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Abstract. This paper aims to present the Frobenius algebra structures in
finite-dimensional Hopf algebras and cohomology rings with Poincaré duality.
We first introduce Frobenius algebras and their two equivalent definitions.
Then, we give a concise construction of FA structure within an arbitrary finite-
dimensional Hopf algebra using non-zero integrals. Finally, we show that a
cohomology ring with Poincaré duality is a Frobenius algebra with a non-
degenerate bilinear pairing induced by cap product.
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1. Introduction

A Frobenius algebra (FA) is a vector space that is both an algebra and coal-
gebra in a compatible way. Structurally similar to Hopf algebras, it is shown that
every finite-dimensional Hopf algebra admits a FA structure [8]. In this paper, we
will present a concise version of this proof, focusing on the construction of non-
degenerate bilinear pairings.

Another structure that is closely related to Frobenius algebras is cohomology
ring with Poincaré duality. Using cap product, we will show there exists a natural
FA structure in cohomology rings where Poincaré duality holds.

To understand these structural similarities, we need to define Frobenius algebras
and some compatibility conditions.

2. Preliminaries

Definition 2.1. An algebra is a vector space A over a field k, equipped with a
linear multiplication map µ : A ⊗ A → A and unit map η : k → A such that
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the multiplication is associative and unital, i.e. such that the following diagrams
commute:

A⊗A⊗A
µ⊗idA

xx

idA⊗µ

&&

A⊗A

µ
&&

A⊗A

µ
xx

A,

k⊗A

##

η⊗idA // A⊗A

µ

��

A,

A⊗A

µ

��

A⊗ k

{{

idA⊗ηoo

A.

Example 2.2. For an integer n, the space of all n-by-n matrices over a field k
(e.g. the real numbers) is an algebra. The multiplication µ : Mn ⊗Mn → Mn

is given by the ordinary matrix multiplication, and the unit map η : k → Mn by
1k 7→ In×n, where In×n is the identity matrix.

Definition 2.3. A coalgebra is a vector space A over a field k with a linear co-
multiplication map δ : A → A ⊗ A and counit map ε : A → k such that the
comultiplication is coassociative and counital, i.e. satisfying the dual of the algebra
diagrams.

Example 2.4. An interesting example of coalgebra is the trigonometric coalgebra.
Let Tk be a 2-dimensional k-vector space with basis {c, s}. Define the comultipli-
cation δ : T → T ⊗ T and counit ε : T → k by

δ(s) = s⊗ c+ c⊗ s,
δ(c) = c⊗ c− s⊗ s,

ε(s) = 0,

ε(c) = 1,

and check that coassociativity and counit condition hold. When k = R, the comul-
tiplication map represents the following trigonometric identities:

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y),

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y).

Therefore, TR represents the 2-dimensional subspace generated by cosine and sine
in the space of real functions [2].

Definition 2.5. Define the twist map σ : A⊗ A → A⊗ A as a⊗ b 7→ b⊗ a. If B
is both an algebra (B,µ, η) and a coalgebra (B, δ, ε) over field k, then B is called
a bialgebra if δ and ε are algebra homomorphisms (or equivalently µ and η are
coalgebra homomorphisms), i.e. the following diagrams commute:

A⊗A

δ⊗δ
��

µ
// A

δ // A⊗A

A⊗A⊗A⊗A
idA⊗σ⊗idA

// A⊗A⊗A⊗A,

µ⊗µ

OO
A

δ

##

k

η

??

η⊗η
// A⊗A,
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A

ε

��

A⊗A

µ

<<

ε⊗ε
// k,

A

ε

  

k

η
??

idA

// k.

3. Frobenius Algebras

There are many equivalent definitions of Frobenius algebras, and we will intro-
duce two of them that best illustrate FA’s structural similarities to Hopf algebras
and Cohomology rings.

The first definition involves the Frobenius relation:

Definition 3.1. A Frobenius Algebra A is both a finite-dimensional algebra (A,µ, η)
and coalgebra (A, δ, ε) over field k, satisfying the Frobenius relation, i.e. such that
the following diagram commutes:

A⊗A
δ⊗idA

xx

idA⊗δ

&&

A⊗A⊗A

idA⊗µ &&

A⊗A⊗A.

µ⊗idAxx

A⊗A.

Proposition 3.2. The preceding Frobenius relation can be equivalently stated as
the following communicative diagrams:

A⊗A

δ⊗idA

��

µ
// A

δ

��

A⊗A⊗A
idA⊗µ

// A⊗A,

A⊗A

idA⊗δ
��

µ
// A

δ

��

A⊗A⊗A
µ⊗idA

// A⊗A.

The proof is left as an exercise. (An elegant proof using string diagram can be
found in [7], page 40.)

The second definition of FA relies on a non-degenerate pairing:

Definition 3.3. A pairing β : A ⊗ A → k is said to be non-degenerate if there
exists a linear co-pairing λ : k→ A⊗A such that they are categorically “self-dual":

A = k⊗A λ⊗idA−−−−→ (A⊗A)⊗A = A⊗ (A⊗A)
idA⊗β−−−−→ A⊗ k = A.

Definition 3.4. A Frobenius algebra is a finite-dimensional k-algebra (A,µ, η),
equipped with an associative non-degenerate pairing β : A ⊗ A → k, called a
Frobenius pairing.

Example 3.5. Recall the space of matricesMn from Example 2.2. It is a Frobenius
algebra if the pairing is defined as the trace of the matrix product:

β(a, b) = Trace(ab).
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A great way to understand Frobenius algebras is to study how their two defini-
tions translate into each other:

Theorem 3.6. The Frobenius algebras defined by Frobenius relation in Definition
3.1 is equivalent to that defined by non-degenerate bilinear pairing as in 3.4.

Proof. To see Definition 3.1 implies 3.4, let A be a finite-dimensional algebra
(A,µ, η) and coalgebra (A, δ, ε) that satisfies the Frobenius relation. Define a bilin-
ear pairing β : A⊗A→ k as β = ε ◦ µ, and co-pairing λ : k→ A⊗A as λ = δ ◦ η.
The associativity of β is inherited from algebra multiplication µ, so we just need to
show its non-degeneracy, i.e. the map (idA⊗β) ◦ (λ⊗ idA) is the identity. By our
definition of λ and β, we can rewrite:

A = k⊗A η⊗idA−−−−→ A⊗A δ⊗idA−−−−→ A ⊗ A⊗A idA⊗µ−−−−→ A⊗A idA⊗ε−−−−→ A⊗ k = A,

which by the Frobenius relation, equals to

A = k⊗A η⊗idA−−−−→ A⊗A µ−−→ A
δ−−→ A⊗A idA⊗ε−−−−→ A⊗ k = A.

This map is the identity map A idA−−−→ A due to the unital and co-unital conditions
For the other direction, assume A to be a finite-dimensional algebra (A,µ, η)

equipped with an associative non-degenerate pairing β : A⊗A→ k and co-pairing
λ : k→ A⊗A. Define comultiplications:

δ, δ′ : A→ A⊗A, δ = (µ⊗ idA)(idA⊗λ), δ′ = (idA⊗µ)(λ⊗ idA).

(Note that we denote f ◦ g as fg in the rest of this proof.) The key element of this
proof is to show δ = δ′, and other results will soon follow. By associativity of β,
we can define ρ = (µ⊗ idA) ◦ β = (idA⊗µ) ◦ β. We will first show

(ρ⊗ idA)(idA⊗ idA⊗λ) = µ = (idA⊗ρ)(λ⊗ idA⊗ idA).

Consider the following diagram:

A⊗A

µ

zz

µ⊗λ

��

idA⊗ idA⊗λ

&&

A
idA⊗λ //

idA

$$

A⊗A⊗A

β⊗idA

��

A⊗A⊗A⊗A
µ⊗idA⊗ idAoo

ρ⊗idA

xx
A.

The lower right triangle is our definition of ρ, and the lower left triangle follows
from β being non-degenerate. On the upper part, both triangles commute since the
paths express the same compositions. Repeat symmetrically, we obtain

(idA⊗ρ)(λ⊗ idA⊗ idA) = µ.

Thus,
δ = (µ⊗ idA)(idA⊗λ) = (idA⊗ρ⊗ idA)(λ⊗ idA⊗ idA⊗ idA)(idA⊗λ)

= (idA⊗ρ⊗ idA)(λ⊗ idA⊗ idA⊗λ)

= (idA⊗µ)(λ⊗ idA) = δ′.
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The rest of the conditions follow:

(1) The comultiplication is co-associative: this is shown with δ′(idA⊗δ) =
δ(δ′ ⊗ idA).

(2) Frobenius relation is satisfied: using associativity of µ, we can show

δ′µ = (idA⊗µ)(λ⊗ idA)µ

= (idA⊗µ)(idA⊗µ⊗ idA)(λ⊗ idA⊗ idA)

= (idA⊗µ)(δ′ ⊗ idA).

The other part of the Frobenius relation is shown similarly using δ.
(3) The co-unital maps commutes: Define counits

ε, ε′ : A→ k, ε = β(η ⊗ idA), ε′ = β(idA⊗η).

We can show

(ε⊗ idA)δ′ =(β ⊗ idA)(η ⊗ idA⊗ idA)(idA⊗µ)(λ⊗ idA)

=µ(β ⊗ idA⊗ idA)(idA⊗λ⊗ idA)(η ⊗ idA)

=µ(η ⊗ idA) (Non-degeneracy)
= idA . (Unital map)

Similarly, (idA⊗ε′)δ = idA, so ε = ε′.

�

See another proof using 2-dimensional corbordism in [5].

4. Frobenius Algebra Structure in Hopf Algebras

In this section, we will explore the similarities and differences between Frobenius
and Hopf algebras. The main theorem is that every finite-dimensional Hopf algebra
admits a Frobenius algebra via integral construction. The result was first introduced
as a consequence of Larson-Sweedler’s theorem in 1969 [4]. We aim to adapt a
concise version, focusing on the conclusions directly related to Frobenius algebras.

First, we introduce Hopf algebras:

Definition 4.1. A Hopf Algebra B is a bialgebra over field k, equipped with a
k-linear map χ : B → B, called the antipode, such that the following diagram
commutes:

B ⊗B
µ

// B B ⊗B
µ

oo

B ⊗B

χ⊗idB

OO

B

η◦ε

OO

δ
oo

δ
// B ⊗B.

idB⊗χ

OO

Proposition 4.2. Let H be a Hopf algebra. The antipode map χ : H → H has the
following properties:

(1) χ(h1h2) = χ(h2)χ(h1) for all h1, h2 ∈ H,
(2) ε(χ(h)) = ε(x) for all h ∈ H.
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Example 4.3. (1) If G is a group (possibly infinite, e.g. G = Z), then the
group algebra H = k[G] is a Hopf algebra with canonical basis G. The
coalgebra structure is given by

δ(g) = g ⊗ g,
ε(g) = 1.

The antipode map is induced by the group inverse:
χ(g) = g−1 ∀g ∈ G

and extended linearly.
(2) An universal enveloping algebra U(g) of a Lie group g is also a Hopf algebra.

The coalgebra structure and antipode are induced by

δ(x) = 1⊗ x+ x⊗ 1,

ε(x) = 0,

χ(x) = −x ∀x ∈ g.

Note that as seen in the examples, Hopf algebras can be either finite- or infinite-
dimensional. Yet, Frobenius algebras are limited to be finite-dimensional by defini-
tion. So in the rest of the paper, Hopf algebras are assumed to be finite-dimensional.

Hopf and Frobenius algebras are similar in spirit, in that both admit algebra
and coalgebra structures. In comparison, FA have a more “topological" set of com-
patibility conditions, while HA’s bialgebra axioms are not meant to be topological
at all. They also differ in that Hopf algebras have stricter conditions to fulfill: while
FA have the Frobenius relation, HA fulfill both the bialgebra and antipode condi-
tions. Thus, it is natural to conjecture that every Hopf algebra admits a Frobenius
algebra structure. However, it is proven that with the same set of algebra and
coalgebra maps, Frobenius and Hopf algebras coexist only in very special cases:

Proposition 4.4. A Frobenius algebra comultiplication δ : A → A ⊗ A is also a
Hopf algebra comultiplication if and only if A ∼= k and ε = idA (where ε : A→ k is
the counit).

The proof is quite straightforward, using FA and HA conditions on comultipli-
cation ([1], page 50-51).

In the general case, we must construct a different coalgebra structure in order
to find a FA structure within HA. The key element is integrals.

4.1. Existence of Non-zero Integrals. Before proceeding, some notations need
to be clarified. We denote multiplication µ(a, b) as ab, and we often omit writing η
since η is the identity map in most contexts. The Sweedler notation may be used
for comultiplication:

δ(c) =
∑
c

c1 ⊗ c2,

(idC ⊗δ)δ(c) = (δ ⊗ idC)δ(c) =
∑
c

c1 ⊗ c2 ⊗ c3.

With this notation, the counit condition is reflected by the equation∑
c

ε(c1)⊗ c2 = c =
∑
c

ε(c2)⊗ c2.
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Definition 4.5. Let H be a finite-dimensional Hopf algebra with counit ε : H → k.
An element x ∈ H is called a left integral in H if

hx = ε(h)x, ∀h ∈ H.

Right integrals are defined symmetrically. We denote the spaces of integrals as:∫ `

H

= {x ∈ H : hx = ε(h)x ∀h ∈ H},∫ r

H

= {x ∈ H : xh = ε(h)x ∀h ∈ H}.

Remark 4.6. Not every Hopf algebra has a non-zero left (or right) integral, but
as we will show later, every finite-dimensional Hopf does have a non-zero right (or
left) integral, and it is unique up to a scalar.

Example 4.7. Recall the group algebra k[G] from Example 4.3. It can be checked
that the element

x =
∑
g∈G

g

is both a right and left integral in k[G].

Theorem 4.8. If f in the dual space H∗ is a non-zero left (or right) integral in
H∗, then the bilinear form it defines

β : H ⊗H → k, β(h⊗ k) = f(hk)

is associative and non-degenerate.

We will save the proof to later, after we have proven some results.
The theorem shows the importance of non-zero integrals: a Hopf algebra is auto-

matically a Frobenius algebra with a non-degenerate pairing defined by a non-trivial
integral. In fact, this integral is also the counit in the new coalgebra structure.

We now aim to show finite-dimensional Hopf algebras have non-zero integrals.
The idea is to use the Fundamental Theorem of Hopf Modules [3], which provides
an isomorphism between Hopf algebras and its modules. We first show the dual
space H∗ is a Hopf module over H, and by applying the Fundamental Theorem,
we prove dim(

∫ `
H

) = 1.

Definition 4.9. A left H-module is a vector space M equipped with a linear map,
called the left action of H on M ,

α : H ⊗M →M

that respects multiplication and unit maps:

H ⊗H ⊗M

µ⊗idM

��

idH ⊗α// H ⊗M

α

��

H ⊗M
α

// M

H ⊗M

α

��

k⊗M
η⊗idMoo

xx
M

The right H-module is defined symmetrically with a right action. The left (or right)
H-comodule is dually defined with a left (or right) co-action of H on M :

ρ : M → H ⊗M.
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Definition 4.10. Let M,N be two left H-modules. A linear map ϕ : M → N is
called a left H-module homomorphism if it satisfies:

H ⊗M

��

idH ⊗ϕ// H ⊗N

��

M
ϕ

// N.

A right H-module homomorphism is defined symmetrically, and H-comodule ho-
momorphism is instead defined with co-actions.

Definition 4.11. A Hopf module overH is a vector spaceM that has both a leftH-
module and a leftH-comodule structure such that the co-actionM → H⊗M is aH-
module homomorphism. Note,H⊗M is trivially aH-module and comodule induced
by the maps: µ⊗ idP : H ⊗H ⊗M → H ⊗M and δ⊗ idP : H ⊗M → H ⊗H ⊗M,
making H ⊗M a Hopf module.

Proposition 4.12. The dual space H∗ of the finite-dimensional Hopf algebra H
is:

(1) a Hopf algebra;
(2) a Hopf module of H.

Proof. The first observation is made by constructing the following maps:

µ∗(f ⊗ g)(h) =
∑
h

f(h1)g(h2),

δ∗(f) =
∑
f

f1 ⊗ f2 ⇐⇒
∑
f

f1(a)f2(b) = f(ab) ∀a, b ∈ H,

ε∗(f) = f(1H),

χ∗(f) = f ◦ χ.
It can be verified that these maps indeed make H∗ a Hopf algebra. Furthermore,
replacing H by H∗, we get back the original Hopf algebra as (H∗)∗ ∼= H.

The second observation is made defining the following action and co-action on
H:

(·) : H ⊗H∗ → H∗, (h · f)(x) = f(χ(h)x),

∇ : H∗ → H ⊗H∗, ∇(f) =
∑
f

f0 ⊗ f1 ⇐⇒

fg = µ∗(f ⊗ g) =
∑
f

g(f0)f1 ∀g ∈ H∗.

It can be checked that the co-action is indeed a H-module homomorphism, making
H∗ a Hopf module. �

Now, we are ready to prove the existence of non-zero right integrals using the
Fundamental Theorem of Hopf Modules [3][4]:

Theorem 4.13 (Fundamental Theorem of Hopf Modules). Let H be finite-dimensional
Hopf algebra, and M a Hopf module over H with co-action ρ : M → H⊗M . There
exists an isomorphism H ⊗M coH ∼= M as Hopf modules, where the coinvariant of
H in M is defined by:

M coH = {x ∈M : ρ(x) = 1H ⊗ x}.
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Theorem 4.14. If H is a finite-dimensional Hopf algebra, then the followings are
true:

(1) The space of right (or left) integrals is one-dimensional: dim(
∫ r
H

) = 1;
(2) The antipode χ : H → H is bijective, and χ(

∫ `
H

) =
∫ r
H
.

Proof. To show (1), since H∗ is a Hopf module of H, we can apply the Fundamental
Theorem and use the co-action to induce an isomorphism:

Ψ : H ⊗ (H∗)coH → H∗, h⊗ f 7→ h · f.
We want to show (H∗)coH =

∫ r
H∗ :

(1) For any f ∈ (H∗)coH , we have ∇(f) = 1H ⊗ f , which implies fg =∑
f g(f0)f1 = g(1H)f = ε∗(g)f for any g ∈ H∗. Thus, f is a right in-

tegral in the Hopf algebra H∗.
(2) For any f ∈

∫ r
H∗ , since fg = ε∗(g)f = g(1H)f for all g, we have ∇(f) =

1H ⊗ f and f ∈ (H∗)coH .
Since H and H∗ have the same dimension, and Ψ is an isomorphism, we must

have (H∗)coH =
∫ r
H∗ to be one-dimensional. Repeat the above procedure for H∗,

we get dim(
∫ r
H

) = 1 from (H∗)∗ ∼= H.
To prove (2), let h ∈ H be such that χ(h) = 0, and we want to show h = 0.

From (1), there exists some f ∈
∫ r
H∗ such that f 6= 0. Then,

Ψ(h⊗ f)(x) = f(χ(h)x) = 0 ∀x ∈ H,
which by bijectivity of Ψ implies h = 0. Since χ : H → H is finite-dimensional and
injective, it is bijective.

To see χ(
∫ `
H

) =
∫ r
H
, we show

∫ `
H

= χ−1(
∫ r
H

) instead for convenience. Let x be
a non-zero element in

∫ r
H
, and for any h ∈ H, we have

hχ−1(x) = χ−1(xχ(h)) by 4.2

= χ−1(ε(χ(h))x) by x ∈
∫ r

H

= χ−1(ε(h)x) by 4.2

= ε(h)χ−1(x).

�

Now, we are ready to prove the correspondence between non-zero integrals and
non-degenerate pairings:

Proof of Theorem 4.8. Let f be a non-zero left integral in H∗. We want to
show β(a, b) = f(ab) is an associative non-degenerate bilinear pairing. Clearly, the
pairing is bilinear since f is linear, and associative since multiplication is associative:
β(ab, c) = f(abc) = β(a, bc).

Define a map Π : H → H∗ as

Π(h)(k) = f(kh) ∀h, k ∈ H.
(Note the order of the multiplication!) We want to show Π is injective. Since
χ∗ : H∗ → H∗ is bijective, we can find some g ∈

∫ r
H∗ \{0} such that χ∗(f) = g.

Recall from Theorem 4.14 that

Ψ : H ⊗
∫ r

H∗
→ H∗, h⊗ ψ 7→ h · ψ
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is an isomorphism, and dim(
∫ r
H∗) = 1, so the map

Ψg : H → H∗, h 7→ h · g

is injective. Let x ∈ H. Suppose Π(x)(h) = f(hx) = 0 for all h ∈ H. We can write:

Ψg(χ
−2(x))(h) = g(χ(χ−2(x))h)

= χ∗(f)(χ−1(x)h)

= f(χ(χ−1(x)h))

= f(χ(h)x) = 0 ∀h ∈ H.

This implies x = 0 by the injectivity of both Ψg and χ−1. Thus, Π is injective.
Now, we are ready to show the bilinear pairing is non-degenerate. Here we use
an equivalent definition of non-degeneracy in finite dimensions: b : A ⊗ A → k is
non-degenerate if and only if

b(x⊗ y) = 0 for all x ∈ A implies y = 0.

Then, having

f(ab) = Π(b)(a) = 0 for all a ∈ H

implies Π(b) = 0, which gives us b = 0. �

Finally, we conclude the main theorem of this section, using Theorem 4.8 and
4.14:

Theorem 4.15. A finite-dimensional Hopf algebra H admits a Frobenius alge-
bra structure, using the same algebra structure and an associative non-degenerate
bilinear pairing:

β : H ⊗H → k, β(a, b) = f(ab),

where f is a non-zero left (or right) integral in H∗.

4.2. The Converse direction. To end this section, we briefly discuss the converse
direction of Theorem 4.15. Does an arbitrary Frobenius algebra A admit a finite-
dimensional Hopf algebra structure?

The quick answer is no, and in fact, not much is understood in this direction.
The difficulty lies in constructing the “non-topological" bialgebra structure and
antipode map. Arbitrary Frobenius algebras simply do not have enough structure,
so one has to weaken the Hopf conditions or strengthen special Frobenius structure
to make a connection. For example, using the braided monoidal categories, it is
proven that if a Frobenius monoid A is separable, meaning

µ ◦ δ = idA,

then A⊗ A is a weak Hopf bimonoid [7]. Here, the Hopf structure is weakened by
loosening the bialgebra/bimonoid conditions.
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5. Frobenius Algebra Structure in Cohomology Ring

Using the non-degenerate pairing definition of Frobenius algebras, we explored
its structural similarities with Hopf algebras. In this section, we study how the
Frobenius structure lives in cohomology rings with Poincaré duality by constructing
a FA pairing using the duality isomorphism.

Definition 5.1. Let X be a topological space and R a coefficient ring. The cap
product

∩ : Ck(X;R)× C`(X;R)→ Ck−`(X;R)

for k ≥ ` is defined as

σ ∩ ψ = ψ(σ|[v0, ..., v`])σ|[v`, ..., vk],

where σ : ∆k → X and ψ ∈ C`(X;R). This induces a cap product in homology
and cohomology ∩ : Hk(X;R)×H`(X;R)→ Hk−`(X;R) by the formula:

∂(σ ∩ ψ) = (−1)`(∂σ ∩ ψ − σ ∩ δψ).

Theorem 5.2 (Poincaré duality). If M is an orientable, closed n-manifold (com-
pact and without boundary) with fundamental class [M ] ∈ Hn(M ;R), then the map

D : Hk(M ;R)→ Hn−k(M ;R)

ψ 7→ [M ] ∩ ψ

is an isomorphism for all k.

Having introduced Poincaré duality, we need a few more maps in order to con-
struct FA pairing in a cohomology ring H∗(M). From now on, we will denote
Hk(M ;R) as Hk(M) and Hk(M ;R) as Hk(M) for simplicity.

First, define the Kronecker index or evaluation map

〈−,−〉 : H∗(M)⊗H∗(M)→ R,

〈ψ, σ〉 :=

{
ψ(σ) ψ ∈ Hk, σ ∈ H`, and k = `

0 otherwise.

Using the fact that finite-dimensional vector space is naturally isomorphic to its
double dual, we have an isomorphism (for each k):

**H : Hn−k(M)→ Hom(Hom(Hn−k(M), R), R)

σ 7→ 〈−, σ〉.

Given the cap product is adjoint with cup product

∪ : Hk(M)×H`(M)→ Hk+`(M)

with respect to the Kronecker index, we can define an isomorphism (for each k):

Ad : Hom(Hom(Hn−k(M), R), R)→ Hom(Hn−k(M), R)

〈−, [M ] ∩ ψ〉 7→ 〈− ∪ ψ, [M ]〉.

Now, we are ready to prove the main theorem:

Theorem 5.3. A cohomology ring H∗(M) with Poincaré duality is a Frobenius
algebra.
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Proof. By composing the above maps, we obtain an isomorphism for each k:

Ad ◦ **H ◦D : Hk(M)→ Hom(Hn−k(M), R)

ψ 7→ 〈− ∪ ψ, [M ]〉.

In a graded manner, these isomorphisms can be composed into a pairing over
H∗(M):

β : H∗(M)⊗H∗(M)→ R

ψ ⊗ ϕ 7→ 〈ψ ∪ ϕ, [M ]〉 = 〈ψ, [M ] ∩ ϕ〉.

Note that this pairing is only non-trivial when the dimensions of ψ and ϕ add up
to n.

We aim to show β is bilinear, associative and non-degenerate in order to conclude
that H∗(M) is a Frobenius algebra. Bilinearity and associativity are both inherited
from the cup product:

β(ψ ∪ ϕ⊗ ζ) = 〈ψ ∪ ϕ ∪ ζ, [M ]〉 = β(ψ ⊗ ϕ ∪ ζ).

To show it is non-degenerate, since ϕ 7→ [M ] ∩ ϕ is an isomorphism, we must have

β(ψ ⊗ ϕ) = 〈ψ, [M ] ∩ ϕ〉 = 0 for all ϕ ∈ H∗(M)

implies ψ = 0.

Thus, with an associative non-degenerate pairing β, the graded cohomology ring
H∗(M) with Poincaré duality is a Frobenius algebra. �
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