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Abstract. We introduce group actions and prove the four Sylow Theorems.

We then introduce direct products and prove the main theorem of finitely

generated abelian groups. We use the Sylow Theorems and the fundamental
theorem of finitely generated abelian groups to examine classification problems

of finite groups. Some knowledge of group theory is assumed.
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1. Introduction

We assume basic knowledge in group theory. In particular, we assume that
the reader is familiar with notions like subgroups, orders, (left) cosets, normal
groups, and conjugates. Here we provide the statements of important theorems
and propositions that are assumed for the paper. The proofs of these statements
can be found in chapters 4, 5, and 7 of [2].

Proposition 1.1 (Subgroup Test). Let G be a group. Then H is a subgroup of G
if and only if H satisfies the following conditions:

(1) eG ∈ H.
(2) If x, y ∈ H, then xy−1 ∈ H.

Theorem 1.2 (Lagrange Theorem). Let G be a group with a finite number of
elements and H be a subgroup of G. Then the number of distinct left cosets of H

in G is |G : H| = |G|
|H| . In particular, |H|

∣∣|G| and |G : H|
∣∣|G|.

Definition 1.3. Let A and B be subgroups of G. Then AB is the set of elements
of the form ab, with a ∈ A and b ∈ B.

Corollary 1.4. Let A and B be finite subgroups of G. Then |AB| = |A||B|
|A∩B| .
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Definition 1.5. Let A and B be subgroups of G. Then 〈A,B〉 is the set of elements
that are in the span of A and B. In this case, 〈A,B〉 = A ∪B ∪AB ∪BA.

Proposition 1.6. Let N be a normal subgroup of G and H be a subgroup of G.
Then 〈N,H〉 = NH and HN = NH.

Proposition 1.7. Conjugate elements have the same order.

Theorem 1.8 (Fourth Isomorphism Theorem). Let N be a normal subgroup of G.
Then every subgroup of G/N is of the form H/N for some subgroup H of G with
N also a subgroup of H. Conversely, if H is a subgroup of G and H contains N ,
then H/N is a subgroup of G/N .

Thus there is a bijection between subgroups of G/N and subgroups of G containing
N . Moreover, the correspondence between the normal subgroups of G/N and the
normal subgroups of G containing N is also a bijection.

The majority of statements and proofs in Sections 1-3 and 6 follow from [2] and
those in Sections 4-5 follow from [1].

2. Group Actions and the Orbit-Stabilizer Theorem

Definition 2.1. Let G be a group and X be a set. A (left) group action is a map
· : G×X → X satisfying the following properties:

(1) For all x ∈ X, eG · x = x.
(2) For all g1, g2 ∈ G and any x ∈ X, (g1g2) · x = g1 · (g2 · x).

In this case, we say that G acts on X from the left and that X is a G-set.

Example 2.2. Here we consider two examples of group actions which will appear
again in later proofs:

(1) Let X be the set of all subsets of G and H ∈ X be some subset of G. For
some g ∈ G, we define g · H = gH, so that g and H are mapped to the
set gH in X. We can easily check the properties in Definition 2.1 to verify
that this is a group action.

(2) Let X be the set of all subgroups of G. For any H ∈ X and g ∈ G, we
define g ·H = gHg−1, so that g conjugates H. Again, one can verify that
the conjugation action is indeed a group action.

Definition 2.3. Let X be a G-set. For any element x ∈ X, the stabilizer Gx is
the set of elements g ∈ G that fix x under the group action:

Gx = {g ∈ G : g · x = x}.

By applying the subgroup test (Proposition 1.1), it can be easily shown that the
stabilizer set Gx is in fact a subgroup of G.

Example 2.4. Continuing from Example 2.2, we examine the stabilizers of each
group action.

(1) In order for g ·H = gH = H to be true, we must have that g ∈ H. So the
stabilizer of H is the set {g ∈ G : gH = H}. In the special case that H is
a subgroup of G, we have that GH = H.

(2) In the case of the conjugation action on a subgroup of G, the stabilizer is
called the normalizer, which we define as follows:
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Definition 2.5. The normalizer NG(H) is defined by the set {g ∈ G : gHg−1 = H}
or equivalently, {g ∈ G : gH = Hg}.

From this definition three important facts follow:

(1) NG(H) is a subgroup of G.
(2) NG(H) ⊇ H.
(3) H E G if and only if NG(H) = G.

Given a group G and an element x ∈ X, it is natural to ask about the properties
of the set consisting of elements of the form g · x, which we call the orbit of x.
To formally introduce the concept of an orbit, we must first consider the following
proposition.

Proposition 2.6. Let G be a group and X be a G-set. For x, y ∈ X, define the
relation xRy if and only if there exists g ∈ G such that y = g · x. Then R is an
equivalence relation.

Proof. We can show that R is an equivalence relation by checking that it is (1)
reflexive, (2) symmetric, and (3) transitive.

(1) By the first property of Definition 2.1, we have that eG · x = x, so xRx.
(2) Suppose that xRy. Then y = g · x for some g ∈ G. Using the second

property of Definition 2.1, we have that g−1 · y = g−1 · (g · x) = x and thus
yRx.

(3) Finally, suppose that xRy and yRz, so that y = g · x and z = h · y,
respectively, for some g, h ∈ G. By substitution, we can write z = h·(g·x) =
hg · x and xRz as required.

�

Using the fact that a group action induces an equivalence relation, we can for-
mulate our definition of an orbit.

Definition 2.7. Let G be a group and X be a G-set. Then the equivalence class
of x ∈ X under relation R, as described above, is called the orbit of x. That is,
orb(x) = {g · x : g ∈ G}.

Now we ask how the orbit of an element relates to the stabilizer group for that
given element. To that end, we have the following result:

Theorem 2.8 (Orbit-Stabilizer Theorem). Let G be a group and X be a G-set.
Then, for every x ∈ X, |orb(x)| = |G : Gx|.

Proof. The proof for this theorem consists of showing that a map between the orbit
of x and the set of left cosets of Gx in G is well-defined and bijective.

Let x ∈ X be given. We define a map φ that maps elements of the orbit of x to
left cosets of Gx in G. In particular, let φ(g · x) = gGx.

First we will show that φ is well-defined. Suppose g ·x = h ·x for some g, h ∈ G.
Then h−1g · x = h−1h · x = x, so h−1g ∈ Gx. This implies that gGx = hGx, as
needed.

Next we show that φ is injective. Suppose that φ(g · x) = φ(h · x) for some
g, h ∈ G. By the definition of φ, we can write gGx = hGx so that g−12 g1 ∈ Gx. But
by the definition of stabilizer, this implies that x = h−1g · x and thus g · x = h · x,
as required.
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Finally, we note that every left coset of the form gGx is equal to φ(g · x) by
definition, so φ is surjective as well. Since φ is a bijection between the orbit of
x and the set of left cosets of Gx in G, we conclude that their cardinalities are
equal. �

Remark 2.9. Note that if we apply the Orbit-Stabilizer Theorem on the first ex-
ample of Example 2.2, we find that for a subgroup H of G, the number of distinct
left cosets of H in G is equal to |G : H|. Thus the Lagrange Theorem is a special
case of the Orbit-Stabilizer Theorem.

3. Sylow Theorems

The Fundamental Theorem of Arithmetic tells us that every positive integer is
a unique product of prime numbers. The Sylow Theorems allow us to classify any
finite group G, by considering subgroups of G of maximal prime power order. In
this section, we will assume that all groups are of finite order.

Definition 3.1. Let p be a prime number, n be a positive integer, and k be a
positive integer such that p does not divide k. Let G be a group with |G| = kpn.
A p-Sylow subgroup is a subgroup of G with pn elements.

We begin with a short lemma.

Lemma 3.2. Let p be a prime and k be a positive integer such that p does not
divide k. The number of ways to select a subset with pn elements from a set with
kpn elements is congruent to k (mod p).

Proof. Using generating functions, we can see that the number of ways of selecting
a subset with pn elements from a set with kpn elements is equal to the coefficient

of xp
n

in (1 + x)p
nk =

(
(1 + x)p

n)k
. But, (1 + x)p

n ≡ 1 + xp
n

(mod p) since all
other coefficients of powers of x in the binomial expansion are divisible by p. Thus,
the coefficient of xp

n

that we wish to find is congruent to the coefficient of xp
n

in(
(1 + x)p

n)k
, which we see to be k (mod p). �

Using the Orbit-Stabilizer Theorem and the previous lemma, we can prove the
first of the four Sylow Theorems.

Theorem 3.3 (First Sylow Theorem). Let p be a prime number and G be a finite
group of order pnk with k not divisible by p. Then G has at least one p-Sylow
subgroup.

Proof. Let S be the set of all subsets of G with pn elements. Lemma 3.2 gives us
that |S| ≡ k (mod p). We make S a G-set by defining, for every S ∈ S and every
g ∈ G, the group action g · S = gS. Let S1, S2, . . . , Sr be representatives of orbits
of S under this action. Since the orbits partition S, we can write S as the disjoint
union of all the orbits.

(3.4) S = orb(S1) ∪ orb(S2) ∪ · · · ∪ orb(Sr)

Suppose that for every 1 ≤ i ≤ r, p divides |orb(Si)|. Then (3.4) implies that p
∣∣|S|,

which contradicts Lemma 3.2. Thus there exists at least one orbit, WLOG orb(S1),
such that |orb(S1)| = m with p - m.

By the Orbit-Stabilizer Theorem, the order of the stabilizerGS1
is |G|/|orb(S1)| =

kpn/m. But since p does not divide m, we have that |GS1
| = tpn for some t also not



CLASSIFICATION OF FINITE GROUPS 5

divisible by p. Furthermore, for any g ∈ GS1
, we have gS1 = S1. So for any s ∈ S1,

we also have gs ∈ S1 and the coset GS1s ⊆ S1. Considering their cardinalities, we
have that |GS1 | = |GS1s| ≤ |S1| = pn. But |GS1 | = tpn ≤ pn, thus |GS1 | = pn, and
we have shown that there exists a p-Sylow subgroup of G and GS1

s = S1. �

Theorem 3.5 (Second Sylow Theorem). The number of p-Sylow subgroups in a
finite group G is congruent to 1 (mod p).

Proof. Again, let G be a finite group with |G| = pnk and S be the set of all subsets
of G with pn elements, as in the proof of Theorem 3.4. Let S ∈ S be a subset of G
with pn elements. By the First Sylow Theorem, if p - |orb(S)|, then for all s ∈ S, we
have that GSs = S. Then, GS = Ss−1 is a p-Sylow subgroup of G. Additionally,
since GS is a subgroup of G, its conjugate s−1 (GS) s is also a subgroup of G with
|s−1(GS)s| = |GS | = pn. Then s−1(GS)s = s−1(Ss−1)s = s−1S is a p-Sylow
subgroup in orb(S). Note that by the Orbit-Stabilizer Theorem, orb(s−1(GS)s) =
orb(S) has k elements, where k is not divisible by p. Thus, if the orbit’s cardinality
is not divisible by p, the orbit contains a p-Sylow subgroup and the cardinality of
the orbit is k.

Conversely, suppose that orb(S) contains a p-Sylow subgroup, say P. If g ∈ GP ,
then gP = P . Clearly, g = g1 ∈ P , so GP ⊆ P . On the other hand, P ⊆ GP ,
so GP = P . By Orbit-Stabilizer, it follows that |orb(P )| is not divisible by p and
in fact has cardinality k. Thus, we have shown that every orbit that contains a
p-Sylow subgroup has cardinality k, where k is not divisible by p, and that every
orbit of cardinality not divisible by p contains a p-Sylow subgroup.

Consider the following claim: Distinct p-Sylow subgroups are contained in dis-
tinct orbits.

Let P1 and P2 be p-Sylow subgroups of G. Suppose that P1, P2 ∈ orb(S). Then
P1 = gP2 for some g ∈ G, which implies that 1 ∈ P2 ∩ gP2. Since cosets partition
G and are thus either equal or disjoint, we have that P2 = gP2 = P1.

Now let nP denote the number of p-Sylow subgroups of G. Since every orbit that
does not have a p-Sylow subgroup has cardinality divisible by p, |S| ≡ knP (mod p).
But by Lemma 3.2, k ≡ knP (mod p) and it follows that nP ≡ 1 (mod p). �

Before we introduce the Third Sylow Theorem, we must introduce the notion of
a p-group.

Definition 3.6. Let p be a prime number. A p-group is a group where every
element has order a power of p.

If G is a finite p-group, the First Sylow Theorem gives that the number of
elements in G is a power of p. Conversely, if a finite group has order a power of p,
by Lagrange’s Theorem, it follows that the group is a p-group. Thus G is a p-group
if and only if |G| = pn.

Proposition 3.7. Let P be a p-Sylow subgroup of a finite group G. Then any p-
subgroup of NG(P ) is a subset of P . In particular, P is the unique p-Sylow subgroup
of NG(P ).

Proof. Let Q be a p-subgroup of NG(P ). Suppose |Q| = pm and |P | = pn. Since P
is a p-Sylow subgroup, we must have that n ≥ m. Since P E NG(P ), it follows from
Proposition 1.6 that 〈P,Q〉 = PQ is a subgroup of G. Furthermore, by Corollary
1.4, |PQ| = pn+m−s, where |P ∩Q| = ps. Since pn is the highest power of p dividing
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|G|, we must have m ≤ s. Noting that the intersection of two subgroups, P ∩ Q,
is also a subgroup of G, we have that s ≤ m. Thus m = s and P ∩ Q = Q. So,
Q ⊆ P ; in particular, if Q is a p-Sylow subgroup of NG(P ), then Q = P . �

Theorem 3.8 (Third Sylow Theorem). Let P be a p-Sylow subgroup of a finite
group G and Q be any p-group of G. Then Q is contained in a conjugate of P .

Proof. Let P be the set of distinct G-conjugates of P , that is P = {gPg−1 : g ∈ G}.
We consider the orbits of P under conjugation by P , that is elements of the form
p(gPg−1)p−1 for all p ∈ P . In particular, note that if g = e, then orb(P ) = {P}.

We claim that P is the only element of P with orbit of cardinality 1. Suppose
gPg−1 has exactly one element in its orbit; clearly gPg−1 ∈ orb(gPg−1). Then for
all x ∈ P , x(gPg−1)x−1 = gPg−1 so that (g−1xg)P (g−1xg)−1 = P and g−1pg ∈
NG(P ). By Proposition 1.7, g−1xg and x have the same order. Thus g−1Pg is a
p-subgroup of NG(P ). Furthermore, g−1Pg is a p-Sylow subgroup of NG(P ) since
P and g−1Pg have the same number of elements. But by Proposition 3.7, it follows
that g1Pg = P is the unique p-Sylow subgroup of NG(P ) and P is the only element
of P with orbit size 1.

Then, for all g 6∈ P , the cardinality of orbits of gPg−1 under conjugation by ele-
ments of P is greater than 1. In fact, Orbit-Stabilizer tells us that the cardinalities
of their orbits are congruent to 0 (mod p). Summing over cardinalities of orbits,
we find that |P| ≡ 1 (mod p).

Now we consider the orbits of P under conjugation by elements of Q. Since
every orbit’s cardinality is a power of p and we have that |P| ≡ 1 (mod p), there
exists at least one orbit with cardinality 1. Then, there exists g ∈ G such that
for all x ∈ Q, x(gPg−1)x−1 = gPg−1. Following a similar argument as above, we
find that g−1Qg ⊆ NG(P ). By Proposition 3.7, it follows that g−1Qg ⊆ P and
Q ⊆ gPg−1. �

Corollary 3.9 (Fourth Sylow Theorem). All the p-Sylow subgroups of a finite group
G are conjugate, so the number of p-Sylow subgroups divides |G|, i.e. nP

∣∣|G|.
Proof. This result follows from the Third Sylow Theorem. Let P and Q be p-
Sylow subgroups of G. Then |P | = |Q|. But the Third Sylow Theorem gives
us that Q ⊆ gPg−1 for some g ∈ G, and it follows that Q = gPg−1, that is p-
Sylow subgroups are conjugate. Furthermore, under the conjugation action, Orbit-
Stabilizer gives us that the number of conjugates of P is equal to |G : NG(P )|.
Finally, Lagrange Theorem tells us that the number of p-Sylow subgroups of G,
nP , divides |G|, as required. �

We end with a short proposition that often assists us in classification problems.

Proposition 3.10. Let G be a finite group and nP be the number of p-Sylow
subgroups of G. Then nP = 1 if and only if G has a normal p-Sylow subgroup.

Proof. We will first prove the forward direction. Let H be a p-Sylow subgroup of
G. Then the conjugate of H is also a subgroup with |H| = |gHg−1|. But the
conjugate of a p-Sylow subgroup is also a p-Sylow subgroup and is in fact the same
as the original one. Thus we have gHg−1 = H and H is normal.

For the reverse direction, let P be a normal p-Sylow subgroup. The Third Sylow
Theorem gives us that P ⊆ gPg−1 for some g ∈ G. It follows that there is only one
p-Sylow subgroup and we have established equivalence. �
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4. Direct Products

Definition 4.1. Let G and H be groups. The direct product G × H is the set
of ordered pairs (g, h), where g ∈ G and h ∈ H, under the multiplication rule
(g, h)(g′, h′) = (gg′, hh′) ∈ G×H.

Note that associativity of multiplication follows from associativity in G and H.
Furthermore, the ordered pair (eG, eH) is the identity element eG×H and the inverse
of (g, h) is (g−1, h−1). Thus G×H forms a group.

We will prove two propositions regarding direct products.

Proposition 4.2. Let m and n be positive integers. Then Z/mZ× Z/nZ is cyclic
if and only if gcd(m,n) = 1.

Proof. We will first prove the reverse direction. Let k be the order of (1, 1) ∈
Z/mZ×Z/nZ. Then we have (k (mod m), k (mod n)) = (0, 0) and it follows that
m|k and n|k. But gcd(m,n) = 1, so that mn|k. Furthermore, since k is the order of
(1, 1), k must be the least non-zero multiple of mn and thus k = mn. Thus we have
shown that (1, 1) generates Z/mZ×Z/nZ. In particular, Z/mZ×Z/nZ ∼= Z/(mn)Z.

For the forward direction, we will prove the contrapositive. Suppose
d = gcd(m,n) with d > 1. We wish to show that Z/mZ× Z/nZ is not cyclic. Let
m′ = m

d and n′ = n
d . For (x, y) ∈ Z/mZ× Z/nZ, we have

m′n′d(x, y) = (m′n′dx (mod m),m′n′dy (mod n))

= (mn′x (mod m),m′ny (mod n))

= (0, 0).

Thus the order of (x, y) is at most m′n′d, which is strictly less than mn. Thus
Z/mZ× Z/nZ does not contain an element of mn and is not cyclic. �

Proposition 4.3. Let H and K be subgroups of G such that HK = G, H ∩K =
{eG}, and hk = kh for all h ∈ H and k ∈ K. Then G ∼= H ×K.

Proof. To show that G is isomorphic to H ×K, we will show that a map between
them is a bijective homomorphism. We define such a map φ : H × K → G by
φ(x, y) = xy for all x ∈ H and y ∈ K. Observe that

φ ((x, y), (x′, y′)) = φ(xx′, yy′)

= xx′yy′

= xyx′y′

= φ(x, y)φ(x′, y′)

So, φ is a homomorphism.
To show φ is injective, suppose φ(x, y) = φ(x′, y′). Then xy = x′y′ and (x′)−1x =

y′y−1. Since (x′)−1x ∈ H and y′y−1 ∈ K, it follows that (x′)−1x = y′y−1 ∈
H ∩K = {eG}. Thus x = x′ and y = y′, as required.

Lastly, to show φ is surjective, we note that for any g ∈ G, we have that g = xy
for some x ∈ H and y ∈ K, and we are done. �

5. The Fundamental Theorem of Finitely Generated Abelian Groups

Although the main goal of this paper is to examine several finite groups, in this
section we will prove a more general result about abelian groups. Section 6 will
make use of Corollary 5.4.
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Definition 5.1. A group is finitely generated if it has a finite number of generators.

Theorem 5.2 (Fundamental Theorem of Finitely Generated Abelian Groups). Any
finitely generated abelian group is isomorphic to a direct product of cyclic groups:

Z/m1Z× Z/m2Z× · · · × Z/mkZ× Zr,

where mi|mi+1 for all 1 ≤ i ≤ k − 1.

To complete our proof, we require two additional definitions.

Definitions 5.3. Let G be a finitely generated abelian group and x1, . . . , xr be
distinct elements that together generate G.

(1) If no set of r − 1 elements can generate G, then x1, . . . , xr is called a
minimal set of generators.

(2) An expression of the form e = xn1
1 xn2

2 · · ·xnr
r is called a relation between

generators, where e is the identity element in G.

Note that if x1, . . . , xr form a minimal set of generators, for m ∈ Z,
x1x

m
2 , x2, . . . , xr also form a minimal set of generators. This is because for any

g ∈ G
g = xn1

1 xn2
2 · · ·xnr

r = (x1x
m
2 )n1xn2−mn1

2 xn3
3 · · ·xnr

r .

Now we will prove Theorem 5.2.

Proof. We have two cases for G in terms of relations: there is only the trivial
relation or there exists some non-trivial relation. We will first consider the case
with only the trivial relation. Suppose that G has a minimal set of generators
x1, . . . , xk where the only relation requires that e = x01 · · ·x0k. Then for any g ∈ G,
the expression g = xn1

1 · · ·x
nk

k is unique and the correspondence g → (n1, . . . , nk)

is an isomorphism G ∼= Zk.
Now we consider the general case, where regardless how we select a minimal set

of generators for G, there is some non-trivial relation. Over all relations of every
possible minimal set of generators, there is a smallest possible exponent, say m1, so
that WLOG we have the relation e = xm1

1 xn2
2 · · ·x

nk

k between generators x1, . . . , xk.
We claim that m1|n2. Otherwise, if n2 = q2m1 + u, where 0 < u < m1, then

e = xm1
1 xq2m1+u

2 xn3
3 · · ·x

nk

k = (x1x
q2
2 )m1xu2x

n3
3 · · ·x

nk

k ,

which contradicts the fact that m1 is the smallest possible exponent. Thus we write
n2 = q2m1. A similar argument follows for each of n3, . . . , nk so that ni = qim1 for
3 ≤ i ≤ k.

Consider the new set of generators z1, x2, . . . , xk, where z1 = x1x
q2
2 x

q3
3 · · ·x

nk

k so
that e = zm1

1 . Since m1 was chosen to be the smallest possible exponent for the
relation to hold, it follows that m1 is equal to the order of 〈z1〉. Let H = 〈z1〉 and G1

be the subgroup of G generated by x2, . . . , xk. We can easily see that HG1 = G and
H∩G1 = {eG}. Then by Proposition 4.3, it follows that G ∼= H×G ∼= Z/m1Z×G1.

Repeating the procedure of the proof so far for G1, we have two cases: G1
∼= Zk−1

or G1
∼= Z/m2Z × G2, where G2 is a subgroup generated by x3, . . . , xk. Then it

follows that G ∼= Z/m1Z×Zk−1 or Z/m1Z×Z/m2Z×G2. Continuing with G2, . . .
and reducing the number of generators by one in each step, we eventually come to
the result that G ∼= Z/m1Z×· · ·×Z/mkZ×Zr, for some r and m1|m2| · · · |mk. �

More relevant to this paper, we will make use of the following corollary.
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Corollary 5.4. Any finite abelian group is isomorphic to a direct product of cyclic
groups Z/m1Z× Z/m2Z× · · · × Z/mkZ where mi|mi+1 for all 1 ≤ i ≤ k − 1.

Proof. Let G be a finite abelian group. By Theorem 5.2, we know that G ∼=
Z/m1Z×Z/m2Z×· · ·×Z/mkZ×Zr, where mi|mi+1 for all 1 ≤ i ≤ k−1. Suppose
that r > 0, then the element (0, 0, . . . , 0, 1) has infinite order, which contradicts the
finiteness of G. Thus r = 0 and the result follows. �

In the next section, we will simply refer to this theorem and its corollary as
classification theorems.

Though we did not see the use of Proposition 4.2 in the proof of the Funda-
mental Theorem itself or its corollary, we can use it to rewrite direct products of
cyclic groups into the standard form given by the Fundamental Theorem as in the
following example.

Example 5.5. Consider the direct product Z/6Z×Z/15Z. We can easily see that
6 - 15. Using Proposition 4.2, we can write

Z/6Z× Z/15Z ∼= (Z/2Z× Z/3Z)× (Z/3Z× Z/5Z)

∼= Z/3Z× Z/30Z

so that 3 | 30, as needed.

6. Classification Problems

Both the Sylow Theorems and the classification theorem are powerful tools in
classifying groups of finite order. However, depending on the order of a group, one
theorem may give a more complete classification. To that end, we consider two
examples of classification problems: groups of order 4 and groups of order 30.

6.1. Groups of Order 4.
Let G be a group of order 4. We may first attempt to apply the Second and

Fourth Sylow Theorems (Theorem 3.5 and Corollary 3.9, respectively). Here, we
find that the number of 2-Sylow subgroups is of the form n2 ≡ 1 (mod 2) (so that
n2 is odd) and n2 divides 4. But we can easily see that the only odd number that
divides 4 is n2 = 1. By Proposition 3.10, it follows that this 2-Sylow subgroup, call
it P , is normal. Now, take y ∈ G \ P . So yPy−1 = P . But, we know that P = 〈x〉
where x has order 2. Thus we either have yxy−1 = eG, which contradicts that P is
a 2-Sylow subgroup, or yxy−1 = x, which tells us that G is abelian.

Though we are unable to proceed with the Sylow Theorems, the classification
theorem tells us that G ∼= Z/2Z × Z/2Z or G ∼= Z/4Z. That is, groups of order 4
are either isomorphic to the Klein four-group or cyclic.

6.2. Groups of Order 30.
If we approach this problem directly with the classification theorem, we find that

we restrict ourselves to the case where G is abelian, which may not always be the
case. Furthermore, in this case, since the prime factorization of 30 is 2 · 3 · 5, we
only have that G ∼= Z/30Z.

Before we begin our discussion on groups of order 30 using the Sylow Theorems,
we will make a brief comment on groups of order 2p, where p is prime. Applying
the Second and Fourth Sylow Theorems, we find that there is a unique p-Sylow
subgroup. Furthermore, Proposition 3.10 tells us that this p-Sylow subgroup is
normal. We will use this fact when we work with quotient groups of order 2p.
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Proposition 6.1. Let G be a group of order 30. Then G has a cyclic, normal
subgroup of order 15.

Proof. We will begin by applying the Second and Fourth Sylow Theorems to find
that the number of 3-Sylow subgroups is n3 ∈ {1, 10} and the number of 5-Sylow
subgroups is n5 ∈ {1, 6}.

If n3 = 1, then Proposition 3.10 tells us that the 3-Sylow subgroup, say P, is
unique and normal. We then form G/P with order 10. Using that 10 = 2 ·5 and the
discussion about groups of order 2p, we can see that there exists a normal 5-Sylow
subgroup, say N/P , of G/P . Furthermore, the Fourth Isomorphism Theorem gives
us that N is a normal subgroup of G and the order of N is 15.

Applying the Second and Fourth Sylow Theorems again toN , we find that n′3 = 1
and n′5 = 1. Counting the number of elements by their order, we have the identity
element, two order 3 elements, and four order 5 elements, leaving eight elements.
But by Lagrange’s Theorem we know that the order of an element must be 1, 3,
5, or 15. Thus, the remaining eight elements must have order 15 and N is a cyclic
group.

Suppose now that n3 = 10 so that P1, P2, . . . , P10 are distinct 3-Sylow subgroups.
Then by Lagrange’s Theorem, for each i, j ∈ {1, 2, . . . , 10} with i 6= j, the order
of the subgroup Pi ∩ Pj divides |Pi| = 3. Since each 3-Sylow subgroup is distinct,
we have that their intersection is the identity element. Then each distinct 3-Sylow
subgroup contains two elements of order 3 that do not appear in any other 3-Sylow
subgroup and thus G has 20 distinct order 3 elements. Furthermore, by counting
the number of elements by their order, we find that there are 9 elements of G with
order neither 1 nor 3. If G also contained six 5-Sylow subgroups, then we would
find 24 elements of order 5. But there were only 9 uncounted elements, leading to
a contradiction. It follows that in this case, n5 = 1. By a similar argument as in
the n3 = 1 case, we find that G has a cyclic, normal subgroup of order 15. �

Proposition 6.2. Let G be a group of order 30. Then G is either cyclic, dihedral,
or isomorphic to one of the following:

(6.3) 〈x, y : x15 = 1 = y2, yxy−1 = x4〉 or

(6.4) 〈x, y : x15 = 1 = y2, yxy−1 = x11〉.

Proof. From Proposition 6.1, we have that G has a normal cyclic subgroup N of
order 15. Let x be a generator for N and y be a generator for some 2-Sylow
subgroup. Since N is normal, we have that yxy−1 = xi for some i. Noting that

y2 = 1, we write x = y2xy−2 = y(yxy−1)y−1 = yxiy−1 = xi
2

. Then i2 − 1 ≡ 0
(mod 15) and by exhaustion we have that i ∈ {1, 4, 11, 14}. If i = 1, then we have
that yxy−1 = x and yx = xy so that G is abelian. This is the only case where the
classification theorem would have been applicable. If i = 14 ≡ −1 (mod 15), then
yx−1y−1 = x or x−1 = yxy so that G is dihedral. If i is 4 or 11, then we have (6.3)
or (6.4), respectively. �

6.3. Conclusion. As we saw in the first example, after we found that groups of
order 4 are abelian, the classification theorem was a very powerful tool in com-
pleting the classification. On the other hand, in the second example, only one of
the four cases was found to be abelian and thus the Sylow Theorems proved to
be much more effective. All in all, the Sylow Theorems are always applicable in
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classification problems but often require more work to classify a group. Meanwhile,
the classification theorem only works under the condition that the group is abelian
but often gives an immediate result.
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