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Perverse sheaves and fundamental lemmas

Ngo6 Bao Chau

The Langlands program is a rich supply of deep and beautiful problems. Some
of those problems are very abstract while others are rather concrete. In these lec-
tures, I will discuss some problems in harmonic analysis, issued from the Lang-
lands’s program, which require, in spite of their concrete and elementary appear-
ance, sophisticated machinery in algebraic geometry to be fully understood and
eventually solved.

After recalling the Grothendieck dictionary between {-adic sheaves on alge-
braic varieties over finite fields and functions on their sets of rational points, I
will attempt to enunciate a vague notion of perverse continuation principle that
seems to be useful to construct a solution for these problems. I will then go
on to work out this principle in three cases: the Jacquet-Ye fundamental lemma,
the Jacquet-Rallis fundamental lemma (due to Z. Yun), the Langlands-Shelstad
standard and the Walsdspurger nonstandard endoscopic fundamental lemmas.

These lecture notes aim to be complementary to other expository papers in this
topics, including [6], [28], [29], [31], [14], [24]. In particular, I won't discuss the
motivation behind the fundamental lemmas, that has been discussed in [6] and
[14].

We will instead focus on the construction of global moduli spaces for which
one can establish the perverse continuation principle. We emphasize that the
construction of global moduli spaces, in all the cases, follows essentially the same
pattern. The crucial proof of the perverse continuation principle is however very
different in each of these cases. We won’t dive into the details of this part as
for instance the expository paper [31] has been devoted to this purpose in the
endoscopic case.

The paper is divided into five sections. The first section contains standard
materials on Grothendieck’s dictionary of sheaves and functions. In the second
section, the principle of perverse continuation is enunciated. We also discuss,
in this section, various techniques that may be used in establishing this princi-
ple in different geometric situations. The three last sections are devoted to the
construction of moduli spaces related to the fundamental lemma of Jacquet-Ye,
Jacquet-Rallis, Langlands-Shelstad and Waldspurger respectively, and for which
one can establish the principle of perverse continuation by various techniques
presented in section 2.

©0000 (copyright holder)
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The construction of moduli spaces presented in the last three sections are com-
pletely parallel. We start with certain morphisms of algebraic stacks, intrinsically
related to invariant theory, and then consider the space of maps from either the
formal disc or a proper smooth curve into those algebraic stacks. Fibers of the
morphism obtained on the level of space of maps from the formal disc should
be seen as the geometric incarnation of local orbital integrals. Fibers of the mor-
phism obtained on the level of space of maps from the projective curve should
be seen as the geometric incarnation of certain global orbital integrals that are re-
lated to local orbital integrals by a product formula. These global orbital integrals
are those that appear in the geometric side of the relevant trace formula. The per-
verse continuation principle can be established for the global moduli space and
the fundamental lemma can be derived as a local consequence.

1. Grothendieck’s dictionary of sheaves and functions

1.1. The dictionary Let k = F4 denote the finite field with q elements. Accord-
ing to Grothendieck, a scheme X over k can be identified with its functor of points
attaching to each k-algebra A the set X(A) of A-points on X. For many purposes,
instead of all k-algebra A, we may restrict ourselves to field extensions of k.

Let k be an algebraic closure of k, o() = «9 the Frobenius elements in
Gal(k/k), and for every integer r > 1, let k, = Fix(c", k) be the extension of
degree 1 of k contained in k. For every k-scheme X, the set X(k) of k-points on
X is equipped with action of o such that the set X(k,) can be identified with the
set of fixed points of o" in X(k). In other words, the set X(k) equipped with the
action of o determines the set of k;-points on X for every finite extension k; of k,
including k itself.

For instance, if X = Spec(R) where R is the quotient of the polynomial ring
k[x1,...,xn] by the ideal generated by a finite set of polynomials

Pi1,...,Pm € k[Xl,...,Xn],

then X(k) is the set of solutions (x1,...,xn) € k™ of the system of polynomial
equations

(1.1.1) Pi(x1,...,Xn)=0,...,Pm(xq,...,xn) =0

which is the fixed points set of o in X(k), the set of solutions in k.

We won't recall the definition of {-adic sheaves but will limit ourselves to their
functorial properties permitting the definition of the associated trace function.
For every constructible {-adic sheaves J on an algebraic variety X, there exists a
stratification X = | |, X« such that the restriction of F to X« is a local system. A
local system J on X is given by a continuous representation of the fundamental
group of Xy.
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If X = Spec(k) is a point, an {-adic sheaf J over X is a continuous representation
(-adic representation of Gal(k/k). In this case, we define

tr(F) = tr(o, Fx).
where o is the Frobenius element in Gal(k/k) and Fx is the geometric fiber of F
over a given geometric point X = Spec(k) of X. More generally, if F is an {-adic

sheaf over a k-scheme X and if x : Spec(k) — X is a k-point, then x*J gives rise to
a continuous representation of Gal(k/k) on Fx, and thus an {-adic number

try(x) = tr(x*F).
Therefore, the {-adic sheaf J gives rise to a function
trg : X(k) = Qq.

The construction of the trace function can be extended to every object F of
the derived category of bounded complex of constructible sheaves D§ (X, Q¢) by
setting

i
trgy = Z(—l)ltrHi(g)
where H'(F) are cohomology sheaves of F. Among Grothendieck’s six operations
on the derived categories of {-adic sheaves, tensor product, inverse image, and
direct image with compact support have translations in terms of function trace,
see [20][1.1.1.1-4].

Proposition 1.1.2. (1) Let 7,5 € DY (X, Qy), then we have

tro(x)trg(x) = trggg(x)

forall x € X(k).
(2) Let f:X — Y be a morphism of k-schemes and F € DE(Y,Qq), then we have
treeg (x) = tra(f(x))
forall x € X(k).
(3) If X is a k-scheme of finite type and F € D2 (X, Qy), then for every y € Y(k),
Xy the fiber of f overy, we have
Z trg(x) = tre,g(y).
x€Xy (k)
These rules constitute the basic dictionary between {-adic sheaves and func-
tions. The two first rules derive directly from the definition of tensor product and
inverse image of {-adic sheaves. The last rule derives from the base change theo-

rem for proper morphisms and the Grothendieck-Lefschetz fixed points formula,
see [SGA5, exp. XIIJ:

Theorem 1.1.3. If X is a k-scheme of finite type and F is an {-adic sheaf on X, we have

2dim(X)

D trx)= ) (Dir(o@idg Hi(X @k k, ).
xeX(k) i=0
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1.2. Character sums Important examples of local systems arise from the Lang
isogeny of commutative algebraic groups. Let G be a commutative algebraic
group defined over k, and 0 : G — G its geometric Frobenius endomorphism.
The Lang isogeny of G defined as the morphism Lg (x) = o(x)x ! is a finite, étale
homomorphism of groups whose kernel is the discrete subgroup G(k). We have
an exact sequence:

0—G(k) =G =% G—0.

Every (-adic representation ¢ : G(k) — GL(V) gives rise to a (-adic sheaf JF
on G, by means of the Lang isogeny. Its trace function theoretic shadow can be
described as follows, see [20, 1.3.3.3]:

Lemma 1.2.1. The trace function try, : G(k) — Qg is equal to the trace function of the
representation ¢:

try, () = tr(d(g)).
When G = G is the additive group, the Lang isogeny can be expressed as
Lg, (x) =x9—x

in the additive notation. For its kernel is Gq(k) = k, every character { : k —
ng gives rise to a local system of rank one £, on Gq, the Artin-Schreier sheaf
attached to . For every x € k, we have tre, (x) =P(x).
When G = G, is the multiplicative group, the Lang isogeny can be expressed
as
Lg, (x) =x971

in the multiplicative notation. For its kernel is G (k) = k*, every character
n: kX — Qp gives rise to a local system of rank one £, on G, the Kummer
sheaf attached to p. For every x € k*, we have trg  (x) = u(x).
One can thus derive from the dictionary 1.1.2 between {-adic sheaves and func-
tions the cohomological interpretation of character sums. For instance, the sum
D _w(0)=0
x€k
which is zero for non trivial additive character 1\ can be interpreted as

2

D V() =) (—1)'tr(o @k idg, He(Ga @k k, Ly))-
x€k i=0

One can prove that in fact the group HE (Ga ®x k, Ly,)) vanishes for all i € {0,1,2},
see [10, 2.7].

The Gauss sum attached to a multiplicative character p : k* — QZX and an
additive character { : k — Q[

Glb) = ) i)

xekX
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is equal to

2
Glw ) =) (—1)'tr(o @ idg, HY (Gm @k k, Ly @57 Ly))
i=0
where j* £, is the restriction to Gy, of the Artin-Schreier sheaf on Gg.
Similarly, the Kloosterman sum attached to a € k* and { : k — Q'
Ki(a,h) = > blx+ax™)
xek*
is equal to
2 . .
Ki(a,b) = ) (—1)'tr(0 @ idg, HE (Ko @k K, 17Ly,)

i=0
where Kq is the curve in the plane A2 = Specklx,y] defined by the equation xy =
a, and 1 is the restriction to K4 of the map 1: A2 — A! given by (x,y) — x +y.

1.3. The Swan conductors and Euler-Poincaré characteristics When X is an
affine scheme, we have Hg(X ®x k, L) = 0 for every local system £ as £ has
no nonzero compactly supported section over X. If X is a smooth curve, we infer
from the Poincaré duality the equality:

HE (X @ik, £)Y = HO (X @k, £Y(1))
whose right hand side is trivial unless the restriction of £ to X ® k contains the
constant sheaf. Thus if X is a smooth affine curve and £ is a geometrically non
constant and irreducible local system of X, we have
HY(X @ k, L) = H2(X @ k, L) =0.
The dimension of H. can then be derived from the Euler-Poincaré characteristic:
dimHL (X @ k, £) = —xc (X @x k, £)
that can be calculated by the Grothendieck-Ogg-Shafarevich formula, see [32].

Theorem 1.3.1. Let X be an proper smooth algebraic curve over k, X an open subset of
X and F a local system over X. Then the formula

Xe(X @K, F) =xc (X @ KIk(F) = ) Swx ()
x€EX—X
holds.

In the above formula, the Swan conductor Swy (F) of £ at x is a certain non
negative integer which depends only on the restriction of £ to the punctured
formal disc X3. We know that:

o Swy (F) = 0if and only if the representation of local Galois group attached
to the restriction of £ to the punctured disc at x is tame.
o If G is a tame {-adic local system at X%, then

(1.3.2) Swx (T ®G) = Swx(F)rk(9)
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Using Theorem 1.3.1 and the formula (1.3.2), one can calculate the Euler-Poincaré
characteristic occurring in the cohomological interpretation of the Gauss sums
and Kloosterman sums. By applying Theorem 1.3.1 to the case X = G4 and
J = Ly the Artin-Schreier sheaf associated to a certain non trivial additive char-
acter, we derive

SWOO(Lq)) =1.

Using (1.3.2) and Theorem 1.3.1 one can show that
dimHY (G, £y ® L) = 1.
in the case of the Gauss sum and
dimH. (Kq, 1" Ly) =2
in the case of the Kloosterman sum.

1.4. The Hasse-Davenport identity Let k’ denote the quadratic extension of k,
Tri/ ik’ = k and Nmyo s k™ — kX the trace and norm maps. For every
a € k%, we define the “twisted” Kloosterman sum

Ki'(ap)= Y  $(Tr(a))

x€k'” Nm(x)=a
for every non trivial additive character \ : k — Q.
Proposition 1.4.1. The equality
(1.4.2) Kl(a, ) = —KI(a,)
holds for all a € k* and non trivial additive character p : k — Q.

We consider the affine curve

Ka = Spec(klx,yl/(xy — a))
equipped with the morphism 1: Kq — G given by 1(x,y) = x +y. Let T denote
the involution of K defined by t(x,y) = (y,x). There exists k-scheme K/ with
an isomorphism

Ko @ k=K @y k

such that the Frobenius o’ = ox; induces on X ®y k the endomorphism

(Gl Rk ldk) = (0 ®x ld]*() oT.
We can then check that

Fix(001,Kq(K)) = {x € K’ |Nm(x) = a}.

and thus the Grothendieck-Lefschetz fixed points formula yields the identity
2
Ki'(a,9) = ) (~1)"Tr((o @k k) o 1, HE (Ka @k K, 1 Ly)).
i=0
Now to prove (1.4.2), it is enough to prove the following:
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Lemma 1.4.3. The involution o acts on Hic(Ka @y k, 1* Ly, ) as —1.

The morphism 1: Kq — G is a finite covering of degree 2. By the projection
formula, we have
1*1*L¢ = l*QZ ®L1p-
We observe that T acts on K as a deck transformation with respect to the covering
morphism h : Kq — Gg, and in particular, one can decompose h.Qy as a direct
sum according to the action of T

heQe = (heQe) + @ (haQy)—,
with T acting on (h,Qy)+ as 1 and on (h.Qg)_ as —1. We derive
He (Ka, 1" Ly) = H (G, (heQo)+ @ Ly) @ HE(ha Q) — ® Ly)
with T acting on Hi(Gq, (haQe)y ® Ly) as 1 and on Hi(Gq, (heQp)_ ® Ly,) as
—1. For (h.Q¢)+ is isomorphic to the constant sheaf Q; over G4, we have
He(Ga, (h:Qo)+ ® Ly) = Hi(Ga, Ly) = 0.
It follows that T acts on Hi (K, 1*Ly) as —1.

2. Purity and perversity

2.1. Deligne’s theorem on weights By choosing an isomorphism t : Q; — C
once for all, we can assign an Archimedean absolute value to every element of
Q. An (-adic sheaf F on X is said to be mixed of weight < 0 if for every point
x € X(k’) of X with value in a finite extension k’ of k, all eigenvalues of oy on
Fx, % being a geometric point over x, have Archimedean absolute value at most 1.
We recall now the celebrated theorem of Deligne on weights [9], formely known

as the Weil conjecture.

Theorem 2.1.1. Let X be a k-scheme of finite type, F an {-adic sheaf on X which is
mixed of weight < 0, then all eigenvalues of o ®y idy acting on HE (X ®y k, F) have
Archimedean absolute values < q2.
Applying this theorem to the case of Gauss sums and Kloosterman sums we
get the estimates
Glu, )l < g2

and

Kl(a, )| < 2q'/2.
In fact, we know more:

G, ¥)| = q'/2
and

Kl(a, V) =a+p

where «, 3 are fadic numbers having Archimedean absolute values q!/2. This
further information can be derived from the Poincaré duality as follows.
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We consider the derived category Dg (X) of bounded constructible complex of
{-adic sheaves on X. A complex of {-adic sheaves J € D{ (X) is said to be mixed of
weight < 0 if for every n € Z, H'(J) is mixed of weight < i. The derived category
D¢ (X) is equipped with the Verdier duality functor D : Dg (X) — Dg(X) such
that for every F € Dg (X), the Poincaré duality holds between the vector spaces
Hi (X @y k,F) and HY (X @y k, D(F)) as vector spaces equipped with action of the
Frobenius endomorphism.

A complex of {-adic sheaves F € D{(X) is said to be mixed of weight > 0 if
D(J) is mixed of weight < 0. It is said to be pure of weight 0 if it is both mixed
of weight < 0 and mixed of weight > 0.

It follows from Theorem 2.1.1 and the Poincaré duality that if J is mixed of
weight > 0 then the eigenvalues of o ®y idj acting cohomology groups without
support condition H(X ®x k,F) have Archimedean absolute value > q'/?
the case of Gauss sums and Kloosterman sums, one can show that, on the one
hand, the sheaves £, ® £y on Gy, and h*£{,, on K¢ are pure, and on the other

. In

hand, the natural maps from cohomology with compact support to cohomology
without the support condition

HE(Gm @k Kk, Ly @ Ly) = H (Gm @x k, Ly @5 Ly,)

and

H{ (K @k Kk, h*Ly,) = H' (Kq @1 k, h* L)
are isomorphisms, see [10, 4.3, 7.4]. It follows that the eigenvalues of o ®y idg
acting on these vector spaces have Archimedean absolute values equal to q'/2.

In [11], Deligne proved the following relative variant of the Weil conjecture.
The relative version is much more powerful than its absolute version, especially
while combined with the theory of perverse sheaves. In particular, it is a crucial
ingredient in the implementation of our perverse continuation principle in many
cases.

Theorem 2.1.2. Let f : X — Y be a proper morphism between k-schemes of finite type.
Let F be a complex of t-adic sheaves on X which is pure of weight 0. Then f.JF is also
pure of weight 0.

2.2. Perverse sheaves and the decomposition theorem Deligne’s purity theorem
2.1.2 is greatly reinforced by the theory of perverse sheaves [1]. Let X be a smooth
algebraic variety over k and JF is a local system such that for all x € |X], all
eigenvalues of the Frobenius oy acting on Fx have Archimedean absolute value
1, then the same is true for the dual local system F that is also the Verdier dual
D(J), up to a degree shift. In particular F is a pure sheaf of weight 0. If X is
singular, it is more difficult to construct pure sheaves as the Verdier dual of local
systems are no longer local systems in general.

This difficulty is solved by Goreski-Macpherson’s construction of the interme-
diate extension. If U is a smooth dense open subset of X with j : U — X denoting
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the open embedding, and J is a pure local system on U, then the intermediate
extension [1, 1.4.22]
X =jiFldim X]

is a pure perverse sheaf. The purity of the intermediate extension follows from
the fact that this functor commutes with the Verdier duality.

The intermediate extensions of local systems are objects of an Abelian sub-
category P(X) of the derived category DY (X), namely the category of perverse
sheaves, [1]. The category of perverse sheaves form a heart of a t-structure on
D{(X), in the sense that there are cohomological functors DY (X) — P(X), de-
noted by

F — PHY(F)

transforming triangles into long exact sequences.

Theorem 2.2.1. [1, 5.1.15(iii)] Every pure complex of sheaves F € D (X) is isomorphic
over X @y k to a direct sum of simple perverse sheaves with shift.

If ¥ is a pure complex of sheaves on a k-scheme X, then there exists a non-
canonical isomorphism over X ®y k.

Fork~ @D PHY(F @i k)1,
i

and moreover each perverse sheaf PHYF @ k) is isomorphic to a direct sum of
simple perverse sheaves

PHYF @y k) = EB Ko

x€eA; (F)
where 2l; is a certain finite set of indices. We denote 4(J) = | |;cz (7).
According to [1, 4.3.1], for every simple perverse sheave K, there exists an

irreducible closed subset Z of X @y k, a dense smooth open subset Uy of Z, an
irreducible local system L, on U such that

Ko = ioc,*joc,!>kLc>c[dirn(zoc)]

where j is the open embedding Uy — Z4 and iy is the closed embedding

Zo — X®p k.
We consider the finite set
(2.2.2) Supp(F) ={Zy | x € A(F)}

of irreducible closed subsets of X ®y k. We may see this set as the set of loci where
J undergoes significant changes in the perverse perspective.

Let f : X — Y be a proper morphism of k-schemes of finite type. If F is a pure
complex of sheaves on X, the derived direct image f.J is also pure after Theorem
2.1.2. Thus the definition (2.2.2) applies to f.J. If moreover X is smooth, then the
constant sheaf Qg is pure, and we set

Supp(f) = Supp(f.Qe).
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In many circumstances, the determination of Supp(J), Supp(f) is an important
ingredient for the application of Grothendieck’s dictionary to problems in number
theory and harmonic analysis.

2.3. Perverse continuation method The determination of supports of pure sheaves
pertains to a method of proving certain equalities by perverse continuation. The
typical argument can often run as follows.

Let f; : X; — Y and f : X — Y be proper morphisms between k-schemes of
finite type. Assume that both X; and X; are smooth and Y is irreducible. Assume
also that:

(1) there exists a non empty open subset U of Y such that for every point
y € U(k’) of U with values in some finite extension k' of k, there are the
same number of k’-points in the fibers ffl (y) and f, 1(y) ;
(2) both Supp(f1) and Supp(f,) are the singleton of element Y ®y k.
In this situation, one can conclude that for every point y € Y(k’) of Y with value
in some finite extension k’ of k, the equality

#f (Y) (k) = #,  (y) (k')

of numbers of k’-points in the fibers of f; and f;, holds.

Let us denote F; = f1,Q¢ and F, = 2.Qq. For Supp(f;) = Supp(f2) = {Y @y k},
by restricting further the open subset U, we may assume that there exist local
systems L}, L} on U such that

PHY(F)) =jul} and PHY(F,) =juL}

with j being the open embedding U — X.
The first assumption implies that for every point y € U(k’), if oy is the Frobe-

nius conjugacy class in 711 (L) associated to y, then

Y (DHr(oy, L)) =) (—Ditr(oy, L)

i i

For L! and L} are pure local systems of weight i, one can separate the above
identity in to a family of identities for each i

tr(oy,L}) = tr(cy,LE).

After the Chebotarev density theorem, we infer that L} and L} are isomorphic up
to semisimplification.

Although the intermediate extension functor is not exact in general, we can still
derive that PHY(¥;) = jg*L} and PHY(%,) = jg*l_§ are isomorphic up to semisim-
plification under the assumption Supp(F;) = Supp(F2) = {X @y k}. Indeed, if
0 - A — B — C — 0 is an exact sequence of local systems of on U, then we have
a sequence



Ng6 Bao Chau 11

where o : ji,A — j.B is injective and B : ji.B — j.C is surjective, however
im(a) may be strictly smaller than ker(3), see [8, 2.7]. Nevertheless, under the
assumption that B is geometrically semisimple and Supp(B) = {X ®y k}, the sub-
quotient ker(f3)/im(a), being supported on X — U, ought to vanish, and therefore
the sequence (2.3.1) is exact.

We have proved that for all i there exists an isomorphism PHY(F;) ~ PHY(F,).
The conclusion on equalities of number of points on fibers of f; and f;, follows
from the Grothendieck-Lefschetz formula.

The above argument demonstrated the power of the assumption on the sup-
port. This is the reason why the determination of the support is usually a hard
problem. For this purpose, there are different methods which may be applied
in various situations: the Fourier-Deligne transform, the Goresky-MacPherson
theorem for small maps, and the support theorem for abelian fibrations. One
should also mention the recent theorem of Migliorini-Shende asserting that the
set of supports is a subset of the set of higher discriminants [22] in characteristic
zero case. It would be very interesting to generalize their theorem to the case of
positive characteristic.

We will present three problems of harmonic analysis that can be solved with
help of this method: the fundamental lemma of Jacquet-Ye, Jacquet-Rallis and
Langlands-Shelstad where those methods can be respectively applied.

2.4. The Fourier-Deligne transform Let S be an algebraic variety over k. Let
pv : V — S be a vector bundle of rank n, pyv : V¥ — S the dual vector bundle.
We consider the cartesian product V xs V¥ equipped with the projection pr,, :
VxsVY =V, pryy:Vxs VY — VY and the canonical pairing

w:VxsVY = Gq.
The Fourier-Deligne transform is the functor
FD:D2(V) = DY(VY)

defined by
FD(J) = pryv  (pryF @ Ly )]

The following theorem on the Fourier-Deligne transform has been proven by Katz
and Laumon in [18] and [20, 1.3.2.3].

Theorem 2.4.1. The Fourier-Deligne transform preserve perversity:
FD: P(V) — P(VY).

Moreover, if S’ is an open subset of S, jv : Vsi — V and jy : V¢, — VY the open
subsets of V and V' induced by base change, if F = jv 1,.j{,F then

FD(F) =jyv 1.y FD(F)
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2.5.Small maps Let X, Y be algebraic varieties over k. Let f : X — Y be a proper
surjective morphism. We say that f is a semismall map if

dim(X xy X) < X.

We say it is small if moreover for every irreducible component Z of X xy X of
dimension equal to dimension of X, the induced map Z — X is surjective. The
following theorem, due to Goresky and MacPherson, can be proven by simple
dimension counting, see [13, p. 120] .

Theorem 2.5.1. Let f : X — Y be a small map. Assume that X is smooth, then
F = . Qe [dim(Y)] is a perverse sheaf. Moreover, for every dense open subset U with
embedding j : U — X, we have F = j,j*F.

Important instances of small maps are the Grothendieck-Springer simultane-
ous resolution [34], and the Hilbert scheme of zero-dimensional subschemes of a
smooth surface, as small resolution of the Chow scheme [25]. Both have impor-
tant applications in representation theory.

2.6. Support theorem for abelian fibrations We define abelian fibration to be the
following data:

e f: M — S is a proper morphism of relative dimension d,

e g: P — Sis asmooth commutative group scheme acting on M i.e.
equipped with a morphism P xs M — M satisfying all the usual axioms
of group action,

o for generic points s € S, Ps acts simply transitively on M,

o for every geometric point s € S and m € Mg, the stabilizer Stab (Ps) is
an affine subgroup of Ps.

For every geometric point s € S, the group fiber Ps can be decomposed as
follows. First, we have the exact sequence

0—P? = Py = m(Ps) = 0

where 7y(Ps) is the group of connected components of Ps and P! its neutral
component. The neutral component itself can be further decomposed into an
exact sequence:

0—+Rs —=Ps—=As—=0

where A; is an abelian variety and Rs is a connected affine group, according to a
theorem of Chevalley and Rosenlicht, see [33], [5]. We refer to [5] for a modern
treatment of the Chevalley-Rosenlicht theorem.

We can stratify S by the dimension of the affine part 6 = dim(Rs):

S=||ss
5

with
Ss(k) ={s € S(k)|6s = &}
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We say that P is 6-regular if for every & > 0, we have
codim(Sg) > 4.

The condition of d-regularity is automatically satisfied by all algebraic integrable
system over C, see [31]. For certain families of Jacobians, the d-regularity has
been proven by Melo, Rapagneta and Viviani [21].

There is yet another technical condition in the statement of the support theo-
rem. We say that P/S is polarizable if there exists an alternating form A on the
sheaf of Tate modules

H;(P/S) = H*471(g,Qy)

such that over every geometric point s € S, A annihilates the Tate module H; (Rs)
of the affine part, and induces a non-degenerate form on the Tate module H; (As)
of the abelian part.

Theorem 2.6.1. Let f: M — Sand g : P — S form an abelian fibration that is d-reqular
and polarizable. Assume that M is smooth.

(1) If the geometric fibers My are irreducible then all irreducible perverse sheaves
that are direct factors of f.Qg have support S.

(2) More generally, M no longer being assumed irreducible, if Z is the support of a
simple perverse sheaf occurring as a direct factor of £,.Qy, if iz : Z — X denotes
the closed embedding of Z in X, then in a étale neighborhood of the generic point
of Z,17,Qq 7 is a direct factor of the sheaf H>£,Qyq of cohomology of top degree

of f.

For more information about the support theorem for abelian fibrations, the
readers may consult [31], and for a generalization in the characteristic zero case
[22].

3. Double unipotent action

3.1. Invariant functions Let A denote the subgroup of diagonal matrices and U
the subgroup of unipotent upper triangular matrices in G = GL,. We denote
g = gl,, the space of n x n-matrices. We consider the action of U x U on g given
by x = Tu~xut with x € g, u,u™ € U, Tu™ being the transpose matrix of 1.

Let V denote the standard n-dimensional k-vector space, and vy,..., vy its
standard basis. Let V¥ denote the dual vector space, and vy, ..., v} the dual
basis. We consider the function e; € k[g] given by

ei(x) = (W A AV, x(vp A Avy)).

In terms of matrices, e;i(x) is the determinant of the (i x i)-square matrix located
in the upper left corner of x. We observe that for u™,u™ € U, we have

(U ) Ty A AW =W A AV and uT (v A Avy) =vi A=Ay
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It follows that
ei(uxut) = () T A AVt (v A Av)) = e (1),
and therefore e; is an U x U-invariant function on g i.e. e; € k[g]"'*!". We obtain
a U x U-invariant morphism
e:g— e¢=S5pec(kley,..., en])

It is clear that G = GLy, is the inverse image of the open subset of ¢ defined by

en #0.
Let ¢° denote the open subset of ¢ defined by the conditions e; # 0 for all i:

e® = Spec(k[eiﬂ, . ..,e#}).

The restriction of e to the diagonal torus A defines an isomorphism e|5 : A — ¢°
mapping the diagonal matrix of entries (ay, ..., an) to the point in e of coordinates
(e1,...,en) with ey = aj,ep = qyap,...,en = aj...an. The inverse map a: ¢° —
A defines a section of e over ¢°. Using this section, we define a map

(3.1.1) e xUxU— f1(e?) =g°

given by (d,u™,u) — "u"a(d)ut that is an isomorphism.

It will be convenient to repackage the above discussion in the language of
algebraic stacks.

Proposition 3.1.2. The invariant functions ey, ..., en define a morphism:
le]: [g/(UxU)] —e
which is an isomorphism over ¢°.

Uxu

One can derive from this proposition that the algebra k[g] of functions on

g invariant under the action of U x U is the polynomial algebra:
kgl =Kley, ... enl.

Indeed the k[g]"*! consists of regular functions on g whose restriction to fg° is
U x U-invariant. In other words, we have the equality

Klgl" Y =klei™, ..., el Nklg]
whose right hand side is kley, ..., en]. We won't need this fact in the sequel.

3.2. The Klossterman orbital integrals Let F be a nonarchimedean local field, O
its ring of integers, k = O/m its residue field. We will denote val : F* — Z the
valuation. We also choose a generator @ of the maximal ideal m with help of
which we can define a residue map res : F — k. We fix a non trivial character
VY : k — Q and by composing it with the residue map we obtain a character
Pr : F— Q/ of conductor 0.
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We equip U(F) with the Haar measure such that U(O) is of volume one. We
consider the character

n—1
Yuw) =) Pr(ugiv)
iz1

where 1 ;41 are the entries of u that are located just above the diagonal.

For every function ¢ € C(g(F)), we consider the integral
(3.2.1) Klg(a) = J d(Mu"auM)py (u vy (uh)du—du*

U(F)xU(F)

depending of a € A(F). The orbit of U(F) x U(F) passing through a is the fiber
of f: g(F) — ¢(F) over f(a), and in particular it is a closed subset of g(F). Since
the action U x U is free at a, this orbit is isomorphic with U(F) x W(F). The
restriction of ¢ to the fiber of f : g(F) — e¢(F) over f(a) defines thus a locally
constant function with compact support in U(F) x U(F). These integrals appear
in the geometric side of the Kuznetsov trace formula for GL(n).

We will restrict to the case ¢ =1 5():

(3.2.2) Kl(a) = J'U(F) e ]IG(O)(Tu’aqu)d)u(u’)lbu(uﬂdu’du*.

The local harmonic analysis of the Kuznetsov trace formula consists in under-
standing the space of all functions Klg, (a) along with its basic function Kl(a).

Jacquet and Ye have introduced a twisted version of these integrals. Let F’
denote the unramified quadratic extension of F, O’ its ring of integers whose
residue field k' is the quadratic extension of k. Let us denote x — % the Galois
conjugation in k’/k and F’/F. We consider the Haar measure on U(F’) such that
U(O’) is of measure one, and the character \{, : U(F') — Q/ given by

n—1
Y (W) =D Weltre pugisc).

i=1

For every a € A(F), Jacquet and Ye consider the integral:
Kl’(a):J Ty (Taw) iy (w)dx.
N(F’)

In [17] , Jacquet and Ye have conjectured the following identity. It has first been
proved in [26] in the case where F is a local field of Laurent formal series, and later
transferred to p-adic fields for for large p by Cluckers and Loeser [4]. Jacquet has
also proved the p-adic case by a completely different method [16]. We also note
that Do Viet Cuong has proved a similar fundamental lemma in the metaplectic
case [12] by a method similar to [26].

Theorem 3.2.3. If we denote
r(a) =val(a;) +val(ajap) +---+val(a...an—1)
where (ay,...,an) are the entries of the diagonal matrix a € A(F), then the equality

Kl(a, $u) = (1)K (a,py)
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holds.

The matrix calculation in the case G = GL;:

g

shows that we need to determine the set of x,y € F/O such that the matrix in the

M a1y
a1Xx  aixy+ap

right hand side has integral coefficients. For instant, if we assume that val(a;) =1,
then x,y € @ 10. Let u,v € k denote the free coefficients of the formal series ajx
and ajy respectively, and « the free coefficient of ajay, then
Ki(a,pu) = Y  du+v)
uv=«x

is an usual Kloosterman sum.

3.3. Cohomological interpretation of the Kloosterman integral Computing the
Kloosterman integral (3.2.2) boils down to counting the set

Kq = {(u™,u") € U(F)/N(0) x U(F)/N(0) T u"au™ € g(0) }

For di("xay) = di(a), this set is empty unless d;(a),...,dn(a) € 0.

Assume that F is the field of Laurent formal series of variable @ with coeffi-
cients in the finite field k. It is not difficult to see that K can be given a structure
of finite dimensional algebraic variety over k, which is equipped with a morphism
1: Ky — Gg such that

n—1

l(u™,u) = Z res(ug; g+ 1)

i=1

so that
Kifa)= ) (l(m).

meKq (k)

By applying the Grothendieck-Lefschetz formula, we get
Kl(a, pu) = ) (—1)'r(0, HE (Kq @1 k), 1" Ly,).
i
The twisted Kloosterman integral can also be interpreted similarly. If T: Mq —
M, denote the involution t(x,y) = (y, x), then we have
Kl'lepu)= Y b(im).
m’eFix(oot,Kq)
By applying the Grothendieck-Lefschetz formula, we get
KU'(a,9u) = Y (~1)'tr(0 0 Ta, HE (Ka @1 k), ULy ).
i

The identity (3.2.3) follows from the following;:

Theorem 3.3.1. For every a € A(F) such that aj, ajay,...,a1az...an € O, the invo-
lution T acts on HE (Kq @y k, 1" Ly,) as (—1)7(e).
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We observe that K, is empty unless eq,ep,...,en € O where e; = aj...a;.
Assuming that val(d;) = 0 for j # iand val(d;) = 1 fora givenindex1 <i<n-—1,
one can show that M is of the form

{(w,v) |uv + o =0}

for some o € kX, h(u,v) = w+v. In this case, the involution T acts on H: (M, ®j
k, 1*Ly,) as it was shown in the case of usual Kloosterman sums.

3.4. Arc spaces and families of Kloosterman integrals To study geometrically
families of local orbital integrals, it is best to use the concept of formal arcs on va-
rieties and algebraic stack. Although this approach still lacks rigorous foundation,
and has not been used in practice so far, it often offers an useful viewpoint.

We will denote ID = Spec(k[[t]]) and ID*® = Spec(k((t)). Let X be an algebraic
variety over k, X° an open subset of X. We consider the formal arc space £X of X
that is an infinite dimensional over k such that

in other words, k-points of £X are maps x : ID — X. We are mostly interested in
the open subset £°X of maps ID — X whose restriction to ID® has image in X°.

If we want to put the varieties K, in family, it will more convenient to use,
instead of a = (ay,...,an), the parameter e = (ey,...,en) where e; = ay...q;.
We will write K¢ instead of Kq. By construction e; € F* and we have seen that
Ke is empty unless e; € O. Thus e = (eq, ..., en) is a k-point of £L°¢ where e = A™
and ¢° =G ™.

For every e € £°¢, the variety K, can be identified with the space of maps
x:ID — [g/U x U]

lying over the map e : ID — e. In particular the restriction of x to ID® has image
in [g°/U x U] where g° is the inverse image of ¢°.
Formally at least, we can consider the “arc stack” £([g/(U x W)]) of maps

x:ID — [g/(Ux U)]

and its open part £°([g/(U x U)]) consisting in maps x as above whose restriction
to ID® has image in [g°/U x U]. As opposed to the whole arc stack £([g/(U x
UW)]), we expect its open part £°([g/(U x U)]) to be a space instead of stack. The
varieties Ky can now be seen as the fibers of the map

L°([g/(Ux U)]) — L%.

3.5. Global family For only few information about the varieties K is available,
it is almost hopeless to calculate H! (Kq ®y k, 1*£y,) explicitly. It may be tempting
to try to put Ko and HE (Ko ®y k, h*Ly,) in family, and prove Theorem 3.3.1 by the
perverse continuation principle , similar to the argument outlined in Subsection
2.3.
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Experiences show that instead of local orbital integrals, it is often more effective
to consider families of global orbital integrals. Such a family of global orbital
integrals appears naturally in the geometric side of the trace formula, and in the
present case, it appears in the geometric side of the Kuznetsov trace formula.

Global Kloosterman integral is just a product of local Kloosterman integrals. In
a family of global Kloosterman integrals, a generic member is product of many
local integrals which are all very simples. As proving 3.3.1 is not difficult for
a generic member in the family of global Kloosterman integrals, the perverse
continuation principle would allow us to derive the statement like 3.3.1 for the
special members from the generic members.

The construction of the global family f : X — € will depend on some auxiliary
data: a smooth projective curve C and a divisor D. We will denote Tp the Gy,-
torsor associated to the line bundle O¢ (D). We observe that the scalar action of
G on g commutes with the action of U x U, and induces an action of G, on e:

tle,...,en) = (te,...,t"en).

The morphism [g/U x U] — e is then Gy -equivariant. Over T, we can twist by
means of the G,,-torsors T:

[g/U x U] ASm T — e ACm T,
We define X to be the space of maps
x:C = [g/U x U AS™ T

whose restriction to the generic point of C has image lying in [g°/U x U]. One
can prove that X is an algebraic space of finite type.
We define £(C, D) to be the space of morphisms

e:C%e/\G’“‘J’D

that map the generic point of C in ¢°. It is easy to see that
n
¢ = [H(C,0c(iD)) —{0)
i=1
In order to describe the fibers of X — € in terms of local Kloosterman varieties,
we will choose uniformizing parameters at every point v € D so that O¢ (D) has
a trivialization at each formal disc C,. Let C’ denote the biggest open subset of
C being mapped to ¢°. Then the restriction of x to C’ is completely determined
by the restriction of e to C’. It follows that
Ke= J] Ken
veC-C’
In order to define the family of global Kloosterman integrals, we need to fix
some additional data. We choose a nonzero rational 1-form w and denote div(w)
its associated divisor. Let &’ denote the open subset of € of points e = (e, ..., en)
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such that
div(e) Ndiv(w) = 0.
where div(e) = div(e;) + - - - + div(en). For every e € &', we have an embedding
H Key = H U(F,)/u( Ov))-
vediv(e) vediv(e)

For every v ¢ div(w), we have a map
U(Fy)/U(0y) = Ga

given by

n—1

u— Z res(ui11w).

i=1
This induces a morphism 1 : X’ — G4 where X’ is the pre image of &’ by the
morphism f: X — €. We denote ' : X’ — &’ the restriction of f to X'.

Conjecture 3.5.1. Up to a shift, fll*Lw is a perverse sheaf which is the intermediate
extension of a local system of rank 217 deg(D) ey e open subset " of &' defined
by the condition div(e) being multzplzczty free.

3.6. Coordinate calculation in a special case This conjecture has been proven in
[26] in one special case where f : X' — &’ and 1 : X’ — G4 can be described
explicitly in terms of coordinates. Let C be the projective line P! of coordinate t
given as a global section of O(1) vanishing at co, and the meromorphic 1-form dt
with a double pole at co. In this case

n
& = [H(P!, Op1 (ic0)).
i=1
The open subset £’ of € consisting of e = (eq,..., en) with e; € HO(P?!, Op1(ic0))
such that the div(e;) is prime to oo, in other words e; is a polynomial of degree i
in the variable t.

The inverse image X' of &’ in X can be described in coordinats as follows. First
we observe that every U-torsor over P! is trivial because H!(Op1) = 0. It follows
that the stack Buny; of principal U-torsor over P! has only the trivial object whose
automorphism group is U. We also observe that the space

H(g A®™ Tp) = {xo+x1t | X0, %1 € g}
and thus the space of maps
— [g/U x U AS™ T

is the quotient of g x g by U x U where U x U acts diagonally on g x g. The
condition that ei(xp 4+ x1t) is a polynomial of degree 1, for every i, implies that
x1 € G. It follows that a point X’ can be uniquely represented under the form
x + t with x being an arbitrary matrix, and @ € A is the invertible diagonal
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matrix:
. —1 -1
o = diag(oq, 0 " xp, ..., 07 0n).

where o; # 0 denote the coefficient of t' in the polynomial e;. In other words,
we have

XK' =g xA.
One can show by direct calculation that the function 1 is given by the formula
n—1
l(x, ) = Z oo (X141 + Xig14)
i=1

In this very special case, with help of these coordinates, we proved the conjecture
3.5.1 in [26] by an induction argument based on the Fourier-Deligne transform.
Although this special case of 3.5.1 is enough to deduce the Jacquet-Ye fundamen-
tal lemma in positive characteristic, it is of interest to find a proof of 3.5.1 in
general.

4. Action of GL,,_; on gl,, by conjugation

4.1. Invariant functions Let V be a n-dimensional vector space, V" its dual. We
pick v € Vand vV € VY a vector and a covector such that (v/,v) = 1. Let G =
GL(V) and H the subgroup of G consisting of elements g € G such that gv = v
and gv¥ =v”. We have H ~ GL,, ;. Since G = GL(V) acts transitively on the set
of pairs of vectors (v,v") satisfying (v",v) = 1, one can identify the classifying
stack BH of H with the stack of triples (V,v,v") satisfying (v¥,v) = 1. It follows
that one can identify [g/H] with the algebraic stack classifying the quadruples
(V,x,v,v") where V is a n-dimensional vector space, x € End(V),v € V, v’ € V¥
are vector and covector such that (v¥,v) = 1.

We will also consider the algebraic stack Y classifying quadruple (V,v,v",x)
as above but without the equation (vV,v) = 1. Ify : Y — Gq is the map
(V,x,v,vY) — (vY,v), then [g/H] can be identified with the fiber Y; of Y over
the point 1 € G,. We are going to investigate regular algebraic functions on Y
and Y; that are, in the latter case, H-invariant functions on g.

We note that [g/G] is the classifying stack of pairs (V,x) where V is a n-
dimensional vector space and x € End(V). Let a; : g — G4 denote the functions

ai(x) = tr(Alx)

fori = 1,...,n. The functions aj,...,an are G-invariants. In other words, we
have a map

(4.1.1) a:[g/G] — a = Spec(klay,...,an]).

We also denote a : Y — a the induced map obtained by composing the forgetting
morphism Y — [g/G] with a: [g/G] — «a.
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We consider the vector bundle of rank n over a whose fiber over a € a(k) is
(4.1.2) ta = kX/(x™ —apx™ 4 4 (=1) M an).
We observe that t can be trivialized, as a vector bundle over a, by means of the

sections 1,x, ..., x™ 1.

Let b denote the dual vector bundle of t. For every a € a(k), the fiber of b
over a is bg = Hom(tq, k). We observe that b, is equipped with a structure of
tq-module, and since t, is Gorenstein, b, is a free tq-module of rank one. As a
vector bundle over a, b can also be trivialized

b = Spec(klay,...,an,bg,by,..., by _1]) = AT

by means of the basis that is dual to the basis 1,x, ..., x" 1 of v. With these coordi-
nates we will identify a point of b with a pair (a,b) where a = (ay,...,an) € A™
and b = (bo, .. -rbn—l) €A™,

We consider the map of vector bundles over b

(4.1.3) YitXqb—=bXxqb

given by (r,b) — (rb, b) given by the structure of t4-module of b, for every a € a.

Its determinant defines a divisor of b. Since both t and b are trivial vector bundles,

the determinant divisor is principal and can be given by a regular function
det(y) S k[al, ce ,an,bo,bl, cee rbn—l]-

Let b™8 denote the complement of this divisor. By construction (a,b) € b™8 if
and only if b is a generator of b, as vq-module.
We have a morphism

(4.1.4) b:Y—b

mapping b(V,x,v,vY) = (a,b) defined as follows. We set a = a(V,x). We set
b € by to be the linear form b : vy — k defined by

T (v, TV).
In terms of coordinates, we have
(4.1.5) b;(V,x,v,vY) = (v/,xV)

forallj=0,1,...,n—1.
Next we will need next a piece of linear algebra:

Lemma 4.1.6. Over Y, the morphism of vector bundles 'y x Y factors as the composition
of linear maps of vector bundles over Y:

Cv va
tXaY—"2VbxqY

where
e V is the vector bundle over Y} whose fiber over a point (V,x,v,v¥) is V;
e over a point y = (V,x,v,v¥) € Ywith a = a(y), ¢y : tq — V is the linear map
given by v — 1v;
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e over a pointy = (V,x,v,v") € Ywith a = a(y), c,v : V — bq is dual to the
map c,v :tq — VY given by v — vV,
In particular, the divisor b—1(div(det(y))) is the union of the divisors of det(c,) and
det(c,v) on Y.

Proof. Lety = (V,x,v,v¥) € Yand r € tq with a = a(V, x). We need to prove that
the equality
tb(y) = c,v(cv(T))
holds in bq. By inspecting formulas, one can see that both sides represent the
linear form on tq:
= (WY, )
therefore define the same element of bg. O

We now observe that there is a section of (4.1.4)
k:b—Y

mapping (a,b) € b to the quadruple (V,x,v,v¥) with V = tq as in (4.1.2), x €
Endy (vq) is the multiplication by x, vg =1 and vj = b € bq.

Proposition 4.1.7. The morphism (4.1.4) induces an isomorphism over b™8.
Proof. We only need to prove that if (V,x,v,v") is points of Y over (a,b) € b™8
then there exists a unique isomorphism between k(a, b) and (V, x,v,v").

Since det(Ya,b) # 0, Ya,b : ta — bq is an isomorphism. Since yqp : ta — ba
factors through c, : tq — V, ¢, is injective. For dimension reason, we infer that
cy is bijective. By construction ¢, maps a € tq to v € V, and the inverse of its
dual maps b to v”. This map induces the unique isomorphism between k(a, b)
and (V,x,v,vV). O

We also observe that by restriction, we obtain a morphism
(418) b:Y — by

where b is the subscheme of b defined by the equation by = 1. By restricting k
to by, we obtain a section of (4.1.8). We will denote by f : g — b; the morphism
induced from b : [g/H] — by. Let g"'~™8 the open subset of g defined as the
pre image of b,®, a matrix x € g''"™8 will be said H-regular. By the above
proposition, the morphism

reg . . H—re: reg
1S a ] l'leIlClpal buI ldle.

4.2. Untwisted integrals Let O = k[[t]] denote the ring of formal series in the
variable t, F = k((t)) its quotient field. For every (a,b) € b™8(F), the fiber of
g — b over (a,b) is a H-principal homogenous space over F. Since H!(F,H) = 0,
f~1(a,b)(F) is non empty.
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Let x € gHTe8(F) mapping to (a,b) € b™&(F). For every function ¢ €
C2(g(F)), we consider the integral

(4.2.1) JR(x) = JH(F) d(h~xh)dh.

where dh is the Haar measure on H(F) for which H(O) has volume one. Since the
map h — h~1xh induces a homeomorphism from H(F) to the fiber of f : g(F) —
b1(F) over (a, b), the preimage of every compact subset of g(F) is a compact subset
of H(F). We infer the convergence of the integral (4.2.1).

We will restrict ourselves to the case ¢ =1 j(¢9). In that case the integral (4.2.1)
is the cardinal of the set

Ny ={h € H(F)/H(O) | h"'xh € g(0)}

which is necessarily finite by the above compactness argument. We also observe
that this set is empty unless (a,b) € b1(0).

Because H acts freely on g"''~™8, the map h ~ h~!xh defines a canonical
bijection from Ny on the set N p of H(O)-orbits in the set of y € g(O) such that
f(y) = (a,b). Given (a,b) : Spec(0) — b whose restriction to Spec(F) has image
in b™8, Ny, is the space of maps

y:D—-Y

lying over (a,b):ID — b.
Now we will give a more concrete description of N p.

Proposition 4.2.2. Let (a,b) € b(O) N b™8&(F). Then there is a canonical bijection
between N g v with tq-submodule V of bq such that

4.2.3) Yab(ta) CV C bg.

Proof. Let (a,b) € b(O)Nb™8(F). By definition, the O-linear morphism yqp :
tq — t] becomes after tensorization with F. It follows that yqp : tqa — by is
injective.

A morphism y : D — Y consists of a quadruple (V,x,v,v") with V being a
O-module free of rank n, x € End(V), v € V and v € V¥. Assume that y maps
to (a,b) € b(0) N b™8(F). By Lemma 4.1.6, Yq1b : ta — by factorizes as the
composition of two maps

tq Sy CV—V> ba.

Because the y4 1 ® F is an isomorphism, and tq, V, and b, are all of rank n, both
cy @ Fand c,v ® F are isomorphism. Thus V can be identified with its image in
b, that is a tq-lattice satisfying the relation of inclusion (4.2.3).

Conversely let V be a tq-lattice satisfying the relation of inclusion (4.2.3). We
note « : tq — V the map induced by the inclusion vq(tq) C V. Then we can
construct the quadruple (V,x,v,v¥) by setting x to be the endomorphism of V
given by the action of x € tq, v = «(1) the image of a € tq, and v/ = o« (b) the
image of b € bg. O
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4.3. Twisted integrals There are several twisted versions of the Jacquet-Rallis
integrals (4.2.1). On the one hand, we consider the twisted orbital integral with
respect to the unramified quadratic character F* — {+1}:

(4.3.1) JR"(x) = JH(F) I4(0) (R 'xh)n(det(h))dh.

On the other hand, we can consider the unramified quadratic extension F'/F,
and the associated quasi-split unitary group U, _; acting on the space of n x n
Hermitian matrices sy :

(432) JR'(x') = J I, (0)(g 'x'g)dg.
Un (F)
When x and x’ match in the sense that they have the same image in b(F), Jacquet
and Rallis conjectured the equality
JR(x) = £JR'(x')

holds. This equality has been proven by Z. Yun, see [35] . We refer to loc. cit for
more precision about the sign appearing in the equality.

4.4. Global model Prior to the construction of global model, we observe that
there is an action of G, X G on Y defined by

(o, B)(V,x,v,vY) = (V, ax,v, BvY).

By formula (4.1) and (4.1.5), we have a compatible action of Gm? on b defined by
the formula:

(0(/ B) ((1, b) = ((xall O(za2/ sy ocnan/ BbOI OCBb], ceey ocnilﬁbnfl)'
We derive a morphism of algebraic stacks:
[4/Gm x Gm] = [b/Gm x Gml.

The global data will consist of a smooth projective curve C over k and two
divisors D and E of large degrees. Let O(D) and O(E) denote the associated line
bundles on C. We consider the space B of maps

(a,b): C — [b/Gm X Gyl

lying over the map C — B(Gn, x G) given by the line bundles O(D) and O(E).
By definition, B is the finite dimensional vector space:

n n—1
B = PH’(C,0(iD)) & @ H(C,0(jD) ® O(E)).
i=1 j=0

We consider the space N of maps
y:C—=[Y/Gm x Gl

lying over the map C — B(Gy, x Gn) given by the line bundles O(D) and O(E).
We have a a morphism
f:N—3B
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induced by the G, x Gm-equivariant morphism Y — b. Let B’ denote the open
subset of B of those morphisms C — [b/Gm X G,] that map the generic point of
C in B"8. We denote N’ the preimage of B’.

For every geometric point (a,b) € B’(k), we will describe the fiber N p, of f
over (a,b). Let C’ denote the preimage of B8 by the morphism (a,b) : C —
[6/Gm x Gml. Lety: C = [Y/Gm x Gl be a point of Ng . For the morphism
Y — b is an isomorphism over b™%, y is completely determined over C’. It follows
that y is completely determined by its restrictions y,, to the completions C,, of C
at the points v € C — C’. In other words, we have the product formula

Na,b = H Nav,bv-
veC—-C’

Here Ny v, is the space of maps C, — Y lying over (a,,by) : C, — b, where
(ay,by) are restriction of (a,b) to V. The map (a,,b,) is well defined after we
choose trivializations of the line bundles O(C) and O(D) restricted to C,,.

A more concrete description of N p can be obtained by means of Lemma 4.1.6.
Pulling back the vector bundle v and b by the map a : C — [a/Gm], we get a
vector bundles tq and bq over C. By pulling back y by (a,b) : C — b, we obtain
a tq-linear morphism

Ya,b :ta — ba.
which is generically an isomorphism. In particular v, 1, is injective as morphism
of Oc-modules with finite quotient bq/vq,b(ta).

By the same argument as in Lemma 4.2.2, we can identify points of Ny, with
rank n vector bundle V over C, equipped with a structure of tq-modules and with
factorization of yq p:

tqa >V — bg.

We can therefore identify N, 1, with the set of quotients Q of the finite tq-module
ba/Ya,b(ta). We note that the length of Q as rq-module is

1g(Q) = deg(ba) —deg(V)
where deg(b,) depends only on the degrees of the divisors D and E. It follows
that N can be decomposed as disjoint union of open and closed subvarieties:

N=| |Ns,
S

where N classifies maps y : C — [Y/Gm x Gm] corresponding to (V,x,v,v")
such that deg(V) = deg(bq) —s.
The following statement is a theorem of Yun, [35, Prop. 3.5.2].

Theorem 4.4.1. Assuming deg(D) and deg(E) are large with respect to s. Then the
moduli space N/, is smooth, and the morphism N{ — B’ is proper and small.

We can now derive the perverse continuation principle for Theorem 2.5.1.
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5. Adjoint action

5.1. Invariant theory Let G be a split reductive group over k acting on its Lie
algebra g by the adjoint action. The ring of G-invariant functions of g is a polyno-
mial ring

klgl® =Klay,..., an]

where aj,...,an are homogenous polynomials of degree vi,...,vn. Although
there may be many choices of aj, ..., an, the integers v; < ... < vy, arranged in
increasing order, are completely determined by g. For instant, when G = GLy,
we have v; = 1 and we may take

ai(x) = tr(Ax)

but we may also take the invariant function x ~ tr(x!) just as well.
Let g™& denote the open subset of g of regular elements i.e x € g such that the
centralizer I is of dimension equal the rank n of g. By restricting the morphism

a:g— a=>Spec(klag,...,an]).

to the open subset g™& of regular elements, we obtain a smooth surjective mor-
phism
a8 : g™ —a

S of a

whose fibers are G-homogenous spaces. There exists an open subset a
consisting of regular semisimple adjoint orbits. Over a™®, the subset g™# coincide

with gie. a~1(g™) C g'8. After Kostant [19] there exists a section
(5.1.1) k:a— g's.

of a™8.

Just as for Kloosterman and Jacquet-Rallis integrals, the theory of adjoint or-
bital integrals in Lie algebra can be reinterpreted as the geometry of the mor-
phism of formal arc spaces associated with the map

(5.1.2) [a] : [g/G] — a.

There are more difficulties in this case as [a] is not generically an isomorphism.

Even over the "nice” open subset a™*

, [9/G] is only a gerbe bounded by the cen-
tralizer group scheme in the following sense.

Let us denote I the centralizer group scheme over g, whose fiber over x € g is
I« ={g € Glad(g)x = x}.

The restriction I'*® of I to g™® is a G-equivariant smooth commutative group
scheme. After [27, 3.1], I"®6 descends to a i.e. there exists a unique smooth
group scheme | — a, up to unique isomorphism, equipped with a G-equivariant
isomorphism

(5.1.3) (a™8)*] — 178,
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This is equivalent to saying that [g"8/G] is a gerbe over a bounded by J, or in
other words, [¢g"8/G] is a torsor over a under the action of the relative classifying
stack BqJ. Moreover, one can trivialize this gerbe by means of the Kostant section.

A crucial observation to be made here is that the isomorphism can be extended
uniquely to a homomorphism of group schemes,

(5.1.4) h:a*] — L

see [27, 3.2]. Following a suggestion of Drinfeld, we will reformulate this homo-
morphism as an action of B4J on [g/G], extending its simply transitive action on
[g"8/G]. The quotient

(5.1.5) Q = [lg/Gl/BaJl.

of [g/G] by the action of B] is naturally a 2-stack. Evaluated over an algebraically
closed field, Q is the 2-category whose objects are elements x € g; the automor-
phisms of each object x is the Picard groupoid Autg(x) whose objects are ele-
ments of Iy and for g € Iy, the 2-automorphisms of g are elements j € J, such
that h(j)g = g where a = a(x).

The morphism a : [g/G] — a of (5.1.2) can be factorized through Q

(5.1.6) /Gl - Q — a.

where [g/G] — Q is a gerbe bounded by J. The restriction of Q — a to the open
2-substack

Q™& = [[g"8/Gl/Ba]]

is an isomorphism by (5.1). Since g™# coincides with g over a'*%, the morphism
Q — ais an isomorphism over a™*. The morphism

(5.1.7) q:Q—=a
plays a similar role to the morphism (4.1.4) in the Jacquet-Rallis case.

5.2. Stable orbital integrals We consider the space C2°(g(F)) of locally constant
functions with compact support in g(F). We will attempt to relate the (stable)
orbital integrals for the adjoint action of G(F) on g(F) with the geometry of the
morphism of formal arc spaces associated with (5.1.7).

Lety € g(F) be aregular semisimple element. For every function ¢ € C(g(F)),
we define the orbital integral
dg
dj
for given Haar measures dg and dj of G(F) and G, (F) respectively. To put orbital

(5.2.1) Oy (¢) = (ad(g)~"y)

J'GY(F)\G(F)

integrals in family, we will need to choose Haar measures on centralizers G (F),
as y varies, in a consistent way.

A provisional solution is to restrict ourselves to functions with support in g(0)
so that we only have to consider regular semisimple y € g(F) such that

a=a(y) € a(0)Na™(F).
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Let Jq = a*] the inverse image of ] by a: ID — a, and J? its subgroup scheme of
neutral components of ] 4. The locally compact group J(F) is now equipped with
the compact open subgroups J4(0) and J%(0). We will normalize the Haar mea-
sure on J (F) such that J% (0) has volume one. For I, (F) and J 4 (F) are canonically
isomorphic, we can transport the chosen Haar measure from J4(F) to I (F).

The difference between conjugation and geometric conjugation creates another
problem. Let v,y’ € g(F) be regular semisimple elements such that a(y) =
a(y’) = a then there exists g € G(F) such that ad(g)y = y’. However y and y’
may not be conjugate by an element in G(F). Let hy denote the set of G(F)-orbits
in a!(a)(F). A cocycle calculation shows that h, is a principal homogenous
space under the finite abelian group

(5.2.2) ker[H!(F,Jq) — H!(F, G)],

and in particular, it is a finite set. The sum of orbital integrals within the finite
set hq will be called the stable orbital integral:

(523) SOa(d) = > Oy(d).

Y€hq
The stable orbital integral SOq(¢) is the integration of ¢ along the fiber a !a).
For every ¢ € C2(g(0)), the stable orbital integral of ¢ can be regarded as a
function on a(0):

(5.2.4) a+— SOq(d).

We will now narrow down to the basic case ¢ = (). We will express the
stable orbital integral (5.2.3) as the mass of certain groupoid of formal arcs.

For every a € a(O) N a™%(F), we consider the 2-category Qq of maps D — Q
lying over a. Objects of Q4 are maps x : ID — g lying over a. Morphisms between
x1,X2 : D — g are g € G(O) such that ad(g)x; = xp; 2-morphisms between
91,92 : X1 = X are j € Jq(O) such that g;h(j) = g where h: J¢(0) = I, (0) is
defined in (5.1.4). The mass of Q is defined to be

1
(5.2.5) #Qa =) FAGT

where x ranges over the set of isomorphism classes of Qq, and #Aut(x) is the
mass of the groupoid Aut(x). Under the assumption a € a(O) N a™%(F), for every
x € g(0) lying over a € a(0), the homomorphism h : J4(O) — I, (O) is injective.
For simplicity, assume that J4(0O) is connected, then

(5.2.6) #Aut(x) = #(1x(0)/]a(0)).
and it follows that
(5.2.7) SOa(lg(m)) =#Qa

so that SOq(¢) is the mass of the 2-groupoid of maps ID — Q lying over a €
a(0)Na™s(F). When J4(0) is not connected, the mass calculation is more involved,
see [30, 8.2], but the above formula also holds in that case. Therefore the stable
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orbital integral function (5.2.4) expresses the mass of the fibers of the formal arc
spaces of Q over the formal arc space of a.

5.3. Waldspurger’s nonstandard fundamental lemma If G;, G, are reductive
groups with isogenous root data, there is a canonical isomorphism a; =
[30, 1.12.6]. Waldspurger conjectured that for a; € a;(0) Naf®(F) and ay €
a2(0) N az*(F) corresponding one to each other via the isomorphism a; = ap,
the equality of stable orbital integrals

(5.3.1) SOa; (Ig;(9)) = SOa, (Ig,(0))

holds. This identity is known as the non-standard fundamental lemma for Lie
algebra. After (5.2.7), this is equivalent to an identity of masses

(5.3.2) #Q1,a; = #Q2,q,-

where Q; = [[g1/G1]/Bq,J1] and Q2 = [[g2/G2]/Bq,J2]. This identity is non obvi-
ous to the extent that Q; and Q bear no direct geometric relation.

5.4. Global model Let C be a smooth quasi-projective curve over k. For each
map a : C — a that sends the generic point of C into the open subspace a™*,
we consider the stack Q4 of maps x : C — Q lying over a. If C’ = a=!(a™),
then the restriction of x to C’ is completely determined by a’ = a|cr as Q — a
is an isomorphism over a™°. It follows that a is completely determined by its
restriction to the completion C,, of C at the places v € |C — C’|. In other words,
we have the product formula

(5.4.1) Qa= ][] Qa

ve|C—C/|
where Qg, is the stack of maps x, : C, — Q lying over a, : C,, — a that is the
restriction of a to C,,.

If C is a projective curve and a is affine, all maps a : C — a are constant. There
are thus not enough global maps a : C — a to approximate a given local map
ay : Cy — a. The standard remedy to this failure is to allow a : C — a having
poles of degree bounded by a large positive divisor, or in other words, to twist a
by an ample line bundle over C.

The homothety action of G, on g induces a compatible action on the invariant
quotient a. This action can be lifted in an obvious way to the centralizer group
scheme I — g and therefore induces an action of G, on the regular centralizer
group scheme ] — a. We deduce an action of G, on the Drinfeld 2-stack Q
defined in (5.1.5).

Let C be a smooth projective curve, and £ a line bundle over C. For every
a: C — [a/Gm] over L : C — BG;y such that a maps the generic point of
C into [a™%/G], we consider the stack Qq of maps x : C — [Q/Gm] lying
over a. The product formula (5.4.1) holds with Qq, being the stack of maps
Xy : Cy = [Q/Gm] lying over a,, : C,, — [a/Gm] that is the restriction of a to C,.
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If we denote A, the space of maps a: C — [a/G] lying over £ : C — BG and
Qy, the "space" of maps x : C — [Q/Gm] also lying over £, then for every a € A,
Qg is the fiber of Q; — A, over a.

Let G, Gy be reductive groups with isogenous root data. It can be checked
that for G1, G, with isogenous root data, there is an isomorphism A; ; = Ay .
If the points a; € A; ¢ and ap € Ay  correspond via this isomorphism then the
identity of local masses (5.3.2) implies the identity of masses

(5.4.2) #Ql,m = #Q2,az

of fibers of Q1 and Q; over a; and a; respectively.

5.5. The Hitchin fibration Although the formulation of (5.4.2) involves only the
morphism Q — a, in order to prove it, it seems necessary to take into account
the 2-stages morphism (5.1.6) [g/G] — Q — a. We consider the "space” M, of
maps m: C — [g/G X G, ] lying over £ : C — BG,. We then have morphisms of
spaces of maps

(5.5.1) My —Qp — Ag.

For £ being the canonical bundle, the morphism f: M — A is essentially the
Hitchin fibration [15], an algebraic completely integrable system. For an arbitrary
line bundle of large degree, the generic fiber of M — A is essentially an abelian
variety i.e it is an abelian variety after deleting the component and automorphism
groups.

For every a € A, we denote P, the Picard stack of J4-torsors where Jo = a*]
is the pullback of the regular centralizer group scheme ] — avia a: C — [a/Gm].
The action of B,] on [g/G] gives rise to an action of P4 on My where M, is
the fiber of M — A over a. One can check that Qq = Mq/Pql. If a is the
generic point then P4 is an abelian variety, up to a component group and an
automorphism group, and it acts on M simply transitively. In particular Qg is
reduced to a point at the generic point a.

If we assume that G is a semisimple group, then there exists an open subset A¢!
of A such that over A¢!, the morphism el : M — A¢! is a proper morphism
and M¢! is a smooth Deligne-Mumford stack. It follows from Deligne’s purity
theorem that the perverse cohomology pHi(f?kHQg) are pure perverse sheaves,
and therefore geometrically semisimple.

The restriction P! of P, is to A, is of finite type. It acts on PHE(fellQ,).
We denote PH!(fe!lQ,)st the maximal direct factor where P¢!! acts trivially. We
expect that PHY(fS'Q,)% is completely determined by its generic fiber via the
intermediate extension functor. This is the content of what we called the "support
theorem" in the expository paper [31]. In that paper, we proved the support
theorem under the assumption that the characteristic of the base field k is zero.
In the case of positive characteristic, we were able to prove the support theorem
only after restricting PHI(flQ, )%t to a smaller open subset of Al This is not
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very satisfying but it is enough to derive the fundamental lemma [30]. Significant
progress has been made toward extending the domain of validity of the support
theorem, in particular beyond the elliptic locus by Chaudouard and Laumon [3],
[2], by Migliorini, Shende and Viviani [23], and by de Cataldo [7].

If G and G; are semisimple groups with isogenous root data, one can prove
that the generic fibers of My o — Ay ¢ and M, o — Ay ¢ are isogenous abelian
varieties, up to the component groups and automorphism groups. It follows
that pHi(f%LQg)St and pHi(f‘z’}LQg)St have isomorphic generic fiber. Assuming
that the support theorem be valid over A‘ELH, we derive that pHi(f‘f}LQg)St and
pHi(fS}LQg)St are isomorphic perverse sheaves. In particular, this is valid when
k = C. When k in finite field, we proved in [30] that PH! (ff}kQ ¢)tand PHY( fg}LQ 0)5t
are isomorphic in some open subset of A¢! that has enough points so that one
can derive (5.3.2). It is desirable to find a proof the support theorem over A¢! in
positive characteristic in order to streamline the global to local argument.

5.6. The Langlands-Shelstad fundamental lemma The proof of the Langlands-
Shelstad fundamental lemma follows essentially the same route as Waldspurger’s
nonstandard fundamental lemma. It is nonetheless considerably more compli-
cated because of the presence of k-orbital integrals.

The letter « in k-orbital integral refers to a character of the finite group (5.2.2):

(5.6.1) k : ker[H'(F,Jo) — H'(F,G)] — C*.

This finite group acts simply transitively on the finite set h, of G(F)-conjugacy
classes in the set of F-points on the fiber a!(a) of g — a over a € a(F). The
Kostant section provides a convenient base point k(a) € a—!(a)(F) and thus an
identification of the finite set hq and the finite group (5.2.2):

inv : hq — ker[H!(F,Jq) — H'(F, G)l.

We define the k-orbital integral attached to a as the linear combination of orbital
integrals in a1(a)(F) weighted by the values of «:

(5.62) Of(¢) = Y «(inv(v))Oy ().
vehg

One can attach to the pair (a, k) an endoscopic group H and a stable conjugacy
class ap in the Lie algebra h of H. The Langlands-Shelstad fundamental lemma
asserts an equality between Og(¢$) and SOq,, ($1) where ¢ and ¢y are respec-
tively the characteristic functions of g(O) and §(O) up to a power of q. We refer
to the introduction of [30] for a precise statement of this equality.

We now introduce a new ingredient, the affine Springer fiber, which is neces-
sary for a geometric interpretation of the k-orbital integral similar to the stable
orbital integral. For a more throughout, and more intuitive, discussion of the
affine Springer fiber, we refer to the lecture notes of Yun in this volume.

For every a € a(0), we denote M?, the space of maps x : D — [g/G], lying over
a: D — a, and equipped with an isomorphism x — k(a) over the punctured
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disc ID®, k being the Kostant section. It can be proven that the reduced space
associated with MY, is an algebraic variety locally of finite type, usually known
as the affine Springer fiber.

Our affine Springer fiber M, is acted on by the group Pg classifying ] ,-torsors
over D equipped with a trivialization over the ID®. In other words P{ is the space
of maps p : D — BgJ over a : D — a equipped with an isomorphism over the
punctured disc between p and the neutral map pg : D — B,J corresponding to
the trivial J-torsor. We have an action of P on My derived from the "universal"
action of B,J on [g/G].

The stack Qq of maps x : D — Q lying over a : ID — a can be presented as the
quotient of Mg by Pg:

(5.6.3) Qa = [Mg/Pgl.
It can be shown that the character k of (5.6.1) defines a homomorphism « :

BP%(k)/ ~— C*. It follows that the k-orbital integral for ¢ being the charac-
teristic function of g(O) can be expressed as k-weighted mass

k(cl(x))

(5.6.4) Oa () =#Qg(k) =

where x ranges over the set of isomorphism classes of Qg, cl(x) is the image if x
is the Pg (k)/ ~ in the group of isomorphism classes of P,-torsors over k.

The k-weighted mass #Q§ (k) appears as local factor of an endoscopic part of
the relative cohomology of the Hitchin fibration. As in the case of the nonstan-
dard fundamental lemma where the key geometric ingredient is the determina-
tion of the support of simple perverse sheaves occurring in the stable part of the
cohomology of the Hitchin fibration, in the endoscopic case, we need to deter-
mine the support of simple perverse sheaves occurring in endoscopic parts of the
cohomology of the Hitchin fibration. In [27] we proved that the support is con-
tained in the image of the Hitchin base of the corresponding endoscopic group.
In [30], we proved that there is equality after certain restrictions. We won't dis-
cuss this matter further as it has already been the subject of expository papers
[28] and [31].
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