1 Notations and Preliminaries

We start with some notation. For any field extension $K|F$, $G_{K|F}$ denotes the Galois group $\text{Gal}(K|F)$. For any field K, \overline{K} denotes the separable closure of K, and G_K denotes $\text{Gal}(\overline{K}|K)$. If K is a local field, I_K denotes the inertia subgroup $\text{Gal}(\overline{K}|K^{ur})$, where K^{ur} is the maximal unramified extension of K. If K is a number field and l is a prime in K, G_l denotes the absolute Galois group of the completion K_l, and if l is finite, I_l denotes the inertia subgroup. Depending on our choice of embedding $\overline{K} \hookrightarrow \overline{K}_l$, we can regard G_l as a subgroup of G_K in different ways. This choice doesn't affect any of our statements. Also, if S is a finite set of places of a number field K, K_S denotes the maximal extension of K unramified outside S, and $G_{K,S}$ denotes the corresponding Galois group $\text{Gal}(K_S|K)$.

For any finite group G and a G-module M, unless we are dealing with Global Euler Characteristic formula or Wiles-Greenberg formula, $H^0(G, M)$ will denote the modified Tate cohomology group $M^G/N_G(M)$ rather than the usual M^G. In the two exceptional cases, we will use $\hat{H}^0(G, M)$ to denote the modified Tate cohomology groups, distinguishing it from the normal cohomology groups $H^0(G, M)$.

The dual of an abelian group A is $A^\vee = \text{Hom}(A, \mathbb{Q}/\mathbb{Z})$. For any two G-modules M and N, the abelian group $\text{Hom}(M, N)$ is a G-module with $(g \cdot f)(m) = g \cdot (f(g^{-1} \cdot m))$. We will talk exclusively about Galois modules. In that context, the notion of a dual module is as follows. If $K|F$ is a Galois extension, and M is a $G_{K|F}$-module, then the dual module M^* is defined as $M^* = \text{Hom}(M, \mu)$, where μ is the $G_{K|F}$-submodule of K^* consisting of the roots of unity. If M is finite, then $M^* = \text{Hom}(M, K^*)$.

Let G be a group, and M, N, P be G-modules such that there is a G-module pairing

$$\phi: M \otimes N \rightarrow P.$$

This induces a pairing between cohomology groups, called the cup product.

$$H^i(G, M) \times H^j(G, N) \rightarrow H^{i+j}(G, P).$$

We will only be interested in the case $i+j=2$. If $x \in H^0(G, M)$ and $f \in H^2(G, N)$, then $x \cup f \in H^2(G, P)$ is represented by the cocycle $x \cup f: G \times G \rightarrow P; (g_1, g_2) \mapsto \phi(x \otimes f(g_1, g_2))$. The cup product pairing between $H^2(G, M)$ and $H^0(G, N)$ is defined similarly. If $f_1 \in H^1(G, M)$ and $f_2 \in H^1(G, N)$, then $f_1 \cup f_2 \in H^2(G, P)$ is represented by the cocycle $f_1 \cup f_2: G \times G \rightarrow P; (g_1, g_2) \mapsto \phi(f_1(g_1) \otimes g_1 f_2(g_2))$.

2 Galois Cohomology

This treatment of Galois Cohomology follows [1] and [5]. The cohomology $H^*(G_F, M)$ of a module M for G_F, is sometimes denoted $H^*(F, M)$. This shouldn’t be confusing because we will only have Galois groups acting on modules. We will start by stating some fundamental theorems in the subject. Proofs can be found in [3].
Theorem 1.
Local Tate duality: Let K be a p-adic local field and M be a finite G_K module. Then

1. the groups $H^i(G_K, M)$ are finite for all i, and zero for all $i \geq 3$.
2. for $i = 0, 1, 2$, the cup product pairing
 $$H^i(G_K, M) \times H^{2-i}(G_K, M^*) \to H^2(G_K, \mu) = \mathbb{Q}/\mathbb{Z}$$
induced by the natural pairing between M and M^* is non-degenerate. So, they are duals of each other.
3. If p does not divide $\#M$, then $H^i(G_K/I_K, M^I_K)$ and $H^{2-i}(G_K/I_K, M^{I^*}_K)$ are the exact annihilators of each other in the above pairing.

If K is an Archimedean local field, 1 and 2 still hold. We note that since G_K is finite in this case, these are actually the modified Tate cohomology groups.

Theorem 2.
Local Euler Characteristic formula: Let K be a finite extension of \mathbb{Q}_p, and M be a finite G_K module. Then,
$$\frac{\#H^0(G_K, M) \#H^2(G_K, M)}{\#H^1(G_K, M)} = |\#M|_K = p^{-[K:/mathbb{Q}_p] \cdot \text{ord}_p(\#M)}$$

Theorem 3.
Global Euler Characteristic formula: Let K be a number field and M be a finite G_K module. Let S be a finite set of places consisting of all infinite places, all places at which M is ramified, and all places at which $\#M$ has positive order. Then $G_{K,S}$ acts on M and we have
$$\frac{\#H^0(G_{K,S}, M) \#H^2(G_{K,S}, M)}{\#H^1(G_{K,S}, M)} = \prod_{v \to \infty} \frac{\#H^0(G_v, M)}{\#M^{[K:v]Q}}$$

(We note that these are the unmodified cohomology groups.)

Let Σ be a finite set of primes in \mathbb{Q} and X be a $G_{\Sigma} = G_{\mathbb{Q},\Sigma}$-module. This is the same as saying, X is a $G_{\mathbb{Q}}$-module that is unramified outside Σ. It can be shown that the cohomology $H^1(G_{\Sigma}, X)$ is isomorphic to the subgroup of $H^1(G_{\mathbb{Q}}, X)$ consisting of classes that are unramified outside Σ, i.e.,
$$H^1(G_{\Sigma}, X) = \ker \left(H^1(G_{\mathbb{Q}}, X) \to \prod_{\ell \in \Sigma} H^1(I_{\ell}, X) \right). \quad (2.1)$$
If X is finite, then $H^1(G_{\Sigma}, X)$ is finite.

When X is a finite $G_{\mathbb{Q}}$-module, the kernel of the Galois action is a finite index subgroup and hence is equal to G_L for some number field L. Hence, X is unramified at all primes unramified in L. So, if we let Σ to be the set consisting of all the infinite primes, primes diving $\#X$, and primes at which X is ramified, then Σ is finite and X is a G_{Σ}-module. In this case, there is a nine-term exact sequence involving $H^1(G_{\Sigma}, X)$ and $H^i(G_{\Sigma}, X^*)^v$ called the Poitou Tate sequence, that we will study next. Though we state the theorems in the situation with base field \mathbb{Q}, all of it applies for any number field K. The general result will be used in the next section in an application to Iwasawa theory.

Let X and Σ be as above. Then, for each i, we have a map
$$\alpha_{i,X} : H^i(G_{\Sigma}, X) \to \prod_{\ell \in \Sigma} H^i(G_{\ell}, X)$$

We can consider the corresponding map \(\alpha \) for the module \(X^* \). We remark here that \(X^* \) is also unramified at all \(v \not\in \Sigma \). Dualizing this map, and using Local Tate duality for each \(v \in \Sigma \), we get the following map

\[
\beta_{2-i} : \prod_{v \in \Sigma} H^{2-i}(G_v, X) \to H^1(G_{\Sigma}, X^*)^\vee.
\]

Proposition 1.

There is a non-degenerate pairing \(\ker \alpha_{1,X^*} \times \ker \alpha_{2,X} \to \mathbb{Q}/\mathbb{Z} \).

Proposition 2.

\(\alpha_{0,X} \) is injective, \(\beta_2 \) is surjective and \(\ker \beta_r = \text{Im} \alpha_{r,X} \).

The proofs of the above propositions can be found in [3]. Putting these together, we get the Poitou Tate exact sequence.

Theorem 4.

Poitou-Tate: The following nine term sequence is exact

\[
0 \to H^0(G_{\Sigma}, X) \xrightarrow{\alpha_{0,X}} \prod_{v \in \Sigma} H^0(G_v, X) \xrightarrow{\beta_0} H^2(G_{\Sigma}, X^*)^\vee \\
\xrightarrow{\gamma_1} H^1(G_{\Sigma}, X) \xrightarrow{\alpha_{1,X}} \prod_{v \in \Sigma} H^1(G_v, X) \xrightarrow{\beta_1} H^1(G_{\Sigma}, X^*)^\vee \\
\xrightarrow{\gamma_2} H^2(G_{\Sigma}, X) \xrightarrow{\alpha_{2,X}} \prod_{v \in \Sigma} H^2(G_v, X) \xrightarrow{\beta_2} H^0(G_{\Sigma}, X^*)^\vee \to 0
\]

where \(\gamma_1 \) and \(\gamma_2 \) are the following maps induced by the non-degenerate pairing in Proposition 1.

\[
\gamma_1 : H^2(G_{\Sigma}, X^*)^\vee \to \left(\ker \alpha_{2,X} \right)^\vee \xrightarrow{\cong} \ker \alpha_{1,X} \hookrightarrow H^1(G_{\Sigma}, X),
\]

\[
\gamma_2 : H^1(G_{\Sigma}, X^*)^\vee \to \left(\ker \alpha_{1,X} \right)^\vee \xrightarrow{\cong} \ker \alpha_{2,X} \hookrightarrow H^2(G_{\Sigma}, X).
\]

Using the Poitou Tate exact sequence, one can deduce the Wiles-Greenberg formula for generalised Selmer groups. Let \(X \) be a finite \(G_\mathbb{Q} \)-module. For each place \(v \) of \(\mathbb{Q} \), let \(L_v \) be a given subgroup of \(H^1(G_v, X) \) such that for all but finitely many places, \(L_v \) is the subgroup \(H^1(G_v/I_v, X^*_{I_v}) \) of unramified cohomology classes. The generalized Selmer group \(H^1_{L_v}(G_\mathbb{Q}, X) \) for the given set \(\mathcal{L} = \{ L_v \} \) of local conditions, is defined as

\[
H^1_{\mathcal{L}}(G_\mathbb{Q}, X) = \ker \left(H^1(G_\mathbb{Q}, X) \to \prod_v H^1(G_v, X)/L_v \right)
\]

\[
= \{ x \in H^1(G_\mathbb{Q}, X) \mid \text{res}_v(x) \in L_v \text{ for all } v \} \tag{2.2}
\]

where \(\text{res}_v : H^1(G_\mathbb{Q}, X) \to H^1(G_v, X) \) is the restriction map for each place \(v \). We will also sometimes use \(H^1_{\mathcal{L}}(\mathbb{Q}, X) \) to denote this Selmer group. For each \(v \), let \(L_v^* \) be the exact annihilator of \(L_v \) under the local Tate pairing. By part 3 of Theorem 1, we have \(L_v^* = H^1(G_v/I_v, X^*_{I_v}) \) for all but finitely many \(v \). The collection \(\{ L_v^* \} \) is called the dual set of local conditions, and denoted \(\mathcal{L}^* \).

Theorem 5.

Wiles - Greenberg: The group \(H^1_{\mathcal{L}}(G_\mathbb{Q}, X) \) is finite and we have the following formula relating the cardinality of \(H^1_{\mathcal{L}}(G_\mathbb{Q}, X) \) and \(H^1_{\mathcal{L}^*}(G_\mathbb{Q}, X^*) \).

\[
\frac{\# H^1_{\mathcal{L}}(G_\mathbb{Q}, X)}{\# H^1_{\mathcal{L}^*}(G_\mathbb{Q}, X^*)} = \frac{\# H^0(G_\mathbb{Q}, X)}{\# H^0(G_\mathbb{Q}, X^*)} \prod_v \frac{\# L_v}{\# H^0(G_v, X)} \tag{2.3}
\]
(Note that these are the unmodified cohomology groups. We use \(\hat{H} \) to denote the Tate cohomology groups in this proof.)

Proof. Let \(\Sigma \) be the finite set consisting of all the infinite places, finite primes diving \(\#X \), primes at which \(X \) is ramified, and finite places at which \(L_v \neq H^1(G_v/I_v, X) \). Then, by definitions 2.1 and 2.2, and exactness of inflation restriction sequence, we get that \(H^1_{L_v}(G_Q, X) \) is a subgroup of \(H^1(G_\Sigma, X) \) and hence it is finite. Furthermore, we have an exact sequence

\[
0 \rightarrow H^1_{L_v}(G_Q, X^*) \rightarrow H^1(G_\Sigma, X^*) \rightarrow \prod_{v \in \Sigma} H^1(G_v, X^*)/L_v^1
\]

Taking the dual, and using part 3 of Theorem 1, we get the exact sequence

\[
\prod_{v \in \Sigma} L_v \rightarrow H^1(G_\Sigma, X^*)^\vee \rightarrow H^1_{L_v}(G_Q, X^*)^\vee \rightarrow 0
\]
(2.4)

Now, we observe that ker \(\alpha_{1,X} \), in the Poitou Tate sequence, is in fact a subgroup of \(H^1_{L_v}(G_Q, X) \), and hence \(\gamma_1 \) maps in to the subgroup \(H^1_{L_v}(G_Q, X) \) of \(H^1(G_\Sigma, X) \). Thus, we can take an initial segment of the Poitou Tate sequence and combine it with the sequence 2.4 using the above observation to get the following exact sequence.

\[
0 \rightarrow H^0(G_\Sigma, X) \xrightarrow{\alpha_{0,X}} \prod_{v \in \Sigma} \hat{H}^0(G_v, X) \xrightarrow{\beta_0} H^2(G_\Sigma, X^*)^\vee \xrightarrow{\gamma_1} H^1_{L_v}(G_Q, X)
\]

\[
\prod_{v \in \Sigma} L_v \rightarrow H^1(G_\Sigma, X^*)^\vee \rightarrow H^1_{L_v}(G_Q, X^*)^\vee \rightarrow 0
\]

Noting that all the terms are finite groups, and the cardinality of a finite group is equal to that of its dual, we get

\[
\frac{\#H^1_{L_v}(G_Q, X)}{\#H^1_{L_v}(G_Q, X^*)} = \frac{\#H^0(G_\Sigma, X)\#H^2(G_\Sigma, X^*)}{\#H^1(G_\Sigma, X^*)} \prod_{v \in \Sigma} \frac{\#L_v}{\#\hat{H}^0(G_v, X)}
\]

\[
= \frac{\#H^0(G_Q, X)}{\#H^0(G_\Sigma, X^*)} \prod_{v \in \Sigma} \frac{\#L_v}{\#H^0(G_v, X)} \frac{\#H^0(G_\Sigma, X^*)\#H^2(G_\Sigma, X^*)\#N_{G_\Sigma}(X)}{\#H^1(G_\Sigma, X^*)}
\]

where we have used \(H^0(G_\Sigma, X) = H^0(G_Q, X) \) and \(H^0(G_\Sigma, X^*) = H^0(G_Q, X^*) \). So, the proof reduces to showing that the last factor is equal to 1. This is obtained from the global Euler characteristic formula and the observation that \(N_{G_\Sigma}(X) \) and \(H^0(G_\Sigma, X^*) \) are the exact annihilators of each other in the non-degenerate pairing \(X \times X^* \rightarrow \mu \).

\(\square \)

3 Applications to Iwasawa Theory

The following is a basic theorem in Iwasawa Theory.

Theorem 6.

Let \(K \) be a number field with \(r_1 \) real places and \(r_2 \) complex places. Let \(p \) be a prime. Then, the number of independent \(\mathbb{Z}_p \) extensions is \(1 + r_2 + \delta_K \), where \(\delta_K \), the Leopold defect, satisfies \(0 \leq \delta_K \leq r_1 + r_2 - 1 \).

Leopold’s conjecture says that \(\delta_K = 0 \) always. It has been proved for the cases \(K = \mathbb{Q} \) and \(K \) is an imaginary quadratic field. In particular, this means that there is a unique \(\mathbb{Z}_p \) extension of \(\mathbb{Q} \). This is called the cyclotomic \(\mathbb{Z}_p \) extension \(Q_\infty \) and is obtained as follows. For each \(n \in \mathbb{N} \), \(Q(\zeta_p^n) \) is an abelian extension of \(\mathbb{Q} \) with Galois group isomorphic to \(\mathbb{Z}/(p - 1) \times \mathbb{Z}/p^{n-1} \). If we let \(Q_n \) be the fixed
We state these below. Proofs can be found in [5].

Let \(K \mid Q \) be a finite extension and \(K_{\infty} \mid K \) be a \(Z_p \) extension. If \(p \neq l \), then \(K_{\infty} \) is the unique unramified extension with Galois group isomorphic to \(Z_p \). If \(p = l \), there are exactly \([K : Q_l] + 1 \) independent such extensions.

Proposition 3.
Let \(G \) be a profinite group and \(H \) be the maximal abelian pro-\(p \) torsion free subquotient of \(G \). Then

\[
\text{rank}_{Z_p} H^1(G, Z_p) = \text{rank}_{Z_p} H^1(H, Z_p).
\]

Proposition 4.
Let \(G \) be a profinite group and \(H \) be the maximal abelian pro-\(p \) torsion free subquotient of \(G \). Then

\[
\text{rank}_{Z_p} H^1(G, Z_p) = \text{rank}_{Z_p} H^1(H, Z_p).
\]

Proposition 5.
Global Euler Characteristic formula: Let \(K \) be a number field, and \(M \) be a finitely generated \(Z_p \)-module with a \(G_K \) action. Let \(S \) be a finite set of places of \(K \) consisting of all infinite places, all places at which \(M \) is ramified and all places above \(p \). Suppose \(G_{K,S} \) acts on \(M \). Then, we have

\[
\chi(G_{K,S}, M) = \text{rank}_{Z_p} H^0(G_{K,S}, M) - \text{rank}_{Z_p} H^1(G_{K,S}, M) + \text{rank}_{Z_p} H^2(G_{K,S}, M) = \sum_{v \mid \infty} \text{rank}_{Z_p} M^{G_v} - [K : Q] \text{rank}_{Z_p} M.
\]

Proof. (of Theorem 6). Let \(K_{\infty} \) be a \(Z_p \) extension of \(K \). Let \(v \) be any place of \(K \) above \(l \neq p \), and \(w \) be a place of \(K_{\infty} \) above \(K \). Then, \(K_{\infty,w} \mid K_v \) is a \(Z_p \) extension, and by proposition 3, it is unramified. Let \(S \) be the set consisting of all infinite places of \(K \), and all places of \(K \) lying above \(p \). Then, any \(Z_p \) extension of \(K \) is unramified outside the set \(S \). Let \(K^p \) be the compositum of all \(Z_p \) extensions of \(K \). Then \(K^p \subset K_S \) and \(G_{K^p,K} \) is a quotient of \(G_{K,S} = \text{Gal}(K_S \mid K) \). The number of independent \(Z_p \) extensions of \(K \) is given by \(\text{rank}_{Z_p} H^1(G_{K^p,K}, Z_p) \).

The group \(G_{K^p,K} \) is the maximal abelian pro-\(p \) torsion free subquotient of \(G_{K,S} \). Hence, by proposition 4,

\[
\text{rank}_{Z_p} H^1(G_{K^p,K}, Z_p) = \text{rank}_{Z_p} H^1(G_{K,S}, Z_p).
\]

By Proposition 5, we get

\[
\text{rank}_{Z_p} H^1(G_{K,S}, Z_p) = \text{rank}_{Z_p} H^0(G_{K,S}, Z_p) + \text{rank}_{Z_p} H^2(G_{K,S}, Z_p) - (r_1 + r_2) + [K : Q] = 1 + r_2 - \text{rank}_{Z_p} H^2(G_{K,S}, Z_p)
\]

So, \(\delta_K = \text{rank}_{Z_p} H^2(G_{K,S}, Z_p) \) and we have to show \(0 \leq \delta_K \leq r_1 + r_2 - 1 \). If \(\delta_K = r \), i.e., \(H^2(G_{K,S}, Z_p) \approx Z_p^r \oplus M \) where \(M \) is the torsion part, then

\[
H^2(G_{K,S}, Q_p/Z_p)^{\vee} \simeq \left(H^2(G_{K,S}, Z_p) \otimes Q_p/Z_p \right)^{\vee} \simeq \left((Z_p \otimes Q_p/Z_p)^r \oplus (M \otimes Q_p/Z_p) \right)^{\vee} \\
\simeq \left((Q_p/Z_p)^r \oplus 0 \right)^{\vee} \\
\simeq (Q_p/Z_p)^r.
\]

Hence, we will show the necessary bound for \(\text{rank}_{Z_p} H^2(G_{K,S}, Q_p/Z_p) \).
A part of the Tate Poitou exact sequence for the $G_{K,S}$ module $\mu_p^n \subset K_S^\times$ reads
\[
\prod_{v \in S} H^0(G_{K_v}, \mu_p^n) \to H^2(G_{K,S}, \mathbb{Z}/p^n) \to H^1(G_{K,S}, \mu_p^n) \to \prod_{v \in S} H^1(G_{K_v}, \mu_p^n)
\]

We now take projective limit of the above sequence over the maps $\mu_p^{n+1} \to \mu_p^n; \zeta \to \zeta^p$. For each finite place $v \in S$, since the ramification index $e_{K_v|\mathbb{Q}_p}$ is finite, we have $\mu_p^n(K_v)$ is finite. Remembering that, at the infinite places we are working with the modified Tate cohomology groups, we deduce that $\varprojlim H^0(G_{K_v}, \mu_p^n) = 0$ for all $v \in S$. We also have

\[
\varprojlim H^2(G_{K,S}, \mathbb{Z}/p^n)^{\mathbb{Z}_p} \simeq (\varprojlim H^2(G_{K,S}, \mathbb{Z}/p^n))^{\mathbb{Z}_p} \simeq (H^2(G_{K,S}, \varprojlim \mathbb{Z}/p^n))^{\mathbb{Z}_p} \\
\simeq (H^2(G_{K,S}, \mathbb{Q}_p/\mathbb{Z}_p))^{\mathbb{Z}_p}.
\]

Finally, by Kummer theory, we get $H^1(G_{K_v}, \mu_p^n) \simeq K_v^\times / (K_v^\times)^p \simeq K_v^\times \otimes \mathbb{Z}/p^n$. Therefore $\varprojlim H^1(G_{K_v}, \mu_p^n) \simeq \varprojlim K_v^\times \otimes \mathbb{Z} \subset K_v^\times \otimes \mathbb{Z}_p$. Putting everything together, we have

\[
0 \to (H^2(G_{K,S}, \mathbb{Q}_p/\mathbb{Z}_p))^{\mathbb{Z}_p} \to \varprojlim H^1(G_{K,S}, \mu_p^n) \to \prod_{v \in S} K_v^\times \otimes \mathbb{Z}_p \tag{3.1}
\]

By studying the cohomology of the following exact sequence of $G_{K,S}$-modules
\[
1 \to \varprojlim \mathcal{O}^\times_{L,S} \to \prod_{L \subset K_S} \prod_{v \mid L \in S} L_v^\times \to \prod_{L \subset K_S} \prod_{v \mid L \in S} L_v^\times / \mathcal{O}_{L,S}^\times \to 1
\]

where L varies over all finite subextensions of $K_S|K$, and $\mathcal{O}_{L,S}^\times$ is the multiplicative group of units in the ring of S-integers of L, and using the relation between the S-idele class group and the S-ideal class group, one can show the following isomorphism. We refer to [5] and [6] for the computations.

\[
\varprojlim H^1(G_{K,S}, \mu_p^n) \simeq \mathcal{O}_{K,S}^\times \otimes \mathbb{Z}_p \tag{3.2}
\]

We can substitute this back into the exact sequence 3.1 to get

\[
0 \to (H^2(G_{K,S}, \mathbb{Q}_p/\mathbb{Z}_p))^{\mathbb{Z}_p} \to \mathcal{O}_{K,S}^\times \otimes \mathbb{Z}_p \to \prod_{v \in S} K_v^\times \otimes \mathbb{Z}_p \tag{3.3}
\]

We also have the exact sequence $0 \to \mathcal{O}^\times_K \to \mathcal{O}^\times_{K,S} \to \prod_{v \in S, v \mid \infty} K_v^\times / \mathcal{O}^\times_{K,v}$, which after tensoring by the flat \mathbb{Z}-module \mathbb{Z}_p, gives the exact sequence

\[
0 \to \mathcal{O}^\times_K \otimes \mathbb{Z}_p \to \mathcal{O}^\times_{K,S} \otimes \mathbb{Z}_p \to \prod_{v \in S, v \mid \infty} K_v^\times / \mathcal{O}^\times_{K,v} \otimes \mathbb{Z}_p
\]

From the exactness of the above sequence at the second term, we can deduce that in the sequence 3.3, the image of the injective map $(H^2(G_{K,S}, \mathbb{Q}_p/\mathbb{Z}_p))^{\mathbb{Z}_p} \to \mathcal{O}_{K,S}^\times \otimes \mathbb{Z}_p$ in fact lands inside $\mathcal{O}_{K}^\times \otimes \mathbb{Z}_p$. Hence

\[
\text{rank}_{\mathbb{Z}_p} (H^2(G_{K,S}, \mathbb{Q}_p/\mathbb{Z}_p))^{\mathbb{Z}_p} \leq \text{rank}_{\mathbb{Z}_p} \mathcal{O}_{K}^\times \otimes \mathbb{Z}_p = \text{rank}_{\mathbb{Z}} \mathcal{O}_{K}^\times = r_1 + r_2 - 1
\]

\[
\square
\]

4 Reflection theorems

A reflection theorem is one of a collection of theorems linking the sizes of different ideal class groups or different isotypic components of a class group. The first such theorem is due to Kummer and is stated below.
The p-rank of a finite abelian group A, denoted $\text{rank}_p A$, where, for each $0 \leq i < p - 1$, we have

$$L^i = \text{rank}_p A_i \leq \text{rank}_p A_{i+1} \leq \text{rank}_p A_{i+2} + 1.$$

Theorem 7.

Kummer’s reflection theorem: Let p be an odd prime, $F = \mathbb{Q}(\zeta_p)$ and let $F^+ = \mathbb{Q}(\zeta_p + \zeta_p^{-1})$ be the totally real subfield. If $h = \#C_{1,F}$, $h^+ = \#C_{1,F^+}$, then $h^+ | h$ and if we let $h^- = h / h^+$, then $p|h^- \implies p|h^+$.

In this section we will prove a reflection theorem relating the sizes of different isotypic components of the class group of the p^{th} cyclotomic field $F = \mathbb{Q}(\zeta_p)$, where p is an odd prime. This is Theorem 10.9 of [2], and is a strengthening of Kummer’s reflection theorem. Our proof of this theorem is different from that in [2], and involves interpreting the different isotypic components in terms of Selmer groups and using Wiles-Greenberg formula. The following theorem due to Scholz can also be proved using this method.

Theorem 8.

Scholz reflection theorem: Let d be a positive square-free natural number. Let $F^+ = \mathbb{Q}(\sqrt{d})$ and $F^- = \mathbb{Q}(\sqrt{-3d})$. Then,

$$\text{rank}_3 C_{F^+} \leq \text{rank}_3 C_{F^-} \leq \text{rank}_3 C_{F^+} + 1.$$

(The p-rank of a finite abelian group A, denoted rank$_p A$, is equal to dim$_F A / pA$.)

Let p be an odd prime, let $F = \mathbb{Q}(\zeta_p)$ be the p^{th} cyclotomic field, and let A be the p-Sylow subgroup of the class group $C_{1,F}$. Then, A is a \mathbb{Z}_p-module with an action of $G_{F|\mathbb{Q}}$. Let $\epsilon : G_{F|\mathbb{Q}} \rightarrow \mathbb{Z}_p$ be the cyclotomic character. Then, the elements

$$e_i = \frac{1}{p-1} \sum_{\sigma \in G_{F|\mathbb{Q}}} \epsilon^i(\sigma)\sigma^{-1}, \quad \text{for } 0 \leq i < p - 1$$

are idempotents of the group ring $\mathbb{Z}_p[G_{F|\mathbb{Q}}]$, and give a decomposition of a $G_{F|\mathbb{Q}}$-module into its various isotypic components. In our case, this gives us a decomposition

$$A = A(0) \oplus A(1) \oplus A(2) \oplus \cdots \oplus A(p-2),$$

where, for each $0 \leq i < p - 1$, $A(i) = e_i \cdot A$ is the subgroup of A on which $G_{F|\mathbb{Q}}$ acts by the character ϵ^i. By class field theory, A is isomorphic to the Galois group over F of the maximal abelian unramified p-extension of F, and $A(i)$ is isomorphic to the Galois group of the maximal abelian unramified p-extension of F on which $G_{F|\mathbb{Q}}$ acts by the character ϵ^i. So, the p-rank of $A(i)$, which is equal to dim$_\mathbb{Q} A(i) / pA(i)$, is the maximum number of independent \mathbb{Z}/p-extensions K of F, that are unramified and are such that $G_{K|F} \cong \epsilon^i$ as $G_{F|\mathbb{Q}}$-modules.

Now, consider the G_{Q}-module Z/p with the action given by ϵ^i thought of as taking values in $(Z/p)^\times$. So, in particular, the action is through the quotient $G_{F|\mathbb{Q}}$. We will denote this module simply by e^i. The dual module is Z/p with action given by e^{1-i}, and we will denote it simply as e^{1-i}. Let’s look at the following set of local conditions $L_i = \{L_{i,v}\}$.

$$L_{i,v} = \begin{cases} 0 & \text{if } v = p, \infty \\ H^1(G_v / \mathcal{L}_v, (\epsilon^i)_{\mathcal{L}_v}) & \text{otherwise} \end{cases}$$

The set $\mathcal{L}_i^* = \{L_{i,v}\}$ of dual local conditions is as follows.

$$L_{i,v}^* = \begin{cases} H^1(G_v, \epsilon^{1-i}) & \text{if } v = p \\ H^1(G_v, \epsilon^{1-i}) = 0 & \text{if } v = \infty \\ H^1(G_v / \mathcal{L}_v, (\epsilon^{1-i})_{\mathcal{L}_v}) & \text{otherwise} \end{cases}$$

The corresponding Selmer groups are related to the isotypic components $A(i)$, which will be explained below. The inflation restriction exact sequence gives an isomorphism

$$H^1(G_Q, \epsilon^i) \xrightarrow{\cong} H^1(G_F, \epsilon^i)^{G_{F|\mathbb{Q}}} = \text{Hom}(G_F, \epsilon^i)^{G_{F|\mathbb{Q}}} = \text{Hom}_{G_{F|\mathbb{Q}}}(G_F, \epsilon^i) \quad \text{(4.1)}$$
Let f be a crossed homomorphism $G_Q \rightarrow \epsilon^i$ representing a cohomology class in $H^1(G_Q, \epsilon^i)$. Restricting to G_F gives a $G_{F/Q}$-module homomorphism $G_F \rightarrow \epsilon^i$. Assuming it is non-trivial, its kernel is an index p subgroup of G_F, and thus determines a \mathbb{Z}/p-extension K_f of F, with $G_{K_f/F} \cong \epsilon^i$ as a $G_{F/Q}$-module.

The cohomology class of f belongs to $H^1_{\mathcal{F}_f}(\mathbb{Q}, \epsilon^i)$ if and only if the extension K_f/F is unramified at all places, and split at all primes above p and ∞. There is no real prime above ∞ in $F|\mathbb{Q}$, and p is totally ramified in $F|\mathbb{Q}$ with the only prime ideal above p being the principal ideal generated by $1 - \zeta_p$. Therefore, by class field theory, in any finite unramified extension of F, all primes above p and ∞ are split. So, the latter two conditions are redundant. Hence, a non-trivial class $[f]$ in $H^1_{\mathcal{F}_f}(\mathbb{Q}, \epsilon^i)$ determines an unramified \mathbb{Z}/p-extension K_f/F such that $G_{K_f/F} \cong \epsilon^i$ as a $G_{F/Q}$-module, and conversely every class in $H^1_{\mathcal{F}_f}(\mathbb{Q}, \epsilon^i)$ is determined up to a multiple, by such an extension. Therefore, we have

$$\text{rank}_p A(i) = \text{dim}_{\mathbb{F}_p} H^1_{\mathcal{F}_f}(\mathbb{Q}, \epsilon^i)$$ (4.2)

With the above setup, we are now ready to state and prove the theorem we mentioned at the start of the section.

Theorem 9.

$A(0) = A(1) = 0$. Further if $i \neq 0$ is even and j is odd with $j \equiv 1 - i \pmod{p - 1}$, then

$$\text{rank}_p A(i) \leq \text{rank}_p A(j) \leq \text{rank}_p A(i) + 1$$

Proof. We first consider the two easy cases $A(0)$ and $A(1)$. If $A(0) \neq 0$, then by class field theory, there exists an unramified \mathbb{Z}/p extension K of $F = \mathbb{Q}(\zeta_p)$, such that $G_K|F \simeq \mathbb{Z}/p$ as a $G_{F/Q}$-module. Since $G_{F/Q}$ acts trivially on $G_K|F$ and the two groups have coprime order, the exact sequence

$$0 \rightarrow G_K|F \rightarrow G_{K/Q} \rightarrow G_{F/Q} \rightarrow 0$$

is split, and moreover, $G_{K/Q}$ is isomorphic to the direct product $G_K|F \times G_{F/Q} \simeq \mathbb{Z}/p \times (\mathbb{Z}/p)^\times$. Hence, the subfield of K that is fixed by the subgroup $(\mathbb{Z}/p)^\times$ of $G_{K/Q}$, is an unramified \mathbb{Z}/p extension of \mathbb{Q}. But, there are no non-trivial unramified extensions of \mathbb{Q}, which tells us that this cannot happen. Hence, $A(0)$ must be 0. In the language of Selmer groups, the existence of the extension K above, gives a cohomology class in a Selmer subgroup of $H^1(F, \mathbb{Z}/p)$, which, by the isomorphism given by the inflation restriction sequence, gives a cohomology class in $H^1_{\mathcal{F}_f}(\mathbb{Q}, \mathbb{Z}/p)$, and thus an unramified \mathbb{Z}/p extension of \mathbb{Q}, showing that $A(0) \neq 0$ is not possible.

If $A(1) \neq 0$, then there exists, by class field theory and Kummer theory, an unramified \mathbb{Z}/p extension K of F, obtained by adjoining a p^{th} root of an element α in $\mathbb{F}^\times/(\mathbb{F}^\times)^p$. Requiring that the action of $G_{F/Q}$ on $G_K|F$ by conjugation is through the cyclotomic character ϵ, further gives us that $\alpha \in \mathbb{Q}^\times/(\mathbb{Q}^\times)^p$, and the condition of $K|F$ being unramified then tells that $\alpha = p$. But, p is then totally ramified in the degree p sub-extension $\mathbb{Q}(p^{1/p})|\mathbb{Q}$, which cannot happen. Therefore, $A(1) = 0$.

Now, let $i \neq 0$ be even and $j \equiv 1 - i \pmod{p - 1}$. By the Wiles-Greenberg formula, we have

$$\frac{\#H^1_{\mathcal{F}_f}(\mathbb{Q}, \epsilon^i)}{\#H^1_{\mathcal{F}_f}(\mathbb{Q}, \epsilon^j)} = \frac{\#H^0(\mathbb{Q}, \epsilon^i)}{\#H^0(\mathbb{Q}, \epsilon^j)} \cdot \frac{\#L_{i,p}}{\#L_{i,\infty}} \cdot \frac{\#H^0(G_{p^2}, \epsilon^j)}{\#H^0(G_{R^2}, \epsilon^j)}$$

Each of the factors on the right are easy to compute. Since $i \neq 0 \pmod{p - 1}$ and j is odd, we get

$$\frac{\#H^0(\mathbb{Q}, \epsilon^i)}{\#H^0(\mathbb{Q}, \epsilon^j)} = 1; \quad \frac{\#L_{i,p}}{\#H^0(G_{p^2}, \epsilon^j)}/\#H^0(G_{R^2}, \epsilon^j) = 1$$

$$\frac{\#L_{i,\infty}}{\#H^0(G_{R^2}, \epsilon^j)} = \frac{1}{p} \quad \text{since } i \text{ is even.}$$
Therefore, \[
\frac{\#H^1_{\mathcal{L}_i^*}(Q,\epsilon^i)}{\#H^1_{\mathcal{L}_i^*}(Q,\epsilon^j)} = \frac{1}{p}
\]

In other words, \(\dim_{\mathbb{F}_p} H^1_{\mathcal{L}_i}(Q,\epsilon^i) - \dim_{\mathbb{F}_p} H^1_{\mathcal{L}_j}(Q,\epsilon^j) = -1\).

Now, we observe that \(\mathcal{L}_i^*\) and \(\mathcal{L}_j\) are local conditions for the module \(\epsilon^{1-i} = \epsilon^j\), that differ only at the place \(p\). Indeed, \(L_{i,\infty}^\perp = H^1(G_R,\epsilon^{1-i}) = 0 = L_{j,\infty}\), and at the place \(p\), we have \(L_{j,p} = 0 \subset H^1(G_p,\epsilon^j) = L_{i,p}^\perp\). Therefore, we have the inclusion \(H^1_{\mathcal{L}_j}(Q,\epsilon^j) \subseteq H^1_{\mathcal{L}_i^*}(Q,\epsilon^j)\) and furthermore, we have

\[
\frac{\#H^1_{\mathcal{L}_i^*}(Q,\epsilon^j)}{\#H^1_{\mathcal{L}_j}(Q,\epsilon^j)} \leq \#H^1(G_p,\epsilon^j) = p^{\text{ord}_p(\#\epsilon^j)} \cdot \#H^0(G_p,\epsilon^j) \cdot \#H^0(G_p,\epsilon^{1-j}) = p \cdot 1 \cdot 1 = p
\]

where we have used the local Euler Characteristic formula. In other words, we have obtained that \(0 \leq \dim_{\mathbb{F}_p} H^1_{\mathcal{L}_i^*}(Q,\epsilon^j) - \dim_{\mathbb{F}_p} H^1_{\mathcal{L}_j}(Q,\epsilon^j) \leq 1\).

Thus, we get \(-1 \leq \dim_{\mathbb{F}_p} H^1_{\mathcal{L}_i^*}(Q,\epsilon^i) - \dim_{\mathbb{F}_p} H^1_{\mathcal{L}_j}(Q,\epsilon^j) \leq 0\) and hence by 4.2, we get what we want.

\[-1 \leq \text{rank}_p A(i) - \text{rank}_p A(j) \leq 0\]

\[\square\]

References

