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Abstract

We give a polynomial-time algorithm to find a minimal rectangulation of a region in the

plane that can be tiled with rectangles. This has been discovered several times (see, for example

[6], [7], [3], [2]) – we were unaware of this and stumbled on it ourselves. After writing up

the result, we became aware of the aforementioned results. This note simply our take on this

problem, which we thought may be worth recording.

Let A be a compact subset of the plane whose boundary consists of a finite number of disjoint

line segments all of whose endpoints are on the grid Z2 ⊂ R2 – see Figure 1. We call such regions

rectangulable since such regions can be partitioned into rectangles that are disjoint except along

their boundary as in Figure 1. We are interested in the problem of, given A, finding a rectangulation

of A with the smallest number of rectangles. Such rectangulations will be called minimal.

Theorem 1. There is a polynomial-time algorithm that, given a rectangulable region A, finds a

minimal rectangulation of A.

Before getting started on the proof of Theorem 1, we give an application which was our moti-

vation for thinking about rectangulations:

Corollary 1. There exists a polynomial-time algorithm that, given f : {0, 1}n × {0, 1}n → {0, 1},
computes χgeom(f).

Proof. (of Corollary) We will compute χgeom(f) by applying the algorithm in Theorem 1 to each

of the f -monochromatic connected regions of M(f) (of which there polynomially many).

For the proof of Theorem 1, we introduce some terminology. For any pair of line segments we

mention l and l′ we will assume that they intersect transversely in their interior (i.e., they intersect

in finitely many points). Given a rectangulable region in the plane A, we will refer to the internal

and external corners of A as in Figure 1. We will refer to the line segments forming the boundary

of A as the walls of A. We say that a line segment l ends at an internal corner c of A if one of its

endpoints is at c. We also define l pairing the two internal corners c1 and c2 if it ends in c1 and c2.

We say l ends in a wall of A or another line segment l′ if an endpoint of l is on a non-corner part

of A or the interior of l′. A rectangulation R of A is a collection of line segments such that the line

segments cut A up into rectangles.

The size ofR, denoted size(R), is the number of rectangles thatR cuts A into. A rectangulation

R of A is minimal if it has the smallest size amongst all rectangulations of A.

The outline of our proof of Theorem 1 is as follows: We start by giving a method of describing

particularly simple rectangulations of A and showing that a minimal rectangulation of this form
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can be found in polynomial time. Then we prove that there must exist a minimal rectangulation

of this form.

We now give a method of describing certain simple rectangulations of A. A corner pairing is

a set P = {P1, ..., Pn} where each Pi = {c1i , c2i } where c1i and c2i are internal corners of A with a

line segment li between them in A, Pi ∩ Pj = ∅ for i ̸= j, and the lines li and lj are disjoint for

i ̸= j. A corner pairing P is full if no additional pair of internal corners Pn+1 can be added to P

to obtain a larger corner pairing – see Figure 2 for two different examples of full corner pairings

and Figure 3 for all possible corner-pairing line segments. Given a corner pairing P , it determines

rectangulation of A called the realization of P which we denote R(P ) as in the right on Figure 1

(which is R(P1) for the pairing P1 in Figure 2) where we use the convention of drawing horizontal

line segments from all of the internal corners in A that are not contained in any Pi (this is just a

convention and we could have just as well taken vertical lines or some mix of vertical and horizontal

lines). See Figure 4 for another example – namely, R(P2) for P2 in Figure 2.

Lemma 1. Let A be a rectangulable region in the plane, P a side pairing of A and R(P ) the

realization of P . Then R(P ) is a rectangulation of A. Let p be the size of P , u be the number of

internal corners in A not contained in any pair in P , and k be the number of external corners of

A. If P is maiximal, then

4 size(R(P )) = 2p+ 3u+ k

Figure 1: Example of a rectangulizable region in the plane and a rectangulation of it. On the left

is an example of a connected but not simply-connected rectangulizable region in the plane. The

internal corners are marked in red and the external corners are marked in blue. On the right is a

minimal rectangulation of a rectangulizable region – here using 21 rectangles. This is in fact the

rectangulation that results from the algorithm for finding such a minimal rectangulation that we

present.

Proof. To see that R(P ) is a rectangulation of A, we proceed by induction on the size of P – in fact

we will want to strengthen the inductive hypothesis to allow all such regions A together with some

number of internal line segments with at least one endpoint at an internal corner and the other

endpoint at a wall or internal corner. As a base case, assume that P is empty, so the realization

just consists of drawing horizontal lines from each internal corner of A to a wall of A. This is seen

to be a rectangulation by induction on the number of internal corners of A. If there are no internal

rectangles, then A itself is a rectangle, and if there are n + 1, then by adding the horizontal line
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Figure 2: Different examples of full corner pairings. On the left is a full corner pairing P1 that is also

maximal. The result of applying the algorithm in Theorem 1 to P1 is the minimal rectangulation

R(P1) shown on the right in in Figure 1. On the right is a full corner pairing P2. Note that

|P2| < |P1|.

on the internal corner(s) with say lowest y-coordinate(s), we obtain a region A′ with fewer internal

corners than A to which we can apply the inductive hypothesis. Therefore, in the case where P is

empty, R(P ) is a rectangulation of A. Now assume that P consists of n+1 pairs of internal corners.

Given one such pair {c1n+1, c
2
n+1} ∈ P , let A′ be A together with the line segment pairing c1n+1 and

c2n+1, and we consider A′ together with a corner pairing P − {c1n+1, c
2
n+1} which one fewer pair of

internal corners, then the realization of P − {c1n+1, c
2
n+1} is a rectangulation of A′ and therefore,

R(P ) is a rectangulation of A.

To verify the rest of Lemma 1, we note that, since every rectangle has 4 external corners,

4 size(R(P )) is the number of external corners in R(P ). Each element of P contributes 2 external

corners, each of the u unparied corners contributes 3 external corners (and since P is assumes to be

full, this is not redundant), and the k external corners of A are the remaining external corners.

A vertex cover C of a graph G is a set of vertices such that each edge of G has at least one

vertex in C. A vertex cover is minimal if it has the smallest size amongst all vertex covers of G.

The problem of determining for a graph G and an integer k if G has a vertex cover of size less

than or equal to k is NP-complete [4]. A matching M of G is a collection of edges of G no two

of which share a vertex. A matching is maximal if it is as large as possible among all matchings

of G. Maximal matchings of graphs can be constructed in polynomial time – see for example

[1]. However, in the case of bipartite graph G, Kőnig’s theorem says that the size of a maximal

matching of G is the same as the size of a minimal vertex cover of G [5]. Furthermore, the proof

constructs a minimal vertex cover given a maximal matching in polynomial time. A set of vertices

of a graph is a vertex cover if and only if its complement is an independent set, and therefore the

problem of finding a maximal independent set in a graph is equivalent to the problem of finding a

minimal vertex cover. Therefore, by Kőnig’s theorem in a bipartite graph, we can find a maximal

independent set in polynomial time.

Let GA be the graph whose vertices are the line segments in A with both ends at internal

corners of A. The edges of GA come in two types. For the first type, the corner sharing edges,

we place an edge between two distinct vertices l1 and l2 when they share an internal corner. For

the second type, the intersection edges, we put an edge between two line segments l1 and l2 if they
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Figure 3: Rectangulable region with all corner pairing line segments drawn in. Note that many of

them intersect and some corners have more than one such line segment ending at them.

intersect in their interiors. Note that GA is biparite with the partition being into the vertices that

are horizontal lines and the vertices that are vertical lines. Now, by construction, we have that

corner pairings of A are in bijection with independent sets of vertices in GA where the bijection

takes the set of vertices to the pairs of the ends of the corresponding line segments. The resulting

corner pairings are full if and only if no vertices can be added to the corresponding independent set

in GA. Therefore, we wish to find a maximal independent set in GA and then the corresponding

full corner pairing P will be as large as possible among all corner pairings and therefore R(P ) will

be a minimal rectangulation of A.

Lemma 2. Let A be a rectangulable region in the plane. Among the rectangulations of A in the

set {R(P ) : P is a full corner pairing of A }, we can find such a rectangulation of smallest size

amongst rectangulations of the form R(P ) in polynomial time.

Proof. Consider the graph GA whose vertices are the corner pairing line segments in A and whose

edges come in two forms: (1) two vertices v and u are adjacent if the corresponding line segments

intersect, and (2) two vertices v and u are adjacent if the corresponding corner pairings share an

internal corner. Note that GA is biparite with a biparition being given by separating the vertices

into those representing vertical line segments and those representing horizontal line segments.

By construction, corner pairings P correspond to independent sets in GA. Furthermore, by

Lemma 1, we see that size(R(P )) is minimized when the size of P is maximized. Therefore, we

want to find a maximal independent set in GA. By Kőnig’s theorem as in the preceding discussion,

this can be done in polynomial time.

Now we prove that we can restrict attention to rectangulations of the form R(P ) for P a full

corner pairing. Before doing this, we need one technical lemma. Given two line segments l and l′

in the plane, the set of internal intersections of l and l′ is the set of points in the intersection of

the interiors of l and l′ (note that intersections at the endpoints are not included).

In what follows, we use the notation 1claim for the function with 1claim(x) = 1 if the claim holds

true for x and 0 otherwise.
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Figure 4: A non-minimal rectangulation of a rectangulable region. This is the rectangulation R(P2)

where P2 is the full but not maximal corner pairing on the right in Figure 2. Note that R(P2)

consists of 22 rectangles whereas the rectangulation of the same region shown in Figure 3 has 21

rectangles.

Lemma 3. Let A be a rectangulable region in the plane together with several disjoint corner-pairing

line segments w1, ..., wn. Let l1, .., lm be line segments in A that are disjoint from A and all of the

wi, except possibly at their endpoints, such that each li ends at a unique internal corner of A that

is not an endpoint of any wj. Suppose that there are k external corners of A. Then the number of

external corners in A ∪ {w1, ..., wn} ∪ {l1, ..., lm} is

2n+ k + 3m+ 4
∑
i ̸=j

1li and lj have an interior intersection +
∑
i ̸=j

1li and lj share an endpoint

Proof. We proceed by induction on m the number of lines l1, ..., lm. The base case, m = 0 is

immediate since each wall contributes 2 external corners to A ∪ {w1, ..., wn}.
For the induction step, assume we have line segments l1, ..., lm+1 as in the statement of the

lemma. Then lm+1 contributes 3 or 4 external corners from its endpoints. In particular, from

the endpoint at the unique internal corner that lm+1 ends at that is not an endpoint of one of

the wi, lm+1 contributes 2 external corners if one of the li for i < m + 1 has this as an endpoint

and 1 external corner otherwise The other 2 external corners are from the other endpoint of lm+1.

In addition, for each internal intersection of lm+1 with another line li, we obtain 4 more external

corners. The result then follows by induction.

Lemma 4. Let A be a rectangulable region in the plane. There exists a minimal rectangulation of

A of the form R(P ) for P a full corner pairing of A.

Proof. Let R be a minimal rectangulation of A. Let P be a maximal set of endpoints of corner-

pairing line segments in R so that no two such sets of endpoints intersect. We show that

size(R) = size(R(P ))

thus proving the result.
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Note first that every line segment l in R must have at least one end as a internal corner of

A, since otherwise both of the ends of l are either other line segments in R or walls of A and by

removing l from R, we would obtain a new rectangulation of A with one fewer rectangle than R,

thus contradicting the minimality of R.

Let w1, ..., wn denote the set corner-pairing line segments with endpoints in P and let l1, .., lm
denote the other line segments in R so that each li ends at an internal corner of A - note then that

we meet the conditions of Lemma 3 with these choices of wi and lj .

Let c denote the number of internal corners of A that are not contained in any set in P . By

Lemma 1, R(P ) is a rectangulation of A. By Lemma 1, we see that R(P ) has 2n+ k+3c external

corners since all of the lines in R(P ) other than those whose endpoints are in P are horizontal and

hence disjoint and there is exactly one line segment coming from each of the c internal corners of

A that are not contained in any set in P . Therefore

4 size(R(P )) = 2n+ k + 3c

since each rectangle contributes 4 external corners.

Now, R may differ from R(P ), but we claim that it has the same size. This is because in

a rectangulation of A, every internal corner of A must have at least one line segment of the

rectangulation ending at that corner. Therefore, m ≥ c and by Lemma 3, we have

4 size(R) ≥ 2n+ k + 3c

Therefore by minimality of R,

4 size(R) = 2n+ k + 3c = 4 size(R(P ))

We now have all of the pieces in place for the proof of Theorem 1:

Proof. (of Theorem 1) Given the region A, using Lemma 2 we can find a minimal rectangulation

of A in polynomial time since Lemma 4 guarantees that there is a minimal rectangulation of the

form R(P ) for P a full maximal corner pairing.
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