PROPERTIES AND APPLICATIONS OF GRAPH LAPLACIANS
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ABSTRACT. Laplacian matrices are widely studied in spectral graph theory to
gain understanding of graphs with results from linear algebra. This paper aims
to introduce properties of the graph Laplacian and show how these properties
can be utilized to help generate insights about graphs with respect to the
applications of graph partitioning and more.
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1. INTRODUCTION AND BASIC BACKGROUND

Graphs are mathematical structures that depict the pairwise relationship be-
tween objects. They are very helpful tools when modeling computer networks,
protein structures, electric circuits, etc. The idea of spectral graph theory is to
first represent a graph as a matrix, and then study the properties of the graph
by studying the spectrum of this matrix representation. In spectral graph theory,
the central object of study is the graph Laplacian matrix. In this paper, we will
introduce the Laplacian matrix and explain how its properties can be utilized to
provide insights about the structure of a graph.

We will begin by giving some basic definitions, then we will show several impor-
tant properties of the Laplacian. After this, we will utilize the spectrum to study a
very important application: graph partitioning. In this paper, background in basic
linear algebra is assumed. We recommend [1] as a reference.

2. BASIC DEFINITIONS OF GRAPH AND LAPLACIAN MATRIX

In this section, we will define some basic concepts and introduce two equivalent
definitions of the graph Laplacian.

Definition 2.1. A graph is an unordered pair G = (V, E) of two sets. The set V
denotes the vertices, represented as an ordered set:

V ={v1,v9,...,0,}
1
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while the set E denotes the set of edges, which is an ordered set of edges, represented
as:
E ={F1,Es,....E,.}

Depends on whether a graph is directed or undirected, the edges have different
definitions. The edges in undirected graphs connect pairs of vertices without orien-
tation, thus every edge Ej, is defined by a set of two vertices {v;,v;}. However, in
a directed graph, there are two possible edges between two vertices by a difference
of orientation. In this case, each edge E}, is defined with an ordered pair (v;, v;)

We will continue to present the definition of the weight of the edges.

Definition 2.2. The weight of an edge Fj is a real number associated with the
edge E;. We represent the weight in Weight(Ek). In undirected graphs, it can
also be represented as Weight(v;, v;).

We now define some basic concepts.
Definition 2.3. A path is a non-empty graph P = (V’, E’) of the form
V' = {04y, Va, Vg, } CV,
E" = {{vag,Va, }, {Va1,Vas }s oo {Vap_1 Va, }} C E,
where {ay,as, ..., ap} is a distinct sequence of integers from 1 to n.

When there exists a path that starts with z; and ends with z;, we say x; and z;
are connected by a path. With this definition, we can define a connected component.

Definition 2.4. A connected component of an undirected graph is a maximal set
of nodes such that each pair of nodes is connected by a path.

Now we are going to get into “spectral” part of the spectral graph theory. First,
we define concepts of adjacency, degree and incidence matrices.

Definition 2.5. In a graph G = (V, E), two vertices x, y are adjacent if {z,y} € E.
The adjacency matriz A is a matrix of dimension n(V) x n(V). It is defined as

771 0, otherwise.

Definition 2.6. The degree of a vertex x is the number of vertices that are adjacent
to it. Denote this as d(x). The degree matriz D is a diagonal matrix of dimension

n(V) x n(V), defined by
d(i), 1=13

otherwise.

Definition 2.7. The incidence matriz B of a graph G = (V, E) is a matrix of
dimension n(v) x n(E). The definition is

1, (i,4) € Ey for some j
By, =< —1, (j,i) € Ey for some j
0, otherwise.

After defining these three matrices, we finally come to define the Laplacian. We
will first start with the more typical definition.

Definition 2.8. The Laplacian matriz of G = (V, E) is defined as
L=D- A



PROPERTIES AND APPLICATIONS OF GRAPH LAPLACIANS 3

Note that the adjacency matrix has all zeros on its diagonal entries and the
degree matrix is diagonal.

Proposition 2.9. The Laplacian matrix can also be written as

L = BB,
where B is the incidence matriz.
Proof. Note:
k
(2.10) (BB")i; = > BixBjx
p=1

Applying the definition of incidence matrix, we have the equation that:

17 Z:]7(27.7)€Ek

BikBjk' = -1, 27&]7 (.7;2) € B
0, otherwise.
So
Diliem L 1=
(BB")ij =4 —1 i#5,(i,j) € E
0, otherwise.

Note that ZkueEk 1 is just the degree of the i*" vertex, so
BBT=D-A=1.
|

Because of this equivalence, we can utilize both definitions based on our needs
later.

3. PROPERTIES OF THE GRAPH LAPLACIAN MATRIX

In this section, we are going to introduce several properties of the Laplacian
matrix. The first thing we want to show is that the Laplacian matrix L is symmetric
and positive semi-definite.

The symmetry follows from Definition 2.8. Since D and A are both symmetric,
we get that L is symmetric.

Theorem 3.1. The Laplacian matriz L is a positive semi-definite matriz.

Proof. We want to show that for all z € R, 27 Lz > 0.
Recall from Definition 2.8 that L = BBT, so

'Lz =27 (BB )x

= (BT2)"(B"z).
Now following the definition of the incidence matrix, we then see that the kth
element of the vector BTz is equal to z; — x; where (4,5) is Ex. Then

2" Le = (BT2)T (BT z)
(3.3) = D (wi—w)’
(i,5)er
> 0.

(3.2)
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Now we will utilize some linear algebra results. Since L is real and symmetric, all
its eigenvalues are real and its eigenvectors are orthogonal. Since L is also positive
semi-definite, all its eigenvalues are non-negative too.

The eigenvalues of L are very useful objects to study since they contain infor-
mation about the structures of a graph. We are going to show several examples in
the rest of this section.

First, we consider the cases where one of the eigenvalues is zero.

Theorem 3.4. There always exists an eigenvalue of the Laplacian matriz that is
equal to 0.

Proof. Consider the vector v = (1,1, ...,1). We have that the kth entry of the vector
Lv is equal to

> Lii =Y Dyi— Ay
i=1 i=1

= Dix — Y _ Api.
i=1

This is equal to 0, since Dy is defined to be the degree of the kth vertex and Ayg;
is equal to 1 if and only if vertex ¢ is adjunct to vertex k. Thus, we have that
Lv=0v ([l

(3.5)

We now present a more general and powerful form of this theorem.

Theorem 3.6. The number of zero eigenvalues of the Laplacian L is the same as
the number of connected components of the graph.

Proof. First, we try to show that the multiplicity of zero eigenvalues is greater
or equal to the number of connected components. Suppose there are k connected
components. Call them Sy, ..., Sg. Define k vectors vy, ..., vy such that

Ui(j){ \/ﬁ’ Jes

0, otherwise.

For i = 1,...,k, it holds that ||v;|| = 1. Additionally, for ¢ # j, since S;,S; are
disjoint, we have (v;,v;) = 0. Finally, note

(Lvi)k = > Livi(k).

For k € S;, Li; = 0 when i ¢ S;. For k ¢ S;, we have v;(k) = 0.

Therefore, Ly; and V;(k) have disjoint support over k, and hence Lv; is equal to
zero. This means that there are at least k orthogonal eigenvectors with eigenvalue
0 that are eigenvectors of L.

Now we prove the multiplicity of zero eigenvalues is less or equal to the number
of connected components. Recall from Equation 3.3 that:

' Lr = Z (z; — x;)?

(i,5)€EE
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This is 0 only if = is constant on every connected component. Then suppose there
exists a (k + 1)th vector that satisfies this condition. The vector must be non-
zero on some entries. Thus, the vector need to be non-zero and constant on all
entries that belong to the corresponding connected component. Thus, the vector
cannot be orthogonal to the group of vectors v;. Then we have a contradiction.
So the multiplicity of zero eigenvalues is less or equal to the number of connected
components. (I

4. GRAPH PARTITIONING

We will now show that we can use the graph Laplacian to measure how well a
graph can be separated into two parts. Again, let us first define some new concepts
related to graph partitioning.

Let S be a vertex subset of a graph. To measure how well S can be separated
from the graph, it is natural to think about the number of edges connecting S to
the rest of the graph. However, we should also take the size of S into consideration.
For example, the number of edges connecting a single point with the rest of the
graph is the same for both the point and the rest, but the “difficulty” of separating
these two from the rest of the graph should not be the same.

This motivates us to define the following concept to measure how well a subset
S can be separated from the rest of a graph G as the following:

Definition 4.1. Given a subset S of the vertices of a graph, the isoperimetric
ratio of S is defined by:

|(i,j) e E,i€ S,j¢5|
|5

0(S) =

Note that the numerator calculates the number of edges connecting S from its
complement, while the denominator is normalized by the size of the subset.

We can also define the isoperimetric number for a graph.

Definition 4.2. The isoperimetric number of a graph G is the minimum isoperimetric
ratio over all sets of at most half of the vertices.

Notice that we only consider subsets with element number less or equal to half
of the total degree n. This is because for subset S; with |S1]| < n/2 and its comple-
ment, |(¢,j) € E,i € S,j ¢ S| are the same, but the denominators in the isoperi-
metric ratio are different. Choosing S¢ always gives a smaller isoperimetric ratio,
so we only consider subsets of size less or equal to n/2 when taking the minimum.
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(A) Graph A (B) Graph B

F1GURE 1. Two Graph Examples

We are going to present an example of these ideas with respect to the graphs
in Figure 1. Consider graph A and the subset of {2,3,6}, the isoperimetric ratio
of this set should be % since there is only one edge connecting the subset with its
complement, and there are 3 elements in the subset. The isoperimetric number of
the graph is equal to the isoperimetric ratio of this subset, since the ratio of this
subset is the minimum among all other subsets with element number less or equal
to half of the total number.

We can compare this graph to the graph B, which has an isoperimetric number
of 2/3, taking the same subset {2,3,6}. Our visual intuition also suggests that

graph B is harder to separate than graph A.

Now we have a mathematical measure of how easily a graph can be separated
into two parts. We will then relate it with the spectrum of the Laplacian matrix.
It turns out that 6 is closely related to the second-smallest eigenvalue. (Recall
that there always exist a zero eigenvalue.)

Let us first derive a lower bound on 6¢.

Theorem 4.3. Let Ay be the second-smallest eigenvalue of the Laplacian matrix L.
We have the following lower bound for the isoperimetric ratio of the graph given

a subset S:
o) 2 3/ (1- 1)

n

Before we start proving this theorem, we will have to utilize a result from linear
algebra. The name of the full theorem is Courant-Fischer. The version we are using
will only be a special case.

Theorem 4.4.
2T La

min
cxT1=0 zlx

Ay =

The Courant-Fischer theorem is a famous theorem in linear algebra with multiple
proofs. One recommended proof is on page 211 of [1].
Now with this result, we are going to prove Theorem 4.3.
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Proof. From Theorem 4.4, for all non-zero x orthogonal to 1 we know
2T Lz

4. Ao < .
(45) 2= Ty

Now given an arbitrary set of vertices .S, we create a vector v, defined as follows:

. 1, 1€8
vs(z):{ 0

otherwise.
We can compute
UZLUS = Z (’Us(i) - 'Us(j))z
(i,)eE
=1(,j)eE:i€8,j ¢S5
=0(5)|5].

Note that the theorem requires vectors to be orthogonal to 1. Thus, we create
a vector x from vy such that

_ sty
xsu){lw’ o8 =@

-, otherwise. n

(4.6)

Notice that 71 = 0, and we have from Equation 3.3

itir= 3 (0= )~ (- )

(i,5)€EE
(4.7) = T (00) - 0, (5)?
(i,5)€E
—(S)IS].
Note that:
2 2
Lo = (1= 20 151+ B -1
(4.8)

(5-(5))

Applying this to (4.5) gives us
2T L, 0(S)

(4.9) A2

IN

— = :
alayg 1 81
n

Moving the denominator to the left side and using the fact |S| < n/2, we get that:

(4.10) 0(S) > Ao - < - 'i') > Mo /2.

This holds for all S, thus we get a lower bound for the isoperimetric number of
the graph:

(4.11) 06 > Aa/2.
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This lower bound gives us a relationship between the second-smallest eigenvalue
and the separateness of the graph.

This result is consistent with Theorem 3.5. Notice if we have two connected
components in the graph, then the second-smallest eigenvalue of the Laplacian
matrix is 0. This conforms to the fact that we could have a subset of vertices that
are completely disconnected with its complement.

However, there is a problem with the isoperimetric number. Going back to the
definition of isoperimetric ratio of a vertex subset, we see that 0(S) and 6(5°) are
not equal even when both capture the same information of “how much the graph
is connected” after we separate in this way.

We now introduce a notion of graph connectivity of edge-weighted graphs that is
symmetric for subsets and complements. The definition is called the conductance:

Definition 4.12. We define the conductance of a subset S to be:
Weight(vi, Uj)
(vi,v5)|(vi,vj)EE ;€S v €S¢
min(d(5), d(5¢))

This definition is similar to Definition 4.1. Both fractions have a value measur-
ing the connectedness of the set from its complement as numerator and a value
measuring the size of the sets on the denominator. However, the numerator also
captures the weight of the edges and the denominator is the smaller one of S and
SC. This solves the potential symmetric problem we talked about.

o(s) =

Definition 4.13. The conductance of a graph is defined as:
= mi S).
¢c = min o(S)

Generally speaking, the definition of conductance is more useful when we are con-
sidering problems when the relationships among vertices are not equivalent since
they take into account of the edge weights, while the isoperimetric number is more
useful when we only consider vertices because it only cares about whether vertices
are connected but not how.

The conductance is also closely related with the spectrum of Laplacian. However,
we need to use the normalized Laplacian N.

Definition 4.14. We define the normalized Laplacian N with respect to the
degree matrix D as:
N =D"'?LD™'/?,
where D~'/2 represents the matrix whose diagonal entries are square roots of the
degree matrix and zero elsewhere.
We will refer to the eigenvalues of N as Any1, Ana, ...

The normalized Laplacian matrix is often used when the graph is not regular,
which means the vertices have different degrees.

For the conductance of the graph and the normalized Laplacian, there are both
an upper bound and lower bound:

Theorem 4.15 (Cheeger’s Inequality). For all subset S C V', we have the following

inequality for ¢(S):
A
550 < 0(8) < V2Awa.
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The left half of the inequality is proven using the same strategy as used in
Theorem 4.4: We modify v, with a constant to make it orthogonal to 1 in order to
use the Courant-Fischer theorem.

The right half can be proved with the help of the Rayleigh quotient. In fact, it
is a discrete version of the original form of Cheeger’s inequality, which was initially
proven in the context of Riemannian Geometry. And there are some other variations
(proved for the isoperimetric number instead of conductance or use eigenvalues of
walk matrix instead of the normalized Laplacian). Interested readers can refer to
Chapter 20, 21 of [3]

With this inequality, we are able to have a rough sense of the conductance number
of the graph by only calculating An2

This inequality can be applied to many graph clustering problems including local
clustering, which involves finding small clusters of small conductance near an input
vertex. The normalized Laplacian is also widely involved in other graph partitioning
results, examples are studied in the first few chapters of [2].

5. MORE APPLICATIONS OF THE LAPLACIAN

Graph Laplacians have more applications. The spectrum of a graph can be
used to compute Fourier transforms on graphs, so they can transform graph signals
(f : V= R) to signals in spectral space. This allows us to classify graphs and
perform other operations on this informative structure. The Laplacian can also be
used to group similar graphs and transform graph structure to vector spaces. Some
good starting papers on these topics are [5] and [6]. The Laplacian matrix also
helps in topological data analysis, which analyzes datasets using knowledge from
topology. An excellent resource is [7].
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