APPLICATIONS OF NUMBER THEORY IN CRYPTOGRAPHY

ZIHAO JIANG

ABSTRACT. Cryptography is the practice of hiding information, converting
some secret information to not readable texts. Applications of cryptogra-
phy include military information transmission, computer passwords, electronic
commerce, and others. This paper aims to introduce the reader to applications
of number theory in cryptography. We will briefly talk about the idea of en-
cryption and public key cryptosystem in the context of algebra and elementary
number theory.

CONTENTS
1. Topics in Elementary Number Theory 1
2. Finite Fields and Quadratic Residues 6
3. Primality and Factoring 7
4. Simple cryptosystems 13
5. Public Key 14
Acknowledgments 17
References 17

1. Torics IN ELEMENTARY NUMBER THEORY

Before start studying of cryptography, here is some background that shall be
required. We start with time estimates for algorithms.

Numbers in different bases. A nonnegative integer n written in base b is a
notation for n of the form (dg_1dk—s...d1dp)s, where the d;’s are called digits. This
notation simply means n = dy_1b* "' + dp_10* "2 + ... + dib + dy. We shall omit
the parentheses and subscript in the case of the usual decimal system (b=10). The
simplest and probably the most applied is the binary system with numbers written
in base 2.

Number of digits. It is easy to see that an integer n satisfying b¥ =1 < n < b*
has k digits in base b. By the definition of logarithms, this gives the following
formula for the number of base b digits:

number of digits = |log, n| +1 = Llfoigzj +1.

Bit operations. In order to evaluate the time needed for a specific algorithm,
we need to know what kind of arithmetic operations are involved and how much time
each takes to implement. Here we introduce the concept of a bit operation, which
is the operation of adding two one-digit binary numbers together, for example,

1

2 ZIHAO JIANG

1+41=10,140=1,0+1=1, 040 = 0 and their counterparts in subtraction
are also bit operations. Let A and B be integers and m and n their number of
binary digits respectively. Suppose m > n, it will take m bit-operations to add
these two numbers. During the addition, we need first do n adding operations to
get the partial sum of B and the last n digits of A. Then we need to add up the first
m —n digits of A with (m—n) 0’s. So in total we need m bit-operations. When we
are speaking of estimating the “time” it takes to accomplish something, we mean
finding an estimate for the number of bit operations required. In these estimates,
we usually just ignore the time required for “bookkeeping”, like remembering the
carries generated during the process of addition or other logical steps other than
bit-operation, since such time is asymptotically insignificant.

Similarly subtraction of A and B takes m bit-operations, while multiplication
and division of A and B take roughly mn bit-operations.

In order to estimate the upper time bound of some algorithms, we now introduce
a very convenient notation

Definition 1.1. Let f,g : N” — R be functions of all r—tuples of positive integers,
and suppose that there exist constants B and C such that whenever all of the n; are
greater than B the two functions are defined and positive, and f(n1,na,...,n,) <
Cg(ny,na,...,n,). Then we say that f is bounded by g and write f = O(g). Note
the “=” in the notation f = O(g) should be thought of as more like a “<” and the
big-O should be thought of as meaning “some constant multiple.”

Example 1.2. When written in binary form, an integer A has [282] 4 1 digits,

log 2
which is roughly llc:)gg ’;‘. So it takes roughly llc:)gg ’;‘ llc(’)gg ’3)2

to multiply. If we measure time in bit operations (which will be kept as convention
in this paper), we can see by definition then, it takes O(log A) time to add and
O((log A)?) time to multiply.

bit-operations to add and (

Now we shift gears towards topics in elementary number theory.

Definition 1.3. Given integers a and b, we say that a divides b (or b is divisible
by a) and we write a|b if there exists an integer d such that b = ad. In that case
we call a a divisor of b.

The following properties of divisibility are easy to verify:

(a) If a|b and c is any integer, the albc;
(b) If a|b and blc, then alc;
(c) If a|b and ale, then a|b + c.

The Fundamental Theorem of Arithmetic states that any natural number n can
be written uniquely as a product of prime numbers. By this theorem, we can derive
directly two more properties of divisibility:

(d) If a prime number p divides ab, then either p|a or pl|b.
(e) If m|a and nla, and if m and n have no divisors greater than 1 in common, then
mnla.

Another powerful consequence of The Fundamental Theorem of Arithmetic is
that if a number n = p{*p5?...p%", then it has in total (a1 + 1)(aa + 1)...(cr + 1)
different divisors, because for every prime factor we can pick its 0/" up to n'” order
to be included in the product.

APPLICATIONS OF NUMBER THEORY IN CRYPTOGRAPHY 3

Definition 1.4. The greatest common divisor of a and b, denoted d = g.c.d(a,b),
is an integer which satisfies the following two properties

(1) d|a and d|b, and also

(2) if d’'|a and d’|b, then d'|d.

By definition, if there are two greatest common divisors of a and b then, they
divide each other and are therefore equal. Thus, the greatest common divisor is
unique if it exists.

The Euclidean algorithm. If we are working with large integers, it’s unlikely
that we will know their prime factorizations. In fact, factoring large integers is
an important and difficult problem. There’s a quick way to find g.c.d.(a,b) called
Euclidean algorithm.

The algorithm works as follows. Assume that we have two integers a and b,
a > b, we first divide b into a and write the quotient ¢; and the remainder 7, that
is a = q1b 4+ r1. Perform the second division dividing b by 71, b := gor1 + 2. And
keep on until we get some 7,41 divides ry,.

Proposition 1.5. The Euclidean algorithm always gives the greatest common divi-

sor in a finite number of steps. In addition, for a > b, the runtime of the algorithm
is O(log®(a))

Proof. Firstly, the remainders are strictly decreasing from one step to the next, and
so must eventually reach zero. Use the second part of the definition of the g.c.d.,
if any number divides both a and b, it must divide r1, and then, since it divides
b and 71, it must divide 7y, and so on. We can conclude then it must divide the
last nonzero remainder. In the other direction, the last remainder must divide all
of the previous remainders and a,b. Thus it is the g.c.d., because g.c.d. is the only
number which divides both a and b and at the same time is divisible by any other
number which divides a and b

We now want to estimate the time of running this algorithm.
Claim. Tjtr2 < %’I‘j.
Proof of claim. If rj;; < %rj, then rj12 < rj41 < %rj. If rj >
ri = 1- Tj+1 + Tjt2, then Tjyo =15 —Tj41 < %Tj.

1
2

r;, because
Since every two steps must result in reducing the remainder at least in half, the

whole process will not take more than 2- [log, a] divisions. This takes time O(log a).

Also, each division involves number smaller or equal to a. So each division takes

less than O(log®a). In total the time needed for doing this algorithm is less than

O(log® a)

O

Proposition 1.6. Let d = g.c.d.(a,b), where a > b. Then there exist integers
u and v such that d = ua + bv. In other words, the g.c.d. of two numbers can
be expressed as a linear combination of the numbers with integer coefficients. In
addition, finding the integers u and v can be done in O(log3 a) bit operations.

Proof. The procedure is a simple reverse of the Euclidean algorithm. We just need
to write the g.c.d in the form of earlier remainders. We run the Euclidean algorithm
concluding d = r,,. Then r; = r;_3 4+ g;7;—1. So each remainder can be written as a
linear combination of the two preceding remainders. Using repeated substitution,
we can then write d = r,, in terms of b = rg and a = r_;. And in each step we need

4 ZIHAO JIANG

a multiplication and an addition or subtraction. Not hard to see such procedure
also takes O(log® a) bit operations. O

Corollary 1.7. If a > b are relatively prime integers, then 1 can be written as an
integer linear combination of a and b in O(log3 a) bit operations

Definition 1.8. Let n be a positive integer. The Euler phi-function ¢(n) is defined
to be the number of nonnegative integers b less than n which are relatively prime
to n:

o(n) = {0 <b < n|g.c.d.(b,n) =1}

By definition, ¢(1) = 1 and ¢(p) = p— 1 for any prime p. It is also easy to show
that for prime powers

(e a—1

e(p*) =p* —p
Corollary 1.9. The Euler phi-function is “multiplicative”, meaning that p(mn) =
w(m)ep(n) whenever g.c.d.(m,n)=1.

Proof. We know that g.c.d.(xr,mn) =1 <= g.cd(x,m) =1 and g.c.d(x,n) = 1.
By the Chinese Remainder Theorem, there is a bijection between (z mod mn) and
(z mod m, mod n). So |{z: g.c.d.(x mod mn, mn)=1}=|{(u,v):g.c.d.(v mod m,
m)=1 and g.c.d.(v mod n, n)=1}|.So ¢(nm) = @(m)p(n) O

Proposition 1.10. We have the equality Zd‘n o(d) =n.

Proof. Let f(n) denote the left side of the equality. We need to show that f(n) = n.
First we show that f(n) is multiplicative, i.e., that f(mn) = f(m)f(n) whenever
g.c.d.(m,n) = 1. Since n and m have no common factor, any divisor d|mn can be
written uniquely in the form d; - da, where dy|m,ds|m. Since g.c.d.(dy,d2) = 1,
we have ¢(d) = ¢(d1)p(da) by Corollary 1.9.. We get all divisors d of mn by
taking all possible pairs of dy and da. Thus, f(mn) = 32\, 2oa,), ©(d1)p(d2) =
(X dyjm P(d1)) (X gy n e(d2)) = f(m)f(n). Now assume the prime factorization of
nasn = piipy?..p%. By the claim we just proved, it suffices to show f(p®) = p®.
The divisors of p* are p? for 0 < j < a. Consequently, f(p*) = >7_o@(p’) =

L+ 320 o) =p. O

Definition 1.11. Given three integers a,b and m, we say that “a is congruent to
b modulo m” and write a = b mod m, if the difference a — b is divisible by m.
The number m is called the modulus of the congruences. The following properties
follow from the definition

(1) (i) @ = a mod m; (ii) a = b mod m if and only if b = a mod m; (iii) if
a = b mod m and b = ¢ mod m. Therefore, for fixed m, (i)-(iii) mean that
congruence modulo m is an equivalence relation.

(2) For fixed m, each equivalence class with respect to congruence modulo m
has one and only one representation between 0 and m — 1. The set of
equivalence classes (called residue classes) will be denoted Z/mZ.

(3) If a =b mod m and ¢ = d mod m, then a + ¢ = b+ d mod m and ac = bd
mod m. So the set of equivalence classes Z/mZ is a commutative ring, and
we have a homeomorphism, Z—Z/mZ, a — [a]

APPLICATIONS OF NUMBER THEORY IN CRYPTOGRAPHY 5

(4) If a = b mod m, then a = b mod d for any d|m.
(5) If a = b mod m, a = b mod n, and m and n are relatively prime, then a = b
mod mn.

Theorem 1.12. (Fermat’s Little Theorem). Let p be a prime. Any integer a
satisfies aP = a mod p, and any integer a not divisible by p satisfies a?~1 =1 mod
.

Proof. If pla it is obvious that a? and a are both divisible by p, so they are both con-
gruent to 0. Now suppose p does not divide a. We claim that Oa, la, 2a, 3a, ..., (p —
1)a form a complete set of residues modulo p. If the claim does not hold, then
ia = ja mod p, for some i # j, but this means p|(i — j)a, and since a is not divisible
by p, we would have p|(i — j). But we know i, j are both less than p, this cannot
happen. We conclude that integers a, 2a, ..., (p — 1)a are simply a rearrangement of
1,2,...,p — 1 modulo p. Thus the products of these two sets of numbers are equal
to modulo p, i.e., a?~1(p—1)! = (p—1)! mod p. Thus, p|((p—1)!(a?~! —1)). Since
(p—1)! is not divisible by p, so p|(a?~! — 1), hence a?~! =1 mod p. If we multiply
both sides by a, we have that a? = a mod p. O

Theorem 1.13. Chinese Remainder Theorem.Suppose that we want to solve
a system of congruences :

T = a; mod my

T = as mod mo

T = az mod m,.
Suppose further g.c.d.(m;,m;)=1 for i # j. Then there exists a simultaneous
solution x to all of the congruences, and any two solutions are congruent to one
another modulo M = mims...m,

Proof. First we prove uniqueness modulo M. Suppose that z’ and z' are two solu-
tions. Let x = 2’ — z”. Then z must be congruent to 0 modulo each m;, and hence
modulo M.

Now we construct such an x. Define M; = M/m; to be the product of all
of the moduli except for the i-th. Clearly g.c.d.(m;, M;) = 1, so by the Euclidean
algorithm we can find an N; such that M; N; = 1 mod m;. Now set z = ZZ a; M; N;.
Then for each 4, all the terms in the sum other than the i-th term are divisible by
m;. Thus, for each i: x = a; M; N; = a;, mod m;. ([l

Proposition 1.14. If g.c.d.(a,m)=1, then a¥"™) =1 mod m

Proof. We first prove the proposition when m is a prime power, i.e. when m = p®.
We use induction here. The case a = 1 is precisely Fermat’s Little Theorem.
Suppose that a > 2, and the formula holds for the (o — 1)-st power of p. Then
a?" T =1y p*~1b for some integer b, by the assumption of induction. Raise
both sides to the p-th power. So the right side of the equation is a binomial
expansion. Besides the first time 17, all other times are divisible by p®, including
the last one (p®~'b)?. Then a?" P s equal to 1 plus a sum with each term
divisible by p®, which is equivalent to a®™ =1 mod m

Finally by the multiplicity of the Fuler’s phi-function, raising both sides of
a?®") =1 mod p® to appropriate power we can get a?™ = 1 mod p*. For

6 ZIHAO JIANG

every prime factor p this holds, and so by Property 5 following Definition 1.10., we
conclude a?(™ =1 mod m (]

2. FINITE FIELDS AND QUADRATIC RESIDUES

Finite fields. We shall here briefly summarize some characteristics of finite
fields assuming the reader has some knowledge of the concept of a field. Let F,
denote a field which has a finite number g of elements in it. Such a field cannot have
characteristic zero; let p be the characteristic of F,. Then p is prime, F, contains
the field F,, = Z/pZ, and so is a finite dimensional vector space over F,. Thus
q =p", where n = dimg F,.

Proposition 2.1. The order, which is the least positive power of an element that
equals 1, of any a € FZ divides q — 1.

Proof. In F;, we list all ¢ — 1 elements and multiply each of them by a. We get
a permutation of the same elements, because any two distinct elements remain
distinct after multiplication, since ax = ay implies a 'az = a 'ay. We have
x = y. Thus the products of these two sets of numbers are equal. So a?9™! = 1.
Let d be the order of a. If d does not divide ¢ — 1, then ¢ — 1 = bd + r such that
a” = a9717% = 1, This contradicts the minimality of d.]

Definition 2.2. A generator g of a finite field F, is an element of order ¢ — 1;
equivalently, the powers of g run through all of the elements of FZ.

Proposition 2.3. Every finite field has a generator. If g is a generator ofF;;, then
g7 is also a generator if and only if g.c.d.(j,q-1)=1. In particular, there are a total
of w(q — 1) different generators of F.

Proof. Suppose that a € F, has order d, i.e., a?=1 and no lower power of a gives 1.
By the previous proposition we know d divides ¢ — 1. Since a? = 1 is the smallest
power which equals 1, it follows then a,a?, ...,a® = 1 are distinct.

We claim that the elements of order d are precisely the ¢(d) values a’ for which
g.c.d. = (j,d) = 1. Firstly, since the d distinct powers of a all satisfy the equation
x¢ = 1, these are the roots of the equation. Thus any element of order d must be
among the powers of a. However, we shall note that not all powers of a have order
d, since if g.c.d.(j,d) = d’ > 1, then a’ has lower order. Conversely, we now show
that o/ does have order d if g.c.d.(j,d) = 1. If &’ had a smaller order d”, then ad’
raised to j-th or d-th power would give 1, and hence a?” raised to the g.cd(j,d)=1
would also give 1. But this contradicts the minimality of the order d for a. This
proves the claim.

This tells us that if there is any element of order d, then there exist ¢(d) elements
of order d. Now every element has some order d|(g — 1). There are either 0 or ¢(d)
elements of order d. By Proposition 1.10., Zd|(q—1) o(d) = g — 1, which is the
number of elements in F;. Thus every element has some order d|(q — 1) implies
there are always ¢(d) elements of order ¢ — 1; In particular, there are ¢(qg — 1)
elements of order ¢ — 1, then the other elements of order ¢ — 1 are precisely the
powers g/ where g.c.d.(j,q— 1) = 1. O

Quadratic residues. Suppose that p is an odd prime. We are interested in
knowing which of the nonzero elements {1,2,...,p — 1} of F,, are squares. If some
ac F; is a square, say b? = a, then +b are two square roots. Thus, the squares in

APPLICATIONS OF NUMBER THEORY IN CRYPTOGRAPHY 7

F,, can be found by computing b2 mod p for b=1,2,3,...,(p — 1)/2. Therefore, we
have (p — 1)/2 residues and (p — 1)/2 nonresidues.

The Legendre symbol. Let a be an integer and p > 2 a prime. We define the
Legendre symbol (%) as follows:
0, if pla;
a
() =<1, if ais a quadratic residue modulo p;

—1, if a is a nonresidue modulo p.

Proposition 2.4. (%) =aP=1/2 mod p.

Proof. If a is divisible by p, then both sides are congruent to 0 mod p. Suppose
p fa. By Fermat’s Little Theorem, in F,, the square of a®=1/245 1, so alP~D/2 is
+1. Let g be a generator of F;, and let @ = ¢7. As we saw, a is a residue if and
only if j is even, and a(P~1/2 = g7(=1)/2 — 1 if and only if j(p — 1)/2 is divisible
by p — 1, i.e., if and only if j is even. Thus, both sides of the congruence in the
proposition are +1 in F,, and each side is 41 if and only if j is even. [l

Proposition 2.5. The legendre symbol satisfies the following properties:
(a) () depends only on the residue of a modulo p;

aby _ (a\(by.
(b) (22) = (2)(2); 2
(¢c) for b relatively prime to p, (%) =(3);
(@) (1) = 1 and (=) = (—1)0-1)/2,
Proof. Part (a) follows directly from definition. Part(b) follows from Proposition
2.4., because the right side is congruent modulo p to a®~1/2.p(P=1/2) = (gp)(P=1)/2,
as is the left side. Part (c) follows from Part (b). For Part (d), we note 12 = 1, and
follows from Proposition 2.4. O

The Jacobi symbol. Let a be an integer, and let n be any positive odd
numbers. Let n = pi* - --p& be the prime factorization of n. Then we define the
Jacobi symbol (£) as the product of the Legendre symbols for the prime factors of n,

a
n

3. PRIMALITY AND FACTORING

In cryptography, it is often necessary to find big prime numbers and the factors
of large integers. Given an integer n, a simple method to find its factorization or
test its primality is to divide n by all integers smaller than n. However, if n is very
large, this method has a very long run time. Here we introduce some quicker ways
of testing primality and factoring.

According to Fermat’s Little Theorem, we know that, if n is prime, then for any
b such that g.c.d.(b,n) = 1 one has

(3.1) "l =1 modn

Definition 3.2. If n is an odd composite number and b is an integer such that
g.c.d.(n,b) =1 and (3.1) holds, then n is a weak pseudoprime to the base b.

8 ZIHAO JIANG

Proposition 3.3. Let n be an odd composite integer.

(a) The number n is a pseudoprime to the base b, where g.c.d.(b,n)=1, if and only
if the order of b in (Z/nZ)* divides n-1.

(b) If n is a pseudoprime to the bases by and b, then n is a pseudoprime to the
base b1bs and also to the base blbg1

(c¢) If n fails the test (3.1) for a single base b € (Z/nZ)*, then n fails (3.1) for at
least half of the possible bases b € (Z/nZ)*.

Proof. Parts (a) and (b) are easy to verify. To prove (c), let {b1,ba,...,bs} be the
set of all bases for which n is a pseudoprime, i.e., the set of all integers 0 < b; < n
for which the congruence (3.1) holds. Let b be a fixed base for which n is not a
pseudoprime. If n were a pseudoprime for any of the bases bb;, then, by Part (b),
it would be a pseudoprime for the base b = (bbi)bi_1 mod n , which contradicts the
assumption. Thus if we have a set of good bases {b1,bs, ..., bs}, then there would
be a bad base {bb1,bba, ..., bbs} to which n fails to be a pseudoprime. So there are
at least as many bases for which n fails for (3.1) as for which (3.1) holds. O

By Part (c) of the previous proposition, if n is a composite number, and if the
test fails for some base b, the probability that n is a pseudoprime with respect to
k different bases is at most 2% This suggests that the number is prime unless it
is a composite number with the very special property that (3.1) holds for every b
less than n. The question now is if such special numbers exist. The answer turns
out to be yes.

Definition 3.4. A Carmichael number is a composite integer n such that (3.1)
holds for every b € (Z/nZ)*.

Proposition 3.5. Let n be an odd composite integer.

(a) If n is divisible by a perfect square > 1, then n is not a Carmichael number.
(b) If n is square free, then n is a Carmichael number if and only if p—1|jn —1 for
every prime p dividing n.

Proof. (a) Suppose that p?|n, let g be a generator modulo p?. Let n’ be the product
of all primes other than p which divide n. By the Chinese Remainder Theorem,
there is an integer b satisfying the two congruences: b = g mod p?> and b = 1 mod
n’. Then b is a generator modulo p?, relatively prime to n. If n is a pseudoprime
to base b, then we automatically have b"~! =1 mod p?. Since p(p?) we must have
p(p — 1)|n — 1. However, n —1 = —1 mod p, since p|n, and hence n — 1 is not
divisible by p(p — 1), which is a contradiction.

(b) First suppose that p — 1jn — 1 for every p dividing n. Let b be any base,
where g.c.d.(b,n) = 1. Then for every prime p dividing n we have that: b"~! is a
power of b~1, and so is congruent to 1 mod p. Thus, b~ — 1 is divisible by all
of the prime factors p of n, and their product n. Thus (3.1) holds for all bases b.
Conversely, suppose that there is a p such that p—1 does not divide n—1. Then for
a generator g in (Z/pZ)*, find an integer b satisfying b = g mod p and b = 1 mod
n/p. Then g.c.d.(b,n) = 1, and b"~1 = g"~! mod p. But g"~! is not congruent to
1 mod p, because n — 1 is not divisible by the order p — 1 of g. Thus 6"~ # 1 mod
D ([

Proposition 3.6. A Carmichael number must be the product of at least three dis-
tinct primes.

APPLICATIONS OF NUMBER THEORY IN CRYPTOGRAPHY 9

Proof. By the previous Proposition, a Carmichael number must be a product of
distinct primes. So we need to show that the product of two distinct prime numbers
cannot be Carmichael number. Let n = pq, where p < ¢ are both prime numbers.
Then if n were a Carmichael number, we would have n — 1 = 0 mod ¢-1. But
n—1=p(g—1+1)—1=p—1mod ¢-1, and this is not divisible by ¢ — 1, since
O<p—1<qg—1. O

—klog nlogloglogn

In 1956, Erdos proved that C'(n) < ne™ Teelen where C(n) equals to the
number of Carmichael numbers less than a given integer n. In the other direction,
Harman in 2005 proved C(n) > n®332. Because of this, using (3.1) as a primality
test has significant problems. However we can strengthen (3.1) into a better test
which does not have an analogue of Carmichael numbers.

Euler pseudoprimes. Let n be an odd integer, and let (%) denote the Jacobi
symbol. According to Proposition 2.4., if n is a prime number, then

(3.7) b2 = (9) mod n
n

Definition 3.8. If n is an odd composite number and b is an integer such that
g.c.d.(n,b) =1 and (3.7) holds, then n is called an Fuler pseudoprime to the base
b.

Proposition 3.9. If n is an Fuler pseudoprime to the base b, then it is a pseudo-
prime to the base b.

Proof. If we square both sides of (3.7), then (3.1) holds. Thus if (3.7) holds, we
automatically have (3.7). O

Thus we know Fuler pseudoprimes are all pseudoprimes. We get a better chance
of eliminating composite numbers by letting the numbers run through this test.
They are both probabilistic methods, because one is not sure one has a prime.
However, there are no Euler-Jacobi pseudoprimes to all bases.

Fermat factorization. There is a way to factor a composite number n that
is efficient if n is a product of two integers which are close to one another. This
method, called Fermat factorization, is based on the fact that n is then equal to a
difference of two squares, one of which is very small.

Proposition 3.10. Let n be a positive odd integer. There is a 1-to-1 correspondence
between factorizations of n in the formn = ab, where a > b > 0, and representations
of n in the form t?> —s?, where s and t are nonnegative integers. The correspondence
is given by the equations
a+b a—1b
t= 5 s = 5 a=t+s, b=t-—s.

Proof. n = ab = ((a + b)/2)* — ((a — b)/2)?, so we obtain the representation as
a difference of two squares. Conversely, given n = t? — s we can factor it as
(t+s)(t—s). O

If n = ab with a and b close together, then s = (a — b)/2 is small, and so t is
only slightly larger than y/n. Then we can find a and b by trying all values for ¢
starting with [y/7] + 1, until we find one such that t? —n = s? is a perfect square.

10 ZIHAO JIANG

Example 3.11. Factor 200819.

Solution. We have |1/200819] + 1 = 449. Now 449% — 200819 = 782, which is not
a perfect square. Next, we try ¢t = 450, and 4502 — 200819 = 1681 = 412. Thus,
200819 = 450% — 412 = (450 + 41)(450 — 41) = 491 - 409.

Factor bases. There is a generalization of the idea behind Fermat factorization
which leads to a much more efficient factoring method. Namely, we use the fact
that any time we are able to obtain a congruence of the form t? = s? mod n with
t £ +s mod n, we immediately find a factor of n by computing g.c.d.(t + s, n).
This is because we have n|t? — s? = (t + s)(t — s), while n does not divide t + s or
t — s; thus g.c.d.(t + s,n) must be a proper factor a of n, and then b = n/a divides
g.c.d.(t —s,n).

Definition 3.12. A factor base is a set B = {p1,p2,...,pr} of distinct primes,
except that p; may be the integer -1. We say that the square of an integer b is
a B — number (for a given n) if residue b mod n can be written as a product of
numbers from B.

Example 3.13. For n = 4633 and B = {—1, 2, 3}, the squares of the three integers
67,68 and 69 are B —numbers, because 672 = —144 mod 4633, 682 = —9 mod 4633,
and 692 = 128 mod 4633.

Let F% denote the vector space over the field of two elements which consists of
h-tuples of zeros and ones. Given n, a factor base B containing A numbers, and a
B—number b, we have a corresponding vector € = ([a1], ..., [a,]) where b? = Mp}’
and [o;] = a; mod 2.

Example 3.14. In the situation of Example 3.11., the vector corresponding to 67
is {1,0,0}, the vector corresponding to 68 is {1,0,0}, and the vector corresponding
to 69 is {0,1,0}.

Suppose that we have some set of “B-numbers” {b?} mod n such that the cor-
responding vectors ?i = {€i1,..., &} add up to the zero vector in Fg Then the
product of the least absolute residues of b? is equal to a product of even powers of
all of the p; in B. That is, if for each ¢ we let a; denote the least absolute residue

. h ij
of b? mod n and we write a; = IT;- p? !

h
[Te:=TTw "
j=1

with the exponent of each p; an even number on the right. Then the right hand
side is the square of Hj p}j with v; = %Zl a;j. Thus, if we set b = [[, b; mod n
and ¢ =[] j p;J mod n, we obtain two numbers b and ¢, constructed in different
ways, whose squares are congruent modulo n.

, we obtain

In case b = +c¢ mod n, then we must start again with another collection of B-
numbers whose corresponding vectors sum to zero. In practice, one method is to
start with B consisting of the first h primes and choose random b;’s until we find
several whose squares are B-numbers. Another method is to start by choosing some
b;’s for which b2 mod n is small in absolute value. Then choose B to consist of a
small set of small primes with p; = —1, so that several of the b? mod n can be
expressed in terms of the numbers in B.

APPLICATIONS OF NUMBER THEORY IN CRYPTOGRAPHY 11

When can we be sure that we have enough b; to find a sum of € which is the
zero vector? This requires the collection of vectors to be linearly dependent over
the field F5, which is guaranteed to occur if we have h 4+ 1 vectors.

Factor base algorithm. This is a systematic method to factor a very large
n using a random choice of the b;. Choose an integer y of intermediate size, e.g.,
if n is a 50-decimal-digit integer, we might choose y to be a number with 5 or 6
decimal digits. Let B consist of -1 and all primes < y. Choose a large number of
random b;, and try to express b? mod n as a product of the primes in B. Once we
get a large quantity of B-numbers b? mod n (m(y) + 2 is good enough, where 7 (y)
denotes the number of primes < y), take the corresponding vectors in Fg and by
row-reduction determine a subset of the b; whose corresponding €; sum to zero.
Then we compute b =[] b; mod n and ¢ = Hp?" mod n. If we unluckily get b = +c¢
mod n, then we start again. Otherwise we compute g.c.d.(b+c,n) or g.c.d.(b—c,n),
which will be nontrivial factor of n.

Time estimate of factor base algorithm. We give a very rough time estimate
here just to demonstrate the difficulty of factorization. Before we start, we need to
know two facts:

Fact 1 The log(n!) function is approximately nlogn — n.

By “approximately”, we are talking about the limit as n approaches infinity.
This can be proved by observing that log(n!) is the upper Riemann sum for the
integral fln log xdx = nlogn —n + 1.

Fact 2 Given a positive integer N and a positive number u, the total number of
nonnegative integer N-tuples () such that Z;V:I a; < w is the binomial coefficient
(")

This can be proved by letting each N-tuple solution o correspond to the fol-
lowing choice of N integers §3; from among 1,2,...,|u] + N. Let 81 = a1 + 1, and
for j > 1 let 841 = B + aj41 + 1, i.e., we choose the 3;’s so that there are o;
numbers strictly between 8;_; and 3;. This gives a 1-to-1 correspondence between
the number of solutions and the number of ways of choosing N numbers from a set
of |u] + N numbers.

In order to estimate the time of our algorithm, we need to know the probability
that a random number less than x will be a product of primes less than y. To do
this, we first let u denote the ratio iggz That is , if z is an 7-bit integer and y is an
s-bit integer, then w is approximately the ratio of digits r/s. We shall here ignore
smaller terms by assuming that u is much smaller than y. We let 7(y), denote the
number of primes less than y. Typically, in practice we have

y~10% (m(y) =~7-10%, logy~14); u=~8; x=~10"%.

We let ¥(z,y) denote the number of integers less than = which are not divisible
by any prime greater than y. So there is a 1-to-1 correspondence between m(y)-
tuples of nonnegative integers ; for which [, p?j < z, where o; are nonnegative
integers and p; are primes less than y and integers less than = which are a product
of p;. Thus, ¥(z,y) is equal to the number of integer solutions «; to the inequality

Z;riyl) ajlogp; < logz. Because most of the primes less than y have almost the
same number of digits as y, we replace logp; by logy in the previous inequality.
Then if we divide both sides of the inequality by logy and replace logz/logy by

12 ZIHAO JIANG

u, we can say W(x,y) is approximately equal to the number of solutions to the
; ; m(y)
inequality > 72 o < w.

We now make another important simplification, expanding the number of vari-
ables from 7(y) to y. We have ¥(z,y) is roughly equal to the number of solutions
to the inequality Zgzl o < u, which by Fact 2, is approximately (L“Jy ﬂ’). We now

estimate log<w>. Notice that logz = ulogy, by the definition of u. We use

the approximation for ¥(z,y) and Fact 1:

log(%’y))z log(W)ulogy ~ (lu] +y)log(lu| +v)

—(lu) +y) = (lu) +loglu] — [u]) — (ylogy —y) —ulogy

We now make another approximation, by replacing |u| by u. Next because u is
assumed to be much smaller than y, we can replace log(u + y) by logy. We obtain

log(@)% —ulogu,

ie.,
Y(z,y) —u

T

We are now ready to estimate the number of bit operations required to carry out
the factor base algorithm described above, where, for simplicity, we assume that our
factor base B consists of the first h = w(y) primes. We just estimate the number of
bit operations required to carry out the following steps: (1) choose random numbers
b? module n as a product of primes less than y if it can be expressed, continuing
this process until we find 7(y) + 1 different b;’s for which b? mod n is written as
such a product; (2) find linear dependence between the vectors associated to the
b; to obtain a congruence of the form b? = ¢? mod n; (3) if b = 4c mod n, repeat
(1) and (2) with new b; until you obtain ? = ¢? mod n with b # +c mod n, which
yields a nontrivial factor of n by computing g.c.d.(b + ¢, n).

Suppose that n is an r-bit integer and y is an s-bit integer; then wu is very close
to r/s. We claim that the number of operations needed for testing each b; is a
polynomial in r and y, i.e., it is O(r'e**) for some integers k and I. It takes a fixed
amount of time to generate a random bit, and so O(r) bit operations to generate
a random integer b; between 1 and n. Then computing b? mod n takes O(r?) bit
operations. We must then divide b? mod n by all primes < y which divide it evenly.
This can be done by dividing it successively through 2, 3, 5, and so on. Since a
division of an integer of less than r bits by an integer of < s bits takes time O(rs),
we see that each test of a randomly chosen b; takes O(rsy) bit operations.

To complete step (1) requires testing approximately u* (7w (y) + 1) values of b;, in
order to find 7(y) + 1 values for which b? mod n is a product of primes < y. Since
T(y) ® ey = O(y/s), this means that step (1) takes an expected O(u*ry?) bit
operations. Step (2) involves operations which are polynomial in y and r (matrix

reduction and finding b and ¢ modulo n). Thus it takes O(y/r") bit operations for
some integers j and h. Thus combining these two steps we have

O(ury® +y'r") = O(r"u"y?) = O(r"(r/s)"/*e**),

APPLICATIONS OF NUMBER THEORY IN CRYPTOGRAPHY 13

for suitable integers h and k. Since we can pick y for this equation, we choose a
value of s to minimize the runtime for the algorithm. We calculate
d ., r

r r r r
0:ﬁ(glogg—i—ks)z—g(log;—kl)—i—kz—?logr—l—k,

The last approximation step is due to the fact that log * is relatively large com-
pared to 1. And we find approximately

0%—%logr+k,
S

Plugging the expression for s to the equation rh(g)g gives the time estimate of

O(eC\/rlogr).

4. SIMPLE CRYPTOSYSTEMS

Finally, we get to the main topic of the paper, cryptography. We begin with
some basic notions. The message we want to send is called the plaintext and the
disguised message is called the ciphertext. The plaintext and ciphertext are written
in some alphabet with N letters. The term “letter” can refer not only to the familiar
A-Z, but also to numerals, blanks, punctuation marks, or any other symbols that
we allow ourselves to use when writing the messages. The process of converting a
plaintext to a cipertext is called enciphering or encryption, and the reverse process
is called deciphering or decryption. The plaintext and ciphertext are broken up
into message units. A message unit might, for example, be a single letter, a pair of
letters (diagraph), a triple of letters, or a block of 50 letters. Usually we use f to
denote the enciphering transformation and f~! as the deciphering transformation.
Notice here that a enciphering transformation must be 1-to-1 and onto, which is
equivalent to having an inverse, otherwise we could not always reveal the plaintext.

Simple shifting map. Let us start with single letter units message. Suppose
we have an N-letter alphabet labeled by the integers 0,1,2,..., N — 1. Then such
an enciphering transformation is a permutation of these N numbers.

Example 4.1. Suppose we are using the 26-letter alphabet A-Z with numerical
equivalents 0-25. Let the letter P € {0,1,...,25} stand for a plaintext message unit.
Define a function f from the set {0,1,...,25} to itself by the rule

P+3, ifz<23;
f(P) = .
P —23, ifx>23;

With this system, to encipher the word “YES” we first convert to numbers, 24, 4 and
18, then add 3 modulo 26, we get 1, 7 and 21, then translate back to letters: “BHV”.
Deciphering a cipher text “ZKB”, for example, yields the plaintext “WHY”.

Affine map: C = aP + b mod N, where a and b are fixed integers and
g.c.d.(a, N) = 1. Then the deciphering transformation will be P = a’C' 4+ V' mod N,
where

d=at€(Z/NZ)*V = —a"'b.

Suppose we have a long stream of data, to break such a cryptosystem, we use

frequency analysis, a technique described in the example below.

14 ZIHAO JIANG

Example 4.2. Suppose a ciphertext that we know uses the 28-letter alphabet
consisting of A-Z, a blank, and ?, where A — Z have numerical equivalents 0-
25, blank=26, 7=27. We also know that the enciphering function is affine. Then
examining the ciphertext we find that the most commonly used letters of ciphertext
are “B” and “?” and the most commonly used letters in English are “blank” and
“E”. Then we assume the enciphering function takes “blank” to “B” and “E” to
“?”. This leads to the two congruences: a’ + b = 26 mod 28, 27a’ +b' = 4 mod 28.
Thus @’ = 11 mod 14 and this gives @’ = 11 mod 28, b’ = 15 mod 28, or a’ = 25
mod 28, ' =1 mod 28. Then we check these two answers to see which one makes
more sense in English.

Diagraph transformations. In the N-letter alphabet, we assign the two-letter
block XY a numerical equivalent P = XN +Y, where X, Y € {0,1,..., N — 1} and
then encipher the plaintext into ciphertext.

Example 4.3. Suppose we are working in the 26-letter alphabet and using the
digraph enciphering transformation C = 159P + 580 mod 676. Then the digraph
“NO” has numerical equivalent 13 - 26 + 14 = 352 and is taken to the ciphertext
digraph 159 - 352 + 580 = 440 mod 676, which is “QY”. The digraph “ON” by
computation is taken to “NV”. Notice that once we change the unit, there is no
relation between the encryption of one digraph and that of another one that has a
letter in common with it.

To break such a system, frequency analysis is also needed. Statistically speaking,
“TH” and “HE” are the two most frequently occurring diagraphs, in that order.

5. PuBLic KEY

The parameters we used in a cryptosystem, like the a,b we used for the affine
map, are called keys of the cryptosystem. The values of the parameters in the
enciphering map are called the enciphering key Kpg, and the set of parameters
of the deciphering map are called deciphering key. In the simple cryptosystem
we introduced above, having knowledge of the enciphering key is equal to having
the knowledge of deciphering key. Suppose we have more than two people using
the same cryptosystem, and each pair of them wants to keep their communication
secret. In this case, a user A should only know the recipient B’s enciphering key
but not the deciphering key, otherwise he would know all the messages intended for
B. The idea of public key cryptosystem has the property that someone who knows
only the enciphering key cannot find the deciphering key without a prohibitively
lengthy computation. In essence, such a key shall be a function that cannot be easily
inverted. In this last section, we introduce three different public key cryptosystems.

RSA. Named after its co-inventors, the RSA public key system is based on
the computational difficulty of factoring a big integer. Each user A chooses two
primes ps and g4 and a random number ey which has no common factor with
(pa —1)(ga —1). Next, A computes na = paga, ®(na) = (pa —1)(ga — 1) =
na+1—pa—qa, and also the multiplicative inverse of d4 = e;ll mod ®(n4). Then
he makes public the enciphering key Kg 4 = (n4,e4) and conceals the deciphering
key Kp 4 = (na,da). The enciphering transformation is the map from Z/n4Z to
itself given by f(P) = P4 mod na

Now we need to show that given n and d, we can find P.

APPLICATIONS OF NUMBER THEORY IN CRYPTOGRAPHY 15

Claim: Let d and e be positive integers such that de — 1 is divisible by p — 1 for
every prime divisor p of n. Then a% = a mod n for any integer a.

Proof. Tt suffices to prove that a? = a mod p for any integer a and each prime

divisor p of n. This is obvious if pla. If not then this is just by Fermat’s little
theorem. 0

Thus the enciphering transformation has an inverse which is the one we just
constructed, namely f~1(C) = ¢? mod n. It is believed that for generic choice of
P, q, breaking the system is equivalent to factoring n. As we saw in the last section,
for large p, ¢, this is currently a difficult problem.

Example 5.1. We choose N = 26, k = 3, [= 4,. That is, the plaintext con-
sists of trigraphs and the ciphertext consists of four-graphs in the usual 26-letter
alphabet. To send the message “YES” to a user with enciphering key (na,ea) =
(46927, 39423), we first get the numerical equivalent of “YES,” namely: 24 - 262 +
4 - 26,8 = 16346, and then compute 163463°423 mod 46927, which is 21166 =
1-26%+5-26%+8-26+2= “BFIC”.

Discrete log When working with the real numbers, exponentiation is not signif-
icantly easier than finding the logarithm, but in a finite group, this is not the case.
The problem of inverting exponentiation in a finite group is called the “discrete”
logarithm problem.

Definition 5.2. If G is a finite group, b is an element of GG, and y is an element of
G which is a power of b, then the discrete logarithm of y to the base b is any integer
x such that b” = y.

No efficient classical algorithm for computing general discrete logarithms is known.
There exists an efficient quantum algorithm due to Peter Shor. ! Thus we assume
that finding discrete logarithms is not computationally feasible.

Diffie-Hellman assumption. It is computationally infeasible to compute g%
knowing only ¢® and ¢g°. Under this assumption, we have a new key exchange
system, the Diffie-Hellman key exchange system.

Suppose that users A and B want to agree upon a key, which is a random element
of F,’;. They first pick a generator g of the group. User A chooses a random number
a, then computes ¢g® and makes it public. User B does the same thing by picking
b and publishing ¢®. Then both of them can compute ¢®°, but under the Diffie-
Hellman assumption, a third party knows only g% and ¢® cannot compute ¢g.

The Massy-Omura cryptosystem for message transmission. We suppose
that everyone has agreed upon a finite field Fy, which is fixed and publicly known.
Each user of the system secretly selects a random integer e between 0 and ¢—1 such
that g.c.d.(e,q — 1) = 1 and, using the Euclidean algorithm, computes its inverse
d = e ' mod ¢-1. If user Alice wants to send a message P to Bob, first she sends
the element P¢4. This means nothing to anyone but Alice, who is the only one who
knows d 4. But then Bob can send P¢4¢B back to Alice. Alice raises the number
to d4-th power and sends back to Bob. Bob finally raise it to dp-th power.

1Shor, Peter (1997). ”Polynomial-Time Algorithms for Prime Factorization and Discrete Log-
arithms on a Quantum Computer”. SIAM J.Sci.Statist. Comput. 26: 1484.

16 ZIHAO JIANG

The idea behind this system is simple. However if some intruder Cathy wants to
see the message sent by Alice to Bob, she can pretend to be Bob and sends P¢4¢¢
back to Alice, where ec is her own enciphering key. So under this circumstance,
we may need some special signature scheme.

The ElGamal cryptosystem. We start by fixing a very large finite field F,
and a generator g € F;. We suppose that we are using plaintext message units with
numerical equivalents P in F,. Each user A randomly chooses an integer a = a4,
say in the range 0 < a < ¢ — 1. This integer a is the secret deciphering key. The
public enciphering key is the element g°.

To send a message P to the user A, we choose an integer k£ at random, and then
send A the following pair of elements

(¢*, Pg™*).
Notice that we can compute g** without knowing a, simply by raising g* to the

k-th power. Now A, who knows a, can recover P from this pair by raising the first
element ¢* to the a-th power and dividing the result into the second element.

Algorithms for finding discrete logs in finite fields. Though in general,
finding the discrete logarithm in a finite field is hard, under certain specific condi-
tions, we have fast algorithms. Suppose all the prime factors of ¢ — 1 are small. In
this case we call ¢ — 1 “smooth”. We find the discrete log of an element y € F; to
the base b. For simplicity, we suppose b is a generator of F. This algorithm is due
to Silver, Pohlig and Hellman.

First, for each prime p dividing ¢ — 1, we compute the p-th roots of unity 7, ; =
bia=D/P for j = 0,1,....,p — 1. Our goal is to find z, 0 < & < ¢ — 1, such that
b=y . Ifqg—1= Hp p® is the prime factorization of ¢ — 1, then it suffices to find
x mod p* for each p dividing ¢ — 1 by Chinese Remainder Theorem. Now we fix a
prime p dividing ¢ — 1, and show how to determine x mod p“

Suppose ¥ = xg+z1p+- - +2q_1p* 1 (mod p*) with 0 < x; < p. To find x¢, we
compute y@~1/P_ We get a p-th root of 1, since 9~ = 1. Since y = b*, it follows
that yl@=D/P = prla=1/p = prole-1)/p = Tpz, - 1hus, we compare yla=D/p = p
with the {r, ;j}o<j<p and set o equal to the value of j for which y(@=1/P =, ..

Next, to find x1, we replace y by y1 = y/b*. Then y; has discrete log x — xo =
21D + -+ T 1p*~ L (mod p®). Since y;is a p-th power, we have yiq_l)/p =1
and y§q_1)/”2 — plz=w0)(a=1)/p* — plertzapt-)(a=1)/p — pr1(a-1)/p — Tpay. SO We

2
can compare y%qil)/p with {r,;} and set z; equal to the value of j for which

(a=1)/p* _ .
(41 =Tpj-
Following this procedure, we can find all mod p® for all p dividing ¢ — 1.

The knapsack problem. Given a set {v;} of k positive integers and an integer
V', the knapsack problem is to find a k-bit integer n = (€x_1€x—_2 - €1€0)2 (Where
the ¢; € {0,1} are the binary digits of n) such Zf;ol e;v; =V, if such an n exists.
This kind of problem may or may not have answer, and it may or may not be
unique. However, for a special case of the knapsack problem, the superincreasing
knapsack problem, the solution is unique if it exists. By superincreasing we mean
that for each v;, it is bigger than the sum of the previous ¢ — 1 terms. Uniqueness
of the solution is easy to show. Suppose that there is a solution. Then we start

APPLICATIONS OF NUMBER THEORY IN CRYPTOGRAPHY 17

with the biggest ¢ to see if v; is bigger than V or not. If it is bigger than V', then
v; cannot be in the solution. If not, then v; must be included in the solution, since
the sum of the rest v’s is smaller than v; and thus smaller than V. So if v; is not
included then the maximum of the sum of the rest v’s will never give V. Proceeding
downward we find ¢; for each i.

Now we use this nice property to build a public key cryptosystem. Each user

chooses a superincreasing k-tuple {vg, - -+ , vx—_1}, an integer m which is greater than

Ef;ol v;, and an integer a coprime to m, 0 < a < m. Then one computes b = g~ !

mod m, and also computes the k-tuple {w;} defined by w; = av; mod m. The user
keeps the numbers v;, m, a, and b all secret, but publishes the k-tuple of w;. The
enciphering key is Kg = {wo, -+ ,wi_1}. The deciphering key is Kp = (b, m)

Someone who wants to send a plaintext k-bit message P = (ex_1€x—2...€1€x—1)2

to a user with enciphering key {w;} computes C' = f(P) = Zf:_ol €;w;, and trans-

mits that integer.

To read the message, the user looks at the least positive residue V' of bC modulo
m. Since bC = Y e;bw; = €;v; mod m, it follows that V = > €v;. It is then
possible to use the above algorithm for superincreasing knapsack problems to find
the unique solution (ex_; - - - €9)2 = P of the problem of finding a subset of the {v;}
which sums exactly to V.

Note that an intruder who knows only {w;} is faced with the knapsack problem
C =" ¢;w;, which is not a superincreasing problem and hence cannot recover the
message easily.

Example 5.3. Suppose that our plaintext message units are single letters with 5-bit
numerical equivalents from (0000)s to (11001)s. Suppose that our deciphering key
is (2,3,7,15,31). Let us choose m = 61,a = 17, then b = 18 and the enciphering key
is (34,51,58,11,39). To send the message ‘WHY’ our correspondent would compute
‘W’ = (10110)2 — 51 + 58 + 39 = 148, ‘H’' = (00111)y — 34 + 51 + 58 = 143,
‘Y’ = (11000)3 — 11 + 39 = 50. To read the message 148,143,50, we multiply by
18 modulo 61, obtaining V=41,12,46 and recover the plaintext.

Acknowledgments. It is a pleasure to thank my mentor, Robin Walters, without
whose generous help and support, I would not possibly have picked this interesting
topic and finished this paper.

REFERENCES

[1] Neal Koblitz. A Course in Number Theory and Cryptography. New York: Springer-Verlag,
1994.

[2] “Carmichael Number.” Wikipedia. <http://en.wikipedia.org/wiki/Carmichael_number>
10 August 2011.

