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ABSTRACT. This paper is an introduction to the braid groups in-

tended to familiarize the reader with the basic definitions of these

mathematical objects. First, the concepts of the Fundamental Group

of a topological space, configuration space, and exact sequences are

briefly defined, after which geometric braids are discussed, followed by

the definition of the classical (Artin) braid group and a few key results

concerning it. Finally, the definition of the braid group of an arbitrary

manifold is given.
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1. Geometric and Topological Prerequisites

Any picture of the braid groups necessarily follows only after one has

discussed the necessary prerequisites from geometry and topology. We

begin by discussing what is meant by Configuration space.

Definition 1.1 Given any manifold M and any arbitrary set of m

points in that manifold Qm, the configuration space Fm,nM is the space

of ordered n-tuples {x1, ..., xn} ∈ M − Qm such that for all i, j ∈
{1, ..., n}, with i 6= j, xi 6= xj.

If M is simply connected, then the choice of the m points is irrelevant,

as, for any two such sets Qm and Q′m, one has M − Qm
∼= M − Q′m.

Furthermore, Fm,0 is simply M − Qm for some set of M points Qm.

In this paper, we will be primarily concerned with the space F0,nM .
1
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Another space useful for our purposes is obtained by taking Bm,nM =

Fm,nM/Sn, which just takes any {x1, ..., xn} ∈ Fm,nM and sets all

permutations of those coordinates equal. Furthermore, there is a can-

nonical projection p : Fm,nM → Bm,nM .

Definition 1.2 Given two continuous maps f, g : X → Y , where

X and Y are topological spaces, f and g are said to be homotopic

if there exists a continuous function H : X × [0, 1] → Y such that

H(x, 0) = f(x) and H(x, 1) = g(x). This map H is referred to as a

homotopy from f to g.

A homotopy between maps is simply a method of continuously deform-

ing one map into the other. For our purposes, it is most important in

light of the following definitions.

Definition 1.3 A path in a topological space X is a continuous map

f : [0, 1]→ X. If f(0) = f(1), then f is referred to as a loop. A space

is called path connected if any two points in the space are connected

by a path.

Definition 1.4 Given a based, path connected topological space (X, x),

the fundamental group of that space, π1(X), is the set of all loops start-

ing and ending at x up to homotopy such that the endpoints are fixed

(i.e. h(0, t) = h(1, t) = x for all t ∈ [0, 1]).

There is a manner in which one may transform loops from one point into

loops from the chosen basepoint. Given the space (X, x) and another

point y, one may take a loop γ from y to y, and transform it into a

loop from x to x. Simply take a path η from x to y, and analyze the

composition ηγη−1. Clearly, this corresponds to a loop from x to x.

Analogously, one may transform loops from x to x into loops from y

to y. Hence, the choice of basepoint is immaterial and is omitted from

the notation.

Proposition 1.5 The fundamental group of a topological space X is,

in fact, a group.
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Proof. In order to show this, one needs to establish a multiplicative

structure on π1(X). Take f, g ∈ π1(X). Then one may define f · g as

follows:

(f · g)(t) =

{
f(2t) : 0 ≤ t ≤ 1

2
g(2t− 1) : 1

2
≤ t ≤ 1

The associativity of this product may be easily checked. In addition,

there exists an identity element id(t) = x, and inverses, which may be

written as f−1(t) = f(1− t) for any f ∈ π1(X). One may easily verify

that the group properties hold. �

This is one of the most important concepts in Algebraic Topology. It is

particularly important to us for reasons which will be made apparent

in later sections.

Definition 1.6 An exact sequence is a chain of groups and homomor-

phisms between them such that the image set of one homomorphism

in the chain is equal to the kernel of the following one. In other words,

it is a chain

G1
f1−→ G2

f2−→ · · · fn−1−→ Gn

such that for all k ∈ {1, ..., n−1}, one has im(fk) = ker(fk+1). A short

exact sequence is one of the form

1 −→ A
f−→ B

g−→ C −→ 1,

where 1 represents the trivial group. This forces f to be a monomor-

phism and g to be an epimorphism (in the nonabelian case, there is the

additional requirement that f is the inclusion of a normal subgroup).

Furthermore, this in turn induces an isomorphism C ∼= B/A.

Now, there are two important lemmas about exact sequences which

must be stated. Their proofs are a simple, but lengthy, application of

diagram chasing.

Lemma 1.7 Given two exact sequences and a set of morphisms be-

tween the groups comprising them such that the following diagram

commutes,

G1
-

f1
G2

-
f2

G3
-

f3
G4

-
f4

G5

?

g1
?

g2
?

g3
?

g4
?

g5

G6
-

f5
G7

-
f6

G8
-

f7
G9

-
f8

G10
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the five lemma states that if g1, g2, g4, and g5 are isomorphisms, then g3
must be one as well. A corollary to this regarding short exact sequences

is as follows. Given two short exact sequences morphisms between the

groups that compose them such that the following diagram commutes,

1 - G1
-

f1
G2

-
f2

G3
- 1

?

g1
?

g2
?

g3

1 - G4
-

f3
G5

-
f4

G6
- 1

the short five lemma states that if g1 and g3 are isomorphisms, then so

is g2. The strong five lemma replaces those isomorphisms with injective

maps.

Definition 1.8 A fibre bundle is a quadruple (E,X, F, π), where E is

called the total space, X is the base space, F is the fibre, and π : E → X

is the projection of E onto X such that there exists an open neigh-

borhood U of every point x ∈ X which makes the following diagram

commute:

π−1(U)

π

��

∼= // U × F

proj1yy
U

where proj1 is the standard projection on the first coordinate. A cov-

ering with such open neighborhoods with their respective homeomor-

phisms is referred to as a local trivialization of the bundle.

2. Geometric Braids

The theory of braids begins with a very intuitive geometrical descrip-

tion of the main objects of study.

Definition 2.1 A geometric braid on n strings is a subset β ⊂ R2 ×
[0, 1] such that β is composed of n disjoint topological intervals (maps

from the unit interval into a space). Furthermore, β must satisfy the

following conditions:

1.) β ∩ (R2 × {0}) = {(1, 0, 0), (2, 0, 0), ..., (n, 0, 0)}
2.) β ∩ (R2 × {1}) = {(1, 0, 1), (2, 0, 1), ..., (n, 0, 1)}
3.) β ∩ (R2 × {t}) consists of n points for all t ∈ [0, 1]
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4.) For any string in β, there exists a projection proji : R2 × [0, 1] →
[0, 1] taking that string homeomorphically to the unit interval.

Two braids are considered isotopic if one may be deformed into the

other in a manner such that each of the intermediate steps in this

deformation yields a geometric braid.

Given an arbitrary braid β, tracing along the strands, one finds that the

0 endpoints are permuted relative to the 1 endpoints. This permutation

is the called the underlying permutation of β. A braid is called pure if

its underlying permutation trivial (i.e., its endpoints are unpermuted).

3. The Braid Group of a General Manifold

Definition 3.1 Taking R2 to be the euclidian plane, the classical braid

group on n strings is simply π1B0,nR2 and, analogously, π1F0,nR2 is the

corresponding pure braid group.

Clearly, the elements of each braid group thus defined are simply geo-

metric braids, for one may think of these braids as the graph of a

map from [0, 1] into the space B0,nE
2 (starting and ending at the same

point in the space). Thus, taking a base of n distinct points in R2, one

may represent any element of the classical braid group as a geometric

braid. Analogously for the pure braid group, but each string must start

and end at the same point. Composition of braids is simply given by

stacking one braid atop another.

Definition 3.2 Given any manifold M , and a basepoint in its configu-

ration space, its braid group is given by π1B0,nM . Its pure (unpermuted)

braid group is given by π1F0,nM .

Although this fact will not be proven (its proof is quite long and in-

volved, and is not the focus of this paper), it is pretty clear that for all

dimensions greater than 2, the braid group is trivial. A non-rigorous

proof may be given as follows. For any manifold, braids comprise

one dimensional objects living in dimM + 1 dimensions. Hence, if

dimM ≥ 3, then the dimension of the space occupied by the braids

on that manifold is of dimension at least 4 hence, as the braids are

composed of one-dimensional strings, there is enough room to unbraid
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them. It is just as clear that the braid group of any 1-manifold is trivial

as well, as there is too little room to begin braiding in the first place.

Henceforth, when we refer to a manifold, we mean a 2-manifold.

Given the fibre bundle map p described above, it is apparent that

π1B0,nM/π1F0,nM ∼= Sn. This isomorphism may be thought of as

follows. There is a natural surjective homomorphism from B0,nM to

Sn which maps a braid to its underlying permutation. Its kernel is

simply the corresponding pure braid group.

This is an application of a more general principle of algebraic topology.

Given a covering space E of a base space B, one finds that there ex-

ists an inclusion map π1(E)
i−→ π1(B) which induces the short exact

sequence

1 −→ π1(E)
i−→ π1(B) −→ π1(B)/π1(E) −→ 1

where π1(B)/π1(E), which need not be a group in general, is identified

with fibres over a point due to transitive group action on E.

For an arbitrary 2-manifold M , given an inclusion of R2 into M , take

im,n : Fm,nR2 → Fm,nM to be the resulting inclusion, respecting sub-

traction of m points (since the choice of the points does not matter,

one may simply choose them all to be in the neighborhood of the in-

clusion), and im,n∗ : π1Fm,nR2 → π1Fm,nM to be the associated group

homomorphism.

Lemma 3.3 Given any connected, boundaryless q-manifold, with q ∈
{2, 3, ...}, and n, r ∈ N such that n > r, one has a map µ : F0,nM →
F0,rM such that µ(v1, ..., vn) = (v1, ..., vr). This map is a locally trivial

fibre bundle, whose fibre is Fr,n−rM .

Proof. Take a point p = (p1, ..., pr) ∈ F0,rM . Then µ−1(p) ⊂ F0,nM

such that the first r coordinates are p. Given that Fr,n−rM is inde-

pendent of the choice of removed points, one may take Fr,n−rM to be

based on M − p. As the first r entries in µ−1(p) are fixed as p, there

exists a homeomorphism µ−1(p) ∼= Fr,n−rM .

Now, for each pi making up p, there exist open neigborhoods Ui ⊂
M containing pi such that U i is a closed ball, and Uj ∩ Uk = ∅ if
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j 6= k. Given this, one may easily see that U1 × · · · × Ur = U ⊂
Fr,n−rM is an open neighborhood of p, considering U with respect to

the subspace topology of Fr,n−rM relative to (M−{p1, ..., pr})n−r. Now,

as the construction of such functions is rather involved (see Kassel and

Turaev for all the gory details), suppose without proof that there exist

continuous maps ηi : Ui×U i → U i with the following special properties.

For any point s ∈ Ui, one has that the restriction ηi|s : U i → U i, with

s ∈ Ui, mapping v 7→ ηi(s, v) is a homeomorphism fixing the boundary

∂U i and sending pi to s. Fixing a point u = (u1, ..., ur) ∈ U , these

maps naturally induce an ηu : M →M such that for any v ∈M ,

ηu(v) =

{
ηi(ui, v) , v ∈ Ui for i ∈ {1, ..., r}
v , else

This is pretty clearly a homeomorphism depending on u in a continuous

fashion between U × Fr,n−rM and µ−1(p) which commutes with the

projections. Hence, µ|U : µ−1(U) → U is a trivial fibre bundle, thus

proving the lemma. �

Clearly, this implies the analogous result for Fm,nM → Fm,rM with

fibre Fm+r,n−r by simply considering the result on the manifold minus

m points.

Lemma 3.4 If for all m ≥ 0, one has π2Fm,1M = π3Fm,1M = 1, then

π2F0,nM = 1 for all n ∈ N.

Proof. Given the fibration Fm,nM → Fm,1 due to theorem 4.3, one

obtains the following homotopy exact sequence:

· · · −→ π3Fm,1M −→ π2Fm+1,n−1M −→ π2Fm,nM −→ π2Fm,1M −→ · · ·

Given that π2Fm,1M = π3Fm,1M = 1, one finds that π2Fm+1,n−1M ∼=
π2Fm,nM . Thus, by inductive reasoning, one sees that π2Fn−1,1M ∼=
π2F0,nM = 1. �

Theorem 3.5 Take i : Fn−1,1M → F0,nM to be the inclusion of

Fn−1,1M into F0,nM by adding a distinct element to the set of n − 1

missing points. If π2Fm,1M = π3Fm,1M = π0Fm,1M = 1 for all m ≥ 0,

then the following is exact:

1 −→ π1Fn−1,1M
i∗−→ π1F0,nM

π∗−→ π1F0,n−1M −→ 1
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Proof. Given theorem 3.3, one obtains a locally trivial fibration map-

ping F0,nM → F0,n−1M whose fibre is Fn−1,1M . This induces the exact

(by application of Lemma 3.4) sequence above. �

Theorem 3.6 Given a compact 2-manifold M not homeomorphic to

the sphere or RP 2, one has ker(i0,n∗) = 1.

Proof. Given the homomorphisms outlined as well as the following two

exact sequences, one obtains the commutative diagram

1 - π1Fn−1,1R2 -
f1

π1F0,nR2 -
f2

π1F0,n−1R2 - 1

?

in−1,1∗
?

i0,n∗
?

i0,n−1∗

1 - π1Fn−1,1M -
f1

π1F0,nM -
f2

π1F0,n−1M - 1

Now, in−1,1∗ must be injective for all n ∈ N. For the sake of brevity,

the proof shall be omitted, however, for those readers interested in

the proof, it follows from the fact that for any manifold N and set

Qn−1 ⊂ N of n − 1 points, Fn−1,0N = N − Qn−1 and the Seifert-van

Kampen theorem. The proof now falls to a nifty use of induction.

Given that π1F0,1R2 = π1R2 = 1, as F0,1N = N for any manifold N ,

one finds that i0,1∗ must be injective as well. Now, suppose that i0,n−1∗
is injective. Then, by the strong five lemma, one finds that i0,n∗ is

injective. Hence, ker(i0,n∗) = 1. �

This inclusion implies that classical braiding is possible on any con-

nected 2-manifold other than the sphere and projective plane (which

may also be shown to exhibit classical braiding in most cases).

4. The Artin Braid Group

Definition 4.1 The Artin Braid Group on n letters, Bn, is a finitely-

generated group with generators σ1, σ2, ...σn−1 which satisfy the follow-

ing relations:

σiσj = σjσi when |i− j| ≥ 2 for i, j ∈ {1, ..., n− 1}

σiσi+1σi = σi+1σiσi+1 for i ∈ {1, ..., n− 2}
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These relations are referred to as the braid relations. Any element of

Bn is called a braid. B1 is trivial by definition. For all other n, Bn is

infinite. B2 is isomorphic to Z. Now, there exists an obvious surjective

group homomorphism π : Bn → Sn simply defined by ”following” the

strands in a geometric sense and analyzing their underlying permuta-

tions. Alternatively, one may write this in terms of algebraic generators

by letting π(σi) = π(σ−1i ) = (i, i + 1) for all i ∈ {1, ..., n − 1}. Hence,

given that the symmetric group is not abelian for n ≥ 3 , neither is

the braid group. The kernel of the homomorphism between the braid

group and the symmetric group is referred to as the pure braid group

Pn.

While the precise link between geometric braids and the classical braid

group will be formalized below, it is still possible to describe in an

intuitive sense what the link is. Each of the generators represents

the twisting of two adjacent strands around one another in a specified

direction (the inverse is defined analogously, just in the other direction).

That one is able to obtain any geometric braid (a more difficult result)

will be proved later on.

While the generators described above may be the simplest, they are

not the only set. In fact, they are not even the smallest.

Theorem 4.2 Bn may be generated by two or fewer elements, for any

n ∈ N.

Proof. Consider the following two elements ofBn: σ1 and α = σ1 · · · σn−1.
If one could find a method of representing any of the standard gener-

ators in terms of these two, then clearly the theorem would follow.

claim: Given any i ∈ {1, ..., n − 1} and any k ∈ {1, ..., i}, one finds

that αi−1σ1α
1−i = αi−kσkα

k−i

Proof. This lends itself to a nifty proof by induction. The first non-

trivial case is that when k = 2. Making use of the braid relations, one

finds that

αi−1σ1α
1−i = αi−2σ1 · · ·σn−1σ1α1−i = αi−2σ1σ2σ1 · · ·σn−1α1−i =

αi−2σ2α
2−i
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Analogously, suppose that the same holds for k− 1. Then, making use

of the same relations, one finds that

αi−1σ1α
1−i = αi−(k−1)σk−1α

(k−1)−i = αi−kσ1 · · ·σn−1σk−1α(k−1)−i =

αi−kσ1 · · ·σk−1σkσk−1 · · ·σn−1α(k−1)−i =

αi−kσ1 · · ·σkσk−1σk · · ·σn−1α(k−1)−i = αi−kσkα
k−i

Thus completing the proof of the claim. �

This, in turn, implies that for all i ∈ {1, ..., n − 1}, one has σi =

αi−1σ1α
1−i. Hence, Bn =< σ1, α >. Q.E.D. �

Now, the most important generator set (other than the primary one,

of course) that we will discuss is that which generates the pure braid

group. The pure braid group admits generators

Ai,j = σj−1σj−2 · · ·σi+1σ
2
i σ
−1
i+1 · · ·σ−1j−2σ−1j−1 for i < j

which satisfy the relations

Ar,sAi,jA
−1
r,s =


Ai,j , r < i < s < j or i < r < s < j
Ar,jAi,jA

−1
r,j , s = j

(Ai,jAs,j)Ai,j(Ai,jAs,j)
−1 , r = i < j < s

(Ar,jAs,jA
−1
r,jA

−1
s,j )Ai,j(Ar,jAs,jA

−1
r,jA

−1
s,j )
−1

, r < i < s < j

It is clear that these are in the pure braid group from the ”generators”

definition of the symmetric braid group. As the proof of this is long,

cumbersome, and not particularly interesting, it will be omitted. This

being said, it is possible to informally prove these relatively easily using

braid diagrams. These generators correspond to starting at the ith

strand, wrapping around the jth one, and returning on the same side

of the intermediate strands.

5. The Link Between the Geometric and Algebraic Pictures

Now, we come to the primary theorem of this paper—one of the most

important theorems in the preliminary study of braids.

Theorem 5.1 The classical braid group is the classical (Artin) braid

group.
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Proof. Recall the projection p : F0,nR2 → B0,nR2, taking ((1, 0), ..., (n, 0))

as the basepoint of F0,nR2, there is a unique lift given any loop l ∈
π1B0,nR2 based at p(((1, 0), ..., (n, 0))) into a function l : [0, 1]→ F0,nR2

permuting the different strands in F0,nR2. Now, consider the following

function
∼
π : π1B0,nR2 → Sn, defined as follows. Given any braid β ∈

π1B0,nR2, there exists a unique lift β = (
∼
β1, ...,

∼
βn) : [0, 1] → F0,nR2.

Using this lift, the function
∼
π is defined on an arbitrary braid as follows:

∼
π(β) =

( ∼
β1(0) · · ·

∼
βn(0)

∼
β1(1) · · ·

∼
βn(1)

)
∈ Sn,

which is simply a more technical way of saying that it encodes the

braid’s underlying permutation (this is a special case of path lifting

in the theory of covering spaces). Clearly, π1F0,nR2 is the kernel of

this surjection. Now that we have established this function, it is time

to reveal its utility. Let in : Bn → π1B0,nR2 be a homomorphism

relating the two classical braid groups. Given this, one has the following

commutative diagram with exact rows:

1 - Pn - Bn
-π Sn

- 1

?

in|Pn

?

in
?

idSn

1 - π1F0,nR2 - π1B0,nR2 -
∼
π Sn

- 1

Thus, if we can show that in restricted to Pn is an isomorphism, then

it is in general as well. Recalling the set of generators for the group Pn
established in section 4, Pn−1 may be thought of as the subgroup of Pn
generated by all Ai,j such that 1 ≤ i < j ≤ n − 1. Upon inspection,

there is a useful homomorphism ξ : Pn → Pn−1 defined as follows:

ξ(Ai,j) =

{
Ai,j , 1 ≤ i < j ≤ n− 1
1 , 1 ≤ i < j = n

Geometrically, this simply corresponds to removing the nth strand.

One finds that ker(ξ) is simply the normal closure of A1,n, ..., An−1,n in

Pn, however, by careful examination of the defining relations for this

presentation, one finds that this is simply the subgroup< A1,n, ..., An−1,n >=

Un. Given the manner in which it is defined, there exists an analo-

gous homomorphism π∗ : π1F0,nR2 → π1F0,n−1R2 such that ker(π∗) =
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π1Fn−1,1R2, which is simply the free group on n−1 generators. Clearly,

the following diagram commutes:

1 - Un - Pn -
ξ

Pn−1 - 1

?

in|Un

?

in
?

in−1

1 - π1Fn−1,1R2 - π1F0,nR2 -
∼
π π1F0,n−1R2 - 1

Thinking graphically, one finds that one may represent the generators

of Un as separating one string from the others. If one thinks about

this picture for a little while, it becomes apparent that these generate

the free group on n − 1 letters as well. This is due geometrically to

the fact that one fixed strand wrapping around the other n− 1 strands

is homotopic to the plane punctured n − 1 times. More rigorously,

the image set of the generators forms a basis for the free group, so

as both groups are finitely generated and in|Un is surjective, it is an

isomorphism. Now, we proceed by induction. Note that π1F0,1R2 =

1 = P1. Suppose that in−1 is an isomorphism. Then, by the five

lemma, in is an isomorphism. Hence, Bn
∼= π1B0,nR2, which concludes

the proof. �
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