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1 Motivation: The Langlands Programme

The Langlands programme, broadly construed, has two main parts: reciprocity and functoriality.

1.1 Reciprocity

Reciprocity predicts relationships between different types of representations ("Galois" and "auto-
morphic") attached to a given (connected reductive) group.

Langlands reciprocity for G = GLn(Q) predicts:{
Cuspidal, algebraic, automorphic

representations of GLn(Q)

}
↔

{
Compatible families of geometric Galois
representations Gal(Q/Q)−→GLn(Qℓ)

}
A cuspidal automorphic representation is an irreducible subrepresentation π of L2(G(Q)G(A))

such that every f ∈ π satisfies some vanishing condition. Algebraic is some "geometric" condition
at the places at infinity. It generalizes the notion of "algebraic Hecke character", which is the n = 1
case.

Note that this quotient is locally compact, so we can define a (right) Haar measure on the
quotient with respect to which integration makes sense.

On the Galois side, compatible means that we get a family of representations for every prime
ℓ which are all related in some way, and geometric means that locally, the representation is
unramified at all but finitely many places and it is de Rham at ℓ.

Example 1. The Tate modules of an elliptic curve for different ℓ are maps

ρℓ : Gal(Q/Q) −→ GL2(Qℓ),

but as long as p ∤ ℓ, tr Frobp = ap and det Frobp = p, independently of ℓ. Usually, the trace and
the determinant together determine a two-dimensional matrix up to conjugaacy. There’s a bit of
a wrinkle here because these representations are over different fields, but nevertheless this suggests
some sort of a relationship between the representations associated to different ℓ.

Let’s say a little bit more about the quotient L2(G(Q)\G(A)). For a Lie group H, the decompo-
sition of L2(H) into irreducible representations looks very different when H is compact than when
H is not. When H is compact, all the irreducible unitary representations are finite-dimensional,
and the Peter-Weyl theorem gives a direct sum decomposition

L2(H) ∼=
⊕̂

π unitary irrep

πdimπ.
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This should not be surprising, since compact groups are basically finite groups with more anal-
ysis.

However, if H is not compact, this picture breaks down completely! Unitary representations of
non-compact G are not generally finite-dimensional, and there may be parts of the decomposition
of L2(G) which are direct integrals instead of direct sums.

Example 2. A function f ∈ L1(R) ∩ L2(R) has a Fourier decomposition

f(x) =

∫
R
f̂(y)e2πixydx.

Here, the characters χy(x) := e2πixy are the unitary representations of the locally compact
abelian group R.

Roughly, representations appearing in direct sums are known as discrete series representations,
and those in direct integrals are known as principal series representations. There are also "limit
of discrete series" representations, which I won’t discuss much here.

Example 3. If G = GL2, the discrete series representations appearing in L2(G) are things we
understand – they correspond to modular forms of weight ≥ 2! The limit of discrete series repre-
sentations are forms of weight 1. The principal series representations correspond to Maass forms.
For G = GL2, we can more or less prove reciprocity for discrete series representations.

1.2 Functoriality and the Jacquet-Langlands correspondence

Functoriality describes maps between representations that arise from maps between groups. Given
a group G, we can associate to it an L-group, denoted LG. For our purposes, the L-group is some
group which depends only on the Q-points of G.

Langlands functoriality predicts that given (nice) groups G and G′, maps

ϕ : LG −→ L
G′

should lift to maps sending automorphic representations of G to automorphic representations of G′.
The Jacquet-Langlands correspondence is an example of Langlands functoriality for G = GL2, and
was historically one of the motivating examples for functoriality in general.

Definition 4. A form of an algebraic group G/Q is another group G′/Q such that there exists a
Q-isomorphism ϕ between G and G′.

Definition 5. Let G′ be a form of G and ϕ : G → G′ a Q-isomorphism. The group G′ is an inner
form of G if the action of ϕ−1 ◦ σ ◦ ϕ on G is an inner automorphism for every σ ∈ Gal(Q/Q).

Exercise 6. Check that this condition is well defined i.e. that it doesn’t depend on the choice of
Q-isomorphism ϕ.

A group and its inner form will have the same L-group. If we believe functoriality, then the
identity morphism on L-groups should induce a corresponding map of automorphic representations.
This is exactly what Jacquet-Langlands correspondence gives us for G = GL2.
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2 Quaternion algebras

Let’s start with some basic definitions from noncommutative algebra. See [?, ?] for proofs and
details. Throughout, no field has characteristic 2.

Definition 7. A left (right) ideal of a ring R is a left (right) submodule of R, i.e. a subset I such
that RI = I (IR = I). An ideal which is both a left and right ideal is said to be a two-sided
ideal. The ring R is simple if it has no proper two-sided ideals.

Proposition 8. The center of a simple ring is a field, so simple rings are simple algebras.

Definition 9. A Q-algebra is called central if its center is Q. A quaternion algebra (over a field
K) is a central simple K-algebra of dimension 4.

Example 10. Here are some examples of quaternion algebras.

• M2(K) is a 4-dimensional CSA for every K;

• The usual quaternions, H, are a quaternion algebra over R;

Proposition 11. The K-algebra(
a, b

K

)
:= {K +Ki+Kj +Kij|i2 = a, j2 = b, ij = −ji}

is a quaternion algebra, and every quaternion algebra over K can be expressed in this form.

Example 12. Many common quaternion algebras can be expressed in this form.

• M2(K) =
(
1,1
K

)
. To see this, take

i :=

(
1

1

)
, j :=

(
1

−1

)
.

• H =
(−1,−1

R
)
.

Definition 13. The reduced norm of an element x = x0 + x1i+ x2j + x3ij ∈
(
a,b
Q
)

is defined as

Nm(x) := (x0 + x1i+ x2j + x3ij)(x0 − x1i− x2j − x3ij) = x20 + ax21 + bx22 − abx23.

Proposition 14. The reduced norm is multiplicative.

Example 15. Here are some norms.

• The norm on M2(K) is the determinant.

• The norm on H is the usual norm on quaternions: Nm(x0+x1i+x2j+x3k) = x20+x21+x22+x23.

Proposition 16. Let K be a field.

1. If K is algebraically closed, the only quaternion algebra over K is M2(K).

2. If K is a local field, there are two quaternion algebras over K: M2(K), and a division algebra.

Let B/Q be a quaternion algebra over the rationals (or any number field. Proposition 16 tells
us that for any place v of Q, B ⊗Q Qv is either M2(Qv) or the unique division algebra above Qv.
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Definition 17. We say that B is split at a place v if B ⊗Qv
∼= M2(Qv), and ramified if B ⊗Qv

is a division algebra.

Proposition 18. Let B/Q be a quaternion algebra.

1. The set S of places at which B/Q is ramified is finite;

2. The cardinality of S is even;

3. The set S determines B up to isomorphism.

Definition 19. The product of the primes at which B/Q ramifies is called the discriminant of B.

Definition 20. A quaternion algebra is definite if it is ramified at infinity and indefinite other-
wise.

Remark. The theory of quaternion algebras over Q parallels the theory of quadratic fields over Q.
The fact that the cardinality of S is even is more or less equivalent to quadratic reciprocity! Definite
quaternion algebras are analogous to imaginary quadratic fields, and indefinite quaternion algebras
to real quadratic fields.

Proposition 21. Let B/Q be a quaternion algebra. Then, B× is an inner form for GL2Q.

Proof. This follows from the first part of Proposition 16.

The converse is actually also true, but I won’t discuss it during this talk.
By Proposition 21, if we believe functoriality, then cuspidal automorphic forms for B× ought to

relate somehow to cuspidal automorphic forms for GL2Q (i.e. cusp newforms). Before we can state
our theorem, we need a few more definitions.

Definition 22. An order of B/Q is a Z-lattice of B which is also a ring. A maximal order of B
is a maximal order.

Remark. It’s not obvious that orders exist, because in this regime, the set of integral elements don’t
form a ring!

Proposition 23. Maximal orders in B/Qp are conjugate to M2(Zp).

If B is split at a place, then B ↪→ B ⊗Q Qv
∼= M2(Qv). If O0 is a maximal order, then

O0 ↪→ O0 ⊗Z Zv. The latter is still an order: it’s clearly a ring, and it’s a lattice because as a
Z-module O0

∼= Zn.

Proposition 24. Fix a positive integer N and quaternion algebra B/Q. For any maximal order
O0(1), there is an injection

ιN : O0(1) ↪→ O0(1)⊗ ZZN
∼= M2(ZN )

In what follows, we fix p and write O := O0(N).

Definition 25. A right fractional ideal I of O is invertible if there exists a left fractional ideal J
such that JI = O. In this case, we write I−1 := J .

Definition 26. Two right ideals I and J are in the same ideal class if there exists x ∈ B× such
that I = xJ .
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The ideals I and J are in the same ideal class if and only if they are isomorphic as right
O-modules, so this is an equivalence relation.

Definition 27. The right class set of O is the set of ideal classes of invertible right ideals. We
denote it by ClO

This set turns out to be finite and independent of the choice of Eichler order (it depends only
on the level).

2.1 Modular forms over a definite quaternion algebra

I’ve just subjected you to 20 minutes of noncommutative algebra. All of that was for what’s coming
up now.

Definition 28. Let B/Q be a quaternion algebra. A quaternionic modular form of weight 2
and level N over a definite quaternion algebra is a function

f : ClO0(N) −→ C.

A quaternionic cusp form is a quaternionic modular form which is orthogonal (with respect
to the usual Hermitian inner product on Cn) to space of constant functions.

We write MB
2 (N) for the space of modular forms and SB

2 (N) for the space of cusp forms.

Theorem 29 (Eichler-Shimizu-Jacquet-Langlands, very special case). Let B be a quaternion algebra
over Q with discriminant p. There is an isomorphism of Hecke modules

SB
2 (1) ∼= S2(p),

where S2(p) := S2(Γ0(p)).
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