorphic to Abs (SC) for some non-principal ultraproduct X7C
 of the Rpm

 PROOF. Let [K: Rp] = s E Zoo For each n E Z>0 let fin G Rp4X1] be irre-
 ducible of degree n. For each n E Z>0, let

 bn= {m E Z>O: gcd (n, m) = gcd (n, s)}

 In the notation of Lemma 1 of ? 9, be = a(n, {gcd (n, s)}). It follows from that

 lemma that any finite intersection of the bn is infinite so that there exists a
 non-principal ultrafilter D on ZOO containing each bn. Set XJC = II Rpn/D. If
 n G Z>0 then
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 RpncKo onlso Pbn _= {meZ,:nm} 4 f{mGZ,>:nlm}eD ( Of,

 has a root in SC Rp c X. This proves Abs (UX) = K.
 We combine these results.

 THEOREM 7. A field K of absolute numbers is isomorphic to Abs (XC) for

 some non-principal ultrapower XJC of the Rq 4 K has at most one extension
 of each degree. If char K = 0 we may take SC to be a non-principal ultra-

 product of the Rp, p E Hi. If char K = p we may take XC to be a non-principal

 ultraproduct of the Rpm, m E Z>O.

 11. The decidability of the theory of finite fields

 THEOREM 8. A field F is pseudo-finite F _ SC for some non-principal
 iultrapower X of the Rq.

 PROOF. (I-) follows from Proposition 3 of ? 7. Conversely assume F is
 pseudo-finite. Then K = Abs (F) has at most one extension of each degree.

 By Theorem 6 of ? 9 there exists a non-principal ultrapower XC of the Rq such
 that Abs (X) P K. By Theorem 4 of ? 8, F =_ C.

 We can similarly establish the following results.

 THEOREM 8'. Let p be a prime. Then a field F of characteristic p is

 pseudo-finite 4 ) F some non-principal ultraproduct of the Rate m E Z>0.

 THEOREM 8". A field F of characteristic 0 is pseudo-finite F _ some

 non-principal ultraproduct of the RP, p E 5E.

 THEOREM 9. The following conditious on a field F are equivalent.

 ( i ) F is pseudo-finite.

 (ii) F _ some non-principal ultraproduct of the Rq.

 (iii) Every elementary statement true in all but a finite set of finite
 fields is true in F.

 (iv) F is infinite and every elementary statement true in all finite
 fields is true in F.

 PROOF. (i) (ii) is Theorem 8. (ii) (iii) by the basic property of

 ultraproducts. (iii) (iv) since for each q E X?, [3XOX'q # X0] is true in all
 but finitely many finite fields which implies F is infinite. Now suppose F

 satisfies (iv) and let 7w E H. Then 7w is true in all but a finite set {Rq ,..., Rq.}
 of finite fields. Thus 7w V W=1 [vX1Xp, = X1] is true in all finite fields and
 hence in F. Since F is infinite, 7w is true in F so that F is pseudo-finite. This
 shows (iv) y (i) and completes the proof.

 COROLLARY. An elementary statement E holds for all but a finite

 number of Rq 4 E holds for every pseudo-finite field.
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 Definition. If E is an elementary statement then

 A(E) = {q I E is true in Rq} .
 Let U3 be the boolean algebra on the set 62 of prime powers generated by

 the A([rX1f(X1) = 0]) for monic or constant fe IZ[X1] and the finite subsets
 of S.

 Thus every element of (3 differs by a finite set from A(2) for some one

 variable statement 8.

 THEOREM 10. DC =flRq/D P fRq/D' = X'o + D n 3 = D' n .

 PROOF. D DC' Abs (X) eAbs (X') 4 , [XC = [XDC'] Drn K=D', nI.
 THEOREM 11. If E is an elementary statement, A(E) E 1.

 PROOF. If A(E) X, then by Corollary 2 to the proposition of ? 11a,

 there exist non-principal ultrafilters D and D' on Q2 such that A(E) E D -D

 while D n @ = D' n A. By Theorem 10, ]flRq/D If Rq/D' while E is true in
 fJRq/D but not in flRq/D', a contradiction.

 We may re-word Theorem 11 as follows.

 THEOREM 11'. Let E be an elementary statement. Then for each prime

 p there exists mp E Z>0, VPC 8 3(mp) and finite subsets MP, NP c Z> such that E

 holds in Rpm o m E (a(mP, VP) - MP) U NP.
 Moreover there exists D E Z>O and a finite normal extension N of Q such

 that for pAD, we have MP = Np = 0 and mp and VP depend only on the
 decomposition subfield of a prime of N above p.

 THEOREM 12. Let E be a given elementary statement. Then we can find

 a one variable statement X and finite subsets M, N of Q such that A(E) =

 (A(X) - M) U N. [E o X] is deducible from H.

 PROOF. The existence of X, M, N follows from Theorem 11. We want

 to show how to find them, in principle. Since E o X in all but a finite set of

 Rq, [E o X] is true in all pseudo-finite fields by the corollary to Theorem 9.
 Hence by the completeness theorem there is an elementary proof of [E 4-]
 from EL. This also follows from Corollary 1 to the proposition of ? 11a. Thus

 we proceed as follows. We run through all elementary proofs from HI until we

 hit a proof P of a statement of the form [E o A'] where XI is a one variable
 statement. The proof P involves only a finite set A of w E H1 and each w E H1

 holds in Rq for all but a finite set B., of q which we can explicitly find. Thus

 for q E _2 - UIeA B.,, E holds in Rq 4 V holds in Rq. The theorem follows
 since we can determine for which q e U ,e A B., we have X or E holding in Rq.

 The Main Theorem in the introduction now follows from Theorem 12 and

 Theorem 7' of ? 10.
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 COROLLARY. Let F be a set of finite fields. Let T (resp. T1) be the theory
 of all (resp. one variable) elementary statements true for all F e W. Then T

 is decidable o , T1 is decidable.

 THEOREM 13. The theory of statements true in all finite fields is

 decidable.

 PROOF. If E is an elementary statement we apply Theorem 12 to obtain

 a one variable statement X and finite subsets M, N of Q2 such that A(E) =

 (A(X) - M) U N. We then apply Theorem 7 to X to find that A(E) =

 A A(X) = Q2 and M Q N, and that we can decide whether or not A(X) =
 In an analogous manner we can establish the following result.

 THEOREM 13'. The theory of statements true in all but a finite set of

 finite fields (which is the same as the theory of statements true in all

 pseudo-finite fields) is decidable.

 COROLLARY. Let S be a finite or cofinite subset of 59. Let T be a cofinite

 subset of Q. Then the theory W (resp. W') of statements true in Rpm for all

 (resp. all but a finite set of) p.m such that p E S and ptm e T is decidable. In

 particular the theory of statements true in all finite fields of a given

 characteristic is decidable.

 PROOF. First suppose 9P is cofinite and let E be an elementary statement.

 Then E E W ' the elementary statement

 E V V pe -s [P # 0] V Vq6e 9T Eq

 is true for all finite fields, where Eq is an elementary statement true only in

 Rq. For example we can take Fq to be the statement

 [VX1Xlq = X1q] A Aq'lq [gXlXlq' # X1]
 10q'Oq

 The proofs of the other cases of the corollary are similar.

 THEOREM 14. An elementary statement E is true in Rp for all but a

 finite set of p C 59 E is true in Rpm for all but a finite set of p E 9P for all
 mI Z>O.

 PROOF. If E is false in Rpm for an infinite set S of p, then E is false

 in DC IIpes Rpm/D for any non-principal ultrafilter D on S. But DC is a
 pseudo-finite field of characteristic zero. Thus by Theorem 6 of ? 9, there

 exists a non-principal ultraproduct X' of the RP, p E 59, such that Abs (X (')
 Abs (S). Hence DC _ X' and so E is false in IC' and therefore E is false in
 RP for an infinite set of p E CP. This proves the forward implication, the con-
 verse being trivial.

 Remark. [3X1Xl --1] is true in RP2 for all p E 9P but false in RP for
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 those p e P such that p 3 mod 4.
 By reasoning as before we can prove the following result.

 THEOREM 13". The theory of statements true in all (resp. all but a

 finite set of) prime finite fields is decidable.

 Ila. Existence of ultrafilters

 PROPOSITION. Let K be a sub-boolean algebra of a boolean algebra J. Let

 j e J - K. Then there exists ultrafilters D, D' of J such that D n K=D' n K
 and jeD - D'.

 PROOF. Let k c-j, 1 < ? < m and k'c j, 1 < ? < n. Then

 nfl(-k,) n nf(-k') # 0.
 Indeed, otherwise

 U, k. U U k' = 1

 (where 1 is the universal element of K and J). Since Ua k, c -j and U~k' c j
 we would then have

 U, kt= i

 This contradicts our assumption that j 2 K.

 Thus there exists a filter E of K containing all - k E K such that k C j

 or k c -j. By Zorn's lemma, there exists an ultrafilter F of K such that

 FD E.

 We claim that f ni j 0 for all feF. If feF and f ni = 0, then
 f c -j and so -f e E c F, a contradiction. This establishes our claim.

 It follows that there exists an ultrafilter D of J such that D D F n {i}.

 Similarly there exists an ultrafilter D' of J such that D' Q F U { -ij}.

 COROLLARY 1. Let H be a boolean algebra of elementary statements. Let

 T be a set of elementary statements such that for every two models M, M' of

 T the following conditions are equivalent.

 (A) For all h e H. h holds in M >h holds in M';

 (B) M--M'.
 Then for all elementary statements E there exists h e H such that

 [E o h] is provable from T.
 PROOF. Let J be the boolean algebra of elementary statements modulo

 the ideal generated by {-t I t e T}. Let K be the subalgebra of J corre-
 sponding to H and let j be the element of J corresponding to E. We must

 show j e K. Assume false. By the proposition there exist ultrafilters D, D'

 of J such that D n K = D' n K and j e D - D'. By the completeness theorem,

 the models of T are in natural correspondence with the ultrafilters of J.

 If M, M' are the models of T corresponding to D, D' then E is true in M but
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 not in M' so that (B) does not hold. But since D n K = D' n K, (A) does
 hold; this contradiction proves the corollary.

 COROLLARY 2. Let I be an infinite set and H a boolean algebra on I

 containing the finite sets. Suppose r c I and r 2 H. Then there exists non-

 principal ultrafilters D, D' on I such that D n H = D' n H and re D - D'.

 PROOF. This corollary follows from the proposition by taking J to be

 the boolean algebra of subsets of I modulo finite subsets of I and using that

 the ultrafilters of J are in natural one-one correspondence with non-principal
 ultrafilters on I.

 12. Applications to p-adic fields

 If p E 9P and m e Z>O, then Qptm denotes the unramified extension of Qp of
 degree m. We may now combine Theorems 8, 8', of ? 11 with the results of

 [11, 12, 13, 15] to obtain Theorem 15 below.

 Let P be a recursive set of elementary statements about valued fields

 such that F is a model of F o F is an henselian valued field of characteristic

 zero, valued in a U-group. Then for all q E Q1, Qq is a model of P. For each
 w E H1 we can find an elementary statement w' about valued fields such that

 A' holds in Fan wc holds in F. Let H1' = PU {w' 1w E H}. Then H' is a recursive
 axiomatization of those models F of P such that F is pseudo-finite. For each

 X E H1' the set of q E Q2 such that X is false in Qq is a finite set which we can

 explicitly find since H1 has the corresponding property with respect to the Rq.
 Finally we set

 LI1 = H' U f{ord p = 0 V ord p 1]: p e C} .

 THEOREM 15. F is a model of HW , F- llqQq/D for some non-principal

 ultrafilter D on Q. Moreover if D and D' aae non-principal ultrafilters on
 Q2, then

 [ Qq/D ]I Qq/D% flRq/D Rql/D'f-
 ]l Qq/D flQq/D' i fRq/D HfRq/D'.

 THEOREM 16. Given an elementary statement E about valued fields we

 can find a one variable statement X and finite subsets M, N of Q2 such that

 for the set A'(E) of q E Q2 such that E is true in Qqwe have

 A'(E) = (A(X) - M) U N.

 PROOF. We first prove the existence of X, M, N, or equivalently that

 A'(E) E I. If this were false then, as in the proof of Theorem 11 of ? 11,
 there would exist non-principal ultrafilters D, D', on 2 such that Dn r3 =
 D' n 9i while A'(E) E D - D'. The desired contradiction now follows from
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 Theorem 10 of ? 11 and Theorem 15. Now let a' be the relativization of

 X to valued fields, i.e., if X is obtained from the boolean polynomial P =
 *(X, .. *, X8) by replacing X, by [3X1f(X1) = 0] for a = 1, * * *, s, then X' is

 obtained from p by replacing X, by [3X1 ord X, ? 0 A ord f(X1) > 0] for
 a = 1, ** *, s (where the fo E Z[X1I are constant or monic). Then [E d V] is
 true for all but a finite set of Qq Therefore [E - X] is true in every non-
 principal ultraproduct of the Qq. By Theorem 15, [E n-f V] is true in every
 model of Hl'. By the completeness theorem we can find proof P of [E A']
 from Hl' where 4a' is the relativization to valued fields of a one variable
 statement at. As in the proof of Theorem 12 we can find a finite subset C of

 2 such that for q E 6 - C, [E A ) i'] holds in Qq. We then test E and A' in
 Qq for q E C using the decidability of Qq. This completes the proof.

 Remark. If we combine Theorem 16 with Theorem 7' of ? 10 and the

 remark following the corollary of Lemma 1 of ? 10 we obtain Theorem A

 stated in the introduction. Another consequence of Theorem 16 is

 THEOREM 17. Let S =, Q, or all powers of a fixed prime. Then the

 theory of statements true in Qq for all q e S (resp. all but a finite set of

 q e S) is decidable.

 Let E be an elementary statement about rings. Then we can find an

 elementary statement E' about valued fields such that if p is a prime then

 E' holds in Q, E holds in Z/pt for all Z>o.

 COROLLARY 1. Let S be as in Theorem 17. Then the theory of statements

 true in Z/q for all q E S (resp. all but a finite set of q E S) is decidable.

 COROLLARY 2. There is an effective procedure for deciding if a poly-

 nomial f E Z[X1, ... Xj] has a solution modulo m for all m E Z>1.
 PROOF. f has a solution modulo m ( f has a solution modulo pi, i=

 1, * , k where m = i> pai, the pi being distinct primes.

 13. Deeidable pseudo-finite fields

 THEOREM 18. Let F be a pseudo-finite field of characteristic p G 9P Let

 P) - Z,0U { o} be such that if we sets = fIlp yp, P( EZthenAbs(F) = Rp.
 Then F is decidable ( - v is recursive. More generally the degree of recursive

 unsolvability of F and of v are equal.

 PROOF. A complete set of axioms for F is given by

 fl U {[X1f (X1) = 0]: f e [F]} U {[VX1f (X1) # 0]: f E Z[X1] - [F]},

 according to Theorem 5 of ? 8. Since H1 is recursive, the degree of unsolvability

 of F is the same as that of the characteristic function X of the subset [F] of
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 Z[X,]. But X and v are recursive in each other, i.e., have the same degree of
 recursive unsolvability. This proves the theorem.

 COROLLARY. IfV: 9'-ZaOU{ol} is a function and we set s = Hp e9Pl,
 then R. is decidable o , v is recursive.

 PROOF. If image v c Z>O this follows from the theorem since then Rp. is
 pseudo-finite. In the general case let S = v-1(Z20). Then Rp. is S-pseudo-
 finite as explained in ? 14 and the result carries through.

 This gives examples of fields F of characteristic p with arbitrary degrees

 of unsolvability. Given such an F one can obtain fields of characteristic zero

 of the same degree of unsolvability by taking the quotient field of the ring

 of Witt vectors over F.

 THEOREM 18'. Let F be a pseudo-finite field. Then F is decidable [F]
 is a recursive subset of Z[X1].

 PROOF. The proof is similar to the proof of Theorem 18.

 COROLLARY 1. The unique up to elementary equivalence pseudo-finite

 fields F such that Abs (F) = Q is decidable.

 PROOF. [F] = (Z[X1] - Z) u {o}.

 COROLLARY 2. The unique up to elementary equivalence pseudo-finite

 field F such that Abs (F) is the set of real algebraic numbers is decidable.

 PROOF. By Sturm's algorithm, [F] is a recursive subset of Z[XJ.

 14. Further results and open problems

 In this section we discuss the effect of removing the quasi-finite condition.

 Let F be a field satisfying the following condition.

 ( * ) F is perfect and, for every absolutely entire F-algebra R, there

 exists an F-algebra homomorphism R a F.

 For F perfect, this is equivalent to requiring that every absolutely irre-

 ducible variety defined over F has an F-valued point.

 LEMMA 1. If F' is an algebraic extension of F, then F' satisfies (*).

 PROOF. We may assume F'/F finite. Then the function from the cate-

 gory e, of schemes over F to the category eF, which assigns to every V E eF,
 the scheme V0F F' E e1, has a right adjoint B [5, p. 195-13]:

 (V OF F ' W)eF Pt (V, B( W))eF

 for all V e el, We eF,. Thus by taking V = F we see that the F-valued
 points of B( W) are in bijective correspondence with the F'-valued points of

 W. Moreover, W absolutely irreducible over F' - B(W) absolutely irre-
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 ducible over F. The lemma follows.

 We now assume the basic concepts of profinite Galois cohomology as

 presented in [4].

 LEMMA 2. Let F satisfy (*). Then the cohomological dimension of F is

 at most one, i.e., cd (F/F) < 1.

 PROOF. By [4, Ch. II, ? 3, Prop. 5], it suffices to prove that the Brauer
 group of every finite extension F of F is trivial. Now if D $ F' is a central

 simple division algebra over F', then the reduced norm defines an absolutely

 irreducible variety over F' with no F'-valued point. This contradicts Lemma 1.

 Let S c SP.

 Definition. F is S-pseudo-finite F satisfies (*) and F is S-quasi-finite,

 i.e., for each n e Z,> such that n is composed of primes of S, F has precisely
 one extension of degree n.

 PROPOSITION 8. If F satisfies (*) and g(F/F) is abelian, then F is S-

 pseudo-finite for some S C 9P.

 PROOF. A profinite abelian group of cohomological dimension < 1 is iso-

 morphic to npeS Zp for some S, and so the proposition follows from Lemma 2.

 Problem 1. Is the restriction that (3(F/F) be abelian removable?

 We can now extend all the results of ? 1-9 about pseudo-finite fields to

 S-pseudo-fields, finite fields being replaced by the finite extensions of RPS

 where [Rps: Rp] = II, 9,-s r-.
 For example, if S = 0, then F is S-pseudo-finite F is algebraically

 closed and our results reduce to the usual algebraic and metamathematical

 properties of algebraically closed fields.

 PROPOSITION 9. If K is an infinite field of absolute numbers of positive

 characteristic, then K is S-pseudo-finite, where S = {p: p I [K: K]}.

 Problem 2. Does any proper subfield of Q satisfy (*)?

 Remark. There exist quasi-finite subfields K of Q which do not satisfy

 (*). Indeed if p is a prime let V be maximal purely ramified algebraic ex-

 tension of Qp then V is a quasi-finite valued field with residue class field Rp.
 From the fact that Q is dense in Qp follows that K = Abs (V) is quasi-finite.
 Moreover, (XP - X - 1)(YP - Y - 1) - p e K[X, Y] is absolutely irreducible

 and has no zeros over K since for all z e V, ord (zP - z - 1) < 0.

 PROPOSITION 10. A field F is S-pseudo-finite for some S F is ele-

 mentarily equivalent to a non-principal ultraproduct of algebraic extensions

 of finite fields.
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 COROLLARY. If F is a perfect field such that every absolutely irreducible

 variety defined over F has an F-valued point, and if g(F/F) is abelian then
 F is C1, i.e., every form in more variables than its degree has a non-trivial
 zero over F.

 This is Theorem D.

 Problem 3. Is the restriction that g(F/F) be abelian removable?

 Let V be a variety (of finite type) over an S-pseudo-finite field F. Let

 q: V - V be an F-morphism and 9F the induced mapping of the F-valued

 points.

 PROPOSITION 11. If cp is infective then by is surjective.
 PROOF. The result would clearly be true if F were finite. From this we

 see it is true if F is the union of finite fields, i.e., an an algebraic extension

 of a finite field. Since the assertion is equivalent to a set of elementary

 statements, it holds for any field elementarily equivalent to an ultraproduct

 of algebraic extensions of finite fields. By Proposition 10, this includes the

 S-pseudo-finite field F.

 COROLLARY. An injective morphism of an algebraic variety into itself

 is surjective.

 PROOF. This follows from the special case of Proposition 11 in which S

 is empty. Of course in this case the isomorphism theorem reduces to the

 well-known fact about algebraically closed fields: two algebraically closed

 fields of the same uncountable cardinality are isomorphic over any common

 subfield of smaller cardinality

 The corollary is Theorem C of the introduction.

 Problem 4. Does the analogue of the corollary hold for real algebraic

 varieties?

 In ? 10 it was shown that the elementary theory of {Z/q: q e %} is decidable.

 Also it was shown that the existential theory of {Z/m: m e Z>1} is decidable.

 Problem 5. Is the elementary theory of the rings Z/m, m e Z>1 decidable?

 CORNELL UNIVERSITY
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