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Abstract

We give a polynomial-time algorithm to find a minimal rectangulation of a region in the
plane that can be tiled with rectangles. This has been discovered several times (see, for example
[6], [7], [3], [2]) — we were unaware of this and stumbled on it ourselves. After writing up
the result, we became aware of the aforementioned results. This note simply our take on this
problem, which we thought may be worth recording.

Let A be a compact subset of the plane whose boundary consists of a finite number of disjoint
line segments all of whose endpoints are on the grid Z? C R? — see Figure 1. We call such regions
rectangulable since such regions can be partitioned into rectangles that are disjoint except along
their boundary as in Figure 1. We are interested in the problem of, given A, finding a rectangulation
of A with the smallest number of rectangles. Such rectangulations will be called minimal.

Theorem 1. There is a polynomial-time algorithm that, given a rectangulable region A, finds a
minimal rectangulation of A.

Before getting started on the proof of Theorem 1, we give an application which was our moti-
vation for thinking about rectangulations:

Corollary 1. There exists a polynomial-time algorithm that, given f : {0,1}" x {0,1}"™ — {0, 1},
computes x&°™(f).

Proof. (of Corollary) We will compute x8*°™(f) by applying the algorithm in Theorem 1 to each
of the f-monochromatic connected regions of M (f) (of which there polynomially many). O

For the proof of Theorem 1, we introduce some terminology. For any pair of line segments we
mention [ and I’ we will assume that they intersect transversely in their interior (i.e., they intersect
in finitely many points). Given a rectangulable region in the plane A, we will refer to the internal
and external corners of A as in Figure 1. We will refer to the line segments forming the boundary
of A as the walls of A. We say that a line segment [ ends at an internal corner ¢ of A if one of its
endpoints is at ¢. We also define [ pairing the two internal corners ¢; and co if it ends in ¢; and co.
We say [ ends in a wall of A or another line segment [’ if an endpoint of [ is on a non-corner part
of A or the interior of I'. A rectangulation R of A is a collection of line segments such that the line
segments cut A up into rectangles.

The size of R, denoted size(R), is the number of rectangles that R cuts A into. A rectangulation
R of A is minimal if it has the smallest size amongst all rectangulations of A.

The outline of our proof of Theorem 1 is as follows: We start by giving a method of describing
particularly simple rectangulations of A and showing that a minimal rectangulation of this form



can be found in polynomial time. Then we prove that there must exist a minimal rectangulation
of this form.

We now give a method of describing certain simple rectangulations of A. A corner pairing is
aset P = {P,..., P,} where each P, = {c},c?} where ¢! and ¢? are internal corners of A with a
line segment [; between them in A, P, N P; = () for i # j, and the lines /; and [; are disjoint for
i # j. A corner pairing P is full if no additional pair of internal corners P,11 can be added to P
to obtain a larger corner pairing — see Figure 2 for two different examples of full corner pairings
and Figure 3 for all possible corner-pairing line segments. Given a corner pairing P, it determines
rectangulation of A called the realization of P which we denote R(P) as in the right on Figure 1
(which is R(Py) for the pairing P; in Figure 2) where we use the convention of drawing horizontal
line segments from all of the internal corners in A that are not contained in any P; (this is just a
convention and we could have just as well taken vertical lines or some mix of vertical and horizontal
lines). See Figure 4 for another example — namely, R(P,) for P, in Figure 2.

Lemma 1. Let A be a rectangulable region in the plane, P a side pairing of A and R(P) the
realization of P. Then R(P) is a rectangulation of A. Let p be the size of P, u be the number of
internal corners in A not contained in any pair in P, and k be the number of external corners of
A. If P is maiximal, then

4size(R(P)) =2p+3u+k
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Figure 1: Example of a rectangulizable region in the plane and a rectangulation of it. On the left

is an example of a connected but not simply-connected rectangulizable region in the plane. The
internal corners are marked in red and the external corners are marked in blue. On the right is a
minimal rectangulation of a rectangulizable region — here using 21 rectangles. This is in fact the
rectangulation that results from the algorithm for finding such a minimal rectangulation that we
present.

Proof. To see that R(P) is a rectangulation of A, we proceed by induction on the size of P —in fact
we will want to strengthen the inductive hypothesis to allow all such regions A together with some
number of internal line segments with at least one endpoint at an internal corner and the other
endpoint at a wall or internal corner. As a base case, assume that P is empty, so the realization
just consists of drawing horizontal lines from each internal corner of A to a wall of A. This is seen
to be a rectangulation by induction on the number of internal corners of A. If there are no internal
rectangles, then A itself is a rectangle, and if there are n + 1, then by adding the horizontal line
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Figure 2: Different examples of full corner pairings. On the left is a full corner pairing P; that is also

maximal. The result of applying the algorithm in Theorem 1 to P; is the minimal rectangulation
R(P1) shown on the right in in Figure 1. On the right is a full corner pairing P». Note that
|| < |-

on the internal corner(s) with say lowest y-coordinate(s), we obtain a region A’ with fewer internal
corners than A to which we can apply the inductive hypothesis. Therefore, in the case where P is
empty, R(P) is a rectangulation of A. Now assume that P consists of n+ 1 pairs of internal corners.
Given one such pair {C}H_l, C?.L_H} € P, let A’ be A together with the line segment pairing C711+1 and
c2 +1, and we consider A’ together with a corner pairing P — {ck 115 c2 41} which one fewer pair of
internal corners, then the realization of P — {c},;,c2,,} is a rectangulation of A’ and therefore,
R(P) is a rectangulation of A.

To verify the rest of Lemma 1, we note that, since every rectangle has 4 external corners,
4size(R(P)) is the number of external corners in R(P). Each element of P contributes 2 external
corners, each of the u unparied corners contributes 3 external corners (and since P is assumes to be
full, this is not redundant), and the k external corners of A are the remaining external corners. []

A vertex cover C of a graph G is a set of vertices such that each edge of G has at least one
vertex in C. A vertex cover is minimal if it has the smallest size amongst all vertex covers of G.
The problem of determining for a graph G and an integer k if G has a vertex cover of size less
than or equal to k is NP-complete [4]. A matching M of G is a collection of edges of G no two
of which share a vertex. A matching is maximal if it is as large as possible among all matchings
of G. Maximal matchings of graphs can be constructed in polynomial time — see for example
[1]. However, in the case of bipartite graph G, Kénig’s theorem says that the size of a maximal
matching of G is the same as the size of a minimal vertex cover of G [5]. Furthermore, the proof
constructs a minimal vertex cover given a maximal matching in polynomial time. A set of vertices
of a graph is a vertex cover if and only if its complement is an independent set, and therefore the
problem of finding a maximal independent set in a graph is equivalent to the problem of finding a
minimal vertex cover. Therefore, by Kénig’s theorem in a bipartite graph, we can find a maximal
independent set in polynomial time.

Let G4 be the graph whose vertices are the line segments in A with both ends at internal
corners of A. The edges of G4 come in two types. For the first type, the corner sharing edges,
we place an edge between two distinct vertices I; and Iy when they share an internal corner. For
the second type, the intersection edges, we put an edge between two line segments /1 and I if they



Figure 3: Rectangulable region with all corner pairing line segments drawn in. Note that many of
them intersect and some corners have more than one such line segment ending at them.

intersect in their interiors. Note that G 4 is biparite with the partition being into the vertices that
are horizontal lines and the vertices that are vertical lines. Now, by construction, we have that
corner pairings of A are in bijection with independent sets of vertices in G4 where the bijection
takes the set of vertices to the pairs of the ends of the corresponding line segments. The resulting
corner pairings are full if and only if no vertices can be added to the corresponding independent set
in G 4. Therefore, we wish to find a maximal independent set in G4 and then the corresponding
full corner pairing P will be as large as possible among all corner pairings and therefore R(P) will
be a minimal rectangulation of A.

Lemma 2. Let A be a rectangulable region in the plane. Among the rectangulations of A in the
set {R(P) : P is a full corner pairing of A }, we can find such a rectangulation of smallest size
amongst rectangulations of the form R(P) in polynomial time.

Proof. Consider the graph G 4 whose vertices are the corner pairing line segments in A and whose
edges come in two forms: (1) two vertices v and u are adjacent if the corresponding line segments
intersect, and (2) two vertices v and u are adjacent if the corresponding corner pairings share an
internal corner. Note that G 4 is biparite with a biparition being given by separating the vertices
into those representing vertical line segments and those representing horizontal line segments.

By construction, corner pairings P correspond to independent sets in G4. Furthermore, by
Lemma 1, we see that size(R(P)) is minimized when the size of P is maximized. Therefore, we
want to find a maximal independent set in G4. By Ko6nig’s theorem as in the preceding discussion,
this can be done in polynomial time. O

Now we prove that we can restrict attention to rectangulations of the form R(P) for P a full
corner pairing. Before doing this, we need one technical lemma. Given two line segments [ and [’
in the plane, the set of internal intersections of | and I’ is the set of points in the intersection of
the interiors of [ and I’ (note that intersections at the endpoints are not included).

In what follows, we use the notation 1cjaiy, for the function with 1¢jaim(2) = 1 if the claim holds
true for x and 0 otherwise.
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Figure 4: A non-minimal rectangulation of a rectangulable region. This is the rectangulation R(Fz)

where P, is the full but not maximal corner pairing on the right in Figure 2. Note that R(P»)
consists of 22 rectangles whereas the rectangulation of the same region shown in Figure 3 has 21
rectangles.

Lemma 3. Let A be a rectangulable region in the plane together with several disjoint corner-pairing
line segments w1y, ..., wn. Let lq,..,l, be line segments in A that are disjoint from A and all of the
w;, except possibly at their endpoints, such that each l; ends at a unique internal corner of A that
is not an endpoint of any w;j. Suppose that there are k external corners of A. Then the number of
external corners in AU {wi,...,wp} U{l1,...,lm} is

n+k+3m+4 5 1li and l; have an interior intersection + E 111- and l; share an endpoint
i#£] i#£]j

Proof. We proceed by induction on m the number of lines [y, ...,l,,. The base case, m = 0 is
immediate since each wall contributes 2 external corners to AU {w1, ..., wy}.

For the induction step, assume we have line segments [y, ...,l,,+1 as in the statement of the
lemma. Then [l,,4+1 contributes 3 or 4 external corners from its endpoints. In particular, from
the endpoint at the unique internal corner that [, ends at that is not an endpoint of one of
the w;, l41 contributes 2 external corners if one of the I; for ¢ < m + 1 has this as an endpoint
and 1 external corner otherwise The other 2 external corners are from the other endpoint of l,,,41.
In addition, for each internal intersection of [,,4+1 with another line /;, we obtain 4 more external
corners. The result then follows by induction. O

Lemma 4. Let A be a rectangulable region in the plane. There exists a minimal rectangulation of
A of the form R(P) for P a full corner pairing of A.

Proof. Let R be a minimal rectangulation of A. Let P be a maximal set of endpoints of corner-
pairing line segments in R so that no two such sets of endpoints intersect. We show that

size(R) = size(R(P))

thus proving the result.



Note first that every line segment [ in R must have at least one end as a internal corner of
A, since otherwise both of the ends of [ are either other line segments in R or walls of A and by
removing [ from R, we would obtain a new rectangulation of A with one fewer rectangle than R,
thus contradicting the minimality of R.

Let wy, ..., w, denote the set corner-pairing line segments with endpoints in P and let Iy, ..,
denote the other line segments in R so that each [; ends at an internal corner of A - note then that
we meet the conditions of Lemma 3 with these choices of w; and ;.

Let ¢ denote the number of internal corners of A that are not contained in any set in P. By
Lemma 1, R(P) is a rectangulation of A. By Lemma 1, we see that R(P) has 2n + k + 3¢ external
corners since all of the lines in R(P) other than those whose endpoints are in P are horizontal and
hence disjoint and there is exactly one line segment coming from each of the ¢ internal corners of
A that are not contained in any set in P. Therefore

4size(R(P)) = 2n + k + 3¢

since each rectangle contributes 4 external corners.

Now, R may differ from R(P), but we claim that it has the same size. This is because in
a rectangulation of A, every internal corner of A must have at least one line segment of the
rectangulation ending at that corner. Therefore, m > ¢ and by Lemma 3, we have

4size(R) > 2n+ k + 3¢
Therefore by minimality of R,

4size(R) = 2n + k + 3¢ = 4size(R(P))

We now have all of the pieces in place for the proof of Theorem 1:

Proof. (of Theorem 1) Given the region A, using Lemma 2 we can find a minimal rectangulation
of A in polynomial time since Lemma 4 guarantees that there is a minimal rectangulation of the
form R(P) for P a full maximal corner pairing. O
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