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1. Introduction to the Stack-Sorting procedure

The problem of stack sorting was introduced by Knuth in the 1960s. He
described the stack sorting operation as the movement of railway cars across
a railroad switching network. The problem is also similar to the childhood
game of Hanoi Towers, in which the player is supposed to move concentric
discs of varying sizes from one side across to another without placing a big-
ger disc above a smaller one. This paper aims to introduce the basic concept
of stack sorting to the reader.

A detailed description of the operation is as follows:
Consider the n-sized permutation π = a1a2 . . . an−1an. This permutation
is known as the ’input’. The only tool we have for sorting is a ’stack’, a
vertical array. In the first step, we place a1 into the stack. For the second
step, we now compare it with the element a2. If a1 > a2 then we place a2 on
the stack above a1, otherwise, we shall place a1 into the output and place
a2 on top of the stack.

Subsequently, for the each step, we compare the left-most element in the
input with the element on the top of the stack. The process ends when all
the elements have been placed into the output stack.

We shall illustrate this with an example.

Example 1.1. Consider the permutation π = 2413

∴ Refer to Table 1.

If the image s(π) is the identity permutation (i.e. s(π) = a1′a2′ . . . an′ such
that a1′ < a2′ < . . . < an′), then we say that the permutation π is one
stack-sortable.

We now introduce the recursive definition of the stack sorting operation:

Theorem 1.2. Consider the permutation π = a1a2 . . . an−1an. Let x =
max{a1, a2, . . . , an−1, an}. Let πL and πR be the terms such that π = πLxπR.
Then

s(π) = s(πL)s(πR)x
1
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Table 1. Example of Stack Sorting

Step Input Stack Output

Initial 2413
1 413 2
2 413 2
3 13 4 2
4 3 14 2
5 3 4 21
6 34 21
7 4 213
8 2134

Proof.
This is trivial. Every element before x will enter and leave the stack (and
hence πL will be sorted) before x enters since it is larger. Likewise, after x
enters the stack, every element after x will enter and leave the stack before
x can leave. Hence our claim holds.

�

2. One Stack Sortable Permutations

We shall now introduce a notation for describing certain patterns contained
within the permutation:
If the elements a, b and c occur in the permutation π where a < b < c and
b precedes c precedes a, then we say that π contains a 231-pattern.

Theorem 2.1. A permutation π is one stack sortable if and only if it does
not contain a 231-pattern.

Proof. If the permutation π contains a 231-pattern, then under the recursive
definition of stack sorting, since s(πL) will contain an element that is larger
than some element in s(πR), hence the image is not an indentity permuta-
tion.

Consider the case if a permutation does not contain tbe 231-pattern.
For any 2 elements a and b such that a precedes b, if a > b then @c such
that c is between a and b and c > a (avoiding the 231-pattern). Thus, a will
enter the stack and not leave till b has left the stack, hence b will precede
a in the image s(π). If a < b then a will enter and leave the stack before b
enters, hence, hence a will precede b in the image. Hence, the image will be
the identity pattern, so π is one stack sortable.

�

Knuth proved that the number of n-permutations which are one stack sortable
is the Catalan number Cn by considering the reverse operation starting from
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an identity permutation. Here we will prove it directly.

Theorem 2.2. The number of one stack sortable n-permutations is the
Catalan number Cn

Proof. We know that every permutation which avoids a 231-pattern is sortable.
We define f(n) to be the number of one stack sortable n-permutations and
f(0) = 1. Consider the n-permutation πn = a1a2 . . . an−1an and the element
x = max{a1a2 . . . an−1an} such that πn = πLxπR. By theorem 2.1, every
element on the left of x must be smaller than every element on the right of x.
Hence, the number of sortable permutations must be the number of sortable
sub-permutations on the left of x multiplied by the number of sortable sub-
permutations on the right of x. Summing all the possible positions of the
largest element x, we get:

f(n) =
n∑

i=1

f(i− 1)f(n− i)

This is analogous to the recurrence relation that generates the catalan num-
ber:

C0 = 1 and Cn =
n∑

i=1

Ci−1Cn−i

�

3. Other observations of Stack Sortable Permutations

Because of the 231-pattern limitation, many permutations are not one
stack sortable. To increase the number of sortable permutations, we can
take the image and sort it again with the stack. If this new image is the
identity permutation, then we say that the stack is two stack sortable.

We shall lay down some of the properties of two stack sortable permutations:

Theorem 3.1. A permutation π is two stack sortable if and only if it does
not contain a 2341-pattern and does not contain a 3241-pattern which of not
part of a 35241-pattern.

Proof. First we want to show that π is not two stack sortable if it fulfills the
above conditions.

Assume the elements a, b, c, d ∈ π where a < b < c < d form a 2341-pattern.
Elements c, d and a form a 231-pattern, hence after one stack sorting, c will
still precede a in the image. Furthermore, because b precedes c in π and
b < c then b will still precede c in the image s(π) (thm 2.1). Hence, a, b, c
form a 231-permutation in s(π).
Now consider the case where the elements w, x, y, z ∈ π where w < x < y < z
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form a 3241-pattern which is not part of a 35241-pattern. There are 2 cases:
Case One: If there are no entries between x and y that are larger than both
(i.e. not 35241 or 34251-pattern) then by the same logic as theorem 2.1, x
will precede y in s(π) and hence a 231-pattern is formed in s(π).
Case Two: If there is an entry m between x and y such that x < y < m < z
(i.e. 34251-pattern) then y, t, z, w will form a 2341-pattern in sπ).

Now we need to show that when if π is not two stack sortable then it will
contain at least one of the above patterns.

If π is not two stack sortable then s(π) contains a 231-pattern formed by
elements e, f, g ∈ π where e < f < g. By the logic in theorem 2.1, e must
occur after f and g in π and there must be some element h > g such that
h seperates g and f from e. If f preceded g in π then π contains a 2341-
pattern. If g precedes f in π then since f precedes g in s(π) there is no
entry between f and g in π that is greater than both. Hence, π contains a
3241-pattern that is not part of a 35241-pattern.

�

The number of 2 stack sortable n-permutations was conjectured by West
to be 2(3n)!

(n+1)!(2n+1)! . This conjecture was first proven by D. Zeilberger and
subsequently there have been a few other proofs invovling the use of bijec-
tions. For this paper a proof will not be shown.

Corollary 3.2. If the permutation π contains qk = 234 . . . k1 as a pattern,
then π is not (k-2) stack sortable.

Proof. Prove by induction on k. We proved in thm 2.1 that the statement
holds for the base case where k = 3. For the induction step, s(π) will contain
qk−1.

�

4. Further Reading

This paper was intended to be a brief introduction to stack sorting. The
interested reader should refer to ”A Survey of Stack Sorting Disciplines” by
Miklos Bona for further reading.
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