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Most of the talk is a review of an old subject

What are equivariant cohomology theories?

What are they good for?



Explosion of interest in the last decade:

The Kervaire invariant one problem
Hill, Hopkins, Ravenel

Topological cyclic homology
Nikolaus, Scholze, many others

Chromatic homotopy theory, nonequivariant calculations
HHR, many Chicago students and postdocs, many others

New directions in equivariant stable homotopy theory
Mathew, M, and our collaborators; many others



OUTLINE: EQUIVARIANT COHOMOLOGY THEORY

• Two classical definitions: Borel and Bredon

• P.A. Smith theory on fixed point spaces

• The Conner conjecture on orbit spaces

• The Oliver transfer and RO(G )-graded cohomology

• Mackey functors for finite and compact Lie groups

• Extending Bredon cohomology to RO(G )-grading

• A glimpse of the modern world of spectra and G -spectra



Borel’s definition (1958):

G a topological group, X a (left) G -space, action G × X −→ X

g(hx) = (gh)x , ex = x

EG a contractible (right) G -space with free action

yg = y implies g = e

EG ×G X = EG × X/ ∼ (yg , x) ∼ (y , gx)

“homotopy orbit space of X”

A an abelian group

H∗Bor (X ;A) = H∗(EG ×G X ;A)



Characteristic classes in Borel cohomology (M, 1987, 3 pages)

B(G ,Π): classifying G -space for principal (G ,Π)-bundles,

principal Π-bundles with G -acting through bundle maps.

Theorem

EG ×G B(G ,Π) ' BG × BΠ

(over BG ). Therefore, with field coefficients,

H∗Bor (B(G ,Π)) = H∗(EG ×G B(G ,Π)) ∼= H∗(BG )⊗ H∗(BΠ)

as an H∗(BG )-module.

Not very interesting theory of equivariant characteristic classes!



Bredon’s definition (1967):
Slogan: “orbits are equivariant points” since (G/H)/G = ∗.

A coefficient system A is a contravariant functor

A : hOG −→ Ab

OG is the category of orbits G/H and G -maps,

hOG is its homotopy category (= OG if G is discrete)

H∗G (X ; A )

satisfies the Eilenberg-Steenrod axioms plus

“the equivariant dimension axiom”:

H0
G (G/H; A ) = A (G/H), Hn

G (G/H; A ) = 0 if n 6= 0

Bredon de Rham cohomology? Bredon characteristic classes?



Axioms for reduced cohomology theories

Cohomology theory Ẽ ∗ on based G -spaces (G -CW ' types):

Contravariant homotopy functors Ẽn to Abelian groups, n ∈ Z.

Natural suspension isomorphisms

Ẽn(X )
∼= // Ẽn+1(ΣX )

For A ⊂ X , the following sequence is exact:

Ẽn(X/A) −→ Ẽn(X ) −→ Ẽn(A)

The following natural map is an isomorphism:

Ẽn(
∨
i∈I

Xi ) −→
∏
i∈I

Ẽn(Xi )

En(X ) = Ẽn(X+), X+ = X q {∗}; En(X ,A) = Ẽn(X/A)



Borel vs Bredon:
A = the constant coefficient system, A(G/H) = A

H∗(X/G ;A) ∼= H∗G (X ;A)

since both satisfy the dimension axiom and Bredon is unique.
Therefore

H∗Bor (X ;A) ≡ H∗(EG ×G X ;A) ∼= H∗G (EG × X ;A)

On “equivariant points”, EG ×G (G/H) ∼= EG/H = BH, hence

H∗(EG ×G (G/H);A) = H∗(BH;A).



Cellular (or singular) cochain construction:

G -CW complex X , cells of the form G/H × Dn:

X = ∪X n, X 0 = disjoint union of orbits, pushouts∐
i G/Hi × Sn

��

// X n

��∐
i G/Hi × Dn+1 // X n+1

X • : Oop
G −→ Spaces, X •(G/H) = XH

Chain complex C∗(X ) of coefficient systems:

Cn(X )(G/H) = Cn((X n/X n−1)H ;Z)

Cochain complex of abelian groups:

C ∗(X ; A ) = HomCoeff (C∗(X ),A )



P.A. Smith theory (1938) (M, 1987, 3 pages)

G a finite p-group, X a finite dimensional G -CW complex.

Consider mod p cohomology. Assume that H∗(X ) is finite.

Theorem

If H∗(X ) ∼= H∗(Sn), then XG = ∅ or H∗(XG ) ∼= H∗(Sm)

for some m ≤ n.

If H is a normal subgroup of G , then XG = (XH)G/H .

Finite p-groups are nilpotent.

By induction on the order of G ,

we may assume that G is cyclic of order p.



The Bockstein exact sequence
A short exact sequence

0 −→ A −→ B −→ C −→ 0

of coefficient systems implies a short exact sequence

0 −→ C ∗(X ; A ) −→ C ∗(X ; B) −→ C ∗(X ; C ) −→ 0

of cochain complexes, which implies a long exact sequence

· · · //Hq
G (X ; A ) //Hq

G (X ; B) //Hq
G (X ; C ) // · · ·

Connecting homomorphism

β : Hq
G (X ; C ) −→ Hq+1

G (X ; A )

is called a “Bockstein operation”.



Smith theory
Let FX = X/XG . Define A , B, C so that

H∗G (X ; A ) ∼= H̃∗(FX/G ),

H∗G (X ; B) ∼= H∗(X ),

H∗G (X ; C ) ∼= H∗(XG )

On orbits G = G/e and ∗ = G/G ,

A (G ) = Fp, A (∗) = 0

B(G ) = Fp[G ], B(∗) = Fp

C (G ) = 0, C (∗) = Fp

Let

aq = dimH̃q(FX/G ), bq = dimHq(X ), cq = dimHq(XG )



Proof of Smith theorem; p = 2 only for brevity

0 −→ A −→ B −→ A ⊕ C −→ 0

On G , 0 −→ F2 −→ F2[G ] −→ F2 ⊕ 0 −→ 0.

On ∗, 0 −→ 0 −→ F2 −→ 0⊕ F2 −→ 0.

H∗(X ; A ⊕ C ) ∼= H∗(X ; A )⊕ H∗(X ; C )

Bockstein long exact sequence implies

χ(X ) = χ(XG ) + 2χ̃(FX/G )

and
aq + cq ≤ bq + aq+1



Inductively, for q ≥ 0 and r ≥ 0,

aq + cq + · · ·+ cq+r ≤ bq + bq+1 + · · ·+ bq+r + aq+r+1.

Let n = dim(X ). With q = n + 1 and r > n, get ci = 0 for i > n.
With q = 0 and r > n, get∑

cq ≤
∑

bq.

So far, all has been general. If H∗(X ) ∼= H∗(Sn), then
∑

bq = 2.

χ(X ) ≡ χ(XG ) mod 2 implies
∑

cq = 0 (XG = ∅) or
∑

cq = 2.



The Conner conjecture (1960); first proven by Oliver (1976)

G a compact Lie group, X a finite dimensional G -CW complex
with finitely many orbit types, A an abelian group.

Theorem

If H̃∗(X ;A) = 0, then H̃∗(X/G ;A) = 0.

Conner: True if G is a finite extension of a torus.

If H is a normal subgroup of G , then X/G = (X/H) / (G/H).

Reduces to G = S1 and G finite. Smith theory methods apply.

General case: let N be the normalizer of a maximal torus T in G .

Then χ(G/N) = 1 and H̃n(X/N;A) = 0.



The Oliver transfer

Theorem
Let H ⊂ G, π : X/H −→ X/G. For n ≥ 0, there is a transfer map

τ : H̃n(X/H;A) −→ H̃n(X/G ;A)

such that τ ◦ π∗ is multiplication by χ(G/H).

Proof of the Conner conjecture.

Take H = N. The composite

H̃n(X/G ;A)
π∗
//H̃n(X/N;A)

τ //H̃n(X/G ;A)

is the identity and H̃n(X/N;A) = 0.

How do we get the Oliver transfer?



RO(G )-GRADED COHOMOLOGY

X ∧ Y = X × Y /X ∨ Y

V a representation of G , SV its 1-point compactification.

ΣVX = X ∧ SV , ΩVX = Map∗(S
V ,X )

Suspension axiom on an “RO(G )-graded cohomology theory E ∗”:

Ẽα(X ) ∼= Ẽα+V (ΣVX )

for all α ∈ RO(G ) and all representations V .

Theorem
If A = A, then H∗G (−; A ) extends to an RO(G )-graded
cohomology theory.

A = Z⊗ A: A = Z suffices.



Construction of the Oliver transfer

Let X+ = X q {∗}. Consider ε : (G/H)+ −→ S0.

Theorem
For large enough V , there is a map

t : SV = ΣVS0 −→ ΣVG/H+

such that ΣV ε ◦ t has (nonequivariant) degree χ(G/H).

The definition of τ : H̃n(X/H ;A) −→ H̃n(X/G ;A).

H̃n(X/H;A) ∼= H̃n
G (X ∧ G/H+;A) ∼= H̃n+V

G (X ∧ ΣVG/H+;A)

H̃n(X/G ;A) ∼= H̃n
G (X ;A) = H̃n+V

G (X ∧ SV ;A)

Smashing with X , t induces τ .



How do we get the map t?

Generalizing, let M be a smooth G -manifold.

Embed M in a large V . The embedding has a normal bundle ν.

The embedding extends to an embedding of the total space of ν as
a tubular neighborhood in V .

The Pontryagin Thom construction gives a map SV −→ Tν,
where Tν is the Thom space of the normal bundle.

Compose with Tν −→ T (τ ⊕ ν) ∼= Tε = M+ ∧ SV .

The composite is the transfer t : SV −→ ΣVM+.

Atiyah duality: M+ and Tν are Spanier-Whitehead dual.
This is the starting point for equivariant Poincaré duality,
for which RO(G )-grading is essential.



RO(G )-graded Bredon cohomology

Theorem
H∗G (−; A ) extends to an RO(G )-graded theory if and only if the
coefficient system A extends to a Mackey functor.

Theorem
Z, hence A, extends to a Mackey functor.

What is a Mackey functor?

First definition, for finite G

Let GS be the category of finite G -sets. A Mackey functor M
consists of covariant and contravariant functors

M ∗,M∗ : GS −→ Ab,

which are the same on objects (written M) and satisfy:



M(Aq B) ∼= M(A)⊕M(B)

and a pullback of finite sets gives a commutative diagram:

P
g //

i
��

T

j
��

S
f
// B

M(P)
g∗ // M(T )

M(S)
f∗
//

i∗

OO

M(B)

j∗

OO

Suffices to define on orbits.

Pullback condition gives the “double coset formula”.

Example: M (G/H) = R(H) (representation ring of H).

Restriction and induction give M ∗ and M∗.



Second definition, for finite G

Category G -Span+ of “spans” of finite G -sets.

Objects are finite G -sets. Morphisms A −→ B are diagrams

A Soo //B

Really equivalence classes: S ∼ S ′ if S ∼= S ′ over A and B.

Composition by pullbacks:

P

�� ��
S

�� ��

T

�� ��
A B C



G -Span+(A,B) is an abelian monoid under disjoint union of spans.

Let G -Span(A,B) be its Grothendieck group, getting the category

G -Span. A Mackey functor M is a (contravariant) functor

M : G -Span −→ Ab,

written M on objects and satisfying M(Aq B) ∼= M(A)⊕M(B).

Lemma
A Mackey functor is a Mackey functor.

Given M ,

A A //=oo B, A Boo = //B

give M ∗ and M∗. Given M ∗ and M∗, composites give M .



Topological reinterpretation: third definition

For based G -spaces X and Y with X a finite G -CW complex,

{X ,Y }G ≡ colimV [ΣVX ,ΣVY ]G

“Stable orbit category” or “Burnside category” BG :
objects G/H, abelian groups of morphisms

BG (G/H,G/K ) = {G/H+,G/K+}G

A Mackey functor is a contravariant additive functor BG −→ Ab.
This is THE definition if G is a compact Lie group.

Theorem
If G is finite, a Mackey functor is a Mackey functor. BG is
isomorphic to the full subcategory of orbits G/H in G-Span.



The Mackey functor Z

Define

AG (G/H) = BG (G/H, ∗) ∼= {S0, S0}H = A(H).

This gives the Burnside ring Mackey functor AG .

Augmentation ideal sub Mackey functor IG (G/H) = IA(H).

The quotient Mackey functor AG/IG is Z.

How can we extend Z-grading to RO(G )-grading?

Represent ordinary Z-graded theories on G -spectra by
Eilenberg-MacLane G -spectra, which then represent
RO(G )-graded theories!



What are spectra?

• Prespectra (or spectra): sequences of spaces Tn and maps
ΣTn −→ Tn+1

• Ω-(pre)spectra: Adjoints are equivalences Tn
'−→ ΩTn+1

• Spectra: Spaces En and homeomorphisms En −→ ΩEn+1

• Spaces to prespectra: {ΣnX} and Σ(ΣnX )
∼=−→ Σn+1X

• Prespectra to spectra, when Tn
⊂−→ ΩTn+1:

(LT )n = colim ΩqTn+q

• Spaces to spectra: Σ∞X = L{ΣnX}

• Spectra to spaces: Ω∞E = E0

• Coordinate-free: spaces TV and maps ΣWTV −→ TV⊕W



What are spectra good for?

• First use: Spanier-Whitehead duality [1958]

• Cobordism theory [1959] (Milnor; MSO has no odd torsion)

• Stable homotopy theory [1959] (Adams; ASS for spectra)

• Generalized cohomology theories [1960] (Atiyah-Hirzebruch;
K-theory, AHSS)

• Generalized homology theories [1962] (G.W. Whitehead)

• Stable homotopy category [1964] (Boardman)



Representing cohomology theories

Fix Y . If Y ' Ω2Z , then [X ,Y ] is an abelian group.

For A ⊂ X , the following sequence is exact:

[X/A,Y ] −→ [X ,Y ] −→ [A,Y ]

The following natural map is an isomorphism:

[
∨
i∈I

Xi ,Y ] −→
∏
i∈I

[Xi ,Y ]

For an Ω-spectrum E = {En},

Ẽn(X ) =

{
[X ,En] if n ≥ 0
[X ,Ω−nE0] if n < 0

Suspension:

Ẽn(X ) = [X ,En] ∼= [X ,ΩEn+1] ∼= [ΣX ,En+1] = Ẽn+1(ΣX )



What are classical G -spectra (any G )?

• Classical G -spectra: spectra with G -action

• G -spaces Tn and G -maps ΣTn −→ Tn+1

• Classical Ω-G -spectra: Tn
'−→ ΩTn+1

Classical Ω-G -spectra E = {En} represent Z-graded cohomology.

Ẽn
G (X ) =

{
[X ,En]G if n ≥ 0
[X ,Ω−nE0]G if n < 0



Ordinary theories

Eilenberg-Mac Lane spaces:

πnK (A, n) = A, πqK (A, n) = 0 if q 6= n.

H̃n(X ;A) = [X ,K (A, n)]

Based G -spaces X have homotopy group coefficient systems

πn(X ) = πn(X •); πn(X )(G/H) = πn(XH).

Eilenberg-Mac Lane G -spaces:

πnK (A , n) = A , πqK (A , n) = 0 if q 6= n.

H̃n
G (X ; A ) = [X ,K (A , n)]G



What are genuine G -spectra (G compact Lie)?

• G -spaces TV , G -maps ΣWTV −→ TV⊕W

where V ,W are real representations of G

• Ω-G -spectra: G -equivalences TV
'−→ ΩWTV⊕W

Genuine Ω-G -spectra E represent RO(G )-graded theories.

Imprecisely,

EV−W
G (X ) = [ΣWX ,EV ].

Ordinary? Need genuine Eilenberg-Mac Lane G -spectra.



A quick and dirty construction (1981)

Build a good “equivariant stable homotopy category” of G -spectra.

Use sphere G -spectra G/H+ ∧Sn to get a theory of G -CW spectra.

Mimic Bredon’s construction of ordinary Z-graded cohomology,
but in the category of G -spectra, using Mackey functors instead
of coefficient systems.

Apply Brown’s representability theorem to represent the 0th term
by a G -spectrum HM : for G -spectra X ,

H0
G (X ; M ) ∼= {X ,HM }G .

Then HM is the required Eilenberg-Mac Lane G -spectrum.



What are G -spectra good for?

• Equivariant K -theory [1968] (Atiyah, Segal)

• Equivariant cobordism [1964] (Conner and Floyd)

• RO(G )-graded homology and cohomology theories

• Equivariant Spanier-Whitehead and Poincaré duality

• Equivariant stable homotopy category (Lewis-M)

• Completion theorems (KUG , π∗G , MUG -modules):
(Atiyah-Segal, Segal conjecture, Greenlees-M)

• Nonequivariant applications!!!



Kervaire invariant one problem (if time permits)

Framed manifold M: trivialization of its (stable) normal bundle.

Ωfr
n : Cobordism classes of (smooth closed) framed n-manifolds.

Is every framed n-manifold M, n = 4k + 2, framed cobordant to

a homotopy sphere (a topological sphere by Poincaré conjecture)?

κ : Ωfr
4k+2 −→ F2

κ[M] is the Kervaire invariant, the Arf invariant of a quadratic
refinement of the cup product form on H2k+1(M;F2) that is
determined by the given framing.

κ[M] = 0 if and only if [M] = [Σ] for some homotopy sphere Σ.



History

n = 2, 6, 14: S1 × S1, S3 × S3, S7 × S7 have κ = 1 framings.

Kervaire (1960): PL, non-smoothable, 10-manifold M with κ = 1.

Kervaire and Milnor (1963): maybe κ = 0 for n 6= 2, 6, 14?

Browder (1969): κ = 0 unless n = 2j+1 − 2 for some j , and then

κ = 0 if and only if h2j does not survive in the ASS, hj ↔ Sq2
j
.

Calculation/construction (Barratt, Jones, Mahowald, Tangora:

h24 and h25 survive the ASS. (h26 doable? Zhouli Xu et al!)



Hill, Hopkins, Ravenel

Theorem (2009)

κ = 0 unless n is 2, 6, 14, 30, 62, or maybe 126:
h2j has a non-zero differential in the ASS, j ≥ 7.

Calculations of RO(G )-graded groups H∗G (∗;Z) are critical!

Haynes Miller quote (Bourbaki Séminaire survey):

Hill, Hopkins, and Ravenel marshall three major developments in stable
homotopy theory in their attack on the Kervaire invariant problem:

• The chromatic perspective based on work of Novikov and Quillen
and pioneered by Landweber, Morava, Miller, Ravenel, Wilson, and
many more recent workers.

• The theory of structured ring spectra, implemented by M and many
others; and

• Equivariant stable homotopy theory, as developed by M and
collaborators.



Structured ring spectra and structured ring G -spectra

E∞ ring spectra (M-Quinn-Ray [1972])

E∞ ring G -spectra (Lewis-M [1986])

Paradigm shift in stable homotopy theory.

Symmetric monoidal category of spectra S under ∧;

E∞ ring spectra are just commutative monoids in S .

Elmendorf-Kriz-Mandell-M [1997]: S-modules, operadic ∧
Hovey-Shipley-Smith [2000]: Symmetric spectra, categorical ∧
Mandell-M-Shipley-Schwede [2001]: Orthogonal, comparisons

Mandell-M [2002]: Orthogonal G -spectra and SG -modules

“Brave new” nonequivariant subjects:

“Brave new algebra” (Waldhausen’s name, 1980’s; now apt)

“Brave new algebraic geometry” (Toen-Vezzosi’s name; Lurie; also apt)



Revitalized brave new equivariant areas:

Equivariant ∞ loop space theory

Equivariant algebraic K -theory

Prospective applications to algebraic K -theory of number rings?

Theorem
Let L be a Galois extension of a field F with Galois group G.

There is an E∞ ring G-spectrum KG (L) such that

(KG (L))H = K (LH) for H ⊂ G

where π∗K (R) = Quillen’s algebraic K-groups of R.

Many altogether new directions just this past decade!





Amusing recent results: categorical G -homotopy theory

Definition A (small) G -category C has a G -set of objects,

a G -set C (x , y) of morphisms x → y for each pair of objects,

G -fixed identity morphisms idx : x → x ,

and composition G -maps

C (y , z)× C (x , y) −→ C (x , z)

for triples (x , y , z). Composition must be associative and unital.

A G -category C has a classifying G -space BG C .

Topological G -categories C : G -spaces of objects and morphisms.

They also have classifying G -spaces BG C .



Anna Marie Bohmann, Kristen Mazur, Angelica Osorno, Viktoriya
Ozornova, Kate Ponto, and Carolyn Yarnall:

Can do all of algebraic topology of G -spaces with G -categories

A G -poset (partially ordered set) is a G -category with at most one
morphism, denoted x ≤ y , between any two objects. Thus each
g ∈ G acts by an order-preserving map.

M, Marc Stephan, and Inna Zakharevich (2016):

Can do all algebraic topology of G -spaces with G -posets


