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Perverse sheaves and fundamental lemmas

Ngô Bảo Châu

The Langlands program is a rich supply of deep and beautiful problems. Some
of those problems are very abstract while others are rather concrete. In these lec-
tures, I will discuss some problems in harmonic analysis, issued from the Lang-
lands’s program, which require, in spite of their concrete and elementary appear-
ance, sophisticated machinery in algebraic geometry to be fully understood and
eventually solved.

After recalling the Grothendieck dictionary between `-adic sheaves on alge-
braic varieties over finite fields and functions on their sets of rational points, I
will attempt to enunciate a vague notion of perverse continuation principle that
seems to be useful to construct a solution for these problems. I will then go
on to work out this principle in three cases: the Jacquet-Ye fundamental lemma,
the Jacquet-Rallis fundamental lemma (due to Z. Yun), the Langlands-Shelstad
standard and the Walsdspurger nonstandard endoscopic fundamental lemmas.

These lecture notes aim to be complementary to other expository papers in this
topics, including [6], [28], [29], [31], [14], [24]. In particular, I won’t discuss the
motivation behind the fundamental lemmas, that has been discussed in [6] and
[14].

We will instead focus on the construction of global moduli spaces for which
one can establish the perverse continuation principle. We emphasize that the
construction of global moduli spaces, in all the cases, follows essentially the same
pattern. The crucial proof of the perverse continuation principle is however very
different in each of these cases. We won’t dive into the details of this part as
for instance the expository paper [31] has been devoted to this purpose in the
endoscopic case.

The paper is divided into five sections. The first section contains standard
materials on Grothendieck’s dictionary of sheaves and functions. In the second
section, the principle of perverse continuation is enunciated. We also discuss,
in this section, various techniques that may be used in establishing this princi-
ple in different geometric situations. The three last sections are devoted to the
construction of moduli spaces related to the fundamental lemma of Jacquet-Ye,
Jacquet-Rallis, Langlands-Shelstad and Waldspurger respectively, and for which
one can establish the principle of perverse continuation by various techniques
presented in section 2.
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The construction of moduli spaces presented in the last three sections are com-
pletely parallel. We start with certain morphisms of algebraic stacks, intrinsically
related to invariant theory, and then consider the space of maps from either the
formal disc or a proper smooth curve into those algebraic stacks. Fibers of the
morphism obtained on the level of space of maps from the formal disc should
be seen as the geometric incarnation of local orbital integrals. Fibers of the mor-
phism obtained on the level of space of maps from the projective curve should
be seen as the geometric incarnation of certain global orbital integrals that are re-
lated to local orbital integrals by a product formula. These global orbital integrals
are those that appear in the geometric side of the relevant trace formula. The per-
verse continuation principle can be established for the global moduli space and
the fundamental lemma can be derived as a local consequence.

1. Grothendieck’s dictionary of sheaves and functions

1.1. The dictionary Let k = Fq denote the finite field with q elements. Accord-
ing to Grothendieck, a scheme X over k can be identified with its functor of points
attaching to each k-algebra A the set X(A) of A-points on X. For many purposes,
instead of all k-algebra A, we may restrict ourselves to field extensions of k.

Let k̄ be an algebraic closure of k, σ(α) = αq the Frobenius elements in
Gal(k̄/k), and for every integer r > 1, let kr = Fix(σr, k̄) be the extension of
degree r of k contained in k̄. For every k-scheme X, the set X(k̄) of k̄-points on
X is equipped with action of σ such that the set X(kr) can be identified with the
set of fixed points of σr in X(k̄). In other words, the set X(k̄) equipped with the
action of σ determines the set of kr-points on X for every finite extension kr of k,
including k itself.

For instance, if X = Spec(R) where R is the quotient of the polynomial ring
k[x1, . . . , xn] by the ideal generated by a finite set of polynomials

P1, . . . ,Pm ∈ k[x1, . . . , xn],

then X(k) is the set of solutions (x1, . . . , xn) ∈ kn of the system of polynomial
equations

(1.1.1) P1(x1, . . . , xn) = 0, . . . ,Pm(x1, . . . , xn) = 0

which is the fixed points set of σ in X(k̄), the set of solutions in k̄.
We won’t recall the definition of `-adic sheaves but will limit ourselves to their

functorial properties permitting the definition of the associated trace function.
For every constructible `-adic sheaves F on an algebraic variety X, there exists a
stratification X =

⊔
α Xα such that the restriction of F to Xα is a local system. A

local system F on Xα is given by a continuous representation of the fundamental
group of Xα.
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If X = Spec(k) is a point, an `-adic sheaf F over X is a continuous representation
`-adic representation of Gal(k̄/k). In this case, we define

tr(F) = tr(σ,Fx̄).

where σ is the Frobenius element in Gal(k̄/k) and Fx̄ is the geometric fiber of F
over a given geometric point x̄ = Spec(k̄) of X. More generally, if F is an `-adic
sheaf over a k-scheme X and if x : Spec(k)→ X is a k-point, then x∗F gives rise to
a continuous representation of Gal(k̄/k) on Fx̄, and thus an `-adic number

trF(x) = tr(x∗F).

Therefore, the `-adic sheaf F gives rise to a function

trF : X(k)→ Q̄`.

The construction of the trace function can be extended to every object F of
the derived category of bounded complex of constructible sheaves Dcb(X, Q̄`) by
setting

trF =

i∑
(−1)itrHi(F)

where Hi(F) are cohomology sheaves of F. Among Grothendieck’s six operations
on the derived categories of `-adic sheaves, tensor product, inverse image, and
direct image with compact support have translations in terms of function trace,
see [20][1.1.1.1-4].

Proposition 1.1.2. (1) Let F,G ∈ Dbc (X, Q̄`), then we have

trF(x)trG(x) = trF⊗G(x)

for all x ∈ X(k).
(2) Let f : X→ Y be a morphism of k-schemes and F ∈ Dbc (Y, Q̄`), then we have

trf∗F(x) = trF(f(x))

for all x ∈ X(k).
(3) If X is a k-scheme of finite type and F ∈ Dbc (X, Q̄`), then for every y ∈ Y(k),

Xy the fiber of f over y, we have∑
x∈Xy(k)

trF(x) = trf!F(y).

These rules constitute the basic dictionary between `-adic sheaves and func-
tions. The two first rules derive directly from the definition of tensor product and
inverse image of `-adic sheaves. The last rule derives from the base change theo-
rem for proper morphisms and the Grothendieck-Lefschetz fixed points formula,
see [SGA5, exp. XII]:

Theorem 1.1.3. If X is a k-scheme of finite type and F is an `-adic sheaf on X, we have

∑
x∈X(k)

trF(x) =
2 dim(X)∑
i=0

(−1)itr(σ⊗k idk̄, Hic(X⊗k k̄,F)).
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1.2. Character sums Important examples of local systems arise from the Lang
isogeny of commutative algebraic groups. Let G be a commutative algebraic
group defined over k, and σ : G → G its geometric Frobenius endomorphism.
The Lang isogeny of G defined as the morphism LG(x) = σ(x)x

−1 is a finite, étale
homomorphism of groups whose kernel is the discrete subgroup G(k). We have
an exact sequence:

0→ G(k)→ G
LG−→ G→ 0.

Every `-adic representation φ : G(k) → GL(V) gives rise to a `-adic sheaf Fφ

on G, by means of the Lang isogeny. Its trace function theoretic shadow can be
described as follows, see [20, 1.3.3.3]:

Lemma 1.2.1. The trace function trFφ : G(k)→ Q̄` is equal to the trace function of the
representation φ:

trFφ(g) = tr(φ(g)).

When G = Ga is the additive group, the Lang isogeny can be expressed as

LGa(x) = x
q − x

in the additive notation. For its kernel is Ga(k) = k, every character ψ : k →
Q̄×` gives rise to a local system of rank one Lψ on Ga, the Artin-Schreier sheaf
attached to ψ. For every x ∈ k, we have trLψ(x) = ψ(x).

When G = Gm is the multiplicative group, the Lang isogeny can be expressed
as

LGm(x) = x
q−1

in the multiplicative notation. For its kernel is Gm(k) = k×, every character
µ : k× → Q̄×` gives rise to a local system of rank one Lµ on Gm, the Kummer
sheaf attached to µ. For every x ∈ k×, we have trLµ(x) = µ(x).

One can thus derive from the dictionary 1.1.2 between `-adic sheaves and func-
tions the cohomological interpretation of character sums. For instance, the sum∑

x∈k
ψ(0) = 0

which is zero for non trivial additive character ψ can be interpreted as∑
x∈k

ψ(x) =

2∑
i=0

(−1)itr(σ⊗k idk̄, Hic(Ga ⊗k k̄,Lψ)).

One can prove that in fact the group Hic(Ga⊗k k̄,Lψ)) vanishes for all i ∈ {0, 1, 2},
see [10, 2.7].

The Gauss sum attached to a multiplicative character µ : k× → Q̄×` and an
additive character ψ : k→ Q̄×` :

G(µ,ψ) =
∑
x∈k×

µ(x)ψ(x)



Ngô Bảo Châu 5

is equal to

G(µ,ψ) =
2∑
i=0

(−1)itr(σ⊗k idk̄, Hic(Gm ⊗k k̄,Lµ ⊗ j∗Lψ))

where j∗Lψ is the restriction to Gm of the Artin-Schreier sheaf on Ga.
Similarly, the Kloosterman sum attached to a ∈ k× and ψ : k→ Q̄×` :

Kl(a,ψ) =
∑
x∈k×

ψ(x+ ax−1)

is equal to

Kl(a,ψ) =
2∑
i=0

(−1)itr(σ⊗k idk̄, Hic(Ka ⊗k k̄, l∗Lψ))

where Ka is the curve in the plane A2 = Speck[x,y] defined by the equation xy =

a, and l is the restriction to Ka of the map l : A2 →A1 given by (x,y) 7→ x+ y.

1.3. The Swan conductors and Euler-Poincaré characteristics When X is an
affine scheme, we have H0

c(X ⊗k k̄,L) = 0 for every local system L as L has
no nonzero compactly supported section over X. If X is a smooth curve, we infer
from the Poincaré duality the equality:

H2
c(X⊗k k̄,L)∨ = H0(X⊗k k̄,L∨(1))

whose right hand side is trivial unless the restriction of L∨ to X⊗k k̄ contains the
constant sheaf. Thus if X is a smooth affine curve and L is a geometrically non
constant and irreducible local system of X, we have

H0
c(X⊗k k̄,L) = H2

c(X⊗k k̄,L) = 0.

The dimension of H1
c can then be derived from the Euler-Poincaré characteristic:

dim H1
c(X⊗k k̄,L) = −χc(X⊗k k̄,L)

that can be calculated by the Grothendieck-Ogg-Shafarevich formula, see [32].

Theorem 1.3.1. Let X̄ be an proper smooth algebraic curve over k, X an open subset of
X̄ and F a local system over X. Then the formula

χc(X⊗k k̄,F) = χc(X⊗k k̄)rk(F) −
∑

x∈X̄−X

Swx(F)

holds.

In the above formula, the Swan conductor Swx(F) of L at x is a certain non
negative integer which depends only on the restriction of L to the punctured
formal disc X•x. We know that:

• Swx(F) = 0 if and only if the representation of local Galois group attached
to the restriction of L to the punctured disc at x is tame.
• If G is a tame `-adic local system at X•x, then

(1.3.2) Swx(F⊗ G) = Swx(F)rk(G)
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Using Theorem 1.3.1 and the formula (1.3.2), one can calculate the Euler-Poincaré
characteristic occurring in the cohomological interpretation of the Gauss sums
and Kloosterman sums. By applying Theorem 1.3.1 to the case X = Ga and
F = Lψ the Artin-Schreier sheaf associated to a certain non trivial additive char-
acter, we derive

Sw∞(Lψ) = 1.

Using (1.3.2) and Theorem 1.3.1 one can show that

dim H1
c(Gm,Lψ ⊗Lµ) = 1.

in the case of the Gauss sum and

dim H1
c(Ka, l∗Lψ) = 2

in the case of the Kloosterman sum.

1.4. The Hasse-Davenport identity Let k ′ denote the quadratic extension of k,
Trk ′/k;k ′ → k and Nmk ′/k : k ′× → k× the trace and norm maps. For every
a ∈ k×, we define the “twisted” Kloosterman sum

Kl ′(a,ψ) =
∑

x∈k ′×,Nm(x)=a

ψ(Tr(a))

for every non trivial additive character ψ : k→ Q̄×` .

Proposition 1.4.1. The equality

(1.4.2) Kl(a,ψ) = −Kl ′(a,ψ)

holds for all a ∈ k× and non trivial additive character ψ : k→ Q̄×` .

We consider the affine curve

Ka = Spec(k[x,y]/(xy− a))

equipped with the morphism l : Ka → Ga given by l(x,y) = x+ y. Let τ denote
the involution of Ka defined by τ(x,y) = (y, x). There exists k-scheme K ′a with
an isomorphism

Ka ⊗k k̄ = K ′a ⊗k k̄

such that the Frobenius σ ′ = σX ′a induces on X ′a ⊗k k̄ the endomorphism

(σ ′ ⊗k idk̄) = (σ⊗k idk̄) ◦ τ.

We can then check that

Fix(σ ◦ τ, Ka(k̄)) = {x ∈ k ′×|Nm(x) = a}.

and thus the Grothendieck-Lefschetz fixed points formula yields the identity

Kl ′(a,ψ) =
2∑
i=0

(−1)iTr((σ⊗k k̄) ◦ τ, Hic(Ka ⊗k k̄, l∗Lψ)).

Now to prove (1.4.2), it is enough to prove the following:
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Lemma 1.4.3. The involution σ acts on Hic(Ka ⊗k k̄, l∗Lψ) as −1.

The morphism l : Ka → Ga is a finite covering of degree 2. By the projection
formula, we have

l∗l
∗Lψ = l∗Q̄` ⊗Lψ.

We observe that τ acts on Ka as a deck transformation with respect to the covering
morphism h : Ka → Ga, and in particular, one can decompose h∗Q̄` as a direct
sum according to the action of τ:

h∗Q̄` = (h∗Q̄`)+ ⊕ (h∗Q̄`)−,

with τ acting on (h∗Q̄`)+ as 1 and on (h∗Q̄`)− as −1. We derive

Hic(Ka, l∗Lψ) = Hic(Ga, (h∗Q̄`)+ ⊗Lψ)⊕Hic((h∗Q̄`)− ⊗Lψ)

with τ acting on Hic(Ga, (h∗Q̄`)+ ⊗Lψ) as 1 and on Hic(Ga, (h∗Q̄`)− ⊗Lψ) as
−1. For (h∗Q̄`)+ is isomorphic to the constant sheaf Q̄` over Ga, we have

Hic(Ga, (h∗Q̄`)+ ⊗Lψ) = Hic(Ga,Lψ) = 0.

It follows that τ acts on Hic(Ka, l∗Lψ) as −1.

2. Purity and perversity

2.1. Deligne’s theorem on weights By choosing an isomorphism ι : Q̄` → C
once for all, we can assign an Archimedean absolute value to every element of
Q̄`. An `-adic sheaf F on X is said to be mixed of weight 6 0 if for every point
x ∈ X(k ′) of X with value in a finite extension k ′ of k, all eigenvalues of σx on
Fx̄, x̄ being a geometric point over x, have Archimedean absolute value at most 1.
We recall now the celebrated theorem of Deligne on weights [9], formely known
as the Weil conjecture.

Theorem 2.1.1. Let X be a k-scheme of finite type, F an `-adic sheaf on X which is
mixed of weight 6 0, then all eigenvalues of σ⊗k idk̄ acting on Hic(X⊗k k̄,F) have
Archimedean absolute values 6 q

i
2 .

Applying this theorem to the case of Gauss sums and Kloosterman sums we
get the estimates

|G(µ,ψ)| 6 q1/2

and
|Kl(a,ψ)| 6 2q1/2.

In fact, we know more:
|G(µ,ψ)| = q1/2

and
Kl(a,ψ) = α+β

where α,β are `adic numbers having Archimedean absolute values q1/2. This
further information can be derived from the Poincaré duality as follows.
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We consider the derived category Dcb(X) of bounded constructible complex of
`-adic sheaves on X. A complex of `-adic sheaves F ∈ Dcb(X) is said to be mixed of
weight 6 0 if for every n ∈ Z, Hi(F) is mixed of weight 6 i. The derived category
Dcb(X) is equipped with the Verdier duality functor D : Dcb(X) → Dcb(X) such
that for every F ∈ Dcb(X), the Poincaré duality holds between the vector spaces
Hic(X⊗k k̄,F) and Hi(X⊗k k̄,D(F)) as vector spaces equipped with action of the
Frobenius endomorphism.

A complex of `-adic sheaves F ∈ Dcb(X) is said to be mixed of weight > 0 if
D(F) is mixed of weight 6 0. It is said to be pure of weight 0 if it is both mixed
of weight 6 0 and mixed of weight > 0.

It follows from Theorem 2.1.1 and the Poincaré duality that if F is mixed of
weight > 0 then the eigenvalues of σ⊗k idk̄ acting cohomology groups without
support condition Hi(X ⊗k k̄,F) have Archimedean absolute value > qi/2. In
the case of Gauss sums and Kloosterman sums, one can show that, on the one
hand, the sheaves Lµ ⊗Lχ on Gm and h∗Lψ on Ka are pure, and on the other
hand, the natural maps from cohomology with compact support to cohomology
without the support condition

Hic(Gm ⊗k k̄,Lµ ⊗ j∗Lψ)→ Hi(Gm ⊗k k̄,Lµ ⊗ j∗Lψ)

and
Hic(Ka ⊗k k̄,h∗Lψ)→ Hi(Ka ⊗k k̄,h∗Lψ)

are isomorphisms, see [10, 4.3, 7.4]. It follows that the eigenvalues of σ⊗k idk̄
acting on these vector spaces have Archimedean absolute values equal to qi/2.

In [11], Deligne proved the following relative variant of the Weil conjecture.
The relative version is much more powerful than its absolute version, especially
while combined with the theory of perverse sheaves. In particular, it is a crucial
ingredient in the implementation of our perverse continuation principle in many
cases.

Theorem 2.1.2. Let f : X → Y be a proper morphism between k-schemes of finite type.
Let F be a complex of `-adic sheaves on X which is pure of weight 0. Then f∗F is also
pure of weight 0.

2.2. Perverse sheaves and the decomposition theorem Deligne’s purity theorem
2.1.2 is greatly reinforced by the theory of perverse sheaves [1]. Let X be a smooth
algebraic variety over k and F is a local system such that for all x ∈ |X|, all
eigenvalues of the Frobenius σx acting on Fx̄ have Archimedean absolute value
1, then the same is true for the dual local system F∨ that is also the Verdier dual
D(F), up to a degree shift. In particular F is a pure sheaf of weight 0. If X is
singular, it is more difficult to construct pure sheaves as the Verdier dual of local
systems are no longer local systems in general.

This difficulty is solved by Goreski-Macpherson’s construction of the interme-
diate extension. If U is a smooth dense open subset of X with j : U→ X denoting
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the open embedding, and F is a pure local system on U, then the intermediate
extension [1, 1.4.22]

K = j!∗F[dimX]

is a pure perverse sheaf. The purity of the intermediate extension follows from
the fact that this functor commutes with the Verdier duality.

The intermediate extensions of local systems are objects of an Abelian sub-
category P(X) of the derived category Dbc (X), namely the category of perverse
sheaves, [1]. The category of perverse sheaves form a heart of a t-structure on
Dbc (X), in the sense that there are cohomological functors Dbc (X) → P(X), de-
noted by

F → pHi(F)

transforming triangles into long exact sequences.

Theorem 2.2.1. [1, 5.1.15(iii)] Every pure complex of sheaves F ∈ Dbc (X) is isomorphic
over X⊗k k̄ to a direct sum of simple perverse sheaves with shift.

If F is a pure complex of sheaves on a k-scheme X, then there exists a non-
canonical isomorphism over X⊗k k̄.

F⊗k k̄ '
⊕
i

pHi(F⊗k k̄)[−i],

and moreover each perverse sheaf pHi(F⊗k k̄) is isomorphic to a direct sum of
simple perverse sheaves

pHi(F⊗k k̄) =
⊕

α∈Ai(F)

Kα.

where Ai is a certain finite set of indices. We denote A(F) =
⊔
i∈Z Ai(F).

According to [1, 4.3.1], for every simple perverse sheave Kα, there exists an
irreducible closed subset Zα of X⊗k k̄, a dense smooth open subset Uα of Zα, an
irreducible local system Lα on Uα such that

Kα = iα,∗jα,!∗Lα[dim(Zα)]

where jα is the open embedding Uα → Zα and iα is the closed embedding
Zα → X⊗k k̄.

We consider the finite set

(2.2.2) Supp(F) = {Zα | α ∈ A(F)}

of irreducible closed subsets of X⊗k k̄. We may see this set as the set of loci where
F undergoes significant changes in the perverse perspective.

Let f : X→ Y be a proper morphism of k-schemes of finite type. If F is a pure
complex of sheaves on X, the derived direct image f∗F is also pure after Theorem
2.1.2. Thus the definition (2.2.2) applies to f∗F. If moreover X is smooth, then the
constant sheaf Q̄` is pure, and we set

Supp(f) = Supp(f∗Q̄`).
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In many circumstances, the determination of Supp(F), Supp(f) is an important
ingredient for the application of Grothendieck’s dictionary to problems in number
theory and harmonic analysis.

2.3. Perverse continuation method The determination of supports of pure sheaves
pertains to a method of proving certain equalities by perverse continuation. The
typical argument can often run as follows.

Let f1 : X1 → Y and f2 : X2 → Y be proper morphisms between k-schemes of
finite type. Assume that both X1 and X2 are smooth and Y is irreducible. Assume
also that:

(1) there exists a non empty open subset U of Y such that for every point
y ∈ U(k ′) of U with values in some finite extension k ′ of k, there are the
same number of k ′-points in the fibers f−1

1 (y) and f−1
2 (y);

(2) both Supp(f1) and Supp(f2) are the singleton of element Y ⊗k k̄.

In this situation, one can conclude that for every point y ∈ Y(k ′) of Y with value
in some finite extension k ′ of k, the equality

#f−1
1 (y)(k ′) = #f−1

2 (y)(k ′)

of numbers of k ′-points in the fibers of f1 and f2, holds.
Let us denote F1 = f1∗Q̄` and F2 = f2∗Q̄`. For Supp(f1) = Supp(f2) = {Y⊗k k̄},

by restricting further the open subset U, we may assume that there exist local
systems Li1,Li2 on U such that

pHi(F1) = j!∗L
i
1 and pHi(F2) = j!∗L

i
2

with j being the open embedding U→ X.
The first assumption implies that for every point y ∈ U(k ′), if σy is the Frobe-

nius conjugacy class in π1(U) associated to y, then∑
i

(−1)itr(σy,Li1) =
∑
i

(−1)itr(σy,Li2).

For Li1 and Li2 are pure local systems of weight i, one can separate the above
identity in to a family of identities for each i

tr(σy,Li1) = tr(σy,Li2).

After the Chebotarev density theorem, we infer that Li1 and Li2 are isomorphic up
to semisimplification.

Although the intermediate extension functor is not exact in general, we can still
derive that pHi(F1) = j!∗L

i
1 and pHi(F2) = j!∗L

i
2 are isomorphic up to semisim-

plification under the assumption Supp(F1) = Supp(F2) = {X⊗k k̄}. Indeed, if
0→ A→ B→ C→ 0 is an exact sequence of local systems of on U, then we have
a sequence

(2.3.1) 0→ j!∗A→ j!∗B→ j!∗C→ 0
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where α : j!∗A → j!∗B is injective and β : j!∗B → j!∗C is surjective, however
im(α) may be strictly smaller than ker(β), see [8, 2.7]. Nevertheless, under the
assumption that B is geometrically semisimple and Supp(B) = {X⊗k k̄}, the sub-
quotient ker(β)/im(α), being supported on X−U, ought to vanish, and therefore
the sequence (2.3.1) is exact.

We have proved that for all i there exists an isomorphism pHi(F1) ' pHi(F2).
The conclusion on equalities of number of points on fibers of f1 and f2 follows
from the Grothendieck-Lefschetz formula.

The above argument demonstrated the power of the assumption on the sup-
port. This is the reason why the determination of the support is usually a hard
problem. For this purpose, there are different methods which may be applied
in various situations: the Fourier-Deligne transform, the Goresky-MacPherson
theorem for small maps, and the support theorem for abelian fibrations. One
should also mention the recent theorem of Migliorini-Shende asserting that the
set of supports is a subset of the set of higher discriminants [22] in characteristic
zero case. It would be very interesting to generalize their theorem to the case of
positive characteristic.

We will present three problems of harmonic analysis that can be solved with
help of this method: the fundamental lemma of Jacquet-Ye, Jacquet-Rallis and
Langlands-Shelstad where those methods can be respectively applied.

2.4. The Fourier-Deligne transform Let S be an algebraic variety over k. Let
pV : V → S be a vector bundle of rank n, pV∨ : V∨ → S the dual vector bundle.
We consider the cartesian product V ×S V∨ equipped with the projection prV :

V ×S V∨ → V , prV∨ : V ×S V∨ → V∨ and the canonical pairing

µ : V ×S V∨ → Ga.

The Fourier-Deligne transform is the functor

FD : Dbc (V)→ Dbc (V
∨)

defined by
FD(F) = prV∨,!(pr∗VF⊗ µ

∗Lψ)[n]

The following theorem on the Fourier-Deligne transform has been proven by Katz
and Laumon in [18] and [20, 1.3.2.3].

Theorem 2.4.1. The Fourier-Deligne transform preserve perversity:

FD : P(V)→ P(V∨).

Moreover, if S ′ is an open subset of S, jV : VS ′ → V and jV∨ : V∨

S ′ → V∨ the open
subsets of V and V∨ induced by base change, if F = jV ,!∗j

∗
VF then

FD(F) = jV∨,!∗j
∗
V∨FD(F)
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2.5. Small maps Let X, Y be algebraic varieties over k. Let f : X→ Y be a proper
surjective morphism. We say that f is a semismall map if

dim(X×Y X) 6 X.

We say it is small if moreover for every irreducible component Z of X×Y X of
dimension equal to dimension of X, the induced map Z → X is surjective. The
following theorem, due to Goresky and MacPherson, can be proven by simple
dimension counting, see [13, p. 120] .

Theorem 2.5.1. Let f : X → Y be a small map. Assume that X is smooth, then
F := f∗Q`[dim(Y)] is a perverse sheaf. Moreover, for every dense open subset U with
embedding j : U→ X, we have F = j!∗j

∗F.

Important instances of small maps are the Grothendieck-Springer simultane-
ous resolution [34], and the Hilbert scheme of zero-dimensional subschemes of a
smooth surface, as small resolution of the Chow scheme [25]. Both have impor-
tant applications in representation theory.

2.6. Support theorem for abelian fibrations We define abelian fibration to be the
following data:

• f :M→ S is a proper morphism of relative dimension d,
• g : P → S is a smooth commutative group scheme acting on M i.e.

equipped with a morphism P×SM → M satisfying all the usual axioms
of group action,

• for generic points s ∈ S, Ps acts simply transitively on Ms,
• for every geometric point s ∈ S and m ∈ Ms, the stabilizer Stabm(Ps) is

an affine subgroup of Ps.

For every geometric point s ∈ S, the group fiber Ps can be decomposed as
follows. First, we have the exact sequence

0→ P0
s → Ps → π0(Ps)→ 0

where π0(Ps) is the group of connected components of Ps and P0
s its neutral

component. The neutral component itself can be further decomposed into an
exact sequence:

0→ Rs → Ps → As → 0

where As is an abelian variety and Rs is a connected affine group, according to a
theorem of Chevalley and Rosenlicht, see [33], [5]. We refer to [5] for a modern
treatment of the Chevalley-Rosenlicht theorem.

We can stratify S by the dimension of the affine part δs = dim(Rs):

S =
⊔
δ

Sδ

with
Sδ(k̄) = {s ∈ S(k̄)|δs = δ}
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We say that P is δ-regular if for every δ > 0, we have

codim(Sδ) > δ.

The condition of δ-regularity is automatically satisfied by all algebraic integrable
system over C, see [31]. For certain families of Jacobians, the δ-regularity has
been proven by Melo, Rapagneta and Viviani [21].

There is yet another technical condition in the statement of the support theo-
rem. We say that P/S is polarizable if there exists an alternating form λ on the
sheaf of Tate modules

H1(P/S) = H2d−1(g!Q`)

such that over every geometric point s ∈ S, λ annihilates the Tate module H1(Rs)

of the affine part, and induces a non-degenerate form on the Tate module H1(As)

of the abelian part.

Theorem 2.6.1. Let f :M→ S and g : P → S form an abelian fibration that is δ-regular
and polarizable. Assume that M is smooth.

(1) If the geometric fibers Ms are irreducible then all irreducible perverse sheaves
that are direct factors of f∗Q` have support S.

(2) More generally, Ms no longer being assumed irreducible, if Z is the support of a
simple perverse sheaf occurring as a direct factor of f∗Q`, if iZ : Z→ X denotes
the closed embedding of Z in X, then in a étale neighborhood of the generic point
of Z, iZ∗Q`Z is a direct factor of the sheaf H2df∗Q̄` of cohomology of top degree
of f.

For more information about the support theorem for abelian fibrations, the
readers may consult [31], and for a generalization in the characteristic zero case
[22].

3. Double unipotent action

3.1. Invariant functions Let A denote the subgroup of diagonal matrices and U
the subgroup of unipotent upper triangular matrices in G = GLn. We denote
g = gln the space of n× n-matrices. We consider the action of U×U on g given
by x 7→ >u−xu+ with x ∈ g, u−,u+ ∈ U, >u− being the transpose matrix of u−.

Let V denote the standard n-dimensional k-vector space, and v1, . . . , vn its
standard basis. Let V∨ denote the dual vector space, and v∨1 , . . . , v∨n the dual
basis. We consider the function ei ∈ k[g] given by

ei(x) = 〈v∨1 ∧ · · ·∧ v∨i , x(v1 ∧ · · ·∧ vi)〉.

In terms of matrices, ei(x) is the determinant of the (i× i)-square matrix located
in the upper left corner of x. We observe that for u−,u+ ∈ U, we have

(>u−)−1(v∨1 ∧ · · ·∧ v∨i ) = v
∨
1 ∧ · · ·∧ v∨i and u+(v1 ∧ · · ·∧ vi) = v1 ∧ · · ·∧ vi
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It follows that

ei(>u−xu+) = 〈(>u−)−1(v∨1 ∧ · · ·∧ v∨i ), xu
+(v1 ∧ · · ·∧ vi)〉 = ei(x),

and therefore ei is an U×U-invariant function on g i.e. ei ∈ k[g]U×U. We obtain
a U×U-invariant morphism

e : g→ e = Spec(k[e1, . . . , en])

It is clear that G = GLn is the inverse image of the open subset of e defined by
en 6= 0.

Let e◦ denote the open subset of e defined by the conditions ei 6= 0 for all i:

e◦ = Spec(k[e±1
1 , . . . , e±1

n ]).

The restriction of e to the diagonal torus A defines an isomorphism e|A : A→ e◦

mapping the diagonal matrix of entries (a1, . . . ,an) to the point in e of coordinates
(e1, . . . , en) with e1 = a1, e2 = a1a2, . . . , en = a1 . . .an. The inverse map a : e◦ →
A defines a section of e over e◦. Using this section, we define a map

(3.1.1) e◦ ×U×U→ f−1(e◦) = g◦

given by (d,u−,u+) 7→ >u−a(d)u+ that is an isomorphism.
It will be convenient to repackage the above discussion in the language of

algebraic stacks.

Proposition 3.1.2. The invariant functions e1, . . . , en define a morphism:

[e] : [g/(U×U)]→ e

which is an isomorphism over e◦.

One can derive from this proposition that the algebra k[g]U×U of functions on
g invariant under the action of U×U is the polynomial algebra:

k[g]U×U = k[e1, . . . , en].

Indeed the k[g]U×U consists of regular functions on g whose restriction to fg◦ is
U×U-invariant. In other words, we have the equality

k[g]U×U = k[e±1
1 , . . . , e±1

n ]∩ k[g]

whose right hand side is k[e1, . . . , en]. We won’t need this fact in the sequel.

3.2. The Klossterman orbital integrals Let F be a nonarchimedean local field, O
its ring of integers, k = O/m its residue field. We will denote val : F× → Z the
valuation. We also choose a generator $ of the maximal ideal m with help of
which we can define a residue map res : F → k. We fix a non trivial character
ψ : k → Q̄×` and by composing it with the residue map we obtain a character
ψF : F→ Q̄×` of conductor O.
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We equip U(F) with the Haar measure such that U(O) is of volume one. We
consider the character

ψU(u) =

n−1∑
i=1

ψF(ui,i+1)

where ui,i+1 are the entries of u that are located just above the diagonal.
For every function φ ∈ C∞

c (g(F)), we consider the integral

(3.2.1) Klφ(a) =
∫
U(F)×U(F)

φ(>u−au+)ψU(u
−)ψU(u

+)du−du+

depending of a ∈ A(F). The orbit of U(F)×U(F) passing through a is the fiber
of f : g(F) → e(F) over f(a), and in particular it is a closed subset of g(F). Since
the action U × U is free at a, this orbit is isomorphic with U(F) × U(F). The
restriction of φ to the fiber of f : g(F) → e(F) over f(a) defines thus a locally
constant function with compact support in U(F)×U(F). These integrals appear
in the geometric side of the Kuznetsov trace formula for GL(n).

We will restrict to the case φ = Ig(O):

(3.2.2) Kl(a) =
∫
U(F)×U(F)

IG(O)(
>u−au+)ψU(u

−)ψU(u
+)du−du+.

The local harmonic analysis of the Kuznetsov trace formula consists in under-
standing the space of all functions Klφ(a) along with its basic function Kl(a).

Jacquet and Ye have introduced a twisted version of these integrals. Let F ′

denote the unramified quadratic extension of F, O ′ its ring of integers whose
residue field k ′ is the quadratic extension of k. Let us denote x 7→ x̄ the Galois
conjugation in k ′/k and F ′/F. We consider the Haar measure on U(F ′) such that
U(O ′) is of measure one, and the character ψ ′U : U(F ′)→ Q̄×` given by

ψ ′U(u) =
n−1∑
i=1

ψF(trF ′/Fui,i+1).

For every a ∈ A(F), Jacquet and Ye consider the integral:

Kl ′(a) =
∫
N(F ′)

Ig(O ′)(
>ūau)ψ ′U(u)dx.

In [17] , Jacquet and Ye have conjectured the following identity. It has first been
proved in [26] in the case where F is a local field of Laurent formal series, and later
transferred to p-adic fields for for large p by Cluckers and Loeser [4]. Jacquet has
also proved the p-adic case by a completely different method [16]. We also note
that Do Viet Cuong has proved a similar fundamental lemma in the metaplectic
case [12] by a method similar to [26].

Theorem 3.2.3. If we denote

r(a) = val(a1) + val(a1a2) + · · ·+ val(a1 . . .an−1)

where (a1, . . . ,an) are the entries of the diagonal matrix a ∈ A(F), then the equality

Kl(a,ψU) = (−1)r(a)Kl ′(a,ψU)
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holds.

The matrix calculation in the case G = GL2:[
1 0

x 1

][
a1 0

0 a2

][
1 y

0 1

]
=

[
a1 a1y

a1x a1xy+ a2

]
shows that we need to determine the set of x,y ∈ F/O such that the matrix in the
right hand side has integral coefficients. For instant, if we assume that val(a1) = 1,
then x,y ∈ $−1O. Let u, v ∈ k denote the free coefficients of the formal series a1x

and a1y respectively, and α the free coefficient of a1a2, then

Kl(a,ψU) =
∑
uv=α

ψ(u+ v)

is an usual Kloosterman sum.

3.3. Cohomological interpretation of the Kloosterman integral Computing the
Kloosterman integral (3.2.2) boils down to counting the set

Ka = {(u−,u+) ∈ U(F)/N(O)×U(F)/N(O) |>u−au+ ∈ g(O) }

For di(>xay) = di(a), this set is empty unless d1(a), . . . ,dn(a) ∈ O.
Assume that F is the field of Laurent formal series of variable $ with coeffi-

cients in the finite field k. It is not difficult to see that Ka can be given a structure
of finite dimensional algebraic variety over k, which is equipped with a morphism
l : Ka → Ga such that

l(u−,u+) =
n−1∑
i=1

res(u−i,i+1 + u
+
i,i+1)

so that
Kl(a) =

∑
m∈Ka(k)

ψ(l(m)).

By applying the Grothendieck-Lefschetz formula, we get

Kl(a,ψU) =
∑
i

(−1)itr(σ, Hic(Ka ⊗k k̄), l∗Lψ).

The twisted Kloosterman integral can also be interpreted similarly. If τ :Ma →
Ma denote the involution τ(x,y) = (y, x), then we have

Kl ′(a,ψU) =
∑

m ′∈Fix(σ◦τ,Ka)

ψ(l(m)).

By applying the Grothendieck-Lefschetz formula, we get

Kl ′(a,ψU) =
∑
i

(−1)itr(σ ◦ τa, Hic(Ka ⊗k k̄), l∗Lψ).

The identity (3.2.3) follows from the following:

Theorem 3.3.1. For every a ∈ A(F) such that a1,a1a2, . . . ,a1a2 . . .an ∈ O, the invo-
lution τ acts on Hic(Ka ⊗k k̄, l∗Lψ) as (−1)r(a).
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We observe that Ka is empty unless e1, e2, . . . , en ∈ O where ei = a1 . . .ai.
Assuming that val(dj) = 0 for j 6= i and val(di) = 1 for a given index 1 6 i 6 n−1,
one can show that Ma is of the form

{(u, v) | uv+α = 0}

for some α ∈ k×, h(u, v) = u+ v. In this case, the involution τ acts on Hic(Ma⊗k
k̄, l∗Lψ) as it was shown in the case of usual Kloosterman sums.

3.4. Arc spaces and families of Kloosterman integrals To study geometrically
families of local orbital integrals, it is best to use the concept of formal arcs on va-
rieties and algebraic stack. Although this approach still lacks rigorous foundation,
and has not been used in practice so far, it often offers an useful viewpoint.

We will denote D = Spec(k[[t]]) and D• = Spec(k((t)). Let X be an algebraic
variety over k, X◦ an open subset of X. We consider the formal arc space LX of X
that is an infinite dimensional over k such that

LX(k) = X(k[[t]]),

in other words, k-points of LX are maps x : D → X. We are mostly interested in
the open subset L◦X of maps D→ X whose restriction to D• has image in X◦.

If we want to put the varieties Ka in family, it will more convenient to use,
instead of a = (a1, . . . ,an), the parameter e = (e1, . . . , en) where ei = a1 . . .ai.
We will write Ke instead of Ka. By construction ei ∈ F× and we have seen that
Ke is empty unless ei ∈ O. Thus e = (e1, . . . , en) is a k-point of L◦e where e = An

and e◦ = Gm
n.

For every e ∈ L◦e, the variety Ke can be identified with the space of maps

x : D→ [g/U×U]

lying over the map e : D → e. In particular the restriction of x to D• has image
in [g◦/U×U] where g◦ is the inverse image of c◦.

Formally at least, we can consider the “arc stack” L([g/(U×U)]) of maps

x : D→ [g/(U×U)]

and its open part L◦([g/(U×U)]) consisting in maps x as above whose restriction
to D• has image in [g◦/U×U]. As opposed to the whole arc stack L([g/(U×
U)]), we expect its open part L◦([g/(U×U)]) to be a space instead of stack. The
varieties Ka can now be seen as the fibers of the map

L◦([g/(U×U)])→ L◦e.

3.5. Global family For only few information about the varieties Ka is available,
it is almost hopeless to calculate Hic(Ka⊗k k̄, l∗Lψ) explicitly. It may be tempting
to try to put Ka and Hic(Ka⊗k k̄,h∗Lψ) in family, and prove Theorem 3.3.1 by the
perverse continuation principle , similar to the argument outlined in Subsection
2.3.
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Experiences show that instead of local orbital integrals, it is often more effective
to consider families of global orbital integrals. Such a family of global orbital
integrals appears naturally in the geometric side of the trace formula, and in the
present case, it appears in the geometric side of the Kuznetsov trace formula.

Global Kloosterman integral is just a product of local Kloosterman integrals. In
a family of global Kloosterman integrals, a generic member is product of many
local integrals which are all very simples. As proving 3.3.1 is not difficult for
a generic member in the family of global Kloosterman integrals, the perverse
continuation principle would allow us to derive the statement like 3.3.1 for the
special members from the generic members.

The construction of the global family f : K→ E will depend on some auxiliary
data: a smooth projective curve C and a divisor D. We will denote TD the Gm-
torsor associated to the line bundle OC(D). We observe that the scalar action of
Gm on g commutes with the action of U×U, and induces an action of Gm on e:

t(e1, . . . , en) = (te1, . . . , tnen).

The morphism [g/U×U] → e is then Gm-equivariant. Over T, we can twist by
means of the Gm-torsors T:

[g/U×U]∧Gm TD → e∧Gm TD.

We define K to be the space of maps

x : C→ [g/U×U]∧Gm TD

whose restriction to the generic point of C has image lying in [g◦/U×U]. One
can prove that K is an algebraic space of finite type.

We define E(C,D) to be the space of morphisms

e : C→ e∧Gm TD

that map the generic point of C in e◦. It is easy to see that

E =

n∏
i=1

(H0(C,OC(iD)) − {0})

In order to describe the fibers of K→ E in terms of local Kloosterman varieties,
we will choose uniformizing parameters at every point v ∈ D so that OC(D) has
a trivialization at each formal disc Cv. Let C ′ denote the biggest open subset of
C being mapped to e◦. Then the restriction of x to C ′ is completely determined
by the restriction of e to C ′. It follows that

Ke =
∏

v∈C−C ′

Ke,v.

In order to define the family of global Kloosterman integrals, we need to fix
some additional data. We choose a nonzero rational 1-form ω and denote div(ω)

its associated divisor. Let E ′ denote the open subset of E of points e = (e1, . . . , en)
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such that
div(e)∩ div(ω) = ∅.

where div(e) = div(e1) + · · ·+ div(en). For every e ∈ E ′, we have an embedding

Ke =
∏

v∈div(e)

Ke,v ↪→
∏

v∈div(e)

(U(Fv)/U(Ov))
2.

For every v /∈ div(ω), we have a map

U(Fv)/U(Ov)→ Ga

given by

u 7→
n−1∑
i=1

res(ui,i+1ω).

This induces a morphism l : K ′ → Ga where K ′ is the pre image of E ′ by the
morphism f : K→ E. We denote f ′ : K ′ → E ′ the restriction of f to K ′.

Conjecture 3.5.1. Up to a shift, f!l
∗Lψ is a perverse sheaf which is the intermediate

extension of a local system of rank 2
(n−1)n

2 deg(D) over the open subset E ′′ of E ′ defined
by the condition div(e) being multiplicity free.

3.6. Coordinate calculation in a special case This conjecture has been proven in
[26] in one special case where f : K ′ → E ′ and l : K ′ → Ga can be described
explicitly in terms of coordinates. Let C be the projective line P1 of coordinate t
given as a global section of O(1) vanishing at ∞, and the meromorphic 1-form dt
with a double pole at ∞. In this case

E =

n∏
i=1

H0(P1,OP1(i∞)).

The open subset E ′ of E consisting of e = (e1, . . . , en) with ei ∈ H0(P1,OP1(i∞))

such that the div(ei) is prime to ∞, in other words ei is a polynomial of degree i
in the variable t.

The inverse image K ′ of E ′ in K can be described in coordinats as follows. First
we observe that every U-torsor over P1 is trivial because H1(OP1) = 0. It follows
that the stack BunU of principal U-torsor over P1 has only the trivial object whose
automorphism group is U. We also observe that the space

H0(g∧Gm TD) = {x0 + x1t | x0, x1 ∈ g}

and thus the space of maps

C→ [g/U×U]∧Gm TD

is the quotient of g × g by U × U where U × U acts diagonally on g × g. The
condition that ei(x0 + x1t) is a polynomial of degree i, for every i, implies that
x1 ∈ G0. It follows that a point K ′ can be uniquely represented under the form
x + αt with x being an arbitrary matrix, and α ∈ A is the invertible diagonal
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matrix:
α = diag(α1,α−1

1 α2, . . . ,α−1
n−1αn).

where αi 6= 0 denote the coefficient of ti in the polynomial ei. In other words,
we have

K ′ = g×A.

One can show by direct calculation that the function l is given by the formula

l(x,α) =
n−1∑
i=1

α−1
i−1αi(xi,i+1 + xi+1,i)

In this very special case, with help of these coordinates, we proved the conjecture
3.5.1 in [26] by an induction argument based on the Fourier-Deligne transform.
Although this special case of 3.5.1 is enough to deduce the Jacquet-Ye fundamen-
tal lemma in positive characteristic, it is of interest to find a proof of 3.5.1 in
general.

4. Action of GLn−1 on gln by conjugation

4.1. Invariant functions Let V be a n-dimensional vector space, V∨ its dual. We
pick v ∈ V and v∨ ∈ V∨ a vector and a covector such that 〈v∨, v〉 = 1. Let G =

GL(V) and H the subgroup of G consisting of elements g ∈ G such that gv = v

and gv∨ = v∨. We have H ' GLn−1. Since G = GL(V) acts transitively on the set
of pairs of vectors (v, v∨) satisfying 〈v∨, v〉 = 1, one can identify the classifying
stack BH of H with the stack of triples (V , v, v∨) satisfying 〈v∨, v〉 = 1. It follows
that one can identify [g/H] with the algebraic stack classifying the quadruples
(V , x, v, v∨) where V is a n-dimensional vector space, x ∈ End(V), v ∈ V , v∨ ∈ V∨

are vector and covector such that 〈v∨, v〉 = 1.
We will also consider the algebraic stack Y classifying quadruple (V , v, v∨, x)

as above but without the equation 〈v∨, v〉 = 1. If y : Y → Ga is the map
(V , x, v, v∨) 7→ 〈v∨, v〉, then [g/H] can be identified with the fiber Y1 of Y over
the point 1 ∈ Ga. We are going to investigate regular algebraic functions on Y

and Y1 that are, in the latter case, H-invariant functions on g.
We note that [g/G] is the classifying stack of pairs (V , x) where V is a n-

dimensional vector space and x ∈ End(V). Let ai : g→ Ga denote the functions

ai(x) = tr(∧ix)

for i = 1, . . . ,n. The functions a1, . . . , an are G-invariants. In other words, we
have a map

(4.1.1) a : [g/G]→ a = Spec(k[a1, . . . , an]).

We also denote a : Y→ a the induced map obtained by composing the forgetting
morphism Y→ [g/G] with a : [g/G]→ a.
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We consider the vector bundle of rank n over a whose fiber over a ∈ a(k) is

(4.1.2) ra = k[x]/(xn − a1xn−1 + · · ·+ (−1)nan).

We observe that r can be trivialized, as a vector bundle over a, by means of the
sections 1, x, . . . , xn−1.

Let b denote the dual vector bundle of r. For every a ∈ a(k), the fiber of b

over a is ba = Hom(ra,k). We observe that ba is equipped with a structure of
ra-module, and since ra is Gorenstein, ba is a free ra-module of rank one. As a
vector bundle over a, b can also be trivialized

b = Spec(k[a1, . . . , an, b0, b1, . . . , bn−1]) = A2n

by means of the basis that is dual to the basis 1, x, . . . , xn−1 of r. With these coordi-
nates we will identify a point of b with a pair (a,b) where a = (a1, . . . ,an) ∈An

and b = (b0, . . . ,bn−1) ∈An.
We consider the map of vector bundles over b

(4.1.3) γ : r×a b→ b×a b

given by (r,b) 7→ (rb,b) given by the structure of ra-module of ba for every a ∈ a.
Its determinant defines a divisor of b. Since both r and b are trivial vector bundles,
the determinant divisor is principal and can be given by a regular function

det(γ) ∈ k[a1, . . . , an, b0, b1, . . . , bn−1].

Let breg denote the complement of this divisor. By construction (a,b) ∈ breg if
and only if b is a generator of ba as ra-module.

We have a morphism

(4.1.4) b : Y→ b

mapping b(V , x, v, v∨) = (a,b) defined as follows. We set a = a(V , x). We set
b ∈ ba to be the linear form b : ra → k defined by

r 7→ 〈v∨, rv〉.

In terms of coordinates, we have

(4.1.5) bj(V , x, v, v∨) = 〈v∨, xjv〉

for all j = 0, 1, . . . ,n− 1.
Next we will need next a piece of linear algebra:

Lemma 4.1.6. Over Y, the morphism of vector bundles γ×b Y factors as the composition
of linear maps of vector bundles over Y:

r×a Y
cv−→ V

c
v∨−→ b×a Y

where

• V is the vector bundle over Y whose fiber over a point (V , x, v, v∨) is V ;
• over a point y = (V , x, v, v∨) ∈ Y with a = a(y), cv : ra → V is the linear map

given by r 7→ rv;
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• over a point y = (V , x, v, v∨) ∈ Y with a = a(y), cv∨ : V → ba is dual to the
map cv∨ : ra → V∨ given by r 7→ rv∨.

In particular, the divisor b−1(div(det(γ))) is the union of the divisors of det(cv) and
det(cv∨) on Y.

Proof. Let y = (V , x, v, v∨) ∈ Y and r ∈ ra with a = a(V , x). We need to prove that
the equality

rb(y) = cv∨(cv(r))

holds in ba. By inspecting formulas, one can see that both sides represent the
linear form on ra:

r ′ 7→ 〈v∨, r ′rv〉

therefore define the same element of ba. �

We now observe that there is a section of (4.1.4)

k : b→ Y

mapping (a,b) ∈ b to the quadruple (V , x, v, v∨) with V = ra as in (4.1.2), x ∈
Endk(ra) is the multiplication by x, v0 = 1 and v∨0 = b ∈ ba.

Proposition 4.1.7. The morphism (4.1.4) induces an isomorphism over breg.

Proof. We only need to prove that if (V , x, v, v∨) is points of Y over (a,b) ∈ breg

then there exists a unique isomorphism between k(a,b) and (V , x, v, v∨).
Since det(γa,b) 6= 0, γa,b : ra → ba is an isomorphism. Since γa,b : ra → ba

factors through cv : ra → V , cv is injective. For dimension reason, we infer that
cv is bijective. By construction cv maps a ∈ ra to v ∈ V , and the inverse of its
dual maps b to v∨. This map induces the unique isomorphism between k(a,b)
and (V , x, v, v∨). �

We also observe that by restriction, we obtain a morphism

(4.1.8) b : Y1 → b1

where b1 is the subscheme of b defined by the equation b0 = 1. By restricting k
to b1, we obtain a section of (4.1.8). We will denote by f : g → b1 the morphism
induced from b : [g/H] → b1. Let gH−reg the open subset of g defined as the
pre image of b

reg
a , a matrix x ∈ gH−reg will be said H-regular. By the above

proposition, the morphism

freg : gH−reg → b
reg
1

is a H-principal bundle.

4.2. Untwisted integrals Let O = k[[t]] denote the ring of formal series in the
variable t, F = k((t)) its quotient field. For every (a,b) ∈ breg(F), the fiber of
g → b over (a,b) is a H-principal homogenous space over F. Since H1(F,H) = 0,
f−1(a,b)(F) is non empty.
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Let x ∈ gH−reg(F) mapping to (a,b) ∈ breg(F). For every function φ ∈
C∞
c (g(F)), we consider the integral

(4.2.1) JR(x) =
∫
H(F)

φ(h−1xh)dh.

where dh is the Haar measure on H(F) for which H(O) has volume one. Since the
map h 7→ h−1xh induces a homeomorphism from H(F) to the fiber of f : g(F) →
b1(F) over (a,b), the preimage of every compact subset of g(F) is a compact subset
of H(F). We infer the convergence of the integral (4.2.1).

We will restrict ourselves to the case φ = Ig(O). In that case the integral (4.2.1)
is the cardinal of the set

Nx = {h ∈ H(F)/H(O) | h−1xh ∈ g(O)}

which is necessarily finite by the above compactness argument. We also observe
that this set is empty unless (a,b) ∈ b1(O).

Because H acts freely on gH−reg, the map h 7→ h−1xh defines a canonical
bijection from Nx on the set Na,b of H(O)-orbits in the set of y ∈ g(O) such that
f(y) = (a,b). Given (a,b) : Spec(O) → b whose restriction to Spec(F) has image
in breg, Na,b is the space of maps

y : D→ Y

lying over (a,b) : D→ b.
Now we will give a more concrete description of Na,b.

Proposition 4.2.2. Let (a,b) ∈ b(O) ∩ breg(F). Then there is a canonical bijection
between Na,b with ra-submodule V of ba such that

(4.2.3) γa,b(ra) ⊂ V ⊂ ba.

Proof. Let (a,b) ∈ b(O) ∩ breg(F). By definition, the O-linear morphism γa,b :

ra → r∨a becomes after tensorization with F. It follows that γa,b : ra → b∨
a is

injective.
A morphism y : D → Y consists of a quadruple (V, x, v, v∨) with V being a

O-module free of rank n, x ∈ End(V), v ∈ V and v∨ ∈ V∨. Assume that y maps
to (a,b) ∈ b(O) ∩ breg(F). By Lemma 4.1.6, γa,b : ra → b∨

a factorizes as the
composition of two maps

ra
cv−→ V

c
v∨−→ ba.

Because the γa,b ⊗ F is an isomorphism, and ra, V , and ba are all of rank n, both
cV ⊗ F and cv∨ ⊗ F are isomorphism. Thus V can be identified with its image in
ba that is a ra-lattice satisfying the relation of inclusion (4.2.3).

Conversely let V be a ra-lattice satisfying the relation of inclusion (4.2.3). We
note α : ra → V the map induced by the inclusion γa,b(ra) ⊂ V. Then we can
construct the quadruple (V, x, v, v∨) by setting x to be the endomorphism of V

given by the action of x ∈ ra, v = α(1) the image of a ∈ ra, and v∨ = α∨(b) the
image of b ∈ ba. �
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4.3. Twisted integrals There are several twisted versions of the Jacquet-Rallis
integrals (4.2.1). On the one hand, we consider the twisted orbital integral with
respect to the unramified quadratic character F× → {±1}:

(4.3.1) JRη(x) =
∫
H(F)

Ig(O)(h
−1xh)η(det(h))dh.

On the other hand, we can consider the unramified quadratic extension F ′/F,
and the associated quasi-split unitary group Un−1 acting on the space of n× n
Hermitian matrices sn:

(4.3.2) JR ′(x ′) =
∫
Un−1(F)

Isn(O)(g
−1x ′g)dg.

When x and x ′ match in the sense that they have the same image in b(F), Jacquet
and Rallis conjectured the equality

JRη(x) = ±JR ′(x ′)

holds. This equality has been proven by Z. Yun, see [35] . We refer to loc. cit for
more precision about the sign appearing in the equality.

4.4. Global model Prior to the construction of global model, we observe that
there is an action of Gm ×Gm on Y defined by

(α,β)(V , x, v, v∨) = (V ,αx, v,βv∨).

By formula (4.1) and (4.1.5), we have a compatible action of Gm
2 on b defined by

the formula:

(α,β)(a,b) = (αa1,α2a2, . . . ,αnan,βb0,αβb1, . . . ,αn−1βbn−1).

We derive a morphism of algebraic stacks:

[Y/Gm ×Gm]→ [b/Gm ×Gm].

The global data will consist of a smooth projective curve C over k and two
divisors D and E of large degrees. Let O(D) and O(E) denote the associated line
bundles on C. We consider the space B of maps

(a,b) : C→ [b/Gm ×Gm]

lying over the map C → B(Gm ×Gm) given by the line bundles O(D) and O(E).
By definition, B is the finite dimensional vector space:

B =

n⊕
i=1

H0(C,O(iD))⊕
n−1⊕
j=0

H0(C,O(jD)⊗O(E)).

We consider the space N of maps

y : C→ [Y/Gm ×Gm]

lying over the map C → B(Gm ×Gm) given by the line bundles O(D) and O(E).
We have a a morphism

f : N→ B



Ngô Bảo Châu 25

induced by the Gm ×Gm-equivariant morphism Y → b. Let B ′ denote the open
subset of B of those morphisms C→ [b/Gm ×Gm] that map the generic point of
C in Breg. We denote N ′ the preimage of B ′.

For every geometric point (a,b) ∈ B ′(k̄), we will describe the fiber Na,b of f
over (a,b). Let C ′ denote the preimage of Breg by the morphism (a,b) : C →
[b/Gm ×Gm]. Let y : C → [Y/Gm ×Gm] be a point of Na,b. For the morphism
Y→ b is an isomorphism over breg, y is completely determined over C ′. It follows
that y is completely determined by its restrictions yv to the completions Cv of C
at the points v ∈ C−C ′. In other words, we have the product formula

Na,b =
∏

v∈C−C ′

Nav,bv .

Here Nav,bv is the space of maps Cv → Y lying over (av,bv) : Cv → b, where
(av,bv) are restriction of (a,b) to V. The map (av,bv) is well defined after we
choose trivializations of the line bundles O(C) and O(D) restricted to Cv.

A more concrete description of Na,b can be obtained by means of Lemma 4.1.6.
Pulling back the vector bundle r and b by the map a : C → [a/Gm], we get a
vector bundles ra and ba over C. By pulling back γ by (a,b) : C → b, we obtain
a ra-linear morphism

γa,b : ra → ba.

which is generically an isomorphism. In particular γa,b is injective as morphism
of OC-modules with finite quotient ba/γa,b(ra).

By the same argument as in Lemma 4.2.2, we can identify points of Na,b with
rank n vector bundle V over C, equipped with a structure of ra-modules and with
factorization of γa,b:

ra → V→ ba.

We can therefore identify Na,b with the set of quotients Q of the finite ra-module
ba/γa,b(ra). We note that the length of Q as ra-module is

lg(Q) = deg(ba) − deg(V)

where deg(ba) depends only on the degrees of the divisors D and E. It follows
that N can be decomposed as disjoint union of open and closed subvarieties:

N =
⊔
s

Ns,

where Ns classifies maps y : C → [Y/Gm ×Gm] corresponding to (V, x, v, v∨)
such that deg(V) = deg(ba) − s.

The following statement is a theorem of Yun, [35, Prop. 3.5.2].

Theorem 4.4.1. Assuming deg(D) and deg(E) are large with respect to s. Then the
moduli space N ′s is smooth, and the morphism N ′s → B ′ is proper and small.

We can now derive the perverse continuation principle for Theorem 2.5.1.
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5. Adjoint action

5.1. Invariant theory Let G be a split reductive group over k acting on its Lie
algebra g by the adjoint action. The ring of G-invariant functions of g is a polyno-
mial ring

k[g]G = k[a1, . . . , an]

where a1, . . . , an are homogenous polynomials of degree v1, . . . , vn. Although
there may be many choices of a1, . . . , an, the integers v1 6 . . . 6 vn, arranged in
increasing order, are completely determined by g. For instant, when G = GLn,
we have vi = i and we may take

ai(x) = tr(∧ix)

but we may also take the invariant function x 7→ tr(xi) just as well.
Let greg denote the open subset of g of regular elements i.e x ∈ g such that the

centralizer Ix is of dimension equal the rank n of g. By restricting the morphism

a : g→ a = Spec(k[a1, . . . , an]).

to the open subset greg of regular elements, we obtain a smooth surjective mor-
phism

areg : greg → a

whose fibers are G-homogenous spaces. There exists an open subset arss of a

consisting of regular semisimple adjoint orbits. Over arss, the subset greg coincide
with g i.e. a−1(grss) ⊂ greg. After Kostant [19] there exists a section

(5.1.1) k : a→ greg.

of areg.
Just as for Kloosterman and Jacquet-Rallis integrals, the theory of adjoint or-

bital integrals in Lie algebra can be reinterpreted as the geometry of the mor-
phism of formal arc spaces associated with the map

(5.1.2) [a] : [g/G]→ a.

There are more difficulties in this case as [a] is not generically an isomorphism.
Even over the "nice" open subset arss, [g/G] is only a gerbe bounded by the cen-
tralizer group scheme in the following sense.

Let us denote I the centralizer group scheme over g, whose fiber over x ∈ g is

Ix = {g ∈ G|ad(g)x = x}.

The restriction Ireg of I to greg is a G-equivariant smooth commutative group
scheme. After [27, 3.1], Ireg descends to a i.e. there exists a unique smooth
group scheme J→ a, up to unique isomorphism, equipped with a G-equivariant
isomorphism

(5.1.3) (areg)∗J→ Ireg.
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This is equivalent to saying that [greg/G] is a gerbe over a bounded by J, or in
other words, [greg/G] is a torsor over a under the action of the relative classifying
stack BaJ. Moreover, one can trivialize this gerbe by means of the Kostant section.

A crucial observation to be made here is that the isomorphism can be extended
uniquely to a homomorphism of group schemes,

(5.1.4) h : a∗J→ I.

see [27, 3.2]. Following a suggestion of Drinfeld, we will reformulate this homo-
morphism as an action of BaJ on [g/G], extending its simply transitive action on
[greg/G]. The quotient

(5.1.5) Q = [[g/G]/BaJ].

of [g/G] by the action of BaJ is naturally a 2-stack. Evaluated over an algebraically
closed field, Q is the 2-category whose objects are elements x ∈ g; the automor-
phisms of each object x is the Picard groupoid AutQ(x) whose objects are ele-
ments of Ix and for g ∈ Ix, the 2-automorphisms of g are elements j ∈ Ja such
that h(j)g = g where a = a(x).

The morphism a : [g/G]→ a of (5.1.2) can be factorized through Q

(5.1.6) [g/G]→ Q→ a.

where [g/G] → Q is a gerbe bounded by J. The restriction of Q → a to the open
2-substack

Qreg = [[greg/G]/BaJ]

is an isomorphism by (5.1). Since greg coincides with g over arss, the morphism
Q→ a is an isomorphism over arss. The morphism

(5.1.7) q : Q→ a

plays a similar role to the morphism (4.1.4) in the Jacquet-Rallis case.

5.2. Stable orbital integrals We consider the space C∞
c (g(F)) of locally constant

functions with compact support in g(F). We will attempt to relate the (stable)
orbital integrals for the adjoint action of G(F) on g(F) with the geometry of the
morphism of formal arc spaces associated with (5.1.7).

Let γ ∈ g(F) be a regular semisimple element. For every function φ ∈ C∞
c (g(F)),

we define the orbital integral

(5.2.1) Oγ(φ) =
∫
Gγ(F)\G(F)

φ(ad(g)−1γ)
dg
dj

for given Haar measures dg and dj of G(F) and Gγ(F) respectively. To put orbital
integrals in family, we will need to choose Haar measures on centralizers Gγ(F),
as γ varies, in a consistent way.

A provisional solution is to restrict ourselves to functions with support in g(O)

so that we only have to consider regular semisimple γ ∈ g(F) such that

a = a(γ) ∈ a(O)∩ arss(F).
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Let Ja = a∗J the inverse image of J by a : D→ a, and J0a its subgroup scheme of
neutral components of Ja. The locally compact group Ja(F) is now equipped with
the compact open subgroups Ja(O) and J0a(O). We will normalize the Haar mea-
sure on Ja(F) such that J0a(O) has volume one. For Iγ(F) and Ja(F) are canonically
isomorphic, we can transport the chosen Haar measure from Ja(F) to Iγ(F).

The difference between conjugation and geometric conjugation creates another
problem. Let γ,γ ′ ∈ g(F) be regular semisimple elements such that a(γ) =

a(γ ′) = a then there exists g ∈ G(F̄) such that ad(g)γ = γ ′. However γ and γ ′

may not be conjugate by an element in G(F). Let ha denote the set of G(F)-orbits
in a−1(a)(F). A cocycle calculation shows that ha is a principal homogenous
space under the finite abelian group

(5.2.2) ker[H1(F, Ja)→ H1(F,G)],

and in particular, it is a finite set. The sum of orbital integrals within the finite
set ha will be called the stable orbital integral:

(5.2.3) SOa(φ) =
∑
γ∈ha

Oγ(φ).

The stable orbital integral SOa(φ) is the integration of φ along the fiber a−1(a).
For every φ ∈ C∞

c (g(O)), the stable orbital integral of φ can be regarded as a
function on a(O):

(5.2.4) a 7→ SOa(φ).

We will now narrow down to the basic case φ = Ig(O). We will express the
stable orbital integral (5.2.3) as the mass of certain groupoid of formal arcs.

For every a ∈ a(O) ∩ arss(F), we consider the 2-category Qa of maps D → Q

lying over a. Objects of Qa are maps x : D→ g lying over a. Morphisms between
x1, x2 : D → g are g ∈ G(O) such that ad(g)x1 = x2; 2-morphisms between
g1,g2 : x1 → x2 are j ∈ Ja(O) such that g1h(j) = g2 where h : Ja(O) → Ix1(O) is
defined in (5.1.4). The mass of Qa is defined to be

(5.2.5) #Qa =
∑
x

1
#Aut(x)

where x ranges over the set of isomorphism classes of Qa, and #Aut(x) is the
mass of the groupoid Aut(x). Under the assumption a ∈ a(O)∩ arss(F), for every
x ∈ g(O) lying over a ∈ a(O), the homomorphism h : Ja(O) → Ix(O) is injective.
For simplicity, assume that Ja(O) is connected, then

(5.2.6) #Aut(x) = #(Ix(O)/Ja(O)).

and it follows that

(5.2.7) SOa(Ig(O)) = #Qa

so that SOa(φ) is the mass of the 2-groupoid of maps D → Q lying over a ∈
a(O)∩arss(F). When Ja(O) is not connected, the mass calculation is more involved,
see [30, 8.2], but the above formula also holds in that case. Therefore the stable
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orbital integral function (5.2.4) expresses the mass of the fibers of the formal arc
spaces of Q over the formal arc space of a.

5.3. Waldspurger’s nonstandard fundamental lemma If G1,G2 are reductive
groups with isogenous root data, there is a canonical isomorphism a1

∼→ a2

[30, 1.12.6]. Waldspurger conjectured that for a1 ∈ a1(O) ∩ arss
1 (F) and a2 ∈

a2(O) ∩ arss
2 (F) corresponding one to each other via the isomorphism a1

∼→ a2,
the equality of stable orbital integrals

(5.3.1) SOa1(Ig1(O)) = SOa2(Ig2(O))

holds. This identity is known as the non-standard fundamental lemma for Lie
algebra. After (5.2.7), this is equivalent to an identity of masses

(5.3.2) #Q1,a1 = #Q2,a2 .

where Q1 = [[g1/G1]/Ba1J1] and Q2 = [[g2/G2]/Ba2J2]. This identity is non obvi-
ous to the extent that Q1 and Q2 bear no direct geometric relation.

5.4. Global model Let C be a smooth quasi-projective curve over k. For each
map a : C → a that sends the generic point of C into the open subspace arss,
we consider the stack Qa of maps x : C → Q lying over a. If C ′ = a−1(arss),
then the restriction of x to C ′ is completely determined by a ′ = a|C ′ as Q → a

is an isomorphism over arss. It follows that a is completely determined by its
restriction to the completion Cv of C at the places v ∈ |C−C ′|. In other words,
we have the product formula

(5.4.1) Qa =
∏

v∈|C−C ′|

Qav

where Qav is the stack of maps xv : Cv → Q lying over av : Cv → a that is the
restriction of a to Cv.

If C is a projective curve and a is affine, all maps a : C→ a are constant. There
are thus not enough global maps a : C → a to approximate a given local map
av : Cv → a. The standard remedy to this failure is to allow a : C → a having
poles of degree bounded by a large positive divisor, or in other words, to twist a
by an ample line bundle over C.

The homothety action of Gm on g induces a compatible action on the invariant
quotient a. This action can be lifted in an obvious way to the centralizer group
scheme I → g and therefore induces an action of Gm on the regular centralizer
group scheme J → a. We deduce an action of Gm on the Drinfeld 2-stack Q
defined in (5.1.5).

Let C be a smooth projective curve, and L a line bundle over C. For every
a : C → [a/Gm] over L : C → BGm such that a maps the generic point of
C into [arss/Gm], we consider the stack Qa of maps x : C → [Q/Gm] lying
over a. The product formula (5.4.1) holds with Qav being the stack of maps
xv : Cv → [Q/Gm] lying over av : Cv → [a/Gm] that is the restriction of a to Cv.
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If we denote AL the space of maps a : C→ [a/Gm] lying over L : C→ BGm and
QL the "space" of maps x : C→ [Q/Gm] also lying over L, then for every a ∈ AL,
Qa is the fiber of QL → AL over a.

Let G1,G2 be reductive groups with isogenous root data. It can be checked
that for G1,G2 with isogenous root data, there is an isomorphism A1,L = A2,L.
If the points a1 ∈ A1,L and a2 ∈ A2,L correspond via this isomorphism then the
identity of local masses (5.3.2) implies the identity of masses

(5.4.2) #Q1,a1 = #Q2,a2

of fibers of Q1 and Q2 over a1 and a2 respectively.

5.5. The Hitchin fibration Although the formulation of (5.4.2) involves only the
morphism Q → a, in order to prove it, it seems necessary to take into account
the 2-stages morphism (5.1.6) [g/G] → Q → a. We consider the "space" ML of
maps m : C→ [g/G×Gm] lying over L : C→ BGm. We then have morphisms of
spaces of maps

(5.5.1) ML → QL → AL.

For L being the canonical bundle, the morphism f : ML → AL is essentially the
Hitchin fibration [15], an algebraic completely integrable system. For an arbitrary
line bundle of large degree, the generic fiber of ML → AL is essentially an abelian
variety i.e it is an abelian variety after deleting the component and automorphism
groups.

For every a ∈ AL, we denote Pa the Picard stack of Ja-torsors where Ja = a∗J

is the pullback of the regular centralizer group scheme J→ a via a : C→ [a/Gm].
The action of BaJ on [g/G] gives rise to an action of Pa on Ma where Ma is
the fiber of ML → AL over a. One can check that Qa = [Ma/Pa]. If a is the
generic point then Pa is an abelian variety, up to a component group and an
automorphism group, and it acts on Ma simply transitively. In particular Qa is
reduced to a point at the generic point a.

If we assume thatG is a semisimple group, then there exists an open subset Aell
L

of AL such that over Aell
L , the morphism fell : Mell

L → Aell
L is a proper morphism

and Mell
L is a smooth Deligne-Mumford stack. It follows from Deligne’s purity

theorem that the perverse cohomology pHi(fell
∗ Q`) are pure perverse sheaves,

and therefore geometrically semisimple.
The restriction Pell of PL is to AL is of finite type. It acts on pHi(fell

∗ Q`).
We denote pHi(fell

∗ Q`)st the maximal direct factor where Pell acts trivially. We
expect that pHi(fell

∗ Q`)st is completely determined by its generic fiber via the
intermediate extension functor. This is the content of what we called the "support
theorem" in the expository paper [31]. In that paper, we proved the support
theorem under the assumption that the characteristic of the base field k is zero.
In the case of positive characteristic, we were able to prove the support theorem
only after restricting pHi(fell

∗ Q`)st to a smaller open subset of Aell. This is not
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very satisfying but it is enough to derive the fundamental lemma [30]. Significant
progress has been made toward extending the domain of validity of the support
theorem, in particular beyond the elliptic locus by Chaudouard and Laumon [3],
[2], by Migliorini, Shende and Viviani [23], and by de Cataldo [7].

If G1 and G2 are semisimple groups with isogenous root data, one can prove
that the generic fibers of M1,L → A1,L and M2,L → A2,L are isogenous abelian
varieties, up to the component groups and automorphism groups. It follows
that pHi(fell

1,∗Q`)
st and pHi(fell

2,∗Q`)
st have isomorphic generic fiber. Assuming

that the support theorem be valid over Aell
L , we derive that pHi(fell

1,∗Q`)
st and

pHi(fell
2,∗Q`)

st are isomorphic perverse sheaves. In particular, this is valid when
k = C. When k in finite field, we proved in [30] that pHi(fell

1,∗Q`)
st and pHi(fell

2,∗Q`)
st

are isomorphic in some open subset of Aell
L that has enough points so that one

can derive (5.3.2). It is desirable to find a proof the support theorem over Aell
L in

positive characteristic in order to streamline the global to local argument.

5.6. The Langlands-Shelstad fundamental lemma The proof of the Langlands-
Shelstad fundamental lemma follows essentially the same route as Waldspurger’s
nonstandard fundamental lemma. It is nonetheless considerably more compli-
cated because of the presence of κ-orbital integrals.

The letter κ in κ-orbital integral refers to a character of the finite group (5.2.2):

(5.6.1) κ : ker[H1(F, Ja)→ H1(F,G)]→ C×.

This finite group acts simply transitively on the finite set ha of G(F)-conjugacy
classes in the set of F-points on the fiber a−1(a) of g → a over a ∈ a(F). The
Kostant section provides a convenient base point k(a) ∈ a−1(a)(F) and thus an
identification of the finite set ha and the finite group (5.2.2):

inv : ha → ker[H1(F, Ja)→ H1(F,G)].

We define the κ-orbital integral attached to a as the linear combination of orbital
integrals in a−1(a)(F) weighted by the values of κ:

(5.6.2) Oκa(φ) =
∑
γ∈ha

κ(inv(γ))Oγ(φ).

One can attach to the pair (a, κ) an endoscopic group H and a stable conjugacy
class aH in the Lie algebra h of H. The Langlands-Shelstad fundamental lemma
asserts an equality between Oκa(φ) and SOaH(φH) where φ and φH are respec-
tively the characteristic functions of g(O) and h(O) up to a power of q. We refer
to the introduction of [30] for a precise statement of this equality.

We now introduce a new ingredient, the affine Springer fiber, which is neces-
sary for a geometric interpretation of the κ-orbital integral similar to the stable
orbital integral. For a more throughout, and more intuitive, discussion of the
affine Springer fiber, we refer to the lecture notes of Yun in this volume.

For every a ∈ a(O), we denote M•a the space of maps x : D→ [g/G], lying over
a : D → a, and equipped with an isomorphism x → k(a) over the punctured
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disc D•, k being the Kostant section. It can be proven that the reduced space
associated with M•a is an algebraic variety locally of finite type, usually known
as the affine Springer fiber.

Our affine Springer fiber M•a is acted on by the group P•a classifying Ja-torsors
over D equipped with a trivialization over the D•. In other words P•a is the space
of maps p : D → BaJ over a : D → a equipped with an isomorphism over the
punctured disc between p and the neutral map p0 : D → BaJ corresponding to
the trivial J-torsor. We have an action of P•a on M•a derived from the "universal"
action of BaJ on [g/G].

The stack Qa of maps x : D→ Q lying over a : D→ a can be presented as the
quotient of M•a by P•a:

(5.6.3) Qa = [M•a/P
•
a].

It can be shown that the character κ of (5.6.1) defines a homomorphism κ :

BP•a(k)/ ∼→ C×. It follows that the κ-orbital integral for φ being the charac-
teristic function of g(O) can be expressed as κ-weighted mass

(5.6.4) Oκa(φ) = #Qκa(k) =
∑

x∈Qa/∼

κ(cl(x))
#Aut(x)

where x ranges over the set of isomorphism classes of Qa, cl(x) is the image if x
is the P•a(k)/ ∼ in the group of isomorphism classes of Pa-torsors over k.

The κ-weighted mass #Qκa(k) appears as local factor of an endoscopic part of
the relative cohomology of the Hitchin fibration. As in the case of the nonstan-
dard fundamental lemma where the key geometric ingredient is the determina-
tion of the support of simple perverse sheaves occurring in the stable part of the
cohomology of the Hitchin fibration, in the endoscopic case, we need to deter-
mine the support of simple perverse sheaves occurring in endoscopic parts of the
cohomology of the Hitchin fibration. In [27] we proved that the support is con-
tained in the image of the Hitchin base of the corresponding endoscopic group.
In [30], we proved that there is equality after certain restrictions. We won’t dis-
cuss this matter further as it has already been the subject of expository papers
[28] and [31].
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