(1) Assume $A: \mathbb{R}^2 \to \mathbb{R}$ is a linear transformation with $A(5, 6) = 3$ and $A(2, 1) = -1$. Compute $A(1, 4)$.

(A) -2
(B) 1
(C) 2
(D) 5
(E) 6

(2) Suppose $\alpha, \beta > 0$. Compute:

$$\int_0^\infty \frac{\cos(\alpha x) - \cos(\beta x)}{x} \, dx.$$

(A) $\log \frac{\beta}{\alpha}$
(B) $2 \log \frac{\beta}{\alpha}$
(C) $2 \log \frac{\alpha}{\beta}$
(D) $\log \frac{\beta}{\alpha}$
(E) $\log \frac{\alpha}{\beta}$

(3) Integrate:

$$\int \frac{dx}{1 + e^x}.$$

(A) $2x - \log(e^x + 1) + C$
(B) $x + \log(e^x + 1) + C$
(C) $x - \log(e^x + 1) + C$
(D) $x - \log(e^x + e^{-x}) + C$
(E) $x - \log(1 + e^{-x}) + C$

Date: July 8, 2019.
(4) At a banquet, \(n \) women and \(m \) men are to be seated in a row of \(n + m \) chairs. If the entire seating arrangement is to be chosen at random, what is the probability that all of the men will be seated next to each other in \(m \) consecutive positions?

(A) \(\frac{1}{\binom{n+m}{m}} \)

(B) \(\frac{m!}{\binom{n+m}{m}} \)

(C) \(\frac{n!}{(n+m)!} \)

(D) \(\frac{m!n!}{(n+m-1)!} \)

(E) \(\frac{m!(n+1)!}{(n+m)!} \)

(5) Endow \(\mathbb{R} \) with the right topology, generated by \(T = \{ (a, \infty) : a \in \mathbb{R} \} \), and call this space \(X \). Which of the following is false?

(A) \(X \) is \(\sigma \)-compact (it is the union of countably many compact subsets).

(B) \(X \) is sequentially compact (every sequence has a convergent subsequence).

(C) \(X \) is limit point compact (every infinite subset has a limit point in \(X \)).

(D) \(X \) is Lindelöf (every open cover of \(X \) has a countable subcover).

(E) \(X \) is pseudoocompact (every continuous function \(f : X \to \mathbb{R} \) is bounded).

(6) Evaluate the sum:

\[\sum_{n=1}^{\infty} \frac{n^2}{3^n} \]

(A) \(\frac{3}{4} \)

(B) \(1 \)

(C) \(\frac{3}{2} \)

(D) \(2 \)

(E) \(3 \)
(7) What is the remainder upon dividing 13^{2019} by 95?

(A) 1
(B) 13
(C) 74
(D) 12
(E) 61

(8) Evaluate the following limit:

$$\lim_{n \to \infty} \prod_{k=1}^{n} \left(\frac{k}{n} \right)^{1/n}.$$

(A) 1
(B) e^{-1}
(C) e^{-2}
(D) 0
(E) The limit does not exist.

(9) Let A be the annulus, $A = \{(x, y) \in \mathbb{R}^2 : 1/2 \leq \sqrt{x^2 + y^2} \leq 2\}$. Evaluate:

$$\iint_A 2x - 2ye^{x^2+y^2} \, dx \, dy.$$

(A) 1
(B) 0
(C) 2π
(D) -2π
(E) 4π
(10) Which of the following functions are holomorphic, with \(x, y \in \mathbb{R} \)?

I. \(f(x + iy) = x^2 + iy^2 \)

II. \(g(x + iy) = x + x^2 - y^2 + i(2xy + y) \)

III. \(h(x + iy) = y + e^x \cos y + i(x + e^x \sin y) \)

(A) None of them are holomorphic.

(B) II only

(C) III only

(D) I and III only

(E) II and III only

(11) Let \(R \) be the group of the nonzero real numbers under multiplication, and define \(a \star b = |a|b \).

I. \((R, \star)\) has a left identity.

II. \((R, \star)\) is left cancellative, i.e. \(a \star b = a \star c \) implies \(b = c \).

III. \((R, \star)\) forms a group.

Which of the above are true?

(A) All of them are true.

(B) I only

(C) II only

(D) I and II only

(E) None of them are true.
(12) Let \(\phi(x) \) and \(\psi(y) \) be two smooth functions defined on \(\mathbb{R} \). Let \(S \) be a positively oriented circle of radius 1 around the origin. Which of the following is zero?

I. \(\int_S \phi(y) \, dx + \psi(x) \, dy \)

II. \(\int_S \phi(xy) (y \, dx + x \, dy) \)

III. \(\int_S \phi(x) \psi(y) \, dx \)

(A) None are zero.

(B) I only

(C) II only

(D) I and II only

(E) I, II, and III

(13) Evaluate the integral \(\int_0^\pi \sin^3(x) \, dx \).

(A) 1

(B) \(\frac{4}{3} \)

(C) \(\frac{7}{2} \)

(D) \(\frac{\pi}{2} \)

(E) \(\pi \)

(14) How many abelian groups are there of order 360, up to isomorphism?

(A) 3

(B) 6

(C) 10

(D) 15

(E) 30
(15) A man flips 10 coins. With H the number of heads, and T the number of tails, the man then flips $\max\{2H - T^2, 0\}$ coins. What is the expected number of heads of both groups?

(A) Between 0 and 8.

(B) Between 8 and 10.

(C) Between 10 and 12.

(D) Between 12 and 15.

(E) Between 15 and 20.

(16) A tank contains 150 L of salt water, with 0.7 kg of salt per liter. Salt water containing 0.5 kg of salt per liter is added at a rate of 7 liters per minutes. The tank is kept at a constant volume by draining water at the same rate. Assuming instantaneous mixing, at what time is there 90 kg of salt in the tank?

(A) $\log(2) \cdot \frac{150}{7}$

(B) $\log(3) \cdot \frac{150}{7}$

(C) $\log(4) \cdot \frac{150}{7}$

(D) $\log(5) \cdot \frac{150}{7}$

(E) $\log(6) \cdot \frac{150}{7}$

(17) For which θ is $\frac{2 + 3i\sin\theta}{1 - 2i\sin\theta}$ purely imaginary?

(A) $\frac{\pi}{6}$

(B) $\frac{\pi}{3}$

(C) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$

(D) $\sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$

(E) 0
Which of the following conditions imply that two sets, \(A \) and \(B \), have the same cardinality?

I. There exist \(f: A \to B \) and \(g: B \to A \) such that \(g \circ f = Id_A \).

II. \(A \subset B \) and there exists \(f: A \to B \), and \(g: B \to A \) such that \(f \circ g = Id_B \).

III. \(|A \setminus B| = |B \setminus A| \)

Which of the above statements are true?

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) II and III only

Let \(C \) be the circle of radius 2 about the origin in \(\mathbb{C} \) traversed counter-clockwise. Compute the integral

\[
\int_C \frac{1}{z^2 + 1} \, dz.
\]

(A) 1
(B) 0
(C) \(i \)
(D) \(-i/2 \)
(E) \(-i \)
In $\triangle PRS$, $RT = 7$, $PR = 8$, and $QS = 9$. Which of the following is closest to the length of side PS?

(A) 7.14
(B) 8.22
(C) 9.87
(D) 10.29
(E) 11.44

(21) Consider the following statements.

I. $(A \implies B) \implies C$

II. $A \implies (B \implies C)$

III. $(A \land B) \implies C$

IV. $B \implies (A \implies C)$

V. $(B \implies A) \implies C$

How many of the above (numbered) statements are logically distinct?

(A) 1
(B) 2
(C) 3
(D) 4
(E) 5
Consider the following attempted proof of the statement that if X is a compact subset of \mathbb{R}, then a continuous function $f : X \to \mathbb{R}$ is uniformly continuous. We use $B_\epsilon(x)$ to denote the open ball of radius ϵ about x.

I. Fix $\epsilon > 0$. As f is continuous for all $x \in X$ there exists δ_x such that if $y \in B_{\delta_x}(x)$, then $|f(x) - f(y)| < \epsilon/2$. Let $\mathcal{C} = \{B_{\delta_x} \mid x \in X\}$. Note \mathcal{C} is an open cover of X.

II. By compactness of X there exists a finite subcover \mathcal{C}' of \mathcal{C}, which we index by the set $X' \subset X$.

III. Set $\delta = \min_{x \in X'} \delta_x/2$. Then if $\delta/4 > |x - y|$, there exists $z \in X'$ such that $x, y \in B_{\delta_z}$.

IV. Thus as $|f(z) - f(x)|$ and $|f(z) - f(y)|$ are both less than $\epsilon/2$, by the triangle inequality $|f(x) - f(y)| < \epsilon$, so f is uniformly continuous.

In the above proof, at which step was the first error made? Or is there none at all?

(A) I
(B) II
(C) III
(D) IV
(E) The proof is correct.
Answers

(1) (D): Compute in the domain.

(2) (D): Rewrite integrand as integral of $\sin(xy)$, exchange order of integration.

(3) (C): Probably fastest to differentiate the answers.

(4) (E): Count them.

(5) (B): $\{-n\}_{n \in \mathbb{N}}$ does not converge.

(6) (C): Do the standard trick, or evaluate by differentiating the geometric series.

(7) (D): $\varphi(95) = 72$, $2019 \equiv 3 \mod 72$, $13^3 \equiv 12 \mod 95$.

(8) (B): Use Stirling’s approximation for $n!$.

(9) (B): Use symmetry of the integral. Or compute with Stokes theorem.

(10) (B): Use the Cauchy-Riemann equations.

(11) (D): The left identity is not a right identity.

(12) (C): Use Stokes to solve the integrals.

(13) (B): This can be evaluated with u-substitution after $\sin^2(x) = 1 - \cos^2(x)$.

(14) (B): Classification of finite abelian groups.

(15) (A): Compute (or estimate).

(16) (A): This is a first-order separable differential equation. Solve.

(17) (C): Compute.

(18) (E): In Π, g is an injection.
(19) (B): Use the residue theorem.

(20) (D): Write the area of the triangle in two different ways.

(21) (C): The middle three statements are identical.

(22) (C): Consider if $C' = \{(-1, 1), (1, 2)\}$.