
p-ADIC ABSOLUTE VALUES

LOGAN QUICK

Abstract. p-adic absolute values are functions which define magnitudes and

distances on the rationals using the multiplicity of primes in the factorization

of numbers. This paper will focus on the construction of p-adic absolute values,
the new topology formed by these absolute values, and the proof of Ostrowski’s

theorem, which classifies all absolute values on Q.
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1. Introduction

Before we construct p-adic absolute values, we must understand what an absolute
value is. So, we will begin by looking at the properties all absolute values share.

Definition 1.1. Let k be a field. An absolute value is a function |·| : k → R≥0.
For all absolute values, the following properties hold:

i) |x| ≥ 0 for all x ∈ k.
ii) |x| = 0 if and only if x = 0.
iii) |xy| = |x||y|, for all x, y ∈ k.
iv) |x+ y| ≤ |x|+ |y|, for all x, y ∈ k.

With these general properties, there are two absolute values which arise most
easily. The first is the usual absolute value, which maps positive numbers to them-
selves and negative numbers to their additive inverse:

|x|∞ =

{
x if x ≥ 0,

−x if x < 0.
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Secondly, there is the trivial absolute value which maps zero to zero and all other
numbers to one:

|x| =

{
1 if x 6= 0,

0 if x = 0.

While these are the most natural absolute values to construct, far more can be
constructed than just these two. As we look at more than just the usual abso-
lute value, there is an idea of non-archimedean absolute values, which satisfy the
following property:

v) |x+ y| ≤ max{|x|, |y|}, for all x, y ∈ Q.

With a basic understanding of these properties in hand, we may begin on the
construction of the p-adic absolute value function. In this paper, we will construct
the p-adic absolute value and look into some of its interesting properties. We will
discuss the product formula and the topology formed on the rationals by the p-
adic absolute value. Finally, we will look at Ostrowski’s theorem and utilize our
constructed absolute value to classify all non-trivial absolute values on Q. To this
end, we will mostly follow the exposition of [2].

2. p-adic Absolute Value

Prior to the absolute value itself, we will construct a valuation, which is a function
that relates each integer to the multiplicity of a prime in its factorization.

Definition 2.1. A valuation v : Z → Z ∪ {∞} fulfills the following properties for
all x, y ∈ Z,

i. v(xy) = v(x) + v(y)
ii. v(x+ y) ≥ min{v(x), v(y)}

iii. v(0) =∞

Then, we have that the p-adic valuation function is defined as follows:

Definition 2.2. Fix a prime number p ∈ Z. For x ∈ Z \ {0}, vp(x) is the unique
non-negative integer which satisfies

x = pvp(x)x′ with x′ ∈ Z and p - x′.
This function maps each integer to the multiplicity of the prime in its factoriza-

tion. As well, vp(0) =∞ by convention.

To illustrate this function, consider the following examples:

Examples 2.3. (1) For p = 3, x = 36, we have that x = 32(4), which means
v3(36) = 2, as then we have 36 = 3v3(36)(4) where 3 - 4.

(2) p = 5, x = 17, then v5(17) = 0, as 17 = 50(17) where 5 - 17.
(3) For 60 = 22 ∗ 3 ∗ 5, we have v2(60) = 2, v3(60) = 1, v5(60) = 1, and

v7(60) = 0.

This function can be extended to the rational numbers as follows:

For x ∈ Q where x = a/b, vp(x) = vp(a)− vp(b).

Examples 2.4. (1) v3(27/5) = v3(27)− v3(5) = 3− 0 = 3.
(2) v5(25/125) = v5(25)−v5(125) = 2−3 = −1. Also, v5(1/5) = v5(1)−v5(5) =

0− 1 = −1.
(3) v7(49/1) = v7(49)− v7(1) = 2− 0 = 2.
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From these examples, we can see that the extension of the function to all the
rationals is well-defined for equivalent fractions, and that representing integers as
rational numbers does not change the value of the function.

With a solid understanding of this valuation, we can now finally define the p-adic
absolute value:

Definition 2.5. For x ∈ Q, |x|p = p−vp(x) for x 6= 0, and |0|p = 0.

Examples 2.6. (1) |98|7 = 7−v7(98) = 7−2 = 1
49 .

(2) |47|5 = 5−v5(47) = 50 = 1.
(3) |1/27|3 = 3−v3(1/27) = 3−(0−3) = 33 = 27.

Theorem 2.7 ([2, Proposition 2.1.5]). This p-adic absolute value is a non-archimedean
absolute value.

Proof. Fix a prime number p ∈ Z. Let x ∈ Q be an arbitrary non-zero rational
number.

i) |x|p ≥ 0 for all x ∈ Q.
ii) |x|p = 0 if and only if x = 0.

For all x ∈ Q 6=0, |x|p = p−vp(x). Since p > 0, we have p−vp(x) > 0. As well,
|0|p = 0. This shows both i) and ii).

iii) |xy|p = |x|p|y|p, for all x, y ∈ Q.
As before, define x = pnx′ and y = pmy′ for p - x′y′. Then, we have

|xy|p = |pnx′pmy′|p = |pn+mx′y′|p = p−(n+m) = p−np−m = |pnx′|p|pmy′|p
= |x|p|y|p.

Next, we will prove the condition for a non-archimedean absolute value. Once
we have proven this condition, the fourth condition follows naturally, as we will
have that |x+ y|p ≤ max{|x|p, |y|p} ≤ |x|p + |y|p for all x, y ∈ Q.

v) |x+ y|p ≤ max{|x|p, |y|p}
Without loss of generality, take |x|p ≥ |y|p. Then, we have that p−vp(x) ≥ p−vp(y),
which means vp(x) ≤ vp(y). Therefore, min{vp(x), vp(y)} = vp(x). We have already

that vp(x + y) ≥ min{vp(x), vp(y)} = vp(x). Therefore, p−vp(x+y) ≤ p−vp(x), or
equivalently, |x+ y|p ≤ |x|p = max{|x|p, |y|p}. �

Therefore, this p-adic absolute value is a properly constructed, non-archimedean
absolute value over the rational numbers.

The following theorem showcases an important property of all non-archimedean
absolute values.

Theorem 2.8 ([2, Theorem 2.2.2]). An absolute value on Q is non-archimedean if
and only if |n| ≤ 1 for all n ∈ Z.

Proof. Let |·| be non-archimedean. First note that |0| = 0 < 1, for all absolute
values. Next, we will prove that |n| ≤ 1 for all n ∈ Z \ {0} by induction. By
property (iii) for all absolute values, we can say that |1 × 1| = |1||1|. Therefore,
|1| = |1|2. The only positive real number which satisfies the property that x = x2

is 1, which means we must have |1| = 1. We also have |−1 × −1| = |−1|2, which
means that |−1|2 = 1, which implies |−1| = 1.

For the inductive step, assume |n| ≤ 1. Next, note that we already have the base
case n = 1 shown to be true: |1| ≤ 1. Then, by the non-archimedean condition we
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have that |n + 1| ≤ max{|n|, |1|}. So, if we have |n| ≤ 1, then max{|n|, |1|} = 1,
which means |n+1| ≤ 1. Therefore, through induction we have shown this property
is true for the natural numbers. Consider for the negatives that |−a| = |−1||a| =
1 × |a| = |a|. Therefore it is also true for negative numbers. We have the forward
direction proved.

Assume that for all n ∈ Z, we have |n| ≤ 1. This direction requires we show that
|x+ y| ≤ max{|x|, |y|} for all x, y ∈ Q. For the case where at least one of the terms
is 0, this is easy to show: let y = 0. Then, |x+ y| = |x| = max{|x|, |0|}. Therefore,
take that both x and y are non-zero. Dividing both sides of |x+ y| ≤ max{|x|, |y|}
by |y| gives an equivalent statement: |xy + 1| ≤ max{|xy |, 1}. Since x

y is a rational

number, if we show |z + 1| ≤ max{|z|, 1} is true for all rational numbers, we will
have |x+ y| ≤ max{|x|, |y|} for all rational numbers.

For an arbitrary positive integer m, we have

|z + 1|m =

∣∣∣∣∣∣
∑

0≤k≤m

(
m

k

)
zk

∣∣∣∣∣∣
≤

∑
0≤k≤m

∣∣∣∣(mk
)∣∣∣∣ |zk|.

Since
(
m
k

)
is an integer, we have that |

(
m
k

)
| ≤ 1:

≤
∑

0≤k≤m

|zk|

=
∑

0≤k≤m

|z|k.

For |x| ≤ 1 we have |x|k ≤ 1 for 0 ≤ k ≤ m, and if |x| > 1, then |x|k ≤ |x|m:

≤ (m+ 1) max{1, |z|m}.
Take the m-th root of both sides:

|x+ 1| ≤ m
√
m+ 1 max{1, |x|}.

Now, this inequality is true for all positive integers m, which means we can consider
the limit as m approaches ∞: lim

m→∞
m
√
m+ 1 = 1. Therefore, as m→∞, we have:

|x+ 1| ≤ max{1, |x|}.

As we found above, this was a sufficient condition to prove that |x+y| ≤ max{|x|, |y|}
for all x, y ∈ Q where x, y 6= 0. �

3. Product Formula

The following theorem is a fascinating property of the p-adic absolute values that
connects all the primes together.

Theorem 3.1 (Product Formula, [2, Proposition 3.1.4]). For x ∈ Q such that
x 6= 0, we have that ∏

p≤∞

|x|p = 1

where p ≤ ∞ means the product over all the primes in the integers and the case
where p =∞, which is used to denote the standard absolute value over the rationals.
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Proof. First we will consider the case where x is a natural number. In this case, we
can consider the prime factorization of x, given by x = pi11 p

i2
2 p

i3
3 . . . p

in
n , where pj are

distinct primes. For each pj , we have that vpj (x) = ij , which means |x|pi = p
−ij
i .

For the standard absolute value we have |x|∞ = pi11 p
i2
2 p

i3
3 . . . p

in
n . For any prime

p /∈ {pj | 1 ≤ j ≤ n}, we have that vp(x) = 0, which means |x|p = 1.
When we multiply all the absolute values together, we get

|x|p1 |x|p2 . . . |x|pn |x|∞ = p−i11 p−i22 p−i33 . . . p−inn (pi11 p
i2
2 p

i3
3 . . . p

in
n ) = 1

Therefore, we have that the product formula holds for the natural numbers.
Since |x| = |−x| regardless of the absolute value used, we have that it also holds
for negative integers.

Then, we need to generalize to all rationals. Consider x = a/b, where a/b is a
completely reduced fraction (the absolute value is independent of choice of a and

b). Let a = (−1)c · pi11 p
i2
2 p

i3
3 . . . p

in
n , and b = (−1)d · qj11 q

j2
2 q

j3
3 . . . qjmm , where pk

and qt are distinct primes. As well, since the fraction is reduced, we have that
for all pk and qt, pk 6= qt. For each pk, we have that vpk(a) = ik, which means

|a|pk = p−ikk . Similarly, vqt(b) = jt and |b|qt = q−jtt . The p-adic absolute value of
x for a given prime will fall under one of three categories. If the prime appears in
the factorization of a, then it can not also be in the factorization of b:

|x|pk = p
−(vpk (a)−vpk (b))
k = p

−(ik−0)
k = p−ikk .

If the prime appears in the factorization of b, then it is not in the factorization of
a:

|x|qt = q
−(vqt (a)−vqt (b))
t = q

−(0−jt)
t = qjtt .

If the prime does not appear in either factorization, then |x|p = 1. So the product
of p-adic absolute values where p <∞ gets us:∏

p<∞
|x|p = (pi11 p

i2
2 p

i3
3 . . . p

in
n )−1(qj11 q

j2
2 q

j3
3 . . . qjmm ) =

qj11 q
j2
2 q

j3
3 . . . qjmm

pi11 p
i2
2 p

i3
3 . . . p

in
n

.

For p =∞ we get:

|x|∞ =
|a|∞
|b|∞

=
pi11 p

i2
2 p

i3
3 . . . p

in
n

qj11 q
j2
2 q

j3
3 . . . qjmm

.

Therefore, we have that∏
p≤∞

|x|p =
qj11 q

j2
2 q

j3
3 . . . qjmm

pi11 p
i2
2 p

i3
3 . . . p

in
n

· p
i1
1 p

i2
2 p

i3
3 . . . p

in
n

qj11 q
j2
2 q

j3
3 . . . qjmm

= 1.

�

4. Ultrametric Space

With our p-adic absolute value in hand, we can sketch a new idea of closeness
in the rational numbers. Like with any absolute value, the distance between two
points will be defined by the following function:

d(x, y) = |x− y|.
This function is called the metric for a specific absolute value and a set with a
metric is known as a metric space. Then, there arises the idea of an ultrametric
space:
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Definition 4.1. An ultrametric space is a metric space k with the property that
for x, y, z ∈ k:

d(x, y) ≤ max{d(x, z), d(z, y)}.

More properties of non-archimedean absolute values:

Theorem 4.2 ([2, Lemma 2.3.2]). An absolute value is non-archimedean if and
only if it induces an ultrametric space.

Theorem 4.3 ([2, Proposition 2.3.3]). For a non-archimedean absolute value, if
|x| 6= |y|, then |x+ y| = max{|x|, |y|}.

Consult [2] for proofs to 4.2 and 4.3.

Theorem 4.4 ([2, Corollary 2.3.4]). In the ultrametric space, all triangles are
isosceles.

Proof. To begin, consider a triangle in a metric space to be distances between three
points which function as vertices. So, for three points x, y, z a triangle is the three
distances d(x, y), d(y, z), d(x, z). Assume d(x, y) 6= d(y, z). Then, using Theorem
4.3, we can say then that

|x− z| = |(x− y) + (y − z)| = max{|x− y|, |y − z|}.

Therefore, d(x, z) = max{d(x, y), d(y, z)}, which means that if two sides of a trian-
gle are unequal, the third side must be equal to the larger of the two sides. �

5. Topology

Now that we have described some properties of an ultrametric space, we can
create a topology on Q using a non-archimedean absolute value.

For a field k with the absolute value |·|, let a ∈ k and r ∈ R+. Then an open
ball with center a and radius r is defined as follows:

B(x, r) = {x ∈ k | d(x, a) < r}.

A closed ball with the same center and radius is defined as follows:

B(x, r) = {x ∈ k | d(x, a) ≤ r}.

Using these standard definitions of open and closed balls, we can also define open
and closed sets in the regular way.

Definition 5.1. An open set is a set A ⊂ k, such that for all a ∈ A, there exists
r > 0 such that a ∈ B(a, r) ⊂ A. A closed set is the complement of an open set.
Under any topology, a closed set is also defined as a set which contains all of its
boundary points. A boundary point of a set A is any point such that any open ball
U which contains the point also has a non-empty intersection with A. For more on
point-set topology, the reader should consult [3, Chapter 2].

With a non-archimedean absolute value, open balls have unique properties:

Theorem 5.2 ([2, Proposition 2.3.6]). The following are true:

i) All points in a ball are the center of the ball. If b ∈ B(a, r), then B(b, r) =
B(a, r).

ii) All open balls are both open and closed.
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Proof. Consider an arbitrary open ball with center a and radius r. Then for b ∈
B(a, r), we have |b − a| < r. Then, for all x ∈ B(a, r), we also have |x − a| < r.
Since x − b = (x − a) + (a − b), we can use the non-archimedean property to say
|x − b| = |x − a + a − b| ≤ max{|x − a|, |a − b|} < r, since both of those distances
are less than r. Therefore, x ∈ B(b, r), which proves B(a, r) ⊂ B(b, r). Showing
the subset goes the other way is a similar proof switching b and a. Therefore,
B(a, r) = B(b, r).

For an arbitrary open ball A = B(a, r), consider that for a ∈ A, we have a ∈
A ⊂ A. Therefore, we have that open balls are open. Now, let x be a boundary
point of A. Therefore, for B(x, s) where s ≤ r, we have that B(x, s)∩B(a, r) 6= Ø.
Take y ∈ B(x, s) ∩ B(a, r). Then we have that |y − x| < s and |y − a| < r. Using
the non-archimedean property, we can say that

|x− a| = |x− y + y − a| ≤ max{|x− y|, |y − a|} < max{r, s} = r.

Therefore, x ∈ B(a, r), and A is closed, which means all open balls are closed. �

Returning to our p-adic absolute value rather than an arbitrary non-archimedean
absolute value, we can examine the structure of open and closed balls more explic-
itly.

Theorem 5.3 ([2, Problem 50]). For a p-adic absolute value |·|p on Q, we have
that

B(0, 1) = B(0, 1) ∪B(1, 1) ∪B(2, 1) ∪ · · · ∪B(p− 1, 1).

Proof. Take x ∈ B(0, 1). If |x| < 1, then x ∈ B(0, 1). If |x| = 1, then we have
vp(x) = 0. Therefore, for x = a/b, we have vp(a) − vp(b) = 0. This means that
we can consider a/b to be the case where neither a nor b is divisible by p. This
is because they are both divisible by the same power of p and therefore can be
reduced. In this reduced form, we know that b is not divisible by p, which allows
us to say that there exists b−1 ∈ Z/pZ such that bb−1 ≡ 1 (mod p). Then we have
that bb−1a ≡ a (mod p). Let j be the integer where 1 ≤ j ≤ p − 1 and b−1a ≡ j
(mod p). Therefore, jb ≡ a (mod p). When this is the case we have p | jb − a,

which implies that |j − a/b|p =
∣∣∣ jb−ab ∣∣∣

p
< 1. Therefore, we have that x ∈ B(j, 1).

Therefore, B(0, 1) ⊂ B(0, 1) ∪ B(1, 1) ∪ B(2, 1) ∪ · · ·B(p − 1, 1). For more details
on modular arithmetic, see [1, Chapter 5].

Next, pick some x ∈ B(0, 1)∪B(1, 1)∪B(2, 1)∪· · ·B(p−1, 1). First, if x ∈ B(0, 1),
then x ∈ B(0, 1), since B(0, 1) ⊂ B(0, 1). If x ∈ B(i, 1) for 1 ≤ i ≤ p− 1, then we
have that |i− a/b|p = | ib−ab | < 1. This means we have that vp(ib− a) > vp(b).

Since ib− a is divisible by a higher power of p than b, we can use cancellation to
find an equivalent fraction where the numerator is divisible by p but the denomina-
tor is not. For convenience and because they are equivalent fractions, we will treat
ib−a
b as though it is the reduced form. In this case, we would see that this reduced

fraction would have p - a, since if p | a, then we would have that p | ib − a which
implies that p | ib, which is false since neither i nor b is divisible by p. Therefore,
for the fraction a/b, we have that neither a nor b is divisible by p, which implies
that |a/b| = 1. Therefore x = a/b ∈ B(0, 1). �

In the bizarre topology created by the p-adic absolute value, every closed ball is
the union of a finite set of open balls. Then, we have that all open and closed balls
are clopen.
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6. Equivalent Absolute Values

While absolute values can be defined in different ways, there is an idea that
separate absolute values can be “equivalent.”

Definition 6.1 ([2, Definition 3.1.3]). Two absolute values are called equivalent
when they define the same topology on Q, which means that all sets which are open
with respect to one absolute value are open with respect to the other.

To aid in determining whether two absolute values are equivalent, we have a
couple of criteria. Consult [2] for a proof:

Theorem 6.2 ([2, Lemma 3.1.2]). The following are equivalent:

i) |·|1 and |·|2 are equivalent absolute values.
ii) For any x in a field k, |x|1 < 1 if and only if |x|2 < 1.

iii) There exists a positive real number α such that for all x ∈ k, |x|1 = |x|α2 .

Theorem 6.3 ([2, Problems 69 & 70]). The following are true:

(1) For p, q distinct primes, |·|p is not equivalent to |·|q
(2) For p prime, |·|p is not equivalent to |·|∞

Proof. 1: Let p, q be distinct primes. Then, we have that since q - p, |p|q = 1.
However, |p|p = 1

p < 1. Therefore, by Theorem 6.2 we have that these are not

equivalent absolute values.
2: Let p be prime. |p|p = 1

p < 1 and |p|∞ = p > 1. Therefore, we also have that

|·|p is not equivalent to |·|∞. �

7. Ostrowski’s Theorem

Now, for the final theorem of the paper, a theorem that classifies all non-
equivalent absolute values on Q.

Theorem 7.1 (Ostrowski’s Theorem, [2, Theorem 3.1.3]). Every non-trivial abso-
lute value on Q is equivalent to either |·|p for some prime or |·|∞. More specifically,
all archimedean absolute values are equivalent to |·|∞, while non-archimedean ab-
solute values are equivalent to some |·|p.

Proof. First, we want to show that for an arbitrary archimedean absolute value
|·|, that |·| is equivalent to |·|∞. Let n0 be the least positive integer such that
|n0| > 1. We know this exists because of the contrapositive of Theorem 2.8. Since
|·| is archimedean, there must be some z ∈ Z such that |z| > 1. We know that this
is non-zero because |0| = 0 < 1. There exists positive numbers that satisfy this
as well, because if z < 0, then −z > 0 and |−z| = |z| > 1. Therefore, there must

be some least positive integer n0 that satisfies |n0| > 1. Let α = log(|n0|)
n0

so that

|n0| = nα0 = |n0|α∞.
First, assume that we know |x| = |x|α∞ for all x ∈ N. Then it will be true for

all integers, as for a negative integer y, |y| = |−y| = |−y|α∞ = |y|α∞. For rational
numbers in general:

|a
b
| = |a|
|b|

=
|a|α∞
|b|α∞

= |a
b
|α∞.

Therefore, once we have shown this property is true for all integers, we have shown
it in general.
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Take an arbitrary natural number n. Then, we will write n as the sum of powers
of n0, essentially writing it in “base n0”:

n = a0 + a1n0 + a2n
2
0 + · · ·+ akn

k
0 ,

with 0 ≤ ai ≤ n0 − 1 and ai ∈ N for all i. Since k is the largest natural number
with ak > 0, we find that k is the unique natural number satisfying nk0 ≤ n < nk+1

0 .
By the triangle inequality:

|n| = |a0 + a1n0 + a2n
2
0 + · · ·+ akn

k
0 |

≤ |a0|+ |a1n0|+ |a2n20|+ · · ·+ |aknk0 |

= |a0|+ |a1|nα0 + |a2|n2α0 + · · ·+ |ak|nkα0 .

Since n0 is the smallest positive integer such that |n0| > 1 and since ai < n0 for all
i, we must have that |ai| ≤ 1. Therefore:

|n| ≤ 1 +nα0 +n2α0 + · · ·+nkα0 = nkα0 (1 +n−α0 +n−2α0 + · · ·+n−kα0 ) = nkα0

k∑
i=0

n−iα0 .

Since n0 > 1:

|n| ≤ nkα0
∞∑
i=0

n−iα0 = nkα0
nα0

nα0 − 1
.

Let C =
nα0
nα0−1

. We know that n0 > 1, since n0 is a positive integer and |n0| > 1

whereas |1| = 1. Consequently, we have nα0 > 1 because α > 0, which means
nα0 − 1 > 0 and C > 0. Remember that n ≤ nk0 , so |n| ≤ Cnkα0 ≤ Cnα. The
inequality |n| ≤ Cnα holds for all n ∈ N, since n is arbitrary. Therefore, it also
holds for nN where N is a positive integer: |nN | ≤ CnNα. Taking the N -th roots of

both sides: |n| ≤ N
√
Cnα. This too is true for all N , which means we can consider

it as N →∞ and see that

(1) |n| ≤ nα,

since C is positive and lim
N→∞

N
√
C = 1.

Now we want to show the opposite inequality. Consider the following, utilizing
the triangle inequality:

n
(k+1)α
0 = |nk+1

0 | = |n+ nk+1
0 − n| ≤ |n|+ |nk+1

0 − n|.

Therefore,

|n| ≥ n(k+1)α
0 − |nk+1

0 − n|.
Then, we can use (1) to say that

|n| ≥ n(k+1)α
0 − (nk+1

0 − n)α.

Since nk0 ≤ n, we can say that −(nk+1
0 − n)α ≤ −(nk+1

0 − nk0)α, and so:

|n| ≥ n(k+1)α
0 − (nk+1

0 − nk0)α = n
(k+1)α
0 (1− (1− 1

n0
)α).

Let C ′ = (1− (1− 1
n0

)α) which is positive:

|n| ≥ C ′n(k+1)α
0 .
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Then, let d be a positive number such that C ′ < d ≤ C′n
(k+1)α
0

nα . Therefore, we have

dnα ≤ C ′n
(k+1)α
0

nα
· nα = C ′n

(k+1)α
0 ≤ |n|.

As before, since n is an arbitrary positive integer, we know it is true for nN for
some positive integer N . Therefore, |n| ≥ N

√
dnα, for all n ∈ N, and lim

n→∞
N
√
d = 1

; this shows that |n| ≥ nα. Therefore, |n| = nα = |n|α∞, as both inequalities have
been proven.

Now, let |·| be a non-archimedean absolute value. Since it is not the trivial
absolute value, we know that there exists a least positive integer such that |n| < 1,
since if all positive integers had |n| = 1, then it would follow that all rational
numbers besides zero satisfy |x| = 1. Let p be this smallest positive integer. If p
were composite, we would have |a||b| = |p| for some a, b ∈ N. However, in this case
we would have a, b < p, which would mean |a| = |b| = 1, and so |p| = 1. Therefore,

p is prime. Let α = log(|p|)
log(|p|p) so that |p| = |p|αp .

Let n ∈ Z be not divisible by p. We can use division with remainder to say that
n = rp + s with r ∈ Z and 1 ≤ s ≤ p − 1. Equivalently, rp = n − s. Since s < p,
we have that |s| = 1. As well, we have that |rp| = |r||p| ≤ 1 · |p| < 1. Therefore
we have |rp| = |n − s| 6= |s|. For a triangle with vertices of 0, s, n, we can apply
Theorem 4.4 to say that |n| = max{|s|, |n − s|} = |s| = 1. Therefore, for p - n, we
have that |n| = 1.

Now, let n ∈ Z be arbitrary. Let v be the positive number such that n = pvn′

with n′ ∈ Z and p - n′. Therefore,

|n| = |pvn′| = |pv||n′| = |p|v = |p|vαp = p−vα = |n|αp ,
by the definition of the p-adic absolute value. Therefore, each non-archimedean
absolute value is equivalent to some p-adic absolute value. �

Now, we can see that all non-trivial absolute values of Q are actually equivalent
to one of the p-adic absolute values we have constructed, or the standard absolute
value.
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