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Abstract

In a nonparametric setting, we develop trading strategies to replicate volatility derivatives

– contracts which pay functions of the realized variance of an underlying asset’s returns. The

replicating portfolios trade the underlying asset and vanilla options, in quantities that we express

in terms of vanilla option prices, not in terms of parameters of any particular model. Likewise,

we find nonparametric formulas to price volatility derivatives, including volatility swaps and

variance options. Our results are exactly valid, if volatility satisfies an independence condition.

In case that condition does not hold, our formulas are moreover immunized, to first order,

against nonzero correlation.

1 Introduction

The tradeoff between risk and return is a central theme of finance, and volatility and variance of

returns are standard measures of risk. The volatility of a stock is revealed by the market price of

an option on the stock, if one accepts the model of Black-Scholes [6], which does not require any

assumptions on equity risk premium nor expected return.

However, that model does assume constant volatility, which contradicts the empirical obser-

vation that, for a given expiry, the market prices of option contracts at different strikes typically

imply different Black-Scholes volatility parameters. In the presence of these non-constant implied

volatilities across strikes – a phenomenon known as the smile or skew – the question arises: what in-

formation content, regarding the risk-neutral distribution of the path-dependent realized volatility

and variance, can we extract from the profile of European option prices at a given expiry?
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We answer this question with the help of an observation due to Hull-White [21]. Under some

assumptions including an independence condition, the distribution of realized variance determines

the value of a stock option. We invert this relationship in a more general setting. Analogously to

how Latane-Rendleman [23] take as given the market price of a single option and invert the Black-

Scholes equation to infer a constant volatility, we take as given the market prices of all options at a

given expiry and invert a Hull-White-type relationship to infer the entire risk-neutral distribution

of the random realized volatility.

The information in the profile of T -expiry option prices will, therefore, nonparametrically reveal

the no-arbitrage prices of volatility derivatives – claims on payoffs contingent on realized volatility.

This information will, moreover, allow us to replicate volatility derivatives, by dynamic trading in

standard options and the underlying shares. Our valuations and our replication strategies will have

explicit formulas in terms of observables, not the parameters of any model.

Our inference does not rely on any specification of the market price of volatility risk. Just as

knowledge of the stock price sufficiently reflects the equity risk premium in the Black-Scholes frame-

work, knowledge of option prices sufficiently reflects the volatility risk premium in our framework.

1.1 Variance

We define the realized variance of the returns on a positive underlying price S from time 0 to time T

to be the quadratic variation of logS at time T . If S has an instantaneous volatility process σt, then

realized variance equals integrated variance, meaning the time integral of σ2
t . In practice, contracts

written on realized variance typically define it discretely as the sample variance of daily or weekly

log returns. Following the custom in the derivatives literature, we study the (continuously-sampled)

quadratic variation / integrated variance, leaving tests of discrete sampling for future research.

Realized variance can be traded by means of a variance swap, a contract which pays at time T

the difference between realized variance and an agreed fixed leg. The variance swap has become a

leading tool – perhaps the leading tool – for portfolio managers to trade variance. As reported in

the Financial Times [20] in 2006,

Volatility is becoming an asset class in its own right. A range of structured derivative

products, particularly those known as variance swaps, are now the preferred route for

many hedge fund managers and proprietary traders to make bets on market volatility.

According to some estimates [1], the daily trading volume in equity index variance swaps reached
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USD 4–5 million vega notional in 2006. On an annual basis, this corresponds to payments of more

than USD 1 billion, per percentage point of volatility.

From a dealer’s perspective, the variance swap admits replication by a T -expiry log contract

(which decomposes into static positions in calls and puts on S), together with dynamic trading

in S, as shown in Neuberger [25], Dupire [17], Carr-Madan [15], Derman et al [16], and Britten-

Jones/Neuberger [11]. Perfect replication requires frictionless markets and continuity of the price

process, but does not require the dynamics of instantaneous volatility to be specified. The variance

swap’s replicating portfolio became in 2003 the basis for how the Chicago Board Option Exchange

(CBOE) calculates the VIX index, an indicator of short-term options-implied volatility. VIX im-

plementation issues arising from data limitations are addressed in Jiang-Tian [22].

1.2 Volatility derivatives

More generally, volatility derivatives, which pay functions of realized variance, are of interest to

portfolio managers who desire non-linear exposure to variance. Important examples include calls

and puts on realized variance; and volatility swaps (popular especially in foreign exchange markets)

which pay realized volatility, defined as the square root of realized variance.

In contrast to the variance swap’s replicability by a log contract, general functions of variance

present greater hedging difficulties to the dealer. In theory, if one specifies the dynamics of in-

stantaneous volatility as a one-dimensional diffusion, then one can replicate a volatility derivative

by trading the underlying shares and one option. Such simple stochastic volatility models are,

however, misspecified according to empirical evidence, such as difficulties in fitting the observed

cross-section of option prices, and pricing errors out-of-sample, as documented in Bakshi-Cao-Chen

[2] and Bates [4]. Moreover, even if one could find a well-specified model, further error can arise in

trying to calibrate or estimate the model’s parameters, not directly observable from options prices.

Derivatives dealers have struggled with these issues. According to a 2003 article [26] in RiskNews,

While variance swaps - where the underlying is volatility squared - can be perfectly

replicated under classical derivatives pricing theory, this has not generally been thought

to be possible with volatility swaps. So while a few equity derivatives desks are com-

fortable with taking on the risk associated with dealing volatility swaps, many are not.

A 2006 Financial Times article [20] quotes a derivatives trader:

Variance is easier to hedge. Volatility can be a nightmare.
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We challenge this conventional wisdom, by developing strategies to price and to replicate volatility

derivatives – without specifying the dynamics of instantaneous volatility, hence without bearing the

types of misspecification and misestimation risk discussed above.

The volatility derivatives studied in this paper (and referenced in the block quotations) are

realized volatility contracts, which pay functions of underlying price paths – as opposed to the

various types of options-implied volatility contracts, which pay functions of option prices prevailing

at a specified time. For example, we do not explicitly study options on VIX (itself a function of

vanilla option prices) nor options on straddles (Brenner-Ou-Zhang [9]); rather, we do study, for

example, options and swaps on the variance and volatility actually realized by the underlying.

1.3 Our approach

We prove that general functions of variance, including volatility swaps, do admit valuation and

replication using portfolios of the underlying shares and European options, dynamically traded

according to strategies valid across all underlying dynamics specified in Section 2.

Our nonparametric exact hedging paradigm stands in marked contrast to previous treatments

of volatility derivatives. In particular, consider the following features.

First, in contrast to analyses of particular models (such as Matytsin’s [24] analysis of Heston

and related dynamics), we take a nonparametric approach, both robust and parameter-free, in the

sense that we do not specify the dynamics nor estimate the parameters of instantaneous volatility.

Our robust pricing and hedging strategies remain valid across a whole class of models – including

non-Markovian and discontinuous volatility processes as well as diffusive volatility – so we avoid the

risk of misspecification and miscalibration present in any one model. Specifically, we define robust

to mean that our strategies are valid across all underlying continuous price processes whose instan-

taneous volatility satisfies an independence assumption (and some technical conditions, designated

below as (B,W, I)). Moreover, in case the independence condition does not hold, we immunize our

schemes, to first order, against the presence of correlation; thus we can price approximately under

dynamics which generate implied volatility skews – without relying on any particular model of

volatility. Our parameter-free pricing formulas typically take the form of an equality of risk-neutral

expectations of functions of realized variance 〈X〉T and price ST respectively:

Eh(〈X〉T ) = EG(ST ), (1.1)

where we find formulas for G, given various classes of payoff functions h, including the square root
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function which defines the volatility swap. The left-hand side is the value of the desired volatility

or variance contract. The right-hand side is the value of a contract on a function of price, and is

therefore model-independently given by the values of European options. Thus our formula for the

volatility contract value is expressed not in terms of the parameters of any model, but rather in

terms of prices directly observable, in principle, in the vanilla options market.

Second, in contrast to approximate methods (such as Carr-Lee’s [13] use of a displaced lognormal

to approximate the distribution of realized volatility) we find exact formulas for prices and hedges of

volatility contracts. For example, the typical result (1.1) is exact under the independence condition.

Third, in contrast to studies of valuation without hedging (such as Carr-Geman-Madan-Yor’s

[12] model-dependent variance option valuations under pure jump dynamics), we cover not just val-

uation but also replication, by proving explicit option trading strategies which enforce the valuation

results. The holdings in our replicating portfolios are rebalanced dynamically, but the quantity to

hold, at each time, depends only on contemporaneously observable prices, not on the parameters

of any model; this result arises because the observable prices already incorporate all quantities

of possible relevance, such as instantaneous volatility, volatility-of-volatility, and market price of

volatility risk. Indeed, to our knowledge, this paper is the first one to study nonparametrically the

pricing restrictions induced by, and the volatility payoffs attainable by, the ability to trade options

dynamically. Moreover, because perfectly hedging against a short (long) holding of some realized

volatility payoff is equivalent to perfectly replicating a long (short) position in that volatility payoff,

our replication strategies therefore provide explicit robust hedges of volatility risk.

Fourth, in contrast to treatments narrowly focused on particular payoff specifications, we de-

velop valuation and replication methods for general functions of volatility. As Breeden-Litzenberger

[8] showed, the information in the set of T -expiry option prices at all strikes, fully and model-

independently reveals the risk-neutral distribution of ST . We show that the same option price

information, under our assumptions, fully and robustly reveals the risk-neutral distribution of

volatility, and hence the valuations of arbitrary functions of volatility. This paper, moreover,

breaks ground for ongoing research into general functions of volatility and price jointly – such as

options on CPPI, constant proportion portfolio insurance [31].

Fifth, in contrast to valuation methods that rely crucially on continuity of the share price and the

instantaneous volatility, this paper allows unspecified jumps in volatility. Moreover, our valuation

methods have natural and far-reaching extensions to time-changed Lévy processes, including those

with asymmetric skew-inducing jumps in price, which we develop in a companion paper.
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2 Assumptions

Fix an arbitrary time horizon T > 0. Assume either that interest rates are zero, or alternatively

that all prices are denominated relative to an asset (the “bond” or “cash”) that pays 1 at time T .

Thus the bond has price B = 1 at all times. Assume that markets are frictionless.

On a filtered probability space (Ω,F , {Ft},P) satisfying the usual conditions, assume there

exists an equivalent probability measure Q such that the underlying share price S solves

dSt = σtStdWt, S0 > 0 (Assumption W)

for some (Ft,Q)-Brownian motion Wt and some measurable Ft-adapted process σt which satisfy∫ T

0
σ2
t dt is bounded by some m ∈ R (Assumption B)

and

σ and W are independent (Assumption I)

and such that Q is a risk-neutral pricing measure satisfying, in particular, that for all α, p ∈ C

and t ≤ T , a power contract paying at time T the real part of αSpT has time-t price equal to the

real part of αEtSpT , where Et denotes Ft-conditional Q-expectation. This assumption rules out

arbitrage among the bond, stock, and power contracts.

Denote the logarithmic returns process by

Xt := log(St/S0) (2.1)

and write 〈X〉 for the quadratic variation of X, also known as the realized variance of the returns

on S. Under assumption (W),

〈X〉t =
∫ t

0
σ2
udu. (2.2)

Unless otherwise stated, the assumptions (B,W, I) on S are in effect throughout this paper. These

assumptions are sufficient for the validity of our methodology, but not necessary. Indeed each of

the three assumptions can be relaxed:

Remark 2.1. In this paper we will relax our reliance on assumption (I), by finding results immunized

– in a sense to be defined in Section 4 – against correlation between σ and W .

Assumptions (I) and (W) taken together imply that implied volatility skews are symmetric [3] –

in contrast to typical implied volatility skews in equity markets, which slope downward. Therefore

Section 4 on correlation-immunization has practical importance.
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Remark 2.2. We drop assumption (B) in Section 8.

Remark 2.3. We drop assumption (W) in a companion paper, by introducing jumps in the price

process. In particular, we allow asymmetries in the jump distribution, which can generate asym-

metric volatility skews.

Remark 2.4. We need not and will not work under the actual physical probability measure P. All

expectations are with respect to risk-neutral measure Q. Our typical result, of the form

Eh(〈X〉T ) = EG(ST ), (2.3)

states nothing directly about the physical expectation of h(〈X〉T ).

Rather, it concludes that the value of the contract that pays h(〈X〉T ) equals the price of the

contract that pays G(ST ), by reasoning such as the following: the G(ST ) claim, plus dynamic self-

financing trading, replicates the h(〈X〉T ) payoff with risk-neutral probability 1, hence with physical

probability 1, because P and Q agree on all events of probability 1. Thus, given the availability of

the appropriate European-style contracts as hedging instruments, the variance payoff h(〈X〉T ) is

dynamically spanned, and valuation result (2.3) follows, by absence of arbitrage.

The irrelevance of physical expectations (for this paper’s valuation and replication purposes)

renders also irrelevant the mapping between risk-neutral expectations and physical expectations.

Thus we have no need of any assumptions about the volatility risk premia (nor indeed any other

type of risk premia) which mediate between the risk-neutral and the physical probability measures.

In particular, our results are valid regardless of the market’s risk preferences, and regardless of

whether volatility risk is priced or unpriced. Any effects of risk premia are already impounded in

the prices of our hedging instruments.

Remark 2.5. Our replication strategy assumes frictionless trading in options. Of course, options

trading incurs transaction costs in practice, but our results maintain relevance. First, transactions

costs have decreased, and continue to decrease, as options markets become more liquid. Second, in

practice a dealer typically manages a portfolio of volatility contracts, which mitigates trading costs,

because offsetting trades (buying an option to hedge one volatility contract, selling that option to

hedge another contract) need not actually be conducted. Third, our frictionless valuation can be

regarded, in the presence of frictions, as a “central” valuation, relative to which a dealer planning to

bid (offer) should make a downward (upward) adjustment dependent on transaction costs. Fourth,

regardless of trading costs, our results are still implementable in non-trading contexts, such as the

development of VIX-like indicators of expected volatility, as discussed in Remark 6.16.
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3 Variance swap

A variance swap pays 〈X〉T minus an agreed fixed amount, which we take to be zero unless otherwise

specified. Variance swap replication does not require assumption (I). As shown in Neuberger [25],

Dupire [17], Carr-Madan [15], Derman et al [16], and Britten-Jones/Neuberger [11],

XT = log(ST /S0) =
∫ T

0

1
Su
dSu +

1
2

∫ T

0

(
−1
S2
u

)
σ2
uS

2
udu.

by Itô’s rule, so

〈X〉T = −2XT +
∫ T

0

2
Su
dSu. (3.1)

Hence the following self-financing strategy replicates the 〈X〉T payoff. At each time t ≤ T hold a

static position in the log contract, plus a dynamically traded share position, plus a bond position

that finances the shares and accumulates the trading gains or losses:

1 log contract, which pays −2 log(ST /S0)

2
St

shares∫ t

0

2
Su
dSu − 2 bonds

By replication, therefore, the variance swap’s time-0 value equals the price of the log contract.

Alternatively, this may be derived by taking expectations of (3.1) to obtain

E0〈X〉T = E0[−2 log(ST /S0)] = E0[−2 log(ST /S0) + 2(ST /S0)− 2]. (3.2)

At general times t ∈ [0, T ], by similar reasoning,

Et〈X〉T − 〈X〉t = Et[−2 log(ST /St) + 2(ST /St)− 2]. (3.3)

The “delta-hedged” log contract in (3.3) may be regarded as a synthetic variance swap.

Remark 3.1. By Breeden-Litzenberger [8] and Carr-Madan [15], the log contract, and indeed a

claim on a general function G(ST ), can be synthesized if we have bonds and T -expiry puts and

calls at all strikes. Specifically, if G : R+ → R is a difference of convex functions, then for any

κ ∈ R+ we have for all x ∈ R+ the representation

G(x) = G(κ) +G′(κ)(x− κ) +
∫
K≥κ

G′′(K)(x−K)+dK +
∫

0<K<κ
G′′(K)(K − x)+dK (3.4)

where G′ denotes the left-derivative, and G′′ the second derivative, which exists as a signed measure.
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In practice, calls and puts do not trade at all strikes, but in liquid markets, such as S&P 500

options, they may trade at enough strikes to make satisfactory approximations to (3.4) for the

contracts G that we will need. Nonparametric techniques of Bondarenko [7] estimate call/put

prices at all strikes (hence the prices of G(ST ) contracts), given a limited number of strikes.

4 Immunization against correlation

The typical pricing result in this paper has the following form. Given a desired function h of

variance, we find a formula for a function G of price, such that

Eh(〈X〉T ) = EG(ST ). (4.1)

Indeed, we will find an infinite family of G such that (4.1) holds for all processes S satisfying as-

sumptions (B,W, I). Now consider the following relaxation of (I). Fix some instantaneous volatility

process σt. Let ρ ∈ [−1, 1]. Let price S have correlation ρ with volatility, in the sense that

dSt =
√

1− ρ2σtStdW1t + ρσtStdW2t,

where σ and W1 are independent, as are the Brownian motions W1,W2. If ρ = 0, then we have (I),

hence (4.1). Changing the correlation to some ρ 6= 0 has no effect on the left-hand side Eh(〈X〉T ),

which depends only on the law of the σ process. From among the infinite family of G, we will find

one such that the right-hand side EG(ST ) is also insensitive to ρ (at least locally). Thus we gain

the benefit that (4.1) still holds approximately, even if condition (I) does not hold.

To quantify the impact of correlation, Proposition 4.1 will give a mixing formula that (without

assuming independence) expresses the value of any European-style payoff (such as the G(ST ) in

(4.1)) as the expectation of the Black-Scholes formula for that payoff, evaluated at a randomized

share price and random volatility. The parameter ρ appears explicitly in the mixing formula,

enabling us to examine the formula’s correlation-sensitivity and to choose a G such that EG(ST )

has zero sensitivity to correlation perturbations.

First we define what is meant by the Black-Scholes formula for a payoff.

Let t ≤ T . Let B denote the Borel sets of R+ and let mFt denote the set of Ft-measurable

random variables. Consider a time-t-contracted European payoff function, by which we mean a

F : R+ × Ω→ R, F is (B ⊗ Ft)-measurable. (4.2)
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Think of F as a function which maps ST to a European-style payout; for example, an at-the-money

(ATM) call would have F (S) = (S − St)+. The ω-dependence allows payoffs constructed at time

t to depend on information in Ft. Our notation may suppress this ω-dependence; for example,

F (S) = (S − St)+ is shorthand for F (S , ω) = (S − St(ω))+.

Given payoff F , define the Black-Scholes formula by FBS(s, 0, ω) := F (s, ω) and, for σ > 0,

FBS(s, σ, ω) :=
∫ ∞

0
F (sy, ω)

1√
2πσy

e−(y+σ2/2)2/(2σ2)dy.

The kernel in the integrand is a lognormal density with parameter σ. Note that the valuation

FBS is defined as a function of today’s price (where “today” means the valuation date), unlike the

payoff F which is defined as a function of expiration price. Notationally, we make a distinction:

the placeholder for today’s price is s, whereas the placeholder for expiration price is S . Again, our

notation may suppress the ω-dependence.

To prove the mixing formula, we recall the argument due to Romano-Touzi [28] and Willard

[30], but in a slightly more general setting where we do not assume that instantaneous volatility

follows a 1-factor diffusion.

Proposition 4.1 (Mixing formula). Without assuming (I), let

dSt =
√

1− ρ2σtStdW1t + ρσtStdW2t

where |ρ| ≤ 1, and W1 and W2 are Ft-Brownian motions, and σ and W2 are adapted to some

filtration Ht ⊆ Ft, where HT and FW1
T are independent. Then

EtF (ST ) = EtFBS(StMt,T (ρ), σ̄t,T
√

1− ρ2), (4.3)

where

Mt,T (ρ) := exp
(
− ρ2

2

∫ T

t
σ2
udu+ ρ

∫ T

t
σudW2u

)
(4.4)

and σ̄t,T := (
∫ T
t σ2

udu)1/2.

Remark 4.2. This setting includes the standard correlated stochastic volatility models, of the form

dSt = σtStdW0t

dσt = α(σt)dt+ β(σt)dW2t,

where W2 and W0 :=
√

1− ρ2W1 + ρW2 have correlation ρ. Our setting also allows more general

dynamics; for example, σ can have jumps independent of W1.
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Remark 4.3. Expanding (4.3) in a formal Taylor series about ρ = 0,

EtF (ST ) = EtFBS(StMt,T (ρ), σ̄t,T
√

1− ρ2)

≈ EtFBS(St, σ̄t,T ) + ρStEt
[
∂FBS

∂s
(St, σ̄t,T )

∫ T

t
σudW2u

]
+O(ρ2)

The ∂FBS/∂s has randomness due to its argument σ̄t,T , so in general it cannot be pulled out of

the Et. Suppose, however, that F has the property that ∂FBS/∂s does not depend on its second

argument. Then the ∂FBS/∂s comes out of the expectation. What remains inside the expectation

is a mean-zero integral, so the ρ term vanishes, leaving an error of only O(ρ2):

EtF (ST ) ≈ EtFBS(St, σ̄t,T ) +O(ρ2),

and we describe the F payoff as first-order correlation-neutral or correlation-immune.

In selecting hedging instruments and pricing benchmarks, we favor payoffs having this property,

because of their valuations’ immunity (in the sense of first-order invariance) to the presence of

correlation. This motivates the following definition.

Definition 4.4. Let t < T . We say that a payoff function F is first-order ρ-neutral or ρ-immune

or correlation-neutral or correlation-immune at time t if there exists c ∈ mFt such that

∂FBS

∂s
(St, σ) = c for all constants σ ≥ 0,

almost surely. In other words, “the contract’s Black-Scholes delta is constant across all volatility

parameters”.

Remark 4.5. Adding an affine function αST + β (where α, β ∈ mFt) has no effect on whether or

not a payoff is ρ-neutral, because the αST + β payoff is itself ρ-neutral.

Definition 4.6. Consider a trading strategy which holds at each time t < T a portfolio of claims

whose combined time-T payout is Ft(ST ), where Ft is a payoff function (4.2). We say that the

trading strategy is [first-order] ρ-neutral if for each t < T , the payoff function Ft is ρ-neutral.

5 Exponentials

Consider an exponential variance claim which pays eλ〈X〉T for some constant λ. Such payoffs will

serve as building blocks, from which we will create more general functions of 〈X〉T .
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5.1 Basic replication

We introduce first a basic “correlation-sensitive” replication strategy for the exponential variance

payoffs, relying on the independence assumption (I). In Section 5.2, we will improve this to a

“correlation-immune” strategy, which neutralizes the first-order impact of departures from inde-

pendence.

The fundamental pricing formula relates the value of an exponential claim on variance and the

value of a power claim on price. The proof applies, to powers of ST , the conditioning argument in

Hull-White [21]. Intuitively, if ST were lognormal, then the expectation of a power of ST would

be exponential in variance. In our case, ST is a mixture of lognormals of various variances, so the

expectation of a power of ST is equal to the expectation of an exponential of a random variance.

Proposition 5.1 (Basic pricing of exponentials). For each λ ∈ C and t ≤ T ,

Eteλ〈X〉T = eλ〈X〉tEt(ST /St)1/2±
√

1/4+2λ. (5.1)

In particular, for t = 0,

E0e
λ〈X〉T = E0(ST /S0)1/2±

√
1/4+2λ. (5.2)

Remark 5.2. The distribution of 〈X〉T is (just as any distribution is) fully determined by its char-

acteristic function, via the well-known inversion formula. In turn, the characteristic function of

〈X〉T is, via Proposition 5.1, determined by the values of Et(ST /St)1/2±
√

1/4+2λ for λ imaginary,

which are determined by the time-t prices of calls and puts (via (3.4) applied separately to the

real and imaginary parts). Therefore, the information in T -expiry option prices fully reveals the

risk-neutral distribution not only of price ST , but also of variance 〈X〉T .

Not only does the power claim on ST correctly price the exponential variance claim, but indeed

it dynamically replicates the exponential variance payoff.

Proposition 5.3 (Basic replication of exponentials). Let λ ∈ R. If p := 1/2 ±
√

1/4 + 2λ ∈ R

then the payoff eλ〈X〉T admits replication by the self-financing strategy

Nt claims on SpT

−pNtPt−/St shares

pNtPt− bonds

(5.3)

where Nt := eλ〈X〉t/Spt and Pt := EtSpT .
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Remark 5.4. The S and N are continuous. We can and do work with a right-continuous left-limits

version of P . Although P may jump, we are free to replace the predictable process Pt− with the

adapted process Pt everywhere in the statement and proof of Proposition 5.3, because the continuity

of the relevant integrators (S,B,N) makes immaterial the distinction between Pt and Pt− in each

integrand. Thus we have proved that the strategy

Nt claims on SpT

−pNtPt/St shares

pNtPt bonds

(5.4)

replicates eλ〈X〉T . Henceforth we follow the standard practice of allowing one-side-continuous

adapted processes, as in (5.4), to serve as integrands (e.g. trading strategies) with respect to

continuous integrators (e.g. continuous price processes).

Remark 5.5. If futures are available as hedging instruments, then they can replace the shares and

bonds; the strategy to replicate the payoff eλ〈X〉T becomes

Nt claims on SpT

−pNtPt/St futures

by similar reasoning.

Remark 5.6. For complex λ and p, and complex α = α(λ),

Re(αNTPT ) = Re(αP0) +
∫ T

0
Re(αNt)dRe(Pt)−

∫ T

0
Im(αNt)dIm(Pt)−

∫ T

0

Re(pαNtPt)
St

dSt

so we can replicate Re(αeλ〈X〉T ) by trading cosine and sine claims. Specifically, at time t, hold

Re(αNt) claims on Re(epXT )

−Im(αNt) claims on Im(epXT )

−Re(pαNtPt)/St shares

Re(pαNtPt) bonds.

Remark 5.7. In Proposition 5.3, the replicating portfolio’s time-t holdings have a combined payoff

function

F (S) := NtS
p − pNtPt

St
(S − St),

which is “delta-neutral” in the sense that

∂

∂s

∣∣∣∣
s=St

EtF (sST /St) = NtEt
(
∂

∂s
(sST /St)p

)∣∣∣∣
s=St

− pNtPt
St

= 0.
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Thus the share position −pNtPt/St can be interpreted as a delta-hedge of the option position

consisting of Nt claims on SpT . This agrees with intuition; in order to create a purely volatility-

dependent payoff, we want zero net exposure to directional risk, hence we delta-neutralize.

Of course, this observation is neither necessary nor sufficient to prove the validity of our hedg-

ing strategy (for that purpose the Proposition 5.3 proof speaks for itself); but it can help us to

understand and implement the strategy.

Remark 5.8. For pricing and replicating an exponential variance payoff, each “basic” strategy (there

are two, due to the ±) is but one member of an infinite family of strategies, all perfectly valid,

under assumption (I). Specifically, Carr-Lee [14] show that (I) implies a general form of put-call

symmetry: for any time-t-contracted payoff function f such that f(ST /St) is integrable,

Etf
(
ST
St

)
= Et

[
ST
St
f

(
St
ST

)]
. (5.5)

Combining Proposition 5.1 and (5.5), we have an infinite family of European-style payoffs which

correctly price the variance payoff: For all such f ,

Eteλ〈X〉T = eλ〈X〉tEt
[
(ST /St)1/2+

√
1/4+2λ + f(ST /St)−

ST
St
f(St/ST )

]
. (5.6)

In particular, choosing f(S) := θS1/2−
√

1/4+2λ for θ ∈ mFt yields the sub-family of identities

Eteλ〈X〉T = eλ〈X〉tEt
[
(1− θ)(ST /St)1/2+

√
1/4+2λ + θ(ST /St)1/2−

√
1/4+2λ

]
(5.7)

under (I). In the next section we choose θ in such a way as to achieve ρ-neutrality.

5.2 Correlation-immune replication of exponentials

The functions of ST given in Proposition 5.1 are not correlation-immune, but we will exploit their

“non-uniqueness” to achieve correlation-immunity. There exist infinitely many functions of ST ,

all of which perfectly replicate (hence price) the exponential variance payoff under assumption

(I). From this infinite family, we choose a strategy which is correlation-immune, and hence still

prices the variance claim approximately, in case (I) does not hold. The idea is to take a weighted

combination, with weights θ±, of the power claims, with exponents p±, where

θ±(λ) :=
1
2
∓ 1

2
√

1 + 8λ

p±(λ) :=
1
2
± 1

2

√
1 + 8λ.

(5.8)
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Figure 5.1: Exponential variance claims eλ〈X〉T on the left, and their European-style synthetic

counterparts Gexp(ST ;S0; 〈X〉0;λ) on the right, for 〈X〉0 = 0 and λ ∈ {−4,−3, . . . , 3, 4}.
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Proposition 5.9 (Correlation-immune pricing of exponentials). Let t ≤ T . For any λ ∈ C,

Eteλ〈X〉T = EtGexp(ST , St, 〈X〉t;λ), (5.9)

where

Gexp(S , u, q;λ) := eλq
[
θ+(S/u)p+ + θ−(S/u)p−

]
(5.10)

For each t, the payoff function F (S) := Gexp(S , St, 〈X〉t;λ) is ρ-neutral.

Remark 5.10. Therefore the relationship

Eteλ〈X〉T = eλ〈X〉tEt
[
θ+(ST /St)p+ + θ−(ST /St)p−

]
(5.11)

holds exactly under independence (I), and is first-order immune to the presence of correlation.

Figure 5.1 plots the payoff functions appearing in the left and right-hand sides. Note that at the

valuation date t, every variable in the right-hand side is determined and observable, except ST .

Like the basic methodology, the correlation-immune methodology provides not only valuation,

but also replication of exponential variance payoffs.

Proposition 5.11 (Correlation-immune replication of exponentials). Define p±, θ± by (5.8). Let

N±t := eλ〈X〉t/S
p±
t

P±t := EtSp±T

15



If λ ∈ R and p± ∈ R, then the self-financing strategy

θ+N
+
t claims on S

p+
T

θ−N
−
t claims on S

p−
T

replicates the payoff eλ〈X〉T . Moreover, the strategy is ρ-neutral.

6 Volatility swap

A volatility swap pays
√
〈X〉T minus some agreed fixed amount, which we take to be 0 unless

otherwise specified.

6.1 Bounds and approximations

For Fatmc(S) := (S − S0)+, a direct computation shows that

FBSatmc(S0, σ) = S0(N(σ/2)−N(−σ/2))

which is strictly increasing and concave in σ.

Define the unannualized at-the-money implied volatility IV0 as the unique solution to

FBSatmc(S0, IV0) = E0Fatmc(ST ). (6.1)

Let VOL0 denote the time-0 volatility swap value, and VAR0 denote the square root of the time-0

variance swap value.

VAR0 :=
√

E0〈X〉T (6.2)

VOL0 := E0

√
〈X〉T . (6.3)

These values are model-independently determined by prices of European options, according to

Sections 3 and 6.2 respectively. In particular, VAR0 equals the square root of the value of the

log contract; VAR0 is what the VIX attempts to approximate, and is sometimes described as a

model-free implied volatility.

Proposition 6.1. We have the following observable lower and upper bounds on VOL0
√

2π
S0

E0(ST − S0)+ ≤ IV0 ≤ VOL0 ≤ VAR0 =
√
−2E0 log(ST /S0).

(a) (b) (c)

Inequalities (a) and (c) do not assume (I).
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Figure 6.1: Proofs of inequalities (a) and (c). Left side (a): The ATM BS formula is concave

and nearly linear in σ. Right side (c): The volatility swap payoff admits model-independent

superreplication by variance swaps.
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Remark 6.2. The (c) proof given in the appendix can be enforced by model-independent arbitrage.

A portfolio of 1/(2 VAR0) variance swaps, plus VAR0 /2 in bonds, has total time-0 value VAR0,

and superreplicates the 〈X〉1/2T payoff. Essentially this portfolio realizes Jensen’s inequality, by

constructing the appropriate tangent, as shown in Figure 6.1. If variance and volatility swap

values fail to respect (c), then going long the superreplicating portfolio, and short a volatility swap,

model-independently locks in an arbitrage profit.

In Remarks 6.3 and 6.4, we include some approximations, mainly to provide reference points

and context for our theory. We emphasize that we do not actually advocate the use of these two

approximations, because our theory is more powerful and robust, in ways described in Remark 6.5.

Remark 6.3. Although FBSatmc(S0, ·) is concave, it is nearly linear – indeed, linear to a second order

approximation near 0, because its second derivative vanishes at 0. Thus the inequality in (A.1) is

an approximate equality (as shown by Feinstein [18] and Poteshman [27]); and the inequality in

(A.2) is an approximate equality (as shown by Brenner and Subrahmanyam [10]). Therefore, the

lower bounds of Proposition 6.1 are indeed approximately equal to the volatility swap value:

VOL0 ≈
√

2π
S0

E0(ST − S0)+ ≈ IV0 (6.4)

where the first ≈ assumes (I), but the second does not. Under the independence assumption,

therefore, ATM implied volatility approximates the initial value of a volatility swap – but see

Remark 6.5.
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Remark 6.4. Under assumption (I), the approximation (6.4) can be refined, to the following simple

approximation using ATM implied volatility and the variance swap value:

VOL0 ≈ IV0

(
1 +

VAR2
0− IV2

0

8 + 2 IV2
0

)
. (6.5)

Remark 6.5. We do not endorse the approximations (6.4) and (6.5). They do not establish how to

replicate realized volatility, they do not apply at times after inception, they do not value general

functions of volatility, and they do not suggest what to do in the presence of correlation. Our

theory does all of the above. Regarding the last point in particular, Section 6.5 will illustrate the

benefits of our correlation-immunized approach, compared to the naive approximation (6.4).

6.2 Basic (correlation-sensitive) methodology

We introduce first a basic “correlation-sensitive” valuation strategy for the volatility swap, relying

on the independence assumption (I). In Section 6.3, we will improve this to a “correlation-immune”

strategy, which neutralizes the first-order impact of correlation.

For our correlation-immune strategy, we will give a full treatment, including seasoned volatility

swaps at times t > 0, and including the replication argument. For our basic strategy, however,

we restrict our coverage to the valuation of volatility swaps at inception t = 0, because we do

not advocate the basic strategy; for the basic case we include only enough material to draw some

connections with other representations/approximations, in Remarks 6.7 and 6.14 and Section 6.5.

Proposition 6.6 (Pricing a volatility swap using the basic synthetic volatility swap). We have

E0

√
〈X〉T = E0g±(ST /S0)

where

g±(x) :=
1

2
√
π

∫ ∞
0

e(1/2±1/2) log x − Re[e(1/2±
√

1/4−2z) log x]
z3/2

dz (6.6)

In particular, we prove the convergence of the integral.

Remark 6.7. Figure 6.2 plots the functions g±. They closely resemble
√

2π/S0 at-the-money puts

and calls, respectively. Our result is consistent with the naive approximation (6.4), but as discussed

in Remark 6.5, our theory has implications far beyond the naive approximations.

We call a claim on g+(ST /S0) the basic (or correlation-sensitive) synthetic volatility swap.
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Figure 6.2: European-style payoffs g−(ST ) and g+(ST ) = the basic synthetic volatility swap.
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Figure 6.3: European-style payoff Gsvs(ST , St, 0), the correlation-immune synthetic volatility swap.
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The correlation-immune SVS has some resemblance to a straddle, but its arms are not straight:

the left arm is convex, and the right arm is concave.
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6.3 Correlation-immune methodology

We improve the previous section’s basic synthetic volatility swap to a correlation-immune synthetic

volatility swap (SVS), which neutralizes the first-order impact of correlation.

Moreover, for hedging purposes, we will need valuations at all times t ∈ [0, T ], so “today” is

now a generic time t instead of time 0.

Proposition 6.8 (Pricing a volatility swap using the correlation-immune SVS). For all t ∈ [0, T ],

Et
√
〈X〉T = EtGsvs(ST , St, 〈X〉t) (6.7)

where

Gsvs(S , u, q) :=
1

2
√
π

∫ ∞
0

θ+
1− e−zq(S/u)p+

z3/2
+ θ−

1− e−zq(S/u)p−

z3/2
dz. (6.8)

θ± := θ±(−z) :=
1
2
∓ 1

2
√

1− 8z
p± := p±(−z) :=

1
2
± 1

2
√

1− 8z (6.9)

In particular, we prove the convergence and integrability of Gsvs.

For each t, the payoff function F (S) := Gsvs(S , St, 〈X〉t) is ρ-neutral.

Remark 6.9. We call a claim on Gsvs(ST , St, 〈X〉t) the time-t correlation-immune synthetic volatility

swap (SVS). If we simply say “synthetic volatility swap” or “SVS,” we mean the correlation-immune

variety, not the basic variety. Let SVSt denote EtGsvs(ST , St, 〈X〉t), the time-t value of the SVS

contract. Proposition 6.8 shows that SVSt reveals the volatility swap value. Corollaries 6.12 and

6.13 will make explicit the observability of SVSt, given call and put prices.

Remark 6.10. The correlation-immune SVS is not simply a linear combination of the put-like and

call-like basic synthetic volatility swaps (6.6), because the linear combinations are taken inside the

z-integral, and the weights θ± depend on z. As shown in Figures 6.3–6.6, the SVS does resemble a

straddle, but its arms are curved, not straight. Indeed, the three arguments of the payoff function

Gsvs(S , u, q) have the following interpretation: S stands for the terminal share price; u represents the

“strike” of the curved straddle; and q controls the “curvature” of the curved straddle. Proposition

6.8 shows that the “strike” should be chosen at-the-money and that the “curvature” should be

chosen to depend on how much variance has been already accumulated.

At inception, the correlation-immune synthetic volatility swap may be written concisely in terms

of Bessel functions. Let Iν denote the modified Bessel function of order ν.

Corollary 6.11 (Payoff of newly-issued synthetic volatility swap: Bessel formula). We have

E0

√
〈X〉T = E0ψ(ST ) (6.10)

20



where ψ(S) := φ(log(S/S0)), where

φ(x) :=
√
π

2
ex/2

∣∣∣xI0(x/2)− xI1(x/2)
∣∣∣. (6.11)

The payoff is ρ-neutral.

Instead of expressing the synthetic volatility swap as a payoff function, we may express it as a

mixture of put and call payoffs. We treat separately the case of a newly-issued volatility swap and

the case of a seasoned volatility swap.

Corollary 6.12 (Put/call decomposition of newly-issued synthetic volatility swap: Bessel formula).

The initial (〈X〉t = 0) correlation-immune synthetic volatility swap decomposes into the payoffs of√
π/2/S0 straddles at strike K = S0√

π

8K3S0

[
I1(log

√
K/S0)− I0(log

√
K/S0)

]
dK calls at strikes K > S0√

π

8K3S0

[
I0(log

√
K/S0)− I1(log

√
K/S0)

]
dK puts at strikes K < S0

(6.12)

Corollary 6.13 (Put/call decomposition of seasoned synthetic volatility swap). The seasoned

(〈X〉t > 0) correlation-immune synthetic volatility swap decomposes into the payoffs of

dK√
π

∫ ∞
0

e−z〈X〉t

K2z1/2

[
θ+(K/St)p+ + θ−(K/St)p−

]
dz calls at strikes K > St, puts at K < St

〈X〉1/2t bonds.

(6.13)

Remark 6.14. Our basic volatility valuation formula (6.6) is transformed by Friz-Gatheral [19] into

one Bessel representation of the basic synthetic volatility swap. In contrast, in this section, we

transform our correlation-immune volatility valuation formula (6.8) into two Bessel representations

of our correlation-immune synthetic volatility swap (SVS), in Corollaries 6.11 (Bessel formula for

payoff) and 6.12 (Bessel formula for put/call decomposition).

Our SVS provides not only valuation, but also replication of the volatility swap. Indeed, holding

at each time t a claim on Gsvs(ST , St, 〈X〉t) replicates the volatility swap.

Proposition 6.15 (Synthetic volatility swap replicates the volatility swap). Holding at each time

t a claim on Gsvs(ST , St, 〈X〉t) replicates the volatility swap. In other words:

Choose an arbitrary constant κ > 0 as a put/call separator. For K ∈ (0, κ) let Pt(K) denote

the time-t value of a K-strike T -expiry binary put. For K ≥ κ let Pt(K) denote the time-t value

of a K-strike T -expiry binary call.
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Let the time-t binary option holdings (puts at strikes below κ, calls at strikes above κ) be given by

the signed measure ϕt defined by the density function K 7→ ±∂Gsvs/∂S(K;St, 〈X〉t) on the domain

K ∈ (0,∞), where the + and − correspond to K > κ and K < κ respectively.

Then the self-financing strategy of holding at each time t

ϕt options

Gsvs(κ, St, 〈X〉t) bonds
(6.14)

replicates the payoff
√
〈X〉T . Moreover, the strategy is ρ-neutral.

6.4 Evolution of the synthetic volatility swap

As variance accumulates during the life of the synthetic volatility swap, its payoff profile evolves.

Proposition 6.8 makes this precise, but here let us give some intuition.

The initial payoff resembles a straddle struck at-the-money. The dynamics of the payoff depend

on two factors. First, as the spot moves, the “strike” of the “straddle” floats to stay at-the-money.

Second, as quadratic variation (an increasing process) accumulates, the “straddle” smooths out,

losing its kink; indeed, only when 〈X〉t = 0 does the kink literally exist.

We can, moreover, understand the limiting shape approached by the payoff. At time t, de-

compose 〈X〉T into the already-revealed portion 〈X〉t > 0, and the random remaining variance

Rt,T := 〈X〉T − 〈X〉t. By the square root function’s concavity and (3.3),

E
√
〈X〉T = E

√
〈X〉t +Rt,T ≤

√
〈X〉t +

1
2
√
〈X〉t

ERt,T (6.15)

=
√
〈X〉t +

1
2
√
〈X〉t

Et
[
− 2 log(ST /St) + 2(ST /St − 1)

]
. (6.16)

As 〈X〉t increases, the intuition is that the square root function on [〈X〉t,∞) becomes less concave

and more linear, hence the inequality (6.15) becomes an approximate equality. In view of (6.16),

then, we expect that as time t rolls forward and 〈X〉t accumulates, the synthetic volatility swap will

evolve toward a combination of synthetic variance swaps (3.3) and cash, with total time-T payoff

√
〈X〉t +

1√
〈X〉t

(ST /St − 1− log(ST /St)). (6.17)

This is visually confirmed in the right side of Figure 6.6, which compares the two time-T payoff

functions (contracted at time t): the SVS Gsvs(ST , St, 〈X〉t) and the log-contract-plus-cash (6.17).
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Figure 6.4: At initiation (〈X〉t = 0.0), the volatility swap and synthetic volatility swap (SVS)
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Figure 6.5: Seasoned (〈X〉t = 0.1) volatility swap and synthetic volatility swap (SVS)
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Figure 6.6: Seasoned (〈X〉t = 0.25) volatility swap and SVS, compared to variance swaps

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Realized Variance

P
ay

of
f

 

 
Volatility swap
Variance swap (plus cash)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

S
T
/S

t

P
ay

of
f

 

 
Synthetic volatility swap
Synthetic variance swap (plus cash)

23



6.5 Accuracy of the ρ-neutral synthetic volatility swap

Figure 6.7 shows how closely the time-0 ρ-neutral synthetic volatility swap (SVS) price approximates

the true volatility swap fair value, under Heston dynamics with parameters from Bakshi-Cao-Chen

[2]. For comparison, we plot also the ATM implied volatility, and the basic (correlation-sensitive)

synthetic volatility swap price.

As approximations of the true volatility swap value, our correlation-immune SVS outperforms

ATM implied volatility and outperforms our basic (correlation-sensitive) replication – across essen-

tially all correlation assumptions. In the case ρ = 0, both of our methods are (as promised) exact

and the implied volatility approximation is nearly exact; but more importantly, in the empirically

relevant case of ρ 6= 0, our correlation-immune SVS’s relative “flatness” with respect to ρ results

in its greater accuracy. This illustrates why, in equity markets, we do not recommend any method

or approximation which relies on assumption (I), unless it has the additional correlation-immunity

present in our SVS.

Figure 6.7: Heston dynamics: Volatility swap valuations as functions of correlation
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We comment on each curve in greater detail.

The volatility swap fair value (denoted by VOL0 := E0

√
〈X〉T as in Section 6.1) equals the

expectation of realized volatility. It is determined by the distribution of realized variance
∫
Vtdt,

which is determined entirely by the given dynamics

dVt = 1.15(0.04− Vt)dt+ 0.39V 1/2
t dWt, V0 = 0.04 (6.18)

of instantaneous variance Vt = σ2
t . So the correlation ρ is irrelevant to VOL0, which therefore plots

as a horizontal line. Its level 0.1902 is computable via the known distribution of
∫
Vtdt given (6.18).

The basic (correlation-sensitive) synthetic volatility swap payoff is approximately the payoff of
√

2π/S0 calls, as noted in Remark 6.7. Therefore its value and the ATM Black-Scholes implied

volatility IV0 are nearly equal, due to (6.4). The plots confirm this across the full range of ρ.

More importantly, the plots confirm that VOL0 is well-approximated by these two values if ρ = 0,

but due to the correlation-sensitivity of IV0 and of the basic synthetic volatility swap, both values

underestimate VOL0 by more than 40 basis points, for certain values of ρ.

Our correlation-immune SVS has value SVS0 which, as promised, exactly matches VOL0 if

ρ = 0. Furthermore, as intended by its design, SVS0 is ρ-invariant to first-order, at ρ = 0. There is

no guarantee that this flatness will extend to ρ far from 0, but for these parameters the ρ-neutrality

does indeed result in accuracy gains across the entire range of ρ, as confirmed in the plot.

Finally we comment on a benchmark not plotted in the figure. The variance swap value (which

equals the log-contract value) is 0.04; and its square root (which we denote by VAR0 =
√

E0〈X〉T

as in Section 6.1, and which the VIX seeks to approximate) is 0.20, regardless of ρ. Therefore, a

plot of VAR0 would be a horizontal line far above the upper boundary of Figure 6.7, and would

not be a competitive approximation to VOL0 = 0.1902.

To summarize, in this example the best approximation of VOL0, for essentially all ρ ∈ [−1, 1], is

given by our correlation-immune SVS value (SVS0), and the worst is given by the VIX-style quantity

VAR0. The other approximations – ATM implied volatility IV0 and the basic (correlation-sensitive)

volatility swap value – are accurate for ρ = 0 but lose accuracy for ρ nonzero.

Remark 6.16. Figure 6.7 can be regarded as a numerical comparison of two notions of “model-

free implied volatility” (MFIV). When defined in the “VIX-style,” MFIV is understood to mean

VAR0, the square root of the variance swap (or log contract) value. Here we have introduced the

correlation-immune synthetic volatility swap, whose observable value we regard as an alternative

notion of MFIV. Indeed, let us define “SVS-style” MFIV to be SVS0, the time-0 value of our SVS.
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Our SVS-style MFIV is truly an expected volatility, because it does indeed equal VOL0, by

Proposition 6.8 – in contrast to the VIX-style MFIV which equals VAR0, the square root of expected

variance. Moreover, although Proposition 6.8 assumes (I), we observe that even in the (I)-violating

ρ 6= 0 dynamics of Figure 6.7, the expected volatility VOL0 is still approximated much more

accurately by our SVS-style MFIV (with errors of only 9 basis points even in the worst cases near

ρ = −1) than by the VIX-style MFIV (with errors of 98 basis points).

7 Pricing other volatility derivatives

Using exponential variance payoffs, we can price general variance payoffs.

7.1 Fractional or negative power payoffs

Our volatility swap formula is the r = 1/2 case of the following generalization to powers in (0, 1).

Proposition 7.1. For 0 < r < 1,

Et〈X〉rT = EtGpow(r)(ST , St, 〈X〉t)

where

Gpow(r)(S , u, q) :=
r

Γ(1− r)

∫ ∞
0

θ+
1− e−zq(S/u)p+

zr+1
+ θ−

1− e−zq(S/u)p−

zr+1
dz (7.1)

θ± := θ±(−z) :=
1
2
∓ 1

2
√

1− 8z
p± := p±(−z) :=

1
2
± 1

2
√

1− 8z (7.2)

For each t, the payoff function S 7→ Gpow(r)(S , St, 〈X〉t) is ρ-neutral.

For arbitrary negative powers, we have the following formula for “inverse variance” claims.

Proposition 7.2. For any r > 0 and any ε such that 〈X〉t + ε > 0,

Et(〈X〉T + ε)−r = EtGpow(−r)(ST , St, 〈X〉t + ε)

where

Gpow(−r)(S , u, q) :=
1

rΓ(r)

∫ ∞
0

(θ+(S/u)p+ + θ−(S/u)p−)e−z
1/rqdz

θ± := θ±(−z1/r) :=
1
2
∓ 1

2
√

1− 8z1/r
p± := p±(−z1/r) :=

1
2
±
√

1/4− 2z1/r.

For each t, the payoff function F (S) := Gpow(−r)(S , St, 〈X〉t) is ρ-neutral.
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Figure 7.1: Polynomial variance claims 〈X〉nT on the left, and their European-style synthetic coun-

terparts Gpow(n)(ST , S0, 〈X〉0) on the right, for n = 1, 2, 3 and 〈X〉0 = 0
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7.2 Polynomial payoffs

We obtain polynomials in variance by differentiating, in λ, the exponential of λ〈X〉T .

Proposition 7.3. For each positive integer n,

Et〈X〉nT = EtGpow(n)(ST , St, 〈X〉t)

where

Gpow(n)(S , u, q) := ∂nλGexp(S , u, q, λ)
∣∣
λ=0

(7.3)

with Gexp defined in (5.10). In particular, for n = 1, 2, 3:

E0〈X〉T = E0(−2XT + 2eXT − 2)

E0〈X〉2T = E0(4X2
T + 16XT + 8XT e

XT − 24eXT + 24)

E0〈X〉3T = E0(−8X3
T + 24X2

T e
XT − 72X2

T − 192XT e
XT − 288XT + 480eXT − 480).

For each t, the payoff function F (S) := Gpow(n)(S , St, 〈X〉t) is ρ-neutral.

Note that n = 1 recovers the usual valuation of the variance swap using a hedged log contract.

Figure 7.1 plots Gpow(n) for n = 1, 2, 3.

27



7.3 Payoffs whose transforms decay exponentially

In Sections 7.3 to 7.5 we make use of exponential variance payoffs as basis functions, to span a

space of general variance payoff functions h.

Definition 7.4 (Bilateral Laplace transform). For any continuous h : R→ R, and any α ∈ R such

that
∫∞
−∞ e

−αqh(q)dq <∞, define for Re(z) = α

H(z) :=
∫ ∞
−∞

e−zqh(q)dq. (7.4)

Proposition 7.5 (Variance contracts in terms of Europeans, under decay conditions). Under

Definition 7.4, assume that |H(α+ βi)| = O(e−|β|µ) as |β| → ∞ for some µ > m/2. Then

Eth(〈X〉T ) = EtGh(ST , St, 〈X〉t)

where

Gh(S , u, q) :=
1

2πi

∫ α+∞i

α−∞i
H(z)ezq[θ+(S/u)p+ + θ−(S/u)p− ]dz (7.5)

θ± := θ±(z) :=
1
2
∓ 1

2
√

1 + 8z
p± := p±(z) :=

1
2
±
√

1/4 + 2z.

In particular, we prove the convergence and finite expectation of Gh.

For each t, the payoff function S 7→ Gh(S , St, 〈X〉t) is ρ-neutral.

Remark 7.6. Recall the heuristic that the smoother a function, the more rapid the decay of its

transform. For insufficiently smooth h (such as payoffs of puts/calls on volatility), the transform

H does not decay rapidly enough to satisfy the assumption of Proposition 7.5. Such payoffs can be

treated by Propositions 7.7 through 7.13, which weaken the assumptions on h.

For payoff functions h smooth enough to satisfy the Proposition 7.5 assumption, we have

proved that the volatility contract has the same value as the European contract with payoff

Gh(ST , St, 〈X〉t), defined by the convergent integral in (7.5). Although this payoff Gh may be

oscillatory in ST , Proposition 7.5 guarantees that the payoff has a well-defined price, in the sense

that the payoff’s positive and negative components each have finite expectation.

Observation of the Gh payoff’s price, from a practical standpoint, may be a non-trivial issue,

if the Gh payoff profile has significant curvature at price levels which happen to lack liquid vanilla

option strikes. In such cases, regularization of the payoff profile can be achieved by projecting h onto

a finite set of basis functions, as we do in Proposition 7.13. Alternatively, in contrast to this payoff

replication approach, a different approach, by Friz-Gatheral [19], conducts distributional inference,

using a finite set of pricing benchmarks, in conjunction with Tikhonov-style regularization.
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7.4 Payoffs whose transforms are integrable

If instead of having exponential decay, the payoff’s transform is merely integrable, then our usual

pricing formulas of the form Eh(〈X〉T ) = EG(ST ) may not be available by the Laplace transform

method. Nonetheless, the prices of claims on ST do still determine the price of the h(〈X〉T ) contract.

Proposition 7.7 (Inverting an integrable transform). Under Definition 7.4, assume that H is

integrable along Re(z) = α. Let VT be a random variable. If EteαVT <∞, then

Eth(VT ) =
1

2πi

∫ α+∞i

α−∞i
H(z)EtezVT dz. (7.6)

Corollary 7.8 (Variance and volatility puts, without assuming (B,W, I)). Let VT be the quadratic

variation of an arbitrary semimartingale (not necessarily X). For a Q-strike realized variance put

where h(q) := (Q− q)+ hence

H(z) =
e−Qz

z2
, (7.7)

or for a
√
Q-strike realized volatility put where h(q) := (

√
Q−

√
q+)+ hence

H(z) = −
√
π erf(

√
zQ)

2z3/2
, (7.8)

we have for all α < 0 the formula (7.6) for the put price Eth(VT ).

Variance and volatility call prices follow from put-call parity.

One application is in cases where EtezVT has an explicit formula, such as in affine diffusion or

jump-diffusion models, including Heston. Then (7.6) with (7.7) or (7.8) gives explicit formulas for

variance and volatility options respectively.

Another application of Proposition 7.7 is in cases where EtezVT has no explicit formula, but can

be inferred model-independently from Europeans, such as the case VT := 〈X〉T = 〈logS〉T , for any

process S that satisfies (B,W, I). The next two corollaries pursue this.

Corollary 7.9 (Variance contracts in terms of Europeans). Under Definition 7.4, assume that H

is integrable along Re(z) = α where α ∈ R. Then

Eth(〈X〉T ) =
1

2πi

∫ α+∞i

α−∞i
H(z)ez〈X〉tEt[θ+(ST /St)p+ + θ−(ST /St)p− ]dz (7.9)

where

θ± := θ±(z) :=
1
2
∓ 1

2
√

1 + 8z
p± := p±(z) :=

1
2
±
√

1/4 + 2z.

In particular, we prove the convergence of the integral.
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Corollary 7.10 (Variance/volatility puts/calls in terms of Europeans). For the variance put

h(q) := (Q−q)+ or the volatility put h(q) := (
√
Q−

√
q+)+, define H by (7.7) or (7.8) respectively.

Then we have for all α < 0 the formula (7.9) for the put price Eth(〈X〉T ).

For a Q-strike realized variance call where h(q) = (q −Q)+ hence

H(z) =
e−Qz

z2
, (7.10)

or for a
√
Q-strike realized volatility call where h(q) = (

√
q+ −

√
Q)+ hence

H(z) =
√
π erfc(

√
zQ)

2z3/2
, (7.11)

we have for all α > 0 the formula (7.9) for the call price Eth(〈X〉T ).

Remark 7.11. Relative to the results of previous sections, Corollary 7.9 has greater generality, but

also has a possible drawback: To price a variance contract exactly using Corollary 7.9 requires

the valuation of infinitely many different functions of ST (one for each z). In contrast, using

Propositions 6.8, 7.1, 7.2, 7.3, 7.5, to price one variance contract exactly requires the valuation of

a single function of ST .

If, instead of an exact formula, we accept (a sequence of) approximate prices which converge

to the exact price, then an even more general class of variance contracts can be priced using (a

sequence of) single functions of ST . That is the subject of the next section.

7.5 General payoffs continuous on [0,∞]

Let C[0,∞] denote the set of continuous h : [0,∞) → R such that h(∞) := limq→∞ h(q) exists in

R. For example, the variance put payoff h(q) = (Q− q)+ belongs to C[0,∞].

This section gives two ways to determine prices of general payoffs in C[0,∞]. The first will take

limits of uniform approximations, and the second will take limits of mean-square approximations.

Although call payoffs do not belong to C[0,∞], they can still be priced by the methods of this

section, using put-call parity: a variance call equals a variance put plus a variance swap.

In this section let h ∈ C[0,∞] and let c > 0 be an arbitrary constant.

Proposition 7.12 (Prices as limits of uniform approximations’ prices). Define h∗ : [0, 1] → R by

h∗(0) := h(∞) and h∗(x) := h(−(1/c) log x) for x > 0. For integers n ≥ k ≥ 0, let

bn,k :=
k∑
j=0

h∗(j/n)
(
n

k

)(
k

j

)
(−1)k−j . (7.12)
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Then

Eth(〈X〉T ) = lim
n→∞

Et
n∑
k=0

bn,ke
−ck〈X〉t [θ+(ST /St)p+ + θ−(ST /St)p− ], (7.13)

where

θ± :=
1
2
∓ 1

2
√

1− 8ck
p± :=

1
2
±
√

1/4− 2ck. (7.14)

In particular, we prove the existence of the limit.

Proposition 7.13 (Prices as limits of L2 projections’ prices). Let µ be a finite measure on [0,∞).

Let

an,ne
−cnq + an,n−1e

−c(n−1)q + · · ·+ an,0 =: An(q)

be the L2(µ) projection of h onto span{1, e−cq, . . . , e−cnq}. Let P denote the Q-distribution of 〈X〉T ,

conditional on Ft. Assume P is absolutely continuous with respect to µ and dP/dµ ∈ L2(µ). Then

Eth(〈X〉T ) = lim
n→∞

Et
n∑
k=0

an,ke
−ck〈X〉t [θ+(ST /St)p+ + θ−(ST /St)p− ] (7.15)

where

θ± :=
1
2
∓ 1

2
√

1− 8ck
p± :=

1
2
±
√

1/4− 2ck. (7.16)

In particular, we prove the existence of the limit.

Remark 7.14. For each n, the an,k (k = 0, . . . , n) are given by the solution to the linear system

n∑
k=0

an,k〈e−cjq, e−ckq〉 = 〈h(q), e−cjq〉, j = 0, . . . , n (7.17)

of normal equations, where 〈α(q), β(q)〉 :=
∫∞
0 α(q)β(q) dµ(q). In practice, one can compute an,k

as the coefficients in a weighted least squares regression of the h(q) function on the regressors

{q 7→ e−ckq : k = 0, . . . , n}, with weights given by the measure µ.

For example, consider the variance put payoff h(〈X〉T ) = (0.04 − 〈X〉T )+ with expiry T = 1.

Under the Heston variance dynamics specified in Figure 6.7 with ρ = 0, let us compare the put’s

true time-0 value Eh(〈X〉T ) against the sequence of European prices in the right-hand side of (7.15).

For example, let c = 0.5, and let µ be the lognormal distribution whose parameters are consistent

with the values of T -expiry variance and volatility swaps (which are observable from European

options, by Propositions 6.8 and 7.3). We compute:

EA3(〈X〉T ) EA4(〈X〉T ) EA5(〈X〉T ) · · · Eh(〈X〉T )

0.01108 0.01133 0.01147 · · · 0.01149
(7.18)

Here small values of n have sufficed to produce an accurate approximation of Eh(〈X〉T ).

31



Remark 7.15. In principle, each An and Bn function admits perfect pricing by European options,

via (7.13) and (7.15) respectively; in practice, the convergence benefits of incrementing n must be

considered in the context of whether the available European options data (which may have noisy

or missing observations) can provide sufficient resolution.

Remark 7.16. Each An and Bn function is a linear combination of exponentials, hence admits

perfect replication by European options, according to Proposition 5.11. Consequently, by the

explicit uniform approximation (A.10), any variance payoff continuous on [0,∞] can be replicated

to within an arbitrarily small uniform error.

8 Extension to unbounded quadratic variation

Here we show how to drop the assumption (B) that 〈X〉T 6 m for some constant m.

For practical purposes, it could be argued that a bound of, say, m = 1010T may be an acceptable

assumption for an equity index. However, for dynamics such as the Heston model, (B) does not

hold for any m. This section extends our framework to include such dynamics.

Proposition 8.1 (Unbounded quadratic variation). Assume the measurable functions h and G

satisfy

Eh(〈X〉T ) = EG(ST ) (8.1)

for all S which satisfy (B,W, I).

Assume that h is bounded or that h is nonnegative and increasing.

Assume that G has a decomposition G = G1 −G2, where G1,2 are convex and EG1,2(ST ) <∞.

Then (8.1) holds, more generally, for all S which satisfy (W) and (I) and E〈X〉T <∞.

Remark 8.2. The finiteness of Eh(〈X〉T ) is a conclusion, not an assumption.

Remark 8.3. The assumptions on G are very mild, in the following sense: They are satisfied by any

payoff function which can be represented as a mixture of calls and puts at all strikes, such that the

long and short positions have finite values.

Corollary 8.4. Propositions 5.1, 5.9 on exponential variance valuation, Propositions 6.6, 6.8 on

volatility swap valuation, Propositions 7.1, 7.2, 7.3 on valuation of fractional and integer powers of

variance, and Proposition 7.5 on valuation by Laplace transform, all hold without assuming (B) –

provided that the long and short positions in calls and puts in the replicating portfolios have finite

values.
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9 Conclusion

Contracts on general functions of realized variance, which allow investors to manage their exposure

to volatility risk, have presented to dealers significant challenges in pricing and hedging. For pricing

purposes, we derive explicit valuation formulas for such contracts, in terms of vanilla option prices

– not in terms of the parameters of any model. The formulas are exact under an independence

condition, and they are first-order immunized against the presence of correlation. For hedging

purposes, we enforce these valuation formulas by replicating the variance payoffs using explicit

trading strategies in vanilla options and the underlying shares.

Future research can extend the dynamics we study and the risks we hedge. This paper, which

already allows unspecified jumps in the instantaneous volatility, moreover lays the foundation for

the addition of jumps to the price paths; and this paper’s analysis of volatility risk contributes to a

broad research program which nonparametrically utilizes European options, to extract information

about path-dependent risks, and to hedge those risks robustly.

A Appendix: Proofs

Proof of Proposition 4.1. We have

dXt = −1
2
σ2
t dt+

√
1− ρ2σtdW1t + ρσtdW2t

= −1− ρ2

2
σ2
t dt+

√
1− ρ2σtdW1t −

ρ2

2
σ2
t dt+ ρσtdW2t

So conditional on HT ∨ Ft,

XT ∼ Normal
(
Xt + logMt,T (ρ)− σ̄2

t,T

1− ρ2

2
, σ̄t,T

√
1− ρ2

)
.

Hence

EtF (ST ) = Et(E(F (ST )|HT ∨ Ft)) = EtFBS(StMt,T (ρ), σ̄t,T
√

1− ρ2)

as desired.

Proof of Proposition 5.1. We apply a general version of Hull-White’s [21] conditioning argument.

Conditional on FσT , the W is still a Brownian motion, by independence. So conditional on Ft∨FσT ,

XT −Xt =
∫ T

t
σudWu −

1
2

(〈X〉T − 〈X〉t) ∼ Normal
(
− 〈X〉T − 〈X〉t

2
, 〈X〉T − 〈X〉t

)
.
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For each p ∈ C, therefore,

Etep(XT−Xt) = Et
[
E(ep(XT−Xt)|Ft ∨ FσT )

]
= Et

[
eE(pXT−pXt|Ft∨FσT )+Var(pXT−pXt|Ft∨FσT )/2

]
= Ete(p

2/2−p/2)(〈X〉T−〈X〉t) = Eteλ(〈X〉T−〈X〉t),

where λ = p2/2− p/2. Equivalently, p = 1
2 ±

√
1
4 + 2λ.

Proof of Proposition 5.3. Our portfolio at each time t has value NtPt− (pNtPt−/St)St + pNtPt− =

NtPt. In particular it has the desired time-T value NTPT = eλ〈X〉T . To prove that it self-finances,

d(NtPt) = NtdPt + Pt−dNt + d[P,N ]t

= NtdPt + Pt−

(
−pNt

St
dSt

)
+ dAt,

where A has finite variation. The continuity of S implies the continuity of N , hence [P,N ], hence A.

Moreover, A is a local martingale because NtPt (= Eteλ〈X〉T by Proposition 5.1) and the stochastic

integrals with respect to P and S are all local martingales. So dA vanishes. Therefore

d(NtPt) = NtdPt − (pNtPt−/St)dSt + pNtPt−dBt

because dB = 0. This proves self-financing.

Proof of Proposition 5.9. The weights θ± have the properties that θ++θ− = 1 and θ+p++θ−p− = 0.

The first property, together with Remark 5.8, implies (5.9). To see that the second property

implies ρ-neutrality, let φv be the lognormal density with parameters (−v/2, v). Then

∂FBS

∂s
(St) = eλ〈X〉t

∂

∂s

∣∣∣∣
s=St

∫ ∞
0

[
θ+(s/St)p+yp+ + θ−(s/St)p−yp−

]
φv(y)dy

= eλ〈X〉t
∫ ∞

0

(
θ+
p+

St
yp+ + θ−

p−
St
yp−
)
φv(y)dy = eλ〈X〉t

θ+p+ + θ−p−
St

∫ ∞
0

yp+φv(y)dy = 0

using the equality of integrals of yp+φv(y) and yp−φv(y).

Proof of Proposition 5.11. The strategy is a linear combination of the two strategies (+,−) specified

in Proposition 5.3, with constant weights θ+ and θ− which sum to 1. Each strategy self-finances

and replicates eλ〈X〉T , so the combination does also. Proposition 5.9 implies ρ-neutrality.

Proof of Proposition 6.1. The upper bound (c) is known (Britten-Jones/Neuberger [11]) to hold,

by Jensen’s inequality.
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For (b), we have by Proposition 4.1 and the concavity of FBSatmc,

FBSatmc(S0, IV0) = E0Fatmc(ST ) = E0F
BS
atmc(S0, σ̄0,T ) ≤ FBSatmc(S0,E0σ̄0,T ). (A.1)

By the monotonicity of FBSatmc, therefore, IV0 ≤ E0σ̄0,T . For (a),
√

2π
S0

E0(ST − S0)+ =
√

2π
S0

FBSatmc(S0, IV0) ≤
√

2π
S0

S0 IV0√
2π

= IV0 (A.2)

because concavity implies that FBSatmc(S0, ·) lies everywhere below its tangent at 0.

Proof of Proposition 6.6. Of the ±, we prove the + equation; the − equation is similar. We have

√
q =

1
2
√
π

∫ ∞
0

1− e−zq

z3/2
dz for all q ≥ 0,

as shown in sources such as Schürger [29]. So

E0

√
〈X〉T =

1
2
√
π

∫ ∞
0

E0
1− e−z〈X〉T

z3/2
dz =

1
2
√
π

∫ ∞
0

E0
1− e(1/2−

√
1/4−2z)XT

z3/2
dz

=
1

2
√
π

E0

∫ ∞
0

1− e(1/2−
√

1/4−2z)XT

z3/2
dz.

and take real parts. The first application of Fubini is justified by |1 − e−z〈X〉T | < 1 − e−zm. The

second application of Fubini is justified by E0|1− e(1/2−
√

1/4−2z)XT | = O(1) as z →∞; and on the

other hand for z sufficiently small,

(E0|1− e(1/2−
√

1/4−2z)XT |)2 ≤ E0(|1− e(1/2−
√

1/4−2z)XT |2)

= E0(1− 2e(1/2−
√

1/4−2z)XT + e(1/2−
√

1/4−2z)2XT )

= 1− 2E0e
−z〈X〉T + E0e

( 1−8z−
√

1−8z
2

)〈X〉T

= 1− 2(1− zf ′(0) +O(z2)) + 1− 2zf ′(0) +O(z2)

= O(z2) as z → 0

using the analyticity of the moment generating function f(ξ) := eξ〈X〉T , which follows from (B).

Proof of Proposition 6.8. For arbitrary Ft-measurable q ≥ 0 we have

Et
√
〈X〉T − 〈X〉t + q =

1
2
√
π

Et
∫ ∞

0

1− e−z(〈X〉T−〈X〉t+q)

z3/2
dz (A.3)

=
1

2
√
π

∫ ∞
0

(θ+ + θ−)
1− Ete−z(〈X〉T−〈X〉t+q)

z3/2
dz (A.4)

=
1

2
√
π

∫ ∞
0

∑
±
θ±

1− e−zqEtep±(XT−Xt)

z3/2
dz (A.5)

=
1

2
√
π

Et
∫ ∞

0

∑
±
θ±

1− e−zqep±(XT−Xt)

z3/2
dz (A.6)
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Taking q := 〈X〉t yields the conclusion (6.7). The application of Fubini in (A.4) is justified by

|1− e−z(〈X〉T+q)| < 1− e−z(m+q). The application of Fubini in (A.6) is justified by

A± := (Et|1− e−qz+(1/2±
√

1/4−2z)(XT−Xt)|)2 ≤ Et(|(1− e−qz+(1/2±
√

1/4−2z)(XT−Xt)|2) (A.7)

which is O(1) as z →∞, hence

Et
|θ±(1− e−qz+(1/2±

√
1/4−2z)(XT−Xt))|

z3/2
= O(z−3/2) z →∞.

On the other hand, for z sufficiently small, the term in the absolute values in (A.7) is real, so

A± ≤ Et
[
1− 2e−qz+(1/2±

√
1/4−2z)(XT−Xt) + e−2qz+2(1/2±

√
1/4−2z)(XT−Xt)

]
= 1− 2e−qzEte−z(〈X〉T−〈X〉t) + e−2qzEte(

1−8z±
√

1−8z
2

)(〈X〉T−〈X〉t).

Hence as z → 0, we have A+ = O(1) and

A− = 1− 2(1− zf ′(0)− qz +O(z2)) + 1− 2zf ′(0)− 2qz +O(z2) = O(z2) (A.8)

using analyticity of the moment generating function f(ξ) := eξ〈X〉T , which follows from (B). Com-

bining this with θ− = O(1) and θ+ = O(z) as z → 0, we have

Et
|θ±(1− e−qz+(1/2±

√
1/4−2z)(XT−Xt))|

z3/2
=
|θ±|A1/2

±
z3/2

= O(z−1/2) z → 0,

which allows the interchange in (A.6).

To establish ρ-neutrality, let φv be the lognormal density with parameters (−v/2, v). Then

∂FBS

∂s
(St) =

1
2
√
π

∂

∂s

∣∣∣∣
s=St

∫ ∞
0

∫ ∞
0

[
θ+

1− e−z〈X〉t(sy/St)p+
z3/2

+ θ−
1− e−z〈X〉t(sy/St)p−

z3/2
dz

]
φv(y)dy

=
1

2
√
π

∫ ∞
0

∫ ∞
0

−e−z〈X〉t(θ+p+y
p+ + θ−p−y

p−)
Stz3/2

φv(y)dzdy = 0

using the equality of integrals of yp+φv(y) and yp−φv(y), and the identity θ+p+ + θ−p− = 0.

Proof of Corollary 6.11. By a Mathematica computation,

1
2
√
π

∫ ∞
0

θ+
1− ep+XT

z3/2
+ θ−

1− ep−XT
z3/2

dz =
√
π

2
eXT /2|XT I0(XT /2)−XT I1(XT /2)|.

The result now follows from Proposition 6.8.

Proof of Corollary 6.12. From (6.11), compute ψ′′(K), and apply Remark 3.1.

Proof of Corollary 6.13. From (6.8), compute ∂2Gsvs/∂S
2(K,St, 〈X〉t), and apply Remark 3.1.
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Proof of Proposition 6.15. For background in measure-valued trading strategies, see [5]. The trad-

ing strategy at each time t has value

Vt =
∫
Pt(K)ϕt(dK) +Gsvs(κ, St, 〈X〉t)

=
∫
Pt(K)(−1)IK<κ ∂Gsvs

∂S
(K;St, 〈X〉t)dK +Gsvs(κ, St, 〈X〉t)

= EtGsvs(ST , St, 〈X〉t) = Et
√
〈X〉T

by Proposition 6.8. In particular it has at time t = T the desired terminal value.

To prove that it self-finances, we have

dVt = ϕtdPt +
[ ∫ ∞

0
Pt(K)(−1)IK<κ ∂

2Gsvs

∂S∂u
(K,St, 〈X〉t)dK

]
dSt + dÃt + dGsvs(κ, St, 〈X〉t)

= ϕtdPt +
[ ∫ ∞

0
Pt(K)(−1)IK<κ ∂

2Gsvs

∂S∂u
(K,St, 〈X〉t)dK +

∂Gsvs

∂u
(κ, St, 〈X〉t)

]
dSt + dAt

= ϕtdPt +
[
Et
∂Gsvs

∂u
(ST , St, 〈X〉t)

]
dSt + dAt = ϕtdPt + dAt

where Ã and A denote time-continuous finite-variation processes. The last step follows from

Et(ST /St)p+ = Et(ST /St)p− and θ+p+ + θ−p− = 0.

Moreover, A is a local martingale because ϕtPt and the integrals with respect to P and S are

local martingales. Therefore dA vanishes. Because dB = 0, we have

dLt = ϕtdPt +Gsvs(κ, St, 〈X〉t)dBt,

which is the self-financing condition. The ρ-neutrality is proved in Proposition 6.8.

Proof of Proposition 7.1. Using the identity [29]

qr =
r

Γ(1− r)

∫ ∞
0

1− e−zq

zr+1
dz 0 < r < 1, q ≥ 0

follow the proof of Proposition 6.8.

Proof of Proposition 7.2. Using the identity [29]

q−r =
1

rΓ(r)

∫ ∞
0

e−z
1/rqdz, r > 0, q > 0

we have

Et(〈X〉T + ε)−r =
1

rΓ(r)
Et
∫ ∞

0
e−z

1/r(〈X〉T+ε)dz

=
1

rΓ(r)

∫ ∞
0

e−z
1/r(〈X〉t+ε)Ete−z

1/r(〈X〉T−〈X〉t)dz

=
1

rΓ(r)
Et
∫ ∞

0
(θ+ep+(XT−Xt) + θ−e

p−(XT−Xt))e−z
1/r(〈X〉t+ε)dz
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where the two uses of Fubini are justified by (B) and |e(1/2±
√

1/4−2z1/r)(XT−Xt)| ≤ 1 respectively.

To establish ρ-neutrality, let φv be the lognormal density with parameters (−v/2, v). Then

∂FBS

∂s
(St) =

1
rΓ(r)

∂

∂s

∣∣∣∣
s=St

∫ ∞
0

∫ ∞
0

[
θ+(sy/St)p+ + θ−(sy/St)p−dz

]
e−z

1/r〈X〉tφv(y)dy

=
1

rΓ(r)St

∫ ∞
0

∫ ∞
0

e−z
1/r〈X〉t(θ+p+y

p+ + θ−p−y
p−)φv(y)dzdy = 0

using the equality of integrals of yp+φv(y) and yp−φv(y), and the identity θ+p+ + θ−p− = 0.

Proof of Proposition 7.3. Take the nth derivative of (5.9) with respect to λ, and evaluate at λ = 0:

Et∂nλeλ〈X〉T
∣∣
λ=0

= Et∂nλGexp(ST , St, 〈X〉t;λ)
∣∣
λ=0

(A.9)

Differentiation through the expectations is justified by the boundedness of 〈X〉T and the analyticity

of the moment generating function of XT .

To establish ρ-neutrality, let φv be the lognormal density with parameters (−v/2, v). Then

∂FBS

∂s
(St) =

∂

∂s

∣∣∣∣
s=St

Gpow(n)(sy/St, St, 〈X〉t)φv(y)dy

=
∂n

∂λn

∣∣∣∣
λ=0

∂

∂s

∣∣∣∣
s=St

Gexp(sy/St, St, 〈X〉t, λ)φv(y)dy = 0

by the ρ-neutrality of Gexp.

Proof of Proposition 7.5. Inverting the Laplace transform,

h(q) =
1

2πi

∫ α+∞i

α−∞i
H(z)ezqdz

Therefore

Eth(〈X〉T ) =
1

2πi
Et
∫ α+∞i

α−∞i
H(z)ez〈X〉T dz =

1
2πi

∫ α+∞i

α−∞i
H(z)Etez〈X〉T dz

=
1

2πi

∫ α+∞i

α−∞i
H(z)ez〈X〉tEt[θ+ep+(XT−Xt) + θ−e

p−(XT−Xt)]dz

= EtGh(ST , St, 〈X〉t)

where the two applications of Fubini (and, in particular, the convergence of the integral in (7.5))

are justified respectively by assumption (B) and by

Et|ep±(XT−Xt)| = EteRe(1/2±
√

1/4+2(α+βi))(XT−Xt) = Ete(1/2±
√
|β|+O(|β|−1/2))(XT−Xt)

= Ete(|β|/2+O(1))(〈X〉T−〈X〉t) = O(e|β|m/2)

and |H(z)ez〈X〉tθ±(z)| = O(e−|β|µ) as |β| → ∞.

Proof of ρ-neutrality is by calculation similar to the proof of Proposition 6.8.
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Proof of Proposition 7.7. By integrability of H, apply Bromwich inversion to obtain h(VT ). By

finiteness of EteαVT , apply Fubini to obtain Eth(VT ).

Proof of Corollary 7.8. For α < 0, both types of put payoffs h imply integrability of e−αqh(q).

Computation of (7.4) implies (7.7) and (7.8). Moreover, EteαVT ≤ 1 and each H is integrable along

Re(z) = α, so Proposition 7.7 applies.

Proof of Corollary 7.9. Assumption (B) implies that Proposition 7.7 applies for arbitrary α ∈ R.

Substitute (5.11) into the convergent integral (7.6) to conclude.

Proof of Corollary 7.10. In the case of a put payoff h and α < 0, we have e−αqh(q) integrable, and

H integrable along Re(z) = α. In the case of a call payoff h and α > 0, we have e−αqh(q) integrable,

and H integrable along Re(z) = α. Hence Corollary 7.9 applies.

Proof of Proposition 7.12. The nth Bernstein approximation for h∗ is defined by

Bn(x) := bn,nx
n + bn,n−1x

n−1 + · · ·+ bn,0

and satisfies h∗(x) = limn→∞Bn(x) uniformly in x ∈ [0, 1]. Therefore

h(q) = lim
n→∞

Bn(e−cq) (A.10)

uniformly in q ∈ [0,∞). Hence

Eth(〈X〉T ) = lim
n→∞

EtBn(e−c〈X〉T ) = lim
n→∞

Et
n∑
k=0

bn,ke
−ck〈X〉t [θ+ep+(XT−Xt) + θ−e

p−(XT−Xt)]

as claimed.

Proof of Proposition 7.13. The span of the polynomials {1, x, x2, . . .} is dense in C[0, 1] with respect

to the uniform norm. By the transformation q = −(1/c) log x, the span of exponential functions

{1, e−cq, e−2cq, . . .} is dense in C[0,∞] with respect to the uniform norm, hence dense in C[0,∞]

with respect to the L2(µ) norm. Then h = limn→∞An in the L2(µ) sense, hence(
E
[
h(〈X〉T )−An(〈X〉T )

])2

=
(∫

dP

dµ

[
h(q)−An(q)

]
dµ(q)

)2

≤
∫ (

dP

dµ

)2

dµ

∫ [
h(q)−An(q)

]2
dµ(q) −→ 0

as n→∞. Thus

Eth(〈X〉T ) = lim
n→∞

EtAn(〈X〉T ) = lim
n→∞

Et
n∑
k=0

an,ke
−ck〈X〉t [θ+ep+(XT−Xt) + θ−e

p−(XT−Xt)] (A.11)

as desired.
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Proof of Proposition 8.1. For each positive integer m, define the process σmt := σtI(〈X〉t ≤ m).

Define the process Smt by dSmt = σmt S
m
t dWt. Let Xm

t := log(Smt ).

Then Sm satisfies (B), so

Eh(〈Xm〉T ) = EG(SmT ). (A.12)

Now let m→∞. The left-hand side approaches Eh(〈X〉T ) because 〈Xm〉T → 〈X〉T almost surely,

and either monotone convergence or dominated convergence applies.

It remains to show that the right-hand side of (A.12) approaches EG(ST ). There exist constants

α, β and convex nonnegative functions G+, G− such that G±(S0) = 0 and EG±(ST ) <∞ and

G(S) = G+(S)−G−(S) + αS + β for all S ≥ 0.

We need only to show that EG+(SmT )→ EG+(ST ); convergence proofs for the other terms are then

trivial. It suffices to show that the family

{G+(SmT ) : m ≥ 1}

is uniformly integrable. Since EG+(ST ) <∞, it is enough to show that for all m and all A > 0,

EG+(SmT )I(G+(SmT ) > A) ≤ EG+(ST )I(G+(ST ) > A).

By the convexity of G+, there exist a, b ∈ [0,∞] such that

I(G+(S) > A) = I(S < S0 − a) + I(S > S0 + b) for all S > 0

Moreover, the function

U(S) := G+(S)I(G+(S) > A)− A

b
(S − S0)I(S > S0 + b)− A

a
(S0 − S)I(S < S0 − a)

is convex. We have

EG+(SmT )I(G+(SmT ) > A)

= E
[
A

a
(S0 − SmT )I(SmT < S0 − a) +

A

b
(SmT − S0)I(SmT > S0 + b) + U(SmT )

]
= E

[
A

a
E[(S0 − SmT )I(SmT < S0 − a)|〈X〉T ] +

A

b
E[(SmT − S0)I(SmT > S0 + b)|〈X〉T ] + E[U(SmT )|〈X〉T ]

]
≤ E

[
A

a
E[(S0 − ST )I(ST < S0 − a)|〈X〉T ] +

A

b
E[(ST − S0)I(ST > S0 + b)|〈X〉T ] + E[U(ST )|〈X〉T ]

]
= EG+(ST )I(G+(ST ) > A)

where the inequality holds because if Z is a mean-S0 lognormal with Var log(Z) = σ2, then each of

E[(S0−Z)I(Z < S0−a)], E[(Z−S0)I(Z > S0 + b)], and EU(Z) is increasing in σ. For the first two

expectations, this comes from direct calculation; for EU(Z), it follows from Jensen’s inequality.
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