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Abstract. In this expository paper, we discuss Koszul duality as a method

of explicitly constructing minimal models for quadratic dg operads. We de-

fine Koszul operads, which are quadratic operads whose Koszul complexes are
acyclic. Our main result is that the minimal model of a Koszul operad is the

cobar complex of its Koszul dual cooperad.
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1. Introduction

Operads describe algebraic operations with arbitrarily many arguments that
compose in specific ways and respect constraints of associativity, unitality and
equivariance [1]. For a differential graded (dg) operad P, the minimal model of P
is defined as a free operad quasi-isomorphic to P with a decomposable differential.
Intuitively, the minimal model of P encodes the same homological information as
P but reduces the “size” of P to the minimum. Similar definitions can be made for
dg algebras; we point to [2] for the connection between two concepts.

Minimal models have important applications in rational homotopy theory [3],
where a dg algebra can be assigned to every 1-connected topological space. It has
been shown that every homologically connected dg algebra and dg operad admits
a unique minimal model, which furthers our understanding about rational spaces.
However, the explicit construction of such minimal model is often nontrivial. In
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this paper, we show that for the minimal model of a class of dg operads called
Koszul operads can be constructed from their Koszul dual cooperads.

This paper is structured as follows. In Section 2, we provide basic definitions
related to operads and cooperads. In Section 3, we present important constructions
of operadic homological algebra such as the operadic bar and cobar constructions.
In Section 4, we define Koszul duality for quadratic operads using constructions in
Section 3 and give the explicit expressions of Koszul duality for binary quadratic
operads. We also present the Koszul duality relations among three widely known
operads Assoc, Com and Lie: Assoc is self-dual while Com and Lie are Koszul
duals of each other. In Section 5, we define Koszul operads and present the main
theorem, which builds an equivalence between the acyclicity of Koszul complexes
and the existence of a quasi-isomorphism between the operad and the cobar complex
of its Koszul dual cooperad. It is straightforward that such cobar complex is the
minimal model of the operad.

2. Algebraic operads

2.1. Basic definitions. Operads can be defined in many different ways. We use
the monoidal definition of operads so that cooperads can be defined in a similar
fashion. Throughout the paper, K denotes a field of characteristic 0 and Sn is the
symmetric group over n elements.

Definition 2.1. S-module. An S-module is a collection M = {M(n)}n≥0 where
M(n) is a right K[Sn]-module for each n. A morphism f : M → N of S-modules is
a collection of Sn-equivariant maps fn : M(n)→ N(n).

In other words, each M(n) is a K-linear representation of Sn. Constructions
on vectors spaces can be extended to S-modules. The direct sum of S-modules is
defined component-wise as

(M ⊕N)(n) := M(n)⊕N(n)

The tensor product of S-modules is defined as

(M ⊗N)(n) :=
⊕
i+j=n

IndSn
Si×Sj

(
M(i)⊗N(j)

)
where IndSn

Si×Sj is the K-linear representation of Sn induced by the representation

of Si × Sj given by M(i) and N(j).

Definition 2.2. Composite of S-modules. The composite of S-modules M and
N is the S-module

M ◦N :=
⊕
k≥0

M(k)⊗Sk N
⊗k

where N⊗k denotes the tensor product of k copies of N . ⊗Sk denotes the usual
tensor product with the equivalence relation x⊗Sk (y ·σ) ∼ (x ·σ)⊗Sk y for σ ∈ Sk.
Explicitly, the components of M ◦N are expressed by

(M ◦N)(n) =
⊕
k≥0

M(k)⊗Sk

[ ⊕
i1+···+ik=n

IndSn
Si1×···×Sik

(
N(i1)⊗ · · · ⊗N(ik)

)]
where IndSn

Si1×···×Sik
is the representation of Sn induced by its subgroup Si1 × · · · ×

Sik . Meanwhile, the action of Sk permutes N(i1), · · · , N(ik) and commutes with
the action of Sij on N(ij).
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Alternatively, we can take invariants of N⊗k under the action of Sk instead of
coinvariants and obtain another composite

M ◦N :=
⊕
k≥0

(
M(k)⊗N⊗k

)Sk
Explicitly, the components of M ◦N are expressed by

(M ◦N)(n) =
⊕
k≥0

M(k)⊗
[ ⊕
i1+...+ik=n

IndSn
Si1×···×Sik

(
N(i1)⊗ · · · ⊗N(ik)

)]Sk
We point to Section 5.1.21 of [4] for the connection between ◦ and ◦.

Both ◦ and ◦ give a monoidal structure on S-Mod, the category of S-modules.
For both structures, the unit object is given by I = (0,K, 0, 0, · · · ). As we shall
see, operads are essentially monoids in the monoidal category (S-Mod, ◦, I) while
cooperads are comonoids in (S-Mod, ◦, I).

Definition 2.3. Monoidal definition of an operad. A symmetric operad P =
(P, γ, η) is an S-module P = {P(n)}n≥0 such that

(a) there exists a composition map γ : P ◦ P → P and a unit map η : I → P
that are both S-module morphisms;

(b) γ and η satisfy the classical axiom of monoids.

We can view an operad P as a collection of operations with arbitrarily many
arguments where P(n) consists of all n-ary operations in P. Operations in P
compose through γ in the following way:

γ : P(k)⊗ P(i1)⊗ ...⊗ P(ik)→ P(i1 + ...+ Pk)

where P(k) comes from the first copy of P in P ◦ P and the rest come from the
k-fold tensor product P⊗k. γ is visualized by the “grafting” of trees in Figure 1.

Figure 1. Schematic of operad composition.

Definition 2.4. Cooperad. A cooperad is an S-module C with a decomposition
map 4 : C → C ◦ C and a counit map ε : C → I that are morphisms of S-modules
and satisfy the axioms of comonoids.

As examples, we now introduce endomorphism operads and cooperads that are
closely connected to the definition of algebras over operads. They also play an
important role in defining operadic suspension in Section 3.10 and Section 3.11.

Example 2.5. Endomorphism operad. The endomorphism operad of any vec-
tor space V is given by

EndV (n) := Hom(V ⊗n, V )
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where V ⊗0 = K. The right action of Sn is induced by the left action of Sn on V ⊗n.
The composition map γ is given by composition of homomorphisms:

γ(f ; f1, · · · , fk) = f(f1 ⊗ · · · ⊗ fk)

Example 2.6. Endomorphism cooperad. The endomorphism cooperad of V is
given by

CoendV (n) := Hom(V, V ⊗n)

where V ⊗0 = K. The right action of Sn is induced by the right action on V ⊗n and
the composition map is similarly given by composition of homomorphisms.

Recall that the representation of a group G can be defined as a group homomor-
phism f : G → End(V ) where End(V ) is the space of endomorphisms for a vector
space V . Algebras over operads have an analogous definition, which enables us to
view them as “representations” of operads.

Definition 2.7. Algebra over an operad. An algebra over an operad P is a
vector space V together with a morphism of operads f : P → EndV , which is a
collection of maps fn : P(n)→ EndV (n) compatible with symmetric group action,
unit elements and compositions.

2.2. Free operads and cofree cooperads. We now move on to present defini-
tions of free operads and cofree cooperads which appear in the operadic bar and
cobar constructions.

Definition 2.8. Free operad. The free operad over an S-module M is an operad
F(M) with an S-module morphism ηM : M → F(M) and the universal property
expressed by the following diagram:

F(M)

M P

f̃ηM

f

In other words, there exists a unique lift f̃ : M → F(M) for any S-module morphism
f : M → P where P is an operad.

Explicitly, F(M) is the colimit F(M) := T (M) = colimTnM where TnM is
defined inductively by T0M := I and TnM := I ⊕ (M ◦ Tn−1M). We point to
Section 5.4.1 of [4] for detailed exposition.

We now introduce a weight grading on the free operad defined as the number of
generating operations needed in constructing a given operation in the free operad.

Definition 2.9. Weight-grading of the free operad. Given a S-module M ,
the weight w(µ) of any operation µ ∈ T (M) is defined by

w(Id) = 0, w(ν) = 1 for ν ∈M(n)

and more generally w(ν; ν1, ..., νn) = w(ν) + w(ν1) + ...+ w(νn).
We denote by T (M)(r) the operations in T (M) of weight r. T (M)(r) has the

structure of an S-module where the nth component consists of n-ary operations
generated by r elements of M .

Cofree cooperads can be defined analogously with an additional constraint called
conilpotency. Essentially, conilpotency of a cooperad C means that every element
in C goes to 0 after applying the decomposition map sufficiently many times.
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Definition 2.10. Conilpotent cooperad. Let C = K1 ⊕ C be a coaugmented
cooperad and 4̄ be the corresponding decomposition map on C. C is a conilpotent
cooperad if for any x ∈ C there exists n such that 4̄m(x) = 0 for any m ≥ n.

Definition 2.11. Cofree cooperad. The cofree cooperad Fc(M) on M is a
conilpotent cooperad with an S-module morphism πM : Fc(M) → M called the
projection and the universal property expressed by the following diagram:

Fc(M)

M C

f̃πM

f

In other words, any S-module morphism f : M → C from M to a cooperad C
can be uniquely lifted to a cooperad morphism f̃ : Fc(M) → C. Again, we point
to Section 5.7.7 of [4] for the explicit form of Fc(M).

2.3. Quadratic operads. Operads can be constructed by quotienting out operadic
ideals from free operads. Elements in such operadic ideals are called relations.
Quadratic operads are obtained when relations only involve two applications of
some generating operation of the free operad.

Definition 2.12. Operadic ideal. An ideal I of an operad P is a sequence of
Sn-submodules I(n) ⊂ P(n) such that γ(µ⊗ν1⊗ ...⊗νk) ∈ I if µ or any of ν1, ..., νk
is in I. The quotient P/I is defined degree-wise as

(P/I)(n) = P(n)/I(n)

Meanwhile, the ideal (R) generated by a subset R ⊂ P is the smallest ideal of P
containing R. We are now ready to define quadratic operads.

Definition 2.13. Operadic quadratic data. An operadic quadratic data
(E,R) is a graded S-module E together with a graded S-submodule R ⊂ T (E)(2).
Elements in E and R are called generating operations and relations, respectively.

Definition 2.14. Quadratic operad. The quadratic operad P(E,R) associated
with quadratic data (E,R) is defined as the operadic quotient

P(E,R) := T (E)/(R)

where (R) is the operadic ideal of T (E) generated byR. If E = (E(0), E(1), E(2) · · · ),

T (E)(0) = I = (0,K, 0, 0, · · · )

T (E)(1) = E = (0, E(1), E(2).E(3), · · · )

T (E)(2) = (0, E(1)⊗2, · · · )

Let (R) = (R(0), R(1), R(2), · · · ). Then, the quadratic operad P = P(E,R) is
explicitly expressed by P0 = I, P1 = E and

P2(E,R) = (0, E(1)⊗2/R(1), · · · )

If E is concentrated in degree 2 and R is concentrated in degree 3, we recover the
simplified definition of quadratic operads by Ginzburg and Kapranov [5]. We call
it a binary quadratic operad in this paper. Intuitively, such operads are generated
by binary operations while the relations involve three variables.
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Definition 2.15. Quadratic cooperad. The quadratic cooperad C(E,R) asso-
ciated (E,R) is the sub-cooperad of the cofree cooperad T c(E) that is universal
among sub-cooperads of T c(E) such that the following composite is 0:

C T c(E) T c(E)(2)/(R)

Intuitively, quadratic cooperads are the “largest” cooperads that are “orthogo-
nal” to T c(E)(2)/(R) and they are defined differently from quadratic operads.

Now, we present the “three graces” of quadratic operads as examples: the (sym-
metric) associative operad Assoc, the commutative operad Com and the Lie op-
erad Lie. We first briefly recall the definitions of associative, commutative and
Lie algebras. Commutative and associative algebras appearing in this section are
assumed to be unital.

Definition 2.16. Associative algebra. An associative algebra over K is a vector
space A with binary operation (x, y) 7→ xy and a unit map ε : K → A satisfying
the associativity and unitality axioms

(xy)z = x(yz), 1Ax = x1A = x

where 1A = ε(1K) is the unit in A.

Example 2.17. The symmetric operad Assoc. Assoc encodes associative
algebras. Each component Assoc(n) is isomorphic to the group ring K[Sn]. The
composition map

γ : K[Sk]⊗K[Si1 ]⊗ · · · ⊗K[Sik ]→ K[Si1+···+ik ]

is given by the inclusion of Si1 ×· · ·×Sik in Sik where Sk permutes the order of Sij
in the inclusion for j = 1, · · · , k.

All algebras over Assoc have the structure of an associative algebra where the
binary operation corresponds to an element in Assoc(2). Meanwhile, all associative
algebras naturally arise as operadic algebras over Assoc. Specifically, the action
of µ = k1σ1 + ... + kmσm ∈ Assoc(n) on an associative algebra A is given by the
polynomial

µ(x1, · · · , xn) = k1xσ−1
1 (1) · · ·xσ−1

1 (n) + · · ·+ kmxσ−1
m (1) · · ·xσ−1

m (n)

The multiplication in the polynomial is given by the binary operation in A, which
is associative but not necessarily commutative.

Assoc also admits a quadratic presentation as T (EA, RA) where EA ∼= K[S2]
and RA is the S3-submodule of T (EA)(2) generated by all elements of the form
(x1x2)x3 − x1(x2x3). Intuitively, Assoc is generated by K[S2] as Sn is generated
by transpositions of two elements.

Definition 2.18. Commutative algebra. A commutative algebra over K is an
associative algebra A such that xy = yx.

Example 2.19. Com. The operad Com encodes commutative algebras. For each
n, Com(n) = Kµn ∼= K where µn is invariant under σ ∈ Sn. The composition map
γ is trivially defined by

γ(µk ⊗ µi1 ⊗ · · · ⊗ µik) = µi1+···+ik
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Similar to Assoc, algebras over Com have the structure of unital commutative
algebras where the symmetric binary operation is given by µ2 ∈ Com(2). Mean-
while, each unital commutative algebra A can be considered as an algebra over
Com. The action of µn ∈ Com(n) is given by

µn(x1, · · · , xn) = x1 · · ·xn
where x1 · · ·xn is a monomial with multiplication given by the binary operation in
A.

As a quadratic operad, Com is presented quadratically as Com = T (EC , RC).
EC is concentrated in degree 2 with EC(2) = K. RC is the S3-subspace of T (EC)(2)

generated by the associator (xy)z − x(yz).

Definition 2.20. Lie algebra. A Lie algebra g is a vector space equipped with a
binary operation [·, ·] called the Lie bracket that is skew-symmetric

[x, y] = −[y, x]

and satisfies the Jacobi identity

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0

Example 2.21. Lie. As a quadratic operad, the operad Lie encoding Lie algebras
is the quotient Lie = T (EL)/(RL). EL = (0, 0,Kc, 0, · · · ) where c is an antisym-
metric operation; RL is the subspace of T (EL)(2) generated by the Jacobians.

Later, we shall show that Assoc is self-dual under Koszul duality and Com is
the Koszul dual of Lie.

2.4. Dg-operads and cooperads. Now, we present differential graded (dg) op-
erads and cooperads where each component is differential graded. Dg operads play
an important role in defining homological algebra for operads.

Definition 2.22. Graded S-module. A graded S-module M is a family of S-
modules {Mp}p∈Z. A morphism f : M → N of degree r is a family of maps
{fp(n) : Mp(n)→ Np+r(n)}p∈Z,n≥0 that are Sn-equivariant.

The tensor product of S-modules can be extended to graded S-modules:

(M ⊗N)p(n) :=
⊕

i+j=n,q+r=p

IndSn
Si×SjMq(i)⊗Nr(j)

The composite product of two S-modules can be extended to graded S-modules:

(M ◦N)p(n) :=
⊕
k≥0

Mq(k)⊗Sk

[ ⊕
i1+···+ik=n

IndSn
Si1×···×Sik

(
Nr1(i1)⊗ · · · ⊗Nrk(ik)

)]
where q, r1, · · · , rk is summed over all combinations satisfying q + r1 + · · · rk = p.

Now, we construct dg S-modules from graded S-modules by adding a differential
d compatible with the grading and the composite product.

Definition 2.23. Dg S-module. A dg S-module (M,d) is a graded S-module M
equipped with a differential of S-modules

· · · Mp(n) Mp−1(n) · · · M0(n) · · ·d d d d d

such that d2 = 0 for each n. A morphism f : (M,dM )→ (N, dN ) of dg S-modules
is a degree 0 morphism of graded S-modules such that dN ◦ f = f ◦ dM .
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Definition 2.24. Composite of dg S-modules. The composite of dg S-modules
M and N is the graded S-module M ◦N with differential dM◦N defined as

dM◦N (µ; ν1, · · · , νk) = (dM (ν); ν1, · · · , νk) +

k∑
i=1

(−1)εi(µ; ν1, · · · , dN (νi), · · · , νk)

where εi = |µ|+ |ν1|+ · · ·+ |νi| by the Koszul sign rule in Section 6.3.1 of [4].

Proposition 2.25. Under the composite product, dg S-modules form a monoidal
category (dg S-Mod, ◦, I) where I = (0,K, 0, 0, ...) is considered as a graded S-
module concentrated in degree 0.

Definition 2.26. Homology and cohomology of dg S-modules. The homol-
ogy H•(M) of a dg S-module M is the graded S-module whose component with
degree p and “arity” n is

Hp(M)(n) := Ker{d : Mp(n)→Mp−1(n)}/Im{Mp+1(n)→Mp(n)}

If the differential d has degree +1, M is said to have cohomological grading and
the cohomology H•(M) can be defined as

Hp(M)(n) := Ker{d : Mp(n)→Mp+1(n)}/Im{Mp−1(n)→Mp(n)}

Now, we present the explicit definitions of dg operads and cooperads. Essentially,
dg operads and cooperads are monoids and comonoids in (dg S-Mod, ◦, I).

Definition 2.27. Dg operad. A dg operad (P, γ, η) is a dg S-module P with
a composition map γ : P ◦ P → P and a unit map η : I → P that are both dg
S-module morphisms of degree 0. γ and d are compatible such that the following
diagram commutes:

P P ◦ P

P P ◦ P

γ

dP◦P dP

γ

Explicitly, γ and d satisfy

dP(γ(µ; ν1, · · · , νk)) := γ(dP(µ); ν1, · · · , νk) +

k∑
i=1

(−1)εiγ(µ; ν1, · · · ,.P(νi), · · · , νk)

Definition 2.28. Dg cooperad. A dg cooperad (C,4, ε) is a dg S-module C with
a decomposition map 4 : C → C ◦ C and a counit map ε : C → I are dg S-modules
morphisms of degree 0. 4 and ε commute with the coderivation dC on C:

C C ◦ C

C C ◦ C

4

dC dC◦C

4

Explicitly, the coderivation dC needs to satisfy

4(dC(c)) =
∑
k

(dC(c); c1, · · · , ck) +
∑
k

k∑
i=1

(−1)νi(c; c1, · · · , dC(ci), · · · , ck)
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Remark 2.29. Homological degree, “arity” and weight grading. We now
distinguish the three possible notions of degree on a dg operad P. First, we have
the homological degree inherited from the differential grading of each P(n). Second,
each operation µ ∈ P(n) has “arity” n, which is the number of arguments involved
in µ. Third, P is weight-graded as defined in Definition 2.8.

Finally, we present the definition of minimal models of dg operads. Intuitively,
minimal models are “smallest” versions of dg operads that preserve all homological
information. Minimal models were proposed by Markl in 1994 [6]. It was also
shown that every dg operad admits a unique minimal model up to isomorphism.

Definition 2.30. Models for operads. Let P be a dg operad. M is a model
of P if there exists a quasi-isomorphism f : M → P which is a morphism of dg
operads that induces an isomorphism on homology.

Definition 2.31. Minimal models. M is a minimal model of P if M is a model
of P and (a) M is a free operad; (b) the differential d of M = T (E) is decomposable,
which means that d(E) ⊂ T (E)≥2.

Theorem 2.32. Let P be a dg operad with P(1) = 0. Then, P admits a minimal
model that is unique up to isomorphism.

3. Operadic homological algebra

3.1. Infinitesimal composite. The operad composite product ◦ is left-linear but
not right-linear since P1 ◦ P2 contains multiple copies of P2. In this section, we
present the “linearized” composite product ◦(1) of operads called the infinitesimal
composite that is both left-linear and right-linear. The infinitesimal composite
motivates the construction of twisting complexes and further the Koszul criterion.

Definition 3.1. Infinitesimal composite product of S-modules. M , N1

and N2 are S-modules. The triple composite M ◦ (N1;N2) is the sub-S-module
of
⊕

nM(n) ⊗Sn (N1 ⊕ N2)⊗n where N2 appears exactly one time in each sum-
mand. Pictorially, an element of the M ◦ (N1;N2) is represented by

Figure 2. A typical additive term of the triple composite.

The infinitesimal composite product of two S-modules M and N is defined as

M ◦(1) N = M ◦ (I;N)

Elements of M ◦(1)N are of the form (µ; Id, · · · , ν, · · · , Id). Note that the infinites-
imal composite product is both left-linear and right-linear:

(M ⊕M ′) ◦(1) N = M ◦(1) N ⊕M ′ ◦(1) N

M ◦(1) (N ⊕N ′) = M ◦(1) N ⊕M ◦(1) N ′

The structure map of an operad P naturally lifts to the infinite composite P◦(1)P.
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Definition 3.2. Infinitesimal composition map of operads. The infinitesimal
composition map γ(1) : P ◦(1) P → P of an operad P is given by

γ(1) : P ◦(1) P = P ◦ (I;P) P ◦ (I ⊕ P) P ◦ P PIdP◦(η+IdP) γ

where the second map is the natural embedding of P ◦ (I;P) into P ◦ (I ⊕ P).
Intuitively, γ(1) is the restriction of γ where we only compose two operations of P.

Similarly, the decomposition map of cooperads can be linearized. However, be-
fore defining the infinitesimal decomposition of cooperads, we need to define the
infinitesimal composite of morphisms.

Definition 3.3. Infinitesimal composite of morphisms. The infinitesimal
composite of two S-module morphisms f : M1 → M2 and g : N1 → N2 is a
morphism

f ◦′ g : M1 ◦N1 →M2 ◦ (N1;N2)

defined as
f ◦′ g :=

∑
i

f ⊗ (IdN1 ⊗ · · · ⊗ g ⊗ · · · ⊗ IdN1)

where g is inserted in the ith position.

Definition 3.4. Infinitesimal decomposition map of cooperads. Dually, the
infinitesimal decomposition map 4(1) : C → C ◦(1) C of a cooperad C is defined by
the composite

4(1) : C C ◦ C C ◦ (C; C) C ◦ (I; C) = C ◦(1) C
4 IdC◦′IdC IdC◦(η;IdC)

3.2. Twisting morphisms for operads. In this section, we define twisting mor-
phisms as solutions to the Maurer-Cartan equation and construct the twisted com-
plex that is important in determining Koszulity.

Definition 3.5. Convolution operad. Let (C,4C , ε) be a cooperad and (P, γP , η)
be an operad. We consider the right S-module

Hom(C,P) := {HomK(C(n),P(n))}n≥0
where the right Sn-action is defined by conjugation

σ(f)(x) = σ(f(σ−1x))

Hom(C,P) can be made into an operad with a composition map. For fk ∈
HomK(C(k),P(k)) and gl ∈ HomK(C(il),P(il)) where l = 1, · · · , k, the composition
map γ is expressed by

C(n) (C ◦ C)(n) C(k)⊗ C(i1)⊗ · · · ⊗ C(ik)⊗K[Sn] d
4C f⊗g1⊗···⊗gk⊗Id

P(k)⊗ P(i1)⊗ · · · ⊗ P(ik)⊗K[Sn] (P ◦ P)(n) P(n)
γP

where n = i1 + · · ·+ ik. Hom(C,P) with γ is called the convolution operad.
The convolution operad can also be made into a dg operad by defining a differ-

ential d. For a homogeneous morphism f : C → P of dg S-modules of degree |f |,
the derivative of f is defined as

∂(f) = dP ◦ f − (−1)|f |f ◦ dC
where dP and dC are the differential on P and C, respectively. The convolution
operad (Hom(C,P), ∂) with differential is a dg operad.
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We now state the Maurer-Cartan equation and define operadic twisting mor-
phisms. Using the notion of infinitesimal composites in Section 3.1, we construct
the twisted composite product.

Definition 3.6. Maurer-Cartan equation. The Maurer-Cartan equation in
HomS(C,P) is

∂(α) + α ? α = 0

where the convolution product ? is defined by

f ? g = µ ◦ (f ⊗ g) ◦ 4

for f, g ∈ HomS(C,P). Note that HomS(C,P) is the subspace of Hom(C,P) con-
sisting of Sn-equivariant maps.

Definition 3.7. Operadic twisting morphism. An operadic twisting morphism
is a map α : C → P of degree −1 that is a solution to the Maurer-Cartan equation.

3.8. Twisted composite product. The operadic composite product C ◦ P can
be made into a dg S-module C ◦α P by defining a differential dα corresponding to
a twisting morphism α : C → P.

We now define dα on C ◦α P. Consider the map fα : C → C ◦ P defined by

fα : C C ◦(1) C C ◦(1) P C ◦ P
4(1) IdC◦(1)α

The map drα extending fα to C ◦ P is the “twisting term” of the differential on
C ◦α P. drα is expressed by

drα : C ◦ P (C ◦(1) C) ◦ P (C ◦(1) P) ◦ P ∼=
4(1)◦IdP (IdC◦(1)α)◦IdP

C ◦ (P;P ◦ P) C ◦ (P;P) ∼= C ◦ P
IdC◦(IdP ;γ)

The two isomorphisms can be seen from writing out a “typical” term of the triple
composites. The full derivation on C ◦ P is

dα = dC ◦ IdP + IdC ◦′ dP + drα

The left twisted composite product P ◦α C can be defined dually as a dg S-module
with differential degree +1.

Now, we show that the twisted derivation dα is a differential on C ◦ P iff α is a
twisting morphism. The complex C ◦α P := (C ◦ P, dα) is called the right twisted
composite product.

Proposition 3.9. The derivation dα on C ◦ P satisfies

d2α = dr∂(α)+α?α

In other words, dα is a differential on C ◦ P if and only if α is a solution to the
Maurer-Cartan equation i.e. a twisting morphism.
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3.3. Operadic bar and cobar construction. In this section, we briefly introduce
the operadic bar and cobar functors which are adjoint to each other. We start by
defining the operadic suspension that appears in the bar and cobar constructions.

Definition 3.10. Operadic suspension. The operadic suspension of an operad
P is the operad given by

Ps := S ⊗H P
S is the endomorphism operad over sK where s shifts the degree of any graded S-
module by +1. We also define S−1 = Ends−1K and define the operadic desuspension
of P as Ps−1 := S−1 ⊗H P. ⊗H is the Hadamard product of S-modules defined by

(P ⊗H Q)(n) := P(n)⊗Q(n)

Definition 3.11. Cooperadic suspension. The cooperadic suspension (see [7])
of a cooperad P is given by

Cs = Sc ⊗H C
where Sc is the endomorphism cooperad of sK.

3.12. Bar construction. The bar construction is a functor from the category of
augmented dg operads to the category of conilpotent dg cooperads

B : {augmented dg operads} → {conilpotent dg cooperads}

The precise construction is the following. Consider an augmented operad (non-
dg) (P, γ, η, ε) where ε : P → I is the augmentation map. The augmentation ideal
P̄ of P is defined as P̄ = ker ε. The bar construction BP of P is a dg cooperad
constructed from the free cooperad T c(sP̄) by adding a suitably defined differential.

To define such differential, consider the map d̃2

d̃2 : T c(sP̄) T c(sP̄)(2) ∼= (Ks⊗ P) ◦(1) (Ks⊗ P) d
Id⊗τ⊗Id

(Ks⊗Ks)⊗ (P̄ ◦(1) P̄) Ks⊗ P̄ = sP̄
γs⊗γ(1)

By definition of the cofree cooperad T c(sP̄), there exists a map d2 : T c(sP̄) →
T c(sP̄) that extends d̃2. We can check that d22 = 0; in other words, d2 is a differen-
tial on T c(sP̄). The bar construction of an augmented non-dg operad P is defined
as the conilpotent dg cooperad BP := (T c(sP̄), d2).

If P = (P, dP) is a dg operad, d2 can be defined analogously on T c(sP).
Meanwhile, the differential dP on P induces a differential d1 on T c(sP̄) that anti-
commutes with d2:

d1 ◦ d2 + d2 ◦ d1 = 0

The bar construction of a dg operad P is the total complex

BP := (T c(sP̄), d = d1 + d2)

3.13. Cobar construction. The cobar construction is a functor

Ω : {coaugmented dg cooperads} → {augmented dg operads}

We first define the cobar construction of non-dg cooperads. Consider the non-
dg cooperad C = (C,4, ε, η) with coaugmentation ideal C = coker η. The cobar
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construction ΩC of C is the free operad T (s−1 C) with differential d2 defined as the

unique extension of d̃2 to T (s−1 C). d̃2 : s−1C → T (s−1 C) is given by

d̃2 : s−1C = Ks−1 ⊗ C (Ks−1 ⊗Ks−1)⊗ (C ◦(1) C) d
4s⊗4(1) Id⊗τ⊗Id

(Ks−1 ⊗ C) ◦(1) (Ks−1 ⊗ C) ∼= T (s−1 C)(2) T (s−1 C)

The cobar construction of C is defined as the dg operad ΩC := (T (s−1 C), d2).
When C = (C, dC) is a dg cooperad, d2 can be defined analogously. Meanwhile,

there exists a differential d1 on T (s−1 C) induced by the coderivative dC on C that
anticommutes with d2. The cobar construction of C is the complex

ΩC := (T (s−1C), d = d1 + d2)

In fact, the bar and cobar functors are adjoint with the adjunction given by
twisting morphisms.

Theorem 3.14. For an augmented dg operad P and a conilpotent dg cooperad C,
there is a natural isomorphism

Homdg Op(ΩC,P) ∼= Homdg coOp(C, BP)

4. Koszul duality of quadratic operads

In this section, we define the Koszul dual (co)operad of a quadratic operad.
Then, we show some important examples: the operad Assoc is self-dual while
Com and Lie are Koszul dual to each other.

4.1. Koszul dual cooperads and operads. Recall that quadratic operads and
cooperads are generated by graded S-module E and constrained by relations (R) ⊂
T (E)(2).

Definition 4.1. Koszul dual cooperad. The Koszul dual cooperad of a quadratic
operad P(E,R) is the quadratic cooperad P ¡ defined by

P ¡ := C(sE, s2R)

where s shifts the homological degree of any graded module by 1. Without consid-
ering the homological grading, P ¡ can be identified with C(E,R) as S-modules.

Definition 4.2. Koszul dual operad. The Koszul dual operad P ! of a qua-
dratic operad P is the linear dual of the cooperadic suspension of the Koszul dual
cooperad:

P ! := (Sc ⊗H P ¡)∗

where (−)∗ denotes “arity-graded linear dualization” with each arity component
dualized individually.

Proposition 4.3. If E is a graded S-module whose arity components are finite-
dimensional, the Koszul dual operad P ! of P(E,R) admits the quadratic presenta-
tion

P ! = P(s−1S−1 ⊗H E∗, R⊥)

Here E∗ is the “arity-graded linear dual” of E and R⊥ ⊂ T (s−1S−1 ⊗H E∗)(2) is
the orthogonal complement of R under some inner product 〈−,−〉 which we make
explicit in Section 4.5 for binary quadratic operads.



14 WENXI YAO

We call P 7→ P ! a duality since it connects exactly two operads. This conclusion
can be obtained by direct inspection of the quadratic data of P, P ! and (P !)!.

Proposition 4.4. For a quadratic operad P(E,R) where E is finite-dimensional
in each arity, we have

(P !)! ∼= P

4.2. Koszul duality for binary quadratic operads. Recall that a binary qua-
dratic operad P(E,R) is generated by operations involving two arguments only.
In this section, we present a dualization procedure that gives the Koszul dual of
binary quadratic operads explicitly. As examples, we show that Assoc! = Assoc
and Com! = Lie.

4.5. Explicit form of binary quadratic operads. When P(E,R) is binary
quadratic, E is concentrated in arity degree 2:

E = (0, 0, E, 0, · · · )
where E is a S2-module. Since the composition of two binary operations involves
three arguments, we have T (E)(2) = T (E)(3).

Explicitly, T (E)(3) is isomorphic to the direct sum of three copies of E⊗E,
which we denote by 3E⊗E. This isomorphism can be obtained combinatorially.
Let µ, ν be two binary operations in E. After accounting for the action of S2, µ
and ν form three ternary operations:

(µ ◦I ν) := µ(ν(x, y), z)

(µ ◦II ν) := µ(ν(z, x), y)

(µ ◦III ν) := µ(ν(y, z), x)

Each µ ◦u ν provides a copy of E⊗E for u = I, II, III. With the action of S3
expressed by ωσ(x, y, z) = ω(σ(x, y, z)), T (E)(3) is expressed by

3E⊗E = (E⊗E)I ⊕ (E⊗E)II ⊕ (E⊗E)III

Figure 3. Schematic of ternary operations in T (E)(3).

Hence, when P(E,R) is binary quadratic, R is concentrated in arity 3 and

P(E,R)(2) = (0, 0, 0, 3(E⊗E)/R(3), · · · )

4.6. Dualizing binary quadratic data. We now present the explicit form of the
Koszul dual of binary quadratic operads. For a finite-dimensional right S2-module
E, the linear dual E∗ = Hom(E,K) is a left S2-module. E∗ can be made into a
right S2-module by tensoring the sign representation of S2:

E∨ = E∗ ⊗ sgn2
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where the action of σ ∈ S2 on f ∈ Hom(E,K) is defined by

σ(f)(x) = sgn(σ)f(σ−1(x))

T (E∨)(3) can be identified with the dual of T (E)(3) by a scalar product

〈−,−〉 : T (E∨)(3)⊗ T (E)(3)→ K

〈f ◦u g, µ ◦v ν〉 =

{
f(µ)g(ν) if u = v

0 if u 6= v

where f, g ∈ Hom(E,K), µ, ν ∈ E and u, v ∈ {I, II, III}.

Theorem 4.7. The Koszul dual operad of a finitely generated binary quadratic
operad P = P(E,R) is given by

P ! = P(E∨, R⊥)

4.8. Com, Assoc and Lie. First, we show that Com! = Lie by finding E∨ and
R⊥ for Com explicitly. Recall that Com = P(E,R) is generated by E = Kµ for
some binary symmetric operation µ. The space of relations R is spanned by the
associators µ⊗I µ− µ⊗II µ and µ⊗II µ− µ⊗III µ.

The Koszul dual operad of Com is generated by

E∨ = Kµ∗ ⊗ sgn2
∼= Kν

where ν is an antisymmetric operation such that σ(ν) = −ν for σ = (12) ∈ S2.
Then, T (E∨)(3) is spanned by ν ◦I ν, ν ◦II ν and ν ◦III ν. By definition of the
scalar product, R⊥ in T (E∨)(3) is spanned by ν ◦I ν + ν ◦II ν + ν ◦III ν. Since ν is
antisymmetric, we can denote it by ν(x, y) = [x, y]. The basis of R⊥ then becomes
the Jacobi relation:

[[x, y], z] + [[z, x], y] + [[y, z], x] = 0

Hence, Com! has the same generators and relations as Lie and Com! = Lie.
We now show that Assoc! = Assoc. Recall that the operad Assoc = P(E,R)

is generated by E = Kµ ⊕ Kµ′ where µ is a binary operation and µ′ = µ ◦ τ .
T (E)(3) is spanned by 12 elements u1, ..., u12:

u1 : µ⊗I µ⇔ (xy)z, u2 : µ′ ⊗II µ⇔ x(yz), u3 : µ′ ⊗II µ
′ ⇔ x(zy)

u4 : µ⊗III µ
′ ⇔ (xz)y, u5 : µ⊗III µ⇔ (zx)y u6 : µ′ ◦I µ⇔ (zx)y

u7 : µ′ ◦I µ′ ⇔ z(xy) u8 : µ ◦II µ′ ⇔ (zy)x u9 : µ ◦II µ⇔ (yz)x

u10 : µ′ ◦III µ⇔ y(zx) u11 : µ′ ◦III µ′ ⇔ y(xz) u12 : µ ◦I µ′ ⇔ (yx)z

The space of relators R ⊂ T (E)(3) is spanned by {ui− ui+1, i = 1, 3, 5, · · · , 11}.
The Koszul dual operad is generated by

E∨ = (Kµ∗ ⊕K(µ)′∗)⊗ sgn2
∼= Kν ⊕Kν′

where σ(ν) = −ν′. T (E∨)(3) is generated by ν1, ..., ν12 where we substitute µ
with ν in the basis of T (E)(3). The orthogonal complement of R in T (E∨)(3) is
spanned by {νi + νi+1, i = 1, 3, 5, · · · , 11}. Taking ν 7→ µ and ν′ 7→ −µ′ gives an

isomorphism between Com! and Lie. In other words, Com! = Lie and Assoc is
Koszul dual to itself.
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5. Koszul operads and minimal models

In this section, we define Koszul operads whose minimal models we construct
explicitly. The main result is the Koszul criterion, which states the equivalence
between Koszulity and a quasi-isomorphism between the operad and the cobar
complex of its Koszul dual cooperad.

5.1. Koszul complexes and Koszul operads. We start by defining a twisting
morphism κ from the Koszul dual cooperad P ¡ to P, which enables us to define the
Koszul complex.

Definition 5.2. The natural twisting morphism κ. For a given quadratic data
(E,R), the natural twisting morphism κ : P ¡(E,R) → P(E,R) is defined as the
composite

κ : P ¡(E,R) = C(sE, s2R) sE E P(E,R)s−1

where � denotes projection from P ¡ to sE ∼= C(sE, s2R)(1) and � denotes the
embedding from E ∼= P(E,R)(1) into P.

Note that κ has degree −1 due to the degree shift in s−1. κ is also a twisting
morphism since κ?κ = 0 and ∂(κ) is trivial. Consequently, we can obtain a twisted
composite product P ¡ ◦κ P which we call the Koszul complex of P.

Definition 5.3. The Koszul complex. The (left) Koszul complex of a quadratic
operad is defined as

P ¡ ◦κ P := (P ¡ ◦ P, dκ)

We can also define another Koszul complex P ◦κP ¡ called the right Koszul complex.

Definition 5.4. Koszul operad. A quadratic operad is Koszul if its associated
Koszul complex P ¡ ◦κ P is acyclic. In other words, P is a Koszul operad if the
homology of P ¡ ◦κ P is completely trivial.

5.5. Minimal models and the Koszul criterion. When P is Koszul, the Koszul
dual construction gives the minimal model of P. We point to Section 7.4.5 of [4]
for more detailed exposition.

Theorem 5.6. (The Koszul criterion) For a quadratic operad P := P(E,R) and
its Koszul dual cooperad P ¡. The following assertions are equivalent:

(a) the right Koszul complex P ¡ ◦κ P is acyclic;
(b) the left Koszul complex P ◦κ P ¡ is acyclic;
(c) the inclusion i : P ¡ � BP is a quasi-isomorphism of dg operads;
(d) the projection p : ΩP ¡ � P is a quasi-isomorphism of dg operads;

The Koszul criterion directly implies that ΩP ¡ is the minimal model of P since
ΩPi is a free operad and the differential on ΩP ¡ is quadratic by construction.

Corollary 5.7. If P is Koszul, ΩP ¡ is the minimal model of P.
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