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Abstract. Following Polishcuk and Zaslow’s paper [7] and Kreussler’s paper

[3], we construct an equivalence of additive categories: φτ : Db(Coh(Eτ )) →
FK0(Eτ ). Here τ in the upper half plane serves as the lattice parameter when

defining Eτ and as the complexified Kähler form when defining Eτ . These

two manifolds Eτ and Eτ are called mirror manifolds, and the equivalence φτ
turns out to be a preliminary example of so-called mirror symmetry. Examples

of mirror symmetry tend to be quite demanding to understand in general, so

we hope that this paper could serve as a stepping-stone for those who want to
explore the wonders of mirror symmetry.
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1. Introduction

The main goal of this paper is to construct a functor φτ : Db(Coh(Eτ )) →
FK0(Eτ ) that is an equivalence of additive categories and is compatible with the
shift functors. First, we introduce elliptic curves in this section. Then, we discuss
about Db(Coh(Eτ )) in section 2. Theorem 2.1 tells us the structure of a coherent
sheaf on an elliptic curve, and Theorem 2.6 gives the structure of Db(Coh(Eτ )).
Since locally free sheaves come from vector bundles, we discuss about vector bundles
and introduce theta functions in the remaining part of section 2. In section 3, we
first define a general A∞-category. Then we show how to get a real category from
it. After that, by adding formal finite direct sums, we get the desired abelian
category FK0(Eτ ) from the Ab-category F0(Eτ ). Finally, in the last section,
we construct the equivalence φτ by first working on vector bundles of the form
L(φ) ⊗ F (V, exp(N)) and then expanding the discussion to arbitrary locally free
sheaves.

When we talk about an elliptic curve, we mean a Riemann surface of genus
one with a chosen base point. There are also other ways to describe an elliptic
curve. For those who prefer an algebraic viewpoint, we can define it by an equation
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y2 = x3 + Ax + B, where A and B are two complex constants. By embedding C2

into CP2, one finds that an elliptic curve is always projective. Meanwhile, for those
who are interested in topology, we know that an elliptic curve is always a complex
torus C/Γ, where Γ is a lattice in C.

The equivalence between these descriptions of an elliptic curve is well explained
in Robert’s book [9], which is an excellent reference for those who are interested in
elliptic curves.

2. Bounded derived category of Coherent sheaves

The definition of coherent sheaves and thickened skyscraper sheaves and some
basic properties can be found in any standard reference of algebraic geometry. In
particular, the reader is invited to consult Hartshorne’s book [2] when he or she
comes across problems while reading this section.

First, we will discuss the decomposition of a coherent sheaf on an elliptic curve.

Theorem 2.1. Let X be an elliptic curve, and F be a coherent sheaf on X. Then
there exists a decomposition F = Ftor ⊕ G, where the torsion part Ftor is a direct
sum of thickened skyscraper sheaves and G is locally free (a vector bundle).

Proof. Suppose U ∼= Spec(A) is an open affine subset of X. Since F is a coherent

sheaf, we know that F|U ∼= M̃ for some finitely generated A-module M . Since X is
an elliptic curve, A is a Dedekind domain. So by the structure theorem of a finitely
generated module over a Dedekind domain, M can be decomposed as

M ∼= A/pa11 ⊕A/p
a2
2 ⊕ ...⊕A/parr ⊕ P,

where pi are prime ideals of A and P is a projective A-module. So the associated
sheaf has a similar decomposition

M̃ ∼= Ã/pa11 ⊕ Ã/p
a2
2 ⊕ ...⊕ Ã/p

ar
r ⊕ P̃ .

Let p, q be two distinct points in X, and assume that they correspond to prime

ideals p, q of A respectively. Then for the sheaf Ã/pa, its stalk at point q is the
localization ring (A/pa)q. Since A is a Dedekind domain, its Krull dimension is
1, i.e., every non-zero prime ideal of A is maximal. Thus, there exists an element
a ∈ p − q. Then a /∈ q tells us that a is invertible in (A/pn)q. Meanwhile, a ∈ p
tells us that a is nilpotent in (A/pn)q. Thus, (A/pn)q is equal to 0. Meanwhile,
when q = p, we have (A/pn)p ∼= (A/p)n, where A/p is a field since p is a maximal

ideal. Therefore, Ã/pn is equal to a thickened skyscraper sheaf.

Next, I will prove that P̃ is a locally free sheaf. In fact, we know that there exists
a positive integer r such that Pp is a free Ap-module of rank r for every prime ideal

p of A. Assume that p corresponds to the point p ∈ U . Then the stalk of P̃ at p
is isomorphic to r copies of the stalk OX,p. This isomorphism gives us r elements

in the stalk of P̃ at p. By the definition of stalk, these r elements corresponds to
r sections defined over an open neighborhood V of p in U . So there is a natural

map ϕ : (OX |V )r → P̃ |V , which becomes an isomorphism when restricted to the
stalk at p. Now, consider the kernel and cokernel of ϕ. They are both coherent
sheaves with zero stalks at p. However, a coherent sheaf must be supported on a
closed subset. Thus, by shrinking V if necessary, we can assume that the kernel

and cokernel of ϕ are zero. Therefore, ϕ is an isomorphism, and P̃ is locally free.
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What we have proved above is that over every open affine subset U ∼= Spec(A),
F can be decomposed as a direct sum of thickened scyscraper sheaves and a locally
free sheaf. Since a thickened scyscraper sheaf is only supported at one point, it can
be extended to global skyscraper sheaf defined on X. Then, we define the torsion
part Ftor of F to be the direct sum of these global skyscraper sheaves. Clearly,
Ftor is a subsheaf of F , and the quotient sheaf G := F/Ftor is locally free. The
last part is to see that F is globally the direct sum of its torsion part Ftor and the
locally free sheaf G, i.e., the following short exact sequence splits:

0 −→ Ftor −→ F −→ G −→ 0.

Since an elliptic curve is always quasi-compact, Ftor|V is supported at only
finitely many points in V . Thus Ftor is supported at finitely many points of X,
denoted by Λ ⊆ X. Then, we take any point p ∈ X − Λ. Since the stalk of Ftor at
p is zero, it is sufficient to prove that the short exact sequence splits over X − {p}.
Now, using the fact that X−{p} is open affine and the structure theorem of finitely
generated modules over a Dedekind domain, we see that the short exact sequence
over X − {p} must split. �

Now we will focus on the bounded derived category Db(Coh(X)) of coherent
sheaves on X.

Theorem 2.2 (Global version of Serre theorem). Any coherent sheaf F on a smooth
projective variety of dimension n over a field k admits an n-step resolution ... →
0 → Fn → Fn−1 → ... → F1 → F0 where each Fi is finitely generated and locally
free (thus they come from vector bundles).

Proof. By Corollary 5.18 of Hartshorne’s book [2], we know that for any coherent
sheaf G, there exists a locally free sheaf E and an epimorphism E � G. First, we

take G = F and get a surjection P0
d0−→ F → 0, where P0 is locally free. Then

we take G = ker(d0) and get a surjection P1 � ker(d0), where P1 is also locally
free. We compose this map with the embedding ker(d0) ↪→ P0 and get an exact

sequence P1
d1−→ P0

d0−→ F . Repeat this procedure, and eventually we will obtain
a resolution of F by locally free sheaves:

· · · −→ Pn+1
dn+1−→ Pn

dn−→ Pn−1 −→ · · · −→ P1
d1−→ P0 −→ F .

We replace Pn by Pn/ im(dn+1), and get an n-step resolution of F :

· · · −→ 0 −→ Pn/ im(dn+1)
dn−→ Pn−1 −→ · · · −→ P1

d1−→ P0 −→ F .

Now, we only need to show that Pn/ im(dn+1) is still a locally free sheaf. Obvi-
ously, it is enough to prove this locally at every point. So we can assume that the
underlying space is affine. Assume that X = Spec(A), where A is a regular ring
of dimension n. Since there exists a bijection between finitely generated projective
modules and locally free coherent sheaves, we can view Pi as projective A-modules
Pi, and we have to prove that Pn/ im dn+1 is still projective. We assume that F cor-
responds to a A-module M . Since A is a regular ring of dimension n, we know that
the projective dimension of M is not greater than n. Therefore Extn+k(M,N) = 0
for any positive integer k and any A-module N . On the other hand, notice that

· · · −→ Pn+1 −→ Pn/ im(dn+1) −→ 0
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is a projective resolution of Pn/ im(dn+1), one gets

Extn+k(M,N) = Hn+k(Hom(P•, N)) = Extk(Pn/ im(dn+1), N).

Thus, Extk(Pn/ im(dn+1), N) = 0 for any positive integer k and any A-module N ,
and Pn/ im(dn+1) is projective. �

Definition 2.3. An abelian category C is called hereditary if Ext2(−,−) = 0.

Proposition 2.4. The category Coh(X) of coherent sheaves on X is hereditary.

Proof. Let F and G be two coherent sheaves on X. Since X is a smooth projective
variety of dimension 1 over the field C, F admits a 1-step resolution of locally free
sheaves ...→ 0→ F1 → F0 → F by Theorem 2.2. And the sheaf Exti(F ,G) is the
i-th cohomology of the complex

0→ Hom(F0,G)→ Hom(F1,G)→ 0→ ...

Therefore, Exti(F ,G) = 0 for i > 1.
Now, to show that Coh(X) is hereditary, we use the local-to-global spectral

sequence to compute Ext2(F ,G). In fact, we have the following result:

Ep,q2 = Hp(X, Extq(F ,G))⇒ Extp+q(F ,G).

By Theorem 2.1, every coherent sheave on X can be decomposed into a direct sum
of thickened skyscraper sheaves and a locally free sheaf. Thus, we can assume that
F and G are thickened skyscraper sheaves or locally free sheaves.

When F is locally free, F itself is a 0-step resolution of F . Therefore all sheaves
Exti(F ,G) are zero for i > 0. Then the spectral sequence is stable at Ep,q2 , and

Exti(F ,G) = Hi(X,Hom(F ,G)). Moreover, by Grothendieck’s vanishing theorem,
Hi(X,Hom(F ,G)) = 0 for i > 1.

When F is a thickened skyscraper sheaf, F is supported at only one point p ∈ X.
Now, by Exti(F ,G)x ∼= Exti(Fx,Gx), we know that the sheaves Exti(F ,G) are also
supported at the point p, i.e., they are again thickened skyscraper sheaves. Notice
that thickened skyscraper sheaves are automatically flasque, we know that they
have no higher cohomologies. So the spectral sequence is again stable at Ep,q2 , and

Exti(F ,G) = H0(X, Exti(F ,G)) = Γ(X, Exti(F ,G)). When i > 1, Exti(F ,G) = 0,
and thus Exti(F ,G) = 0. �

By Theorem 4.1 of Pakharev’s paper [6], we have the following result.

Theorem 2.5. Suppose that C is a hereditary abelian category. Then any object
L ∈ Db(C) is isomorphic to the sum of its cohomologies, i.e., L ∼= ⊕iHiL[−i].
Here F [−i] denotes the complex with the only non-zero term (equal to F) in degree
i.

Theorem 2.6. Let X be a complex projective curve (certainly an elliptic curve is
one such example). Then every object of Db(Coh(X)) is isomorphic to the direct
sum of objects of the form F [n], where F is a coherent sheaf on X and F [n] denotes
the complex with the only non-zero term (equal to F) in degree −n.

Proof. By Proposition 2.4, Coh(X) is hereditary. Therefore, for any object L ∈
Db(Coh(X)) we can use Theorem 2.5 and get L ∼= ⊕iHiL[−i], which is the desired
expression. �



MIRROR SYMMETRY OF ELLIPTIC CURVES 5

Remark 2.7. Combining Theorems 2.1 and 2.6, we know that every object of
Db(Coh(X)) is a direct sum of objects of the form F [n], where F is a vector
bundle or has support at a point (a thickened skyscraper sheaf).

Now, to compute the morphism spaces, we can use a version of Serre Duality that
appears as Lemma 2.7 in Kreussler’s paper [3]. It says that we have a functional
isomorphism

Ext1(A1, A2) ∼= Hom(A2, A1)∗.

Next, we will discuss vector bundles on an elliptic curve.
We consider an elliptic curve E as a complex torus E = C/Γ, where Γ is a lat-

tice in C. Clearly, Γ has 2 generators which are linearly independent over R. By
rescaling, one of the generators can be taken to be 1 ∈ R, while the other is denoted
by τ . We denote Eτ to be the quotient space C/Z ⊕ Zτ . Then, the exponential
map z 7→ e2πiz gives an isomorphism between C/Z⊕ Zτ and C∗/ ∼, where u ∼ qu
and q = e2πiτ . We use Eq to denote the quotient space Eq = C∗/ ∼, and we
have Eq ∼= Eτ . We will use Eτ and Eq indiscriminately in the following text. We
denote π′ : C∗ → Eτ to be the composition of the quotient map C∗ → Eq and the
isomorphism Eq ∼= Eτ .

Now, we consider the following short exact sequence of sheaves over C∗:

0 −→ Z −→ O exp−→ O∗ −→ 0.

It induces a long exact sequence:

· · · → H1(C∗,O)→ H1(C∗,O∗)→ H2(C∗,Z)→ H2(C∗,O)→ · · ·

SinceH1(C∗,O) = H2(C∗,O) = 0, it induces an isomorphism Pic(X) ∼= H1(C∗,O∗)
∼= H2(C∗,Z), which is exactly the definition of the first Chern class of a complex line
bundle. Therefore, a line bundle on C∗ is determined by its first Chern class. But
since C∗ is homotopic to S1 as topological spaces, we haveH2(C∗,Z) ∼= H2(S1,Z) =
0. Thus, all line bundles over C∗ are trivial. In particular, the pull-back of any line
bundle L over Eq is trivial over C∗.

To figure out what is happening to general vector bundles, we first prove the
following lemma.

Lemma 2.8. Every vector bundle on an elliptic curve X is obtained as a successive
extensions of line bundles.

Proof. Let π : E → X be a vector bundle on X. Then we consider the associated
projective bundle π′ : P (E)→ X. By the definition of vector bundles, there exists
an open subset U ⊆ X such that E|U is trivial. Moreover, since the set of open
affine subsets form a topological basis of X, we can take U to be open affine. Since
E|U is trivial, we can take a non-vanishing section s : U → E|U . This section
induces a section of P (E) over U because it is non-vanishing. We denote this
induced section by s′ : U → P (E). Since every map from a nonempty open locus in
a complete nonsingular curve to a complete variety can be uniquely extended to a
regular morphism from the entire curve, we can extend the map s′ to a global map
s′′ : X → P (E). Now, we consider the composition of s′′ and π′. It is a map from
E to itself which restricts to the identity over U . Thus, the composition map can
be viewed as the extension of the embedding U ↪→ X. Using the uniqueness part of
the extending theorem used before, we know that the composition map has to be
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the identity over X. Therefore s′′ is a section of P (E) and defines a 1-dimensional
subbundle L of E. we quotient E by this subbundle L, and proceed in the same
way for E/L. Finally, we get a filtration 0 = E0 ⊂ E1 ⊂ E2 ⊂ ... ⊂ Er = E, such
that every Li = Ei/Ei−1 is a line bundle. This is exactly what the lemma is asking
for. �

Recalling that any line bundle on Eq pulls back to the trivial line bundle over
C∗, and using Lemma 2.8, we obtain the following proposition.

Proposition 2.9. The pull-back of every vector bundle on Eq to C∗ is trivial.

Thus, all vector bundles on E are obtained from gluing the fibers over u and qu
in C∗. We denote such a gluing by a holomorphic map A : C∗ −→ GL(V ), such that
the fibers over u and qu are glued by the map A(u) : V −→ V . To be specific, we
define the rank r holomorphic vector bundle Fq(V,A) on E by taking the quotient

Fq(V,A) = C∗ × V/(u, v) ∼ (qu,A(u) · v).

Since we can change the trivialization of every fiber on C∗ by an element in

GL(V ), we have Fq(V,A) ∼= Fq(V, Ã) if Ã(u) = B(qu)A(u)B(u)−1 for some map
B : C∗ → GL(V ).

When V = C and A = ϕ is a holomorphic function, we denote Lq(ϕ) to be
the line bundle constructed in this way. We define L ≡ Lq(ϕ0) where ϕ0(u) =

exp(−πiτ − 2πiz) = q−
1
2u−1.

Following chapter I of Robert’s book [9], we can define a theta function of type
(h, a), where h and a are maps from Γ to C.

Definition 2.10. A theta function θ of type (h, a) with respect to Γ is a meromor-
phic function on the complex line C satisfying

θ(z + γ) = a(γ)eπh(γ)(z+ 1
2γ)θ(z), ∀γ ∈ Γ.

In particular, when a(x + yτ) = exyπi and h(x + yτ) = −2iy, θ is the unique
theta function satisfying θ(z + 1) = θ(z) and θ(z + τ) = e−πi(z+2τ)θ(z). We call
this θ the classical theta function or Jacobi theta function. The first equation tells
us that θ factors through exp : C→ C∗, i.e., θ(z) = f(e2πiz) for some holomorphic
function f on C∗. Now we use u to denote the coordinate on C∗. Then the second
equation of θ translates to f(qu) = q−

1
2u−1f(u). Therefore f can be viewed as a

section of the line bundle L = Lq(ϕ0) defined above.

Since the complex zeros of the Jacobi theta function θ are given by the orbit of
1
2 + 1

2τ , f has only one zero. Now, we can view f as a section of the line bundle L
by the argument above, and we know that the degree of L is 1. This is because the
degree of a line bundle S can de defined by assigning 1 or -1 for every vanishing
point of S and then summing them up.

The Jacobi theta function θ has an explicit expression:

θ(z) =
∑
m∈Z

exp(πim2τ + 2πimz).

One can easily check this fact by showing that the θ defined above by the ex-
plecit expression satisfies the two modularity properties of the Jacobi theta function.
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The reason why we are interested in the particular line bundle L = Lq(ϕ0) is
because it helps us to classify all holomorphic line bundles on E. To be specific, we
have the following proposition:

Proposition 2.11. Every holomorphic line bundle on E has the form t∗xL⊗Ln−1

for some n ∈ Z and x ∈ E, where tx is the map of translation by x on E (recall that
every elliptic curve is isomorphic to a torus, making the curve an abelian group).

The proof of this proposition relies on the following theorem of the square which
gives a description of the group Pico := ker(c1), where c1 is the map of taking the
first Chern class. Notice that in the case of a smooth projective curve, the degree
map coincides with the first Chern class. Thus Pico coincides with the group of
degree zero line bundles. Following Beauvilles’s paper [1], we have the theorem of
the square:

Theorem 2.12 (Theorem of the square). Let X ∼= C/Γ be an elliptic curve, and
L be a line bundle on X.

a) The map

λL : X → Pico(X), λL(x) = t∗xL⊗ L−1

is a group homomorphism.
b) Let E ∈ Alt2(Γ,Z) ∼= H2(X,Z) be the first Chern class of L. If E is

non-degenerate, then λL is surjective.

Since every line bundle over X = C/Γ pulls back to the trivial line bundle over C,
we can recover a line bundle over X from the trivial line bundle by identifying the
fibers over the preimages of every point. To be specific, we introduce the notation
of systems of multipliers following Beauville’s paper [1].

Definition 2.13. Let (eγ)γ∈Γ be a family of holomorphic invertible functions on
C. It is called a system of multipliers if these functions satisfy

eγ+δ(z) = eγ(z + δ)eδ(z), ∀γ, δ ∈ Γ (“cocycle condition”).

Using (eγ)γ∈Γ, we can define a relation on C× C by

(z, t) ∼ (z + γ, eγ(z) · t), ∀γ ∈ Γ.

Then the cocycle condition guarantees that the relation “ ∼ ” is an equivalence
relation, and the quotient space C× C/ ∼ defines a line bundle over X ∼= C/Γ.

Now, we construct systems of multipliers from Hermitian forms.
We denote by P the set of pairs (H,α), where H is a Hermitian form on C, and

α is a map from Γ to S1 ⊂ C satisfying following two restrictions:

a) E(u, v) := Im(H(u, v)) ∈ Z, ∀u, v ∈ Γ
b) α(γ + δ) = α(γ)α(δ)(−1)E(γ,δ)

Then the law (H,α) · (H ′, α′) = (H +H ′, αα′) defines a group structure on P.
For (H,α) ∈ P, we put

eγ(z) = α(γ)eπ[H(γ,z)+ 1
2H(γ,γ)], γ ∈ Γ

One can easily check that this defines a system of multipliers. And the correspond-
ing line bundle will be denoted by L(H,α).
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The benefit of defining a line bundle by a Hermitian form is that we can calculate
the first Chern class of the line bundle easily. The following proposition comes from
Theorem 2.8 of Beauville’s paper [1].

Proposition 2.14. The first Chern class c1(L(H,α)) is equal to E ∈ Alt2(Γ,Z) ∼=
H2(E,Z).

Corollary 2.15. Let X be an elliptic curve, and L = Lq(ϕ0) be the particular line
on X defined above. Assume that L′ is a holomorphic line bundle on X with zero
degree. Then L′ ∼= t∗xL⊗ L−1 for some x ∈ X.

Proof. Notice that in the case of a smooth projective curve, the degree map coin-
cides with the first Chern class. Thus, L′ has degree 0 tells us that its first Chern
class c1(L′) is 0, and L′ ∈ Pico(X). Now it is sufficient to prove that E = c1(L)
is non-degenerate. Then by Theorem 2.12 b), the associated map λL is surjective,
and L′ can be expressed in the desired form. Now, I claim that L comes from the
Hermitian form

H(u, v) =
2iuv̄

τ − τ̄
=
uv̄

t
, where t = Im(τ),

up to a normalization. The detailed proof of this claim can be found in chapter 8,
section 3 of Lang’s book [4]. Since τ lies in the upper half plane, t is not zero, and
the equation above makes sense. Now, by Proposition 2.14, the first Chern class
E of L is the imaginary part of H. And one can easily check that E = Im(H) is
non-degenerate. �

Now, we get back to the proof of Proposition 2.11.

Proof. Let L′ be any holomorphic line bundle on E. Assume that the degree of
L′ is n. Then we consider the line bundle L′′ = L′ ⊗ L−n. The degree of L′′ is
deg(L′′) = n + n × (−1) = 0. Thus, by Corollary 2.15, L′′ ∼= t∗xL ⊗ L−1 for some
x ∈ E. Therefore, L′ ∼= L′′ ⊗ Ln ∼= t∗xL⊗ Ln−1. �

Now, we define theta functions by their explicit expressions.

Definition 2.16. A theta function has three parameters: τ ∈ C for the torus, and
(c′, c′′) ∈ R2/Z2 for line bundles of the same degree. The theta function is defined
by

θ[c′, c′′](τ, z) =
∑
m∈Z

exp{2πi[τ(m+ c′)2/2 + (m+ c′)(z + c′′)]}.

If (c′, c′′) = (0, 0), θ[0, 0](τ, z) becomes the Jacobi theta function, and we will use
the notation θ(τ, z) for it.

Remark 2.17. The n functions θ̃a(z) = θ[a/n, 0](nτ, nz), a ∈ Z/nZ are the global
sections of Ln. The reason is that:

θ̃a(z) = θ̃a(z + 1), and

θ̃a(z + τ) = e−nπiτ−2nπiz · θ̃a(z) = (q−
1
2u−1)n · θ̃a(z).

Moreover, they form a basis of the space of global sections of Ln.

Now, consider the natural r-fold covering πr : Eqr → Eq which sends u to u.
Then, the preimage of u ∈ Eq is {u, qu, ..., qr−1u}. We define the natural functors
of pull-back and push-forward associated with πr.
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Definition 2.18. The pull-back map π∗r is defined by π∗rFq(V,A) = F rq (V,Ar), and
the push-forward map πr∗ is defined by πr∗Fqr (V,A) = Fq(V ⊗ Cr, πr∗A), where
πr∗A(v ⊗ ei) = v ⊗ ei+1 for i ∈ {1, 2, ..., r − 1} and πr∗A(v ⊗ er) = Av ⊗ e1.

These two maps have the following properties:

Proposition 2.19. There are natural isomorphisms:

a) πr∗(F1 ⊗ π∗rF2) ∼= πr∗(F1)⊗ F2

b) (πr∗(F ))∗ ∼= πr∗(F
∗)

c) H0(Eq, πr∗(F )) ∼= H0(Eqr , F )

Proof. Suppose that F1 = Fqr (V,A) and F2 = Fq(W,B). Then π∗rF2 = Fqr (W,B
r),

and F1 ⊗ π∗rF2 = Fqr (V ⊗W,A⊗Br).
Thus, we have

πr∗(F1 ⊗ π∗rF2) = Fq(V ⊗W ⊗ Cr, πr∗(A⊗Br))

and

πr∗(A⊗B)(v ⊗ w ⊗ ei) =

{
v ⊗ w ⊗ ei+1 if i ∈ {1, 2, ..., r − 1}
Av ⊗Brw ⊗ e1 if i = r.

On the other hand, πr∗(F1) = Fq(V ⊗ Cr, πr∗A). Thus, we have

πr∗(F1)⊗ F2 = Fq(V ⊗ Cr ⊗W,πr∗A⊗B)

and

πr∗A⊗B(v ⊗ ei ⊗ w) =

{
v ⊗ ei+1 ⊗Bw if i ∈ {1, 2, ..., r − 1}
Av ⊗ e1 ⊗Bw if i = r.

Now, define a map σ : V ⊗W⊗Cr → V ⊗Cr⊗W by σ(v⊗w⊗ei) = v⊗ei⊗Biw.
Then one can check that the following diagram commutes:

V ⊗W ⊗ Cr σ //

πr∗(A⊗Br)

��

V ⊗ Cr ⊗W

πr∗A⊗B
��

V ⊗W ⊗ Cr σ // V ⊗ Cr ⊗W.

Therefore, we have

Fq(V ⊗W ⊗ Cr, πr∗(A⊗Br)) ∼= Fq(V ⊗ Cr ⊗W,πr∗A⊗B)

and

πr∗(F1 ⊗ π∗rF2) ∼= πr∗(F1)⊗ F2.

Now, suppose that F = Fqr (V,A). Then we have

πr∗(F ) = Fq(V ⊗ Cr, πr∗A),

and thus

(πr∗(F ))∗ = Fq(V ⊗ Cr, (πr∗A)−1),

and the associated endomorphism is defined by

(πr∗A)−1(v ⊗ ei) =

{
v ⊗ ei−1 if i ∈ {2, 3, ..., r}
A−1v ⊗ er if i = 1.
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On the other hand, F ∗ = Fqr (V,A
−1), and πr∗(F

∗) = Fq(V ⊗ Cr, πr∗(A−1)).
And the associated endomorphism is defined by

πr∗(A
−1)(v ⊗ ei) =

{
v ⊗ ei+1 if i ∈ {1, 2, ..., r − 1}
A−1v ⊗ e1 if i = r.

Now, we can define a map σ′ : V ⊗ Cr → V ⊗ Cr by σ′(v ⊗ ei) = v ⊗ er−i+1.
Then one can check that the following diagram commutes:

V ⊗ Cr σ′ //

(πr∗A)−1

��

V ⊗ Cr

πr∗(A
−1)

��
V ⊗ Cr σ′ // V ⊗ Cr

Therefore, Fq(V ⊗ Cr, (πr∗A)−1) ∼= Fq(V ⊗ Cr, πr∗(A−1)), and πr∗(F ) ∼= πr∗(F
∗).

The last equation can be easily checked since H0 just means taking global sec-
tions. �

Remark 2.20. The pull-back functor commutes with tensor product and duality
since one can easily verify that π∗r is the usually defined pull-back of vector bundles.

Corollary 2.21. We have the following two isomorphisms, which show the ad-
jointness of πr∗ and π∗r :

Hom(F1, πr∗F2) ∼= Hom(π∗rF1, F2),

Hom(πr∗F1, F2) ∼= Hom(F1, π
∗
rF2).

Proof.

Hom(F1, πr∗F2) ∼= H0(Eq, F
∗
1 ⊗ πr∗F2)

∼= H0(Eq, πr∗(π
∗
rF
∗
1 ⊗ F2))

∼= H0(Eqr , π
∗
rF
∗
1 ⊗ F2)

∼= H0(Eqr , (π
∗
rF1)∗ ⊗ F2)

∼= Hom(π∗rF1, F2)

and

Hom(πr∗F1, F2) ∼= H0(Eq, (πr∗F1)∗ ⊗ F2)

∼= H0(Eq, πr∗(F
∗
1 )⊗ F2)

∼= H0(Eq, πr∗(F
∗
1 ⊗ π∗rF2))

∼= H0(Eqr , F
∗
1 ⊗ π∗rF2)

∼= Hom(F1, π
∗
rF2)

�

The following three useful propositions and their proofs can be found at the end
of section 2 of Polishchuk and Zaslow’s paper [7], so we will omit the proofs here.

Proposition 2.22. Every indecomposable bundle on Eq is isomorphic to a bundle
of the form πr∗(Lqr (ϕ) ⊗ Fqr (Ck, expN)), where N is a constant indecomposable

nilpotent matrix, ϕ = t∗Xϕ0 · ϕn−1
0 for some n ∈ Z and x ∈ C∗, and tx represents

the translation by x.
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Proposition 2.23. Let ϕ = t∗xϕ0 · ϕn−1
0 , with n > 0. Then for any nilpotent

endomorphism N ∈ End(V ), there is a canonical isomorphism

Vϕ,N : H0(L(ϕ))⊗ V → H0(L(ϕ)⊗ F (V, expN)).

And the map Vϕ,N is defined by

Vϕ,N (f ⊗ v) = exp(DN/n)f · v =

∞∑
k=0

1

k!
Dkf ·Nkv,

where D = −u d
du = − 1

2πi
d
dz .

Proposition 2.24. Let ϕ1 = t∗xϕ0 · ϕn1−1
0 , ϕ2 = t∗xϕ0 · ϕn2−1

0 , and let Ni ∈
End(Vi), i = 1, 2, be nilpotent endomorphisms. Then

Vϕ1,N1(f1 ⊗ v1) ◦ Vϕ2,N2(f2 ⊗ v2)

= Vϕ1ϕ2,N1+N2

[
exp

(
n2N1 − n1N2

n1 + n2

D

n1

)
(f1) exp

(
n1N2 − n2N1

n1 + n2

D

n2

)
(f2)(v1 ⊗ v2)

]
,

where N1, N2 denote N1 ⊗ 1 and 1⊗N2 respectively, on the right hand side, and ◦
denotes the natural composition of sections

H0(L(ϕ1)⊗ F (V1, expN1))⊗H0(L(ϕ2)⊗ F (V2, expN2))→
H0(L(ϕ1ϕ2)⊗ F (V1 ⊗ V2, exp(N1 ⊗ 1 + 1⊗N2))).

Recalling that exp d
dz is the generator of translations, we may write formally

exp

(
N · d

dz

)
f(z) = f (z +N) .

In this notation, the above formula becomes

V(f1 ⊗ v1) ◦ V(f2 ⊗ v2) = V
(
f1(z +

n1N2 − n2N1

2πin1(n1 + n2)
)f2(z +

n2N1 − n1N2

2πin2(n1 + n2)
)(v1 ⊗ v2)

)
= V

(
f1(ue

n1N2−n2N1
n1(n1+n2) )f2(ue

n2N1−n1N2
n2(n1+n2) )(v1 ⊗ v2)

)
.

It is also important to notice that we can write down explicitly the morphism
space between two vector bundles. To be specific, we shall need the following
lemma:

Lemma 2.25. If A ∈ GL(V ), then

H0(Eτ , Fτ (V,A)) = ker(1v −A).

In particular, we have

Hom(F (V1, A1), F (V2, A2)) = {f ∈ Hom(V1, V2)|f ◦A1 = A2 ◦ f}.

Proof. The first equation follows easily from the fact that holomorphic sections of
a flat vector bundle are covariantly constant. As for the second equation, we have

Hom(F (V1, A1), F (V2, A2)) = H0(Eτ , F (V ∗1 ⊗ V2, A)),

where A ∈ GL(V ∗1 ⊗ V2) = GL(Hom(V1, V2)) is defined by A(f) = A2 ◦ f ◦A−1
1 , for

all f ∈ Hom(V1, V2). Thus, combining it with the first equation, we have:

Hom(F (V1, A1), F (V2, A2)) = ker(1V ∗1 ⊗V2 −A)

= {f ∈ Hom(V1, V2)|f ◦A1 = A2 ◦ f}
�
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3. Fukaya Category

Definition 3.1. A complex manifold M of dimension n is a Calabi-Yau manifold
if M is a compact Kähler manifold with a nowhere-vanishing holomorphic top form
Ω, which is called the Calabi-Yau form of M .

Now, let M̃ be a Calabi-Yau manifold . We denote its Kähler form to be k. Then,

by Yau’s Theorem, M̃ admits a unique Ricci-flat Kähler metric, which will also be
denoted by k. After that, we choose a closed 2-form b and define the complexified
Kähler form ω to be ω = b+ ik. We are interested in the image of ω in the Kähler
moduli space

MKähler(M̃, J) = (H2(M̃,R)⊕ iK(M̃, J))/H2(M̃,R),

where J is the complex structure of M and

K(M̃, J) = {[ω] ∈ H2(M̃,R)| ω is Kähler}

is called the Kähler cone of M̃ .
In the case where M̃ is a torus, we can compute H2(M̃,R) by Poincare duality:

H2(M̃,R) ∼= H0(M̃,R) ∼= R. Thus, we can identify the Kähler form (or the corre-
sponding flat metric) k with a positive real number (it is positive because k induces
a metric that is positively definite). Meanwhile, by the same reason, we can also
identify b with a real number. Therefore, the complexified Kähler form ω can be
identified with an element τ in the upper half-plane. Recall that we have defined
the elliptic curve Eτ with the lattice parameter τ . Now we can form Eτ by taking
τ to be the complexified Kähler form on the torus. Then Eτ turns out to be the
mirror manifold of the elliptic curve Eτ . In this section, we will discuss its Fukaya
category F0(Eτ ) and enlarge this category to an additive category FK0(Eτ ). And
in the next section, we will construct an equivalence between Db(Coh(Eτ )) and
FK0(Eτ ) following Polishchuk and Zaslow’s paper [7] and Kreussler’s paper [3].

First, we will define a general A∞-category.

Definition 3.2. An A∞-category F contains a class of objects Ob(F). And for
any X,Y ∈ F , their morphism space Hom(X,Y ) is a Z-graded abelian group.
Moreover, there are a series of composition maps:

mk : Hom(X1, X2)⊗Hom(X2, X3)⊗ ...⊗Hom(Xk, Xk+1)→ Hom(X1, Xk+1),

k ≥ 1, of degree 2− k, satisfying the condition

n∑
r=1

n−r+1∑
s=1

(−1)εmn−r+1(a1⊗ ...⊗ as−1⊗mr(as⊗ ...⊗ as+r−1)⊗ as+r ⊗ ...⊗ an) = 0

for all n ≥ 1, where ε = (r+1)s+r(n+
∑s−1
j=1 deg(aj)). All these composition maps

and the conditions they satisfy form what is called A∞-structure. In particular, we
call the conditions they satisfy the A∞-relation.

Remark 3.3. We have the following remarks:

a) An A∞-category with one object is called an A∞-algebra.
b) When we take n = 1 in the A∞-relation, we get a degree 1 map

m1 : Hom(X1, X2)→ Hom(X1, X2)
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such that (m1)2 = 0, making the space Hom(X1, X2) into a chain complex.
I will use d to denote m1 in the following article.

c) When we take n = 2 in the A∞-relation, we find that the degree 0 map

m2 : Hom(X1, X2)⊗Hom(X2, X3)→ Hom(X1, X3)

turns out to be a morphism of complexes and induces a product on coho-
mologies.

d) When we take n = 3 in the A∞-relation, we find that the degree −1 map

m3 : Hom(X1, X2)⊗Hom(X2, X3)⊗Hom(X3, X4)→ Hom(X1, X4))

serves as a homotopy between m2(·,m2(·, ·)) and m2(m2(·, ·), ·). Therefore,
the product on cohomologies induced by m2 is associative.

Now, since the composition map m2 is not necessarily associative (it is merely
associative at the level of cohomologies), the A∞-category F is not necessarily a
real category. However, we can define a real category F0 from F by replacing all
morphism spaces by their H0.

Definition 3.4. Let F be an A∞-category. Then we can define a true category
F0. The objects of F0 is the same as F . The morphism spaces are defined by
HomF0(X,Y ) = H0(HomF (X,Y )). Here, we recall that the degree 1 map d = m1

satisfies d2 = 0 and makes the morphism space HomF (X,Y ) into a chain complex.

Now, we are able to define the Fukaya category F(M̃) for a Calabi-Yau manifold

M̃ . To define the objects of this category, we have to introduce the notion of
special Lagrangian submanifolds of a Calabi-Yau manifold. The definition of special
Lagrangian submanifolds and related properties can be found in Appendix A.

Objects: The objects of F(M̃) are special Lagrangian submanifolds of M̃ en-
dowed with flat bundles with monodromies having eigenvalues of unit modulus.
Apart from these, we also have an additional structure that will be discussed later.
To summarize, an object U is a pair U = (L, α, E) where L is a special Lagrangian
submanifold, E is a local system on L whose monodromy has eigenvalues with unit
modulus (we will explain this later), and α is a real number that represents an addi-
tional structure (which will also be discussed later). This additional structure will

allow us to define a shift functor in the Fukaya category F(M̃) and to calculate the
Maslov index, which is used to introduce a Z-grading on the spaces of morphisms
in this category.

Remark 3.5. According to appendix A, in the case where M̃ is a torus M̃ ∼= R2/Z2,

a special Lagrangian submanifold L of M̃ is the image of a line in R2 with rational

slope under the quotient map R2 → M̃ .

Remark 3.6. Here, when we define E to be a local system, we mean that it is a
locally constant sheaf of complex vector spaces, or equivalently, a complex vector
bundle equipped with a flat connection.

Over a contractible space, the flatness of the connection allows us to define a
trivialization by parallel transport. Thus, for any flat rank n bundle over X, we
have a well-defined map ϕ : π1(X,x0)→ Aut(Cn), which is defined by considering
the parallel transport along any loop based at x0. Moreover, one can prove that the
flat bundle and the flat connection are determined by the map ϕ. In other words, Ei
can be represented as a representation of the fundamental group of the underlying
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Lagrangian. In particular, when X is a special Lagrangian manifold of an elliptic
curve, it is isomorphic to the circle S1. And a representation of the fundamental
group π1(X) ∼= π1(S1) ∼= Z is given by a vector space V and an automorphism
M ∈ GL(V ). We use (L, α,M) to denote the object defined in this way. We can
change the orientation of X and replace M by M−1, then we get an isomorphic local
system on X. Moreover, the automorphisms that are conjugate to M also define
isomorphic local systems. We call M the monodromy of the local system. When we
require E ’s monodromy to have eigenvalues of unit modulus in the definition of the
objects U = (L, α, E), it means that we only consider those M whose eigenvalues
have modulus one.

Now, let us restrict ourselves to line bundles on X. Then ϕ : π1(X,x0)→ Aut(C)
is just a map form Z to C. So we can determine this map by the value of the gen-
erator of π1(X,x0). In other words, we can specify a line bundle E over the elliptic
curve X simply by its monodromy around the circle, which is a complex phase
exp(2πiβ) with β ∈ R/Z.

The additional structure needed in the definition of the objects is the following.
The embedding of a Lagrangian submanifold L into a Calabi-Yau manifold M
induces a map from L to V , where V is a fiber bundle over M with fiber at x equal
to the space of Lagrangian planes of TxM (L being Lagrangian implies that TxL
is a Lagrangian plane of TxM). We call this map from L to V the Gauss map.

Now, we consider another fiber bundle Ṽ over M . The fiber of Ṽ at x ∈ M is
the universal cover of the fiber of V at x. The additional structure for a special

Lagrangian submanifold L is a lift of the Gauss map to Ṽ .
In our case where M is an elliptic curve and L is the image of a line, the space of

Lagrangian planes of the tangent space is isomorpohic to S1. So V is a S1-bundle

over M and Ṽ is a R-bundle over M . Now, the Gauss map is a constant map of
value equal to the intersection point of the line and the unit circle in C, which can
be viewed as a complex phase with rational tangency. We define this phase by

exp(iπα). Then, to define a lift of the Gauss map to Ṽ , we only have to choose α
itself. And we will use α ∈ R to represent the additional structure in our case.

Shift functor: We can define a shift functor on the objects of a Fukaya cate-

gory F(M̃) which corresponds to the natural shift functor in the bounded derived
category of coherent sheaves Db(Coh(M)). The shift functor on objects is defined
by:

(L, α, E)[1] := (L, α+ 1, E).

Morphisms: Let Ui = (Li, αi, Ei), i = 1, 2 be two objects in F 0(M). When
Li 6= Lj , the morphism space Hom(Ui,Uj) is defined by

Hom(Ui,Uj) =
⊕

x∈Li∩Lj

Hom(Ei|x, Ej |x),

where the “Hom” means the space of homomorphisms of vector spaces.

We can also define a Z-grading of Hom(Ui,Uj) using Maslov-Viterbo index, which
is given by

µ(x) = −[αj − αi]
in our case. Here, αi and αj are the additional structures of Ui and Uj .
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Now, we assume that the lines Li and Lj go through the origin. We also assume
that tan(αi) = q/p and tan(αj) = s/r, where (p, q) and (s, r) are both relatively
prime pairs. One can easily verify that the intersection points of Li and Lj are
those points of the form(

pk

|ps− qr|
,

qk

|ps− qr|

)
, k ∈ Z/|ps− qr|Z.

In particular, there are |ps− qr| non-equivalent intersection points.

A∞-Structure: The A∞-structure on a Fukaya category F(M̃) is given by
summing over holomorphic maps from the open unit disc D in C to the elliptic
curve. Moreover, these maps should satisfy the boundary condition, and the sum
of the maps should be conducted up to projective equivalence (we will define this
equivalence after introducing the boundary condition). Now, assume that Li, i =
1, 2, ..., k+1 are different from each other. Then an element in Hom(Uj ,Uj+1) can be
represented as a finite sum of elements of the form uj = tj ·aj , where aj ∈ Lj∩Lj+1

and tj ∈ Hom(Ej |aj , Ej+1|aj ). And we can define the A∞-structure as follows:

mk(u1 ⊗ ...⊗ uk) =
∑

ak+1∈L1∩Lk+1

C(u1, ..., uk, ak+1) · ak+1,

where the coefficients C are defined by

C(u1, ..., uk, ak+1) =
∑
φ

±e2πi
∫
φ∗ω · Pe

∮
φ∗β .

Here, the sum is over holomorphic maps φ : D → M that satisfy the following
boundary condition: there are k + 1 points pj = e2πiγj ∈ ∂D such that

φ(pj) = aj and φ(e2πiγ) ∈ Lj , ∀γ ∈ (γj−1, γj).

Here, ω is the complexified Kähler form ω = b+ ik, and β is the flat connection of
the vector bundles. And the sum is conducted up to projective equivalence. Here,
we define two maps φ and φ′ satisfying the boundary condition to be projective
equivalence if and only if there exists a hollomorphic automorphism ρ : D → D
such that ρ(pj) = p′j ,∀1 ≤ j ≤ k+ 1 and φ = φ′ ◦ ρ. One can easily check that this
defines an equivalence relation. Next, we will explain what these two integrations∫
φ∗ω and

∮
φ∗β in the coefficient C mean. Obviously, the first integration

∫
φ∗ω is

just the symplectic volume of the disc D with respect to the symplectic form φ∗ω.
Now, I will explain what the second integration

∮
φ∗β means. In fact, the second

integration is defined by composing the integrations on every curve of ∂D divided
by the points pj :

Pe
∮
φ∗ω = Pe

∫ γk+1
γk

βkdγ · tk · Pe
∫ γk
γk−1

βk−1dγ · tk−1 · ... · t1 · Pe
∫ γ1
γk+1

β1dγ
.

Moreover, the integration
∫ γi+1

γi
βidγ can be computed as follows. In a local trivi-

alization, the connection βi can be represented as βi = d+N where N is a ni × ni
matrix of one forms (ni is the rank of the vector bundle Ei). The intersection of
the curve φ([γi, γi+1]) and the local trivialization gives a local trivialization of the
curve. I denote this local trivialization of the curve by f : [0, 1]→M . Now we can
integrate the matrix N along f and get a new matrix. We can view this matrix as
a linear isomorphism between the fibers at f(0) and f(1). Now we can divide the
curve φ([γi, γi+1]) into finite segments, and we repeat the process of integration on
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every segment. Then we get finitely many isomorphisms between the fibers at ad-
jacent endpoints. We compose these isomorphisms to get an isomorphism between
the fibers at φ(γi) and φ(γi+1). Finally, we take the exponential of this isomor-
phism, resulting in a linear map from Ei+1|ai to Ei+1|ai+1

. Since ti is a linear map

from Ei|ai to Ei+1|ai , the definition of Pe
∮
φ∗ω makes sense when the formula

Pe
∮
φ∗ω = Pe

∫ γk+1
γk

βkdγ · tk · Pe
∫ γk
γk−1

βk−1dγ · tk−1 · ... · t1 · Pe
∫ γ1
γk+1

β1dγ
.

is read from right to left. And Pe
∮
φ∗ω is an element of Hom(E1|ak+1

, Ek+1|ak+1
).

There is also an alternative interpretation of the integration of the connection
from the geometric perspective. Since the connection βi is flat, the parallel trans-
port between any two points of the curve φ([γi, γi+1]) is well defined, i.e., it is
independent of the choice of the path connecting these two points. In particu-
lar, the parallel transport from the point φ(γi) to φ(γi+1) gives us an element in
Hom(Ei+1|ai , Ei+1|ai+1

). This element should equal to the element
∫ γi+1

γi
βi+1dγ de-

fined above using integration of the matrix. In fact, this equivalence reveals the
idea that “connection is the derivative of parallel transport.”

Fact 3.7. The compositions defined above satisfy the A∞-relation, making F(M)
into an A∞-category. F(M) is called the Fukaya category of M .

However, as I have mentioned in the beginning of this section, the Fukaya cate-
gory F(M) is not a real category because the composition mapm2 is not associative.
Instead, we can define a real category F0(M) by taking the 0-cohomology of F(M).
In our case, M is an elliptic curve, and one can check that m1 = d = 0. So the
0-cohomology is just the zero-degree part of the morphism groups. Recalling that
m2 is associative at the level of cohomologies, we know that m2 is truly associative
at the level of the original groups as well. Moreover, the higher m’s are also zero
in F(M). And the equivalence that I am going to prove is between Db(Coh(Eτ ))
and FK0(Eτ ), where Eτ is the mirror manifold of Eτ , and FK0(Eτ ) is constructed
from the Fukaya category F0(Eτ ) by adding formal finite direct sums. We will give
the explicit definition of FK0(Eτ ) later.

Since the morphism space in F0(M) is just the zero-graded part of the mor-
phism space in F(M) and the grading is given by −[αj − αi], we can write down
explicitly the morphism spaces in F0(M): when Li 6= Lj , the morphism space
HomF0(M)(Ui,Uj) is defined by

HomF0(M)(Ui,Uj) =


0 if αj − αi /∈ [0, 1);⊕
x∈Li∩Lj

Hom(Ei|x, Ej |x) if αj − αi ∈ [0, 1)

and when Li = Lj , we know that αj − αi ∈ Z and we define

HomF0(M)(Ui,Uj) =


0 if αj − αi /∈ {0, 1};
H0(Li,Hom(Ei, Ej)) if αj = αi;

H1(Li,Hom(Ei, Ej)) if αj = αi + 1.

Here, the “Hom” in the former case is the space of homomorphisms of vector spaces,
and the “Hom” in the latter case is the sheaf of homomorphisms of local systems
(which are regarded as locally constant sheaves of complex vector spaces).
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Let me explain the latter Hom more explicitly. We can represent Ei and Ej by
two automorphisms Mi ∈ GL(Vi) and Mj ∈ GL(Vj). Then one can easily check
that the resulting local system Hom(Ei, Ej) corresponds to the automorphism M

in V = Hom(Vi, Vj), where M is defined by M(f) = Mj ◦ f ◦M−1
i for f ∈ V .

Moreover, since Li ∼= S1, we can compute the sheaf cohomology above. In fact,
one can compute that

H0(Li,M) ∼= ker(M − 1V ) ∼= {f ∈ Hom(Vi, Vj)|Mj ◦ f = f ◦Mi}

and

H1(Li,M) ∼= coker(M − 1V ) ∼= Hom(Vi, Vj)/Mj ◦Hom(Vi, Vj) ◦M−1
i .

Now, since ker(M − 1V )∗ ∼= coker(tM − 1V ) = coker(tM−1 − 1V ), we get a canon-
ical isomorphism H0(Li,M)∗ ∼= H1(Li,M∨). Here, M∨ is the dual local system,
which is given by the automorphism tM−1. Combining this with the definition of
morphism spaces, we get the following “Symplectic Serre Duality:”

Lemma 3.8 (Compare to Serre Duality). Let (Li, αi, Ei) and (Lj , αj , Ej) be objects
in F0(M). Then there exists a canonical isomorphism

Hom((Li, αi, Ei), (Lj , αj , Ej)[1]) ∼= Hom((Lj , αj , Ej), (Li, αi, Ei))∗.

Now we define the composition in F0(M).
Let (Li, αi, Ei), i = 1, 2, 3 be three objects in F0(M). We will use Λi to denote

(Li, αi, Ei). Let u ∈ Hom(Λ1,Λ2), v ∈ Hom(Λ2,Λ3) be two non-zero morphisms in
F0(M). Then we have, by definition, α1 ≤ α2 ≤ α3, α2 ≤ α1 + 1 and α3 ≤ α2 + 1.
To define v ◦ u, we have to consider the following different cases.

Case 1. α3 > α1 + 1.
Then Hom(Λ1,Λ3) = 0. So we define v ◦ u = 0.
Case 2. α1 < α2 < α3 < α1 + 1.
In this case, we know that the Li are different from each other. And the definition

is exactly what we have discussed before when we define the A∞-structure of F(M).

If we are not in Case 1 or Case 2, then we have α1 ≤ α2 ≤ α3 ≤ α1 + 1 and at
least one of these inequalities is actually equal. The case where α3 = α1 + 1 will
be discussed in Case 3. And the remaining cases will be discussed in Case 4 and
Case 5.

Case 3. α1 ≤ α2 ≤ α3 = α1 + 1.
If α1 < α2 < α3 = α1 + 1, then we know that the composition map

Hom(Λ1,Λ2)⊗Hom(Λ2,Λ3)→ Hom(Λ1,Λ3)

is equivalent to

Hom(Λ1,Λ2)⊗Hom(Λ3[−1],Λ2)∗ → Hom(Λ3[−1],Λ1)∗,

and is equivalent to

Hom(Λ3[−1],Λ1)⊗Hom(Λ1,Λ2)→ Hom(Λ3[−1],Λ2).

Here, the first equivalence comes from symplectic Serre duality: Hom(A,B[1]) ∼=
Hom(B,A)∗, and the second equivalence comes from the canonical isomorphism
Hom(V ⊗W ∗, S∗) ∼= Hom(S⊗V,W ). Now we have α3−1 = α1 < α2 < (α3−1)+1,
and this case can be reduced to Case 4.
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If α1 < α2 = α3 = α1 +1 or α1 = α2 < α3 = α1 +1, then we have L1 = L2 = L3.
Both cases can be reduced to Case 5 by symplectic Serre duality and the canonical
isomorphism Hom(V ⊗W ∗, S∗) ∼= Hom(S ⊗ V,W ).

Case 4. Precisely two of the αk coincides and α1 + 1 > α3.
If α1 = α2 < α3, then we have L1 = L2 6= L3. And we have

Hom((L1, α1, E1), (L2, α2, E2)) = H0(L1,Hom(E1, E2))

and

Hom((L2, α2, E2), (L3, α3, E3)) =
⊕

x∈L2∩L3

Hom(E2|x, E3|x)

and

Hom((L1, α1, E1), (L3, α3, E3)) =
⊕

x∈L1∩L3

Hom(E1|x, E3|x).

Any ϕ ∈ Hom((L1, α1, E1), (L2, α2, E2)) = H0(L1,Hom(E1, E2)) induces maps on
stalks ϕx : E1|x → E2|x. Let (fx)x ∈ Hom((L2, α2, E2), (L3, α3, E3)), where x ∈
L2 ∩ L3 and fx ∈ Hom(E2|x, E3|x). Then we define the composition by

ϕ⊗ (fx)x 7→ (fx ◦ ϕx)x, x ∈ L2 ∩ L3 = L1 ∩ L3.

Here, fx ◦ ϕx is a map in Hom(E1|x, E2|x) while x runs through L2 ∩ L3 = L1 ∩
L3. Therefore, (fx ◦ ϕx)x is indeed an element in Hom((L1, α1, E1), (L3, α3, E3)).
Similarly, one can define the composition in the case where α1 < α2 = α3.

Case 5. α1 = α2 = α3 < α1 + 1.
In this case, we have L1 = L2 = L3, and the composition in F0(M) is just the

composition of homomorphisms between local systems.

Now we have finished the definition of the category F0(M). However, it is
impossible to define an equivalence between Db(Coh(Eτ )) and F0(Eτ ), where Eτ
and Eτ are mirror elliptic curves. Since a derived category is always additive, it
contains, in particular, finite direct sums and a zero object. However, the Fukaya
category F0(M) is merely an Ab-category (or a preadditive category), which means
that it does not necessarily contain all finite direct sums. In fact, we can only define
the direct sum for a pair of objects with the same underlying Lagrangians and the
same α by

(L, α,M1)⊕ (L, α,M2) := (L, α,M1 ⊕M2).

Therefore, to construct an equivalence between Db(Coh(Eτ )), which is additive,
and F0(Eτ ), which is merely preadditive, we have to allow the formal direct sums in
F0(Eτ ). By adding formal finite direct sums in F0(Eτ ), we get the desired abelian
category FK0(Eτ ), which is called the Fukaya-Kontsevich category. In fact, there
is a general construction to enlarge an Ab-category to an additive category. This
construction can be found in Kreussler’s paper [3].

Similar to the isogeny πr and the associated push-forward πr∗ and pull-back π∗r
functors, we introduce a map pr and define the associated functors in the Fukaya
side. The map pr from the tours Erτ to Eτ is defined by pr(x, y) = (rx, y). The
push-forward and pull-back functors associated to pr are defined as follows.

Push-forward pr∗
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Let (L, α, E) be an object in FK0(Eτ ). We define

pr∗((L, α, E)) := (pr(L), α′, pr∗E),

where α′ is the unique possible value (it is determined by the slope of pr(L) up
to an integer) such that it lies in the same interval (k − 1

2 , k + 1
2 ] with k ∈ Z as

α lies, and pr∗E is the direct image of the local system E . If we represent E by
a matrix M ∈ GL(V ), then pr∗E is represented by pr∗M ∈ GL(V ⊕d), where d
is the degree of the map pr. (Notice that pr is a map from S1 to S1, so we can
define its degree by the induced map on π1(S1) ∼= Z), and pr∗M is defined by
pr∗M(v1, v2, ..., vd) = (v2, v3, ...vd,Mv1). (One can compare this to the definition
of πr∗A in the definition of πr∗.)

Next, we will define the functor for morphisms. Let (L1, α1, E1) and (L2, α2, E2)
be two objects in FK0(Eτ ).

Case 1. pr(L1) 6= pr(L2) : In this case, we have

Hom((L1, α1, E1), (L2, α2, E2)) =
⊕

x∈L1∩L2

Hom(E1|x, E2|x),

and

Hom(pr∗((L1, α1, E1)), pr∗((L2, α2, E2))) =
⊕

y∈pr(L1)∩pr(L2)

Hom(pr∗(E1)|y, pr∗(E2)|y).

Notice that pr∗(E)|y =
⊕

x∈L,pr(x)=y E|x, thus we can define the functor pr∗ in an

obvious way.
Case 2. L1 = L2: In this case, we have

Hom((L1, α1, E1), (L2, α2, E2)) = Hv(L1,Hom(E1, E2))

for some v ∈ {0, 1}, and

Hom(pr∗((L1, α1, E1)), pr∗((L2, α2, E2))) = Hv(pr(L1),Hom(pr∗(E1), pr∗(E2))).

Then we can use the canonical homomorphism of sheaves

pr∗Hom(E1, E2)→ Hom(pr∗(E1), pr∗(E2))

and the fact that pr is a local homomorphism to obtain the required map.
Case 3. L1 6= L2 but pr(L1) = pr(L2): In this case, L1 ∩ L2 = ∅. And the map

pr∗ is just zero.

Now, we have to verify that pr∗ defined above is indeed a functor, i.e., we have
to verify the compatibility of pr∗ with compositions. Let (Lk, αk, Ek), k ∈ {1, 2, 3}
be three objects in FK0(Erτ ). If at least two of these three objects have the same
underlying Lagrangian submanifold, then the compatibility can be easily verified
from the definition. If Lk, k ∈ 1, 2, 3 are differ from each other, then we have to
compare two sums. Recall that the composition in Eτ sums over φτ : D → Eτ ,
and the composition in Erτ sums over φrτ : D → Erτ . If we lift both maps to R2,
then their images are triangles with Euclidian areas Aφτ and Aφrτ . Notice that
the map pr defines a bijection between these triangles and that Aφτ = rAφrτ , so
we can verify the compatibility easily. Next, we will define the pull-back functor p∗r .

Pull-back p∗r
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Let (L, α, E) be an object in FK0(Eτ ). Assume that the preimage p−1
r (L) con-

sists of n connected components L(1),L(2), ...,L(n), i.e., p−1
r (L) =

∐n
k=1 L(k). Then

the restrictions p
(k)
r : L(k) → L are of degree d := r/n. And we define

p∗r(L, α, E) :=

n⊕
k=1

(L(k), α′, (p(k)
r )∗E),

where α′ is the unique possible value such that it lies in the same interval (k −
1
2 , k + 1

2 ] with k ∈ Z as α is, and (p
(k)
r )∗E is the pull-back of a local system. If the

local system E is represented by a matrix M ∈ GL(V ), then (p
(k)
r )∗E is represented

by Md ∈ GL(V ). The definition of p∗r also tells us why we have to consider the
additive category FK0(E) instead of F 0(E). One observes that the preimage of a
line in the torus may consist of several disconnected lines. Since these lines can be
transformed to each other by translations, there is no line that is more important
than the others. Thus, we have to contain all of these lines in the pull-back object.
In other words, we have to allow finite direct sums in our category, which leads to
the definition of the category FK0(E).

Next, we will define p∗r on morphisms.
Case 1. L1 = L2 : In this case, we have

Hom((L1, α1, E1), (L2, α2, E2)) = Hv(L1,Hom(E1, E2)),

for some v ∈ {0, 1}, and

Hom(p∗r((L1, α1, E1)), p∗r((L2, α2, E2))) =

n⊕
k=1

Hv(L(k)
1 ,Hom((p(k)

r )∗E1, (p(k)
r )∗E2)).

Notice that there is a canonical homomorphism

Hom((p(k)
r )∗E1, (p(k)

r )∗E2)→ (p(k)
r )∗Hom(E1, E2).

Thus the required map p∗r can be constructed by taking cohomology.
Case 2. L1 6= L2 : In this case, we have

Hom((L1, α1, E1), (L2, α2, E2)) =
⊕

x∈L1∩L2

Hom(E1|x, E2|x),

and

Hom(p∗r((L1, α1, E1)), p∗r((L2, α2, E2))) =
⊕

y∈p−1
r (L1)∩p−1

r (L2)

Hom(E1|pr(y), E2|pr(y)),

where the second equation comes from (p
(k)
r )∗E|y ∼= E|pr(y), ∀k ∈ {1, 2, ..., n}. Now

assume that f ∈ Hom((L1, α1, E1), (L2, α2, E2)) has components fx ∈ Hom(E1|x, E2|x)
with x ∈ L1 ∩ L2. We define the component (p∗rf)y of p∗rf corresponding to
y ∈ p−1

r L1 ∩ p−1
r L2 by

(p∗rf)y = fpr(y) ∈ Hom(E1|pr(y), E2|pr(y)).

One can check that p∗r defined above is indeed a functor by proving its compatibility
with composition. The proof is similar to that of pr∗, so we will omit it here.

Apart from the pull-back and push-forward functors of pr defined above, we also
need the pull-back and push-forward functor of a translation. A translation on
Eτ is a map t : Eτ → Eτ of the form t(x, y) = (x − x0, y − y0) for some fixed
(x0, y0) in R2. We define its pull-back by t∗(L, α, E) := (t−1(L), α, t∗E). Since t is
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an isomorphism, we can define t∗ on morphisms in an obvious way. Moreover, one
can easily verify that t∗ is indeed a functor, i.e., it is compatible with composition.
We can define the push-forward functor t∗ in a similar way.

Similar to the case of π∗r and πr∗, we have the following lemma about adjointness
of p∗r and pr∗:

Lemma 3.9. Let pr : Erτ → Eτ be as above and t : Eτ → Eτ be a translation
of the form t(x, y) = (x + m

n , y), with m,n ∈ Z. Define p = t ◦ pr : Erτ → Eτ .

Let (L1, α1, E1) and (L2, α2, E2) be objects in FK0(Eτ ) and FK0(Erτ ) respectively.
Then we have following functorial isomorphisms:

Hom(p∗(L1, α1, E1), (L2, α2, E2)) ∼= Hom((L1, α1, E1), p∗(L2, α2, E2)),

and

Hom(p∗(L1, α1, E1), (L2, α2, E2)) ∼= Hom((L1, α1, E1), p∗(L2, α2, E2))

The detailed proof of this lemma can be found in Kreussler’s paper [3], and we
will not repeat it here.

4. The Equivalence

In this section, we will construct a functor φτ from Db(Coh(Eτ )) to FK0(Eτ )
and prove the following main theorem:

Main Theorem: There is a functor φτ : Db(Coh(Eτ )) → FK0(Eτ ) and it is
an equivalence of additive categories that is compatible with the shift functors.

First, we have to define φτ on objects of Db(Coh(Eτ )). Recall that any element
of Db(Coh(Eτ )) is a direct sum of some elements with the form F [n], where F is
a vector bundle or a skyscraper sheaf. Thus, we only have to define φτ for objects
of the form F = F [0] ∈ Db(Coh(Eτ )). Then we can extend the definition of φτ to
objects of the form F [n] by shift functors, and then to a general object by taking
finite direct sums in both categories.

To define φτ on any vector bundle or skyscraper sheaf, we first define it on
objects of the form L(ϕ) ⊗ F (V, exp(N)), where ϕ = t∗aτ+bϕ0 · ϕn−1

0 and V is a
finite dimensional vector space andN ∈ End(V ) is a cyclic nilpotent endomorphism.
Here, we call a nilpotent endomorphism N cyclic, if the corresponding C[N ]-module
structure on V is cyclic. Moreover, the following lemma tells us that N is cyclic if
and only if dim kerN = 1.

Lemma 4.1. N is cyclic if and only if dim kerN = 1.

Proof. Consider the minimal polynomial P of N . Since N is nilpotent, P (x) = xr

for some r, where r is determined by Nr−1 6= 0 = Nr. Now, we assume that N is
cyclic, so that there exists a generator w ∈ V such that V = C[N ] ·w. Now, I claim
that {w,Nw, ..., Nr−1w} is a basis of V . It clearly generates V since V = C[N ] ·w
and Nrw = 0. So we only have to verify that they are linearly independent. Assume
that a0w+ a1Nw+ ...+ ar−1N

r−1w = 0. Then Q(N)w = 0, where the polynomial
Q is defined by Q(x) = a0 + a1x+ ...+ ar−1x

r−1. Using V = C[N ] · w once again,
we know that Q(N) · V = 0. So the minimal polynomial P should divide Q, which
is a contradiction. Therefore {w,Nw, ..., Nr−1w} is a basis of V . Consequently
r = dim(V ) and dim kerN = 1.

Conversely, assume that dim(V ) = n. Then dim kerN = 1 tells us that there is
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only one block in N ’s Jordan normal form. Thus Nn−1 6= 0 = Nn. Take w ∈ V
such that Nn−1w 6= 0, then w,Nw, ..., Nn−1w are linearly independent and form a
basis of V . Therefore V = C[N ] · w and N is cyclic. �

Back to the definition of φτ , we define

φτ (L(ϕ)⊗ F (V, exp(N))) = (L, α, E),

where L is defined by (a + t, (n − 1)a + nt), α is the unique possible real num-
ber satisfying α ∈ (− 1

2 ,
1
2 ], and E is a locally free sheaf represented by M =

exp(−2πib1V +N). Sometimes, we use the notation (L, α,M) instead of (L, α, E).
Next, we will define φτ for a general vector bundle F on Eτ . By Proposition

2.22, there exists a positive integer r and a function ϕ = t∗aτ+bϕ0 · ϕn−1
0 such that

F ∼= πr∗(L(ϕ)⊗ F (V, exp(N))). Then we define

φτ (F) = φτ (πr∗(L(ϕ)⊗ F (V, exp(N)))) := pr∗φrτ (L(ϕ)⊗ F (V, exp(N))).

Here, noticing that L(ϕ) ⊗ F (V, exp(N)) is a coherent sheaf over Erτ , we can use
φrτ to map it to an object in FK0(Erτ ). After that, we apply the push-forward
functor pr∗ to get an object in FK0(Eτ ), which is our definition of φτ (F).

To finish the definition of φτ on objects, we also need to define φτ for a skyscraper
sheaf. Following Polishchuk and Zaslow’s notation in their paper [7], we use A =
S(aτ+b, V,N) to represent a thickened skyscraper sheaf A. To be specific, for every
z0 ∈ C and a indecomposible nilpotent endomorphism N ∈ End(V ), we have the
corresponding coherent sheaf of C supported at z0. Namely, Orz0⊗V/(z−z0− N

2πi ),
where r = dimV is the smallest positive integer such that Nr = 0 (this is because
N is indecomposible). We denote by S(z0, V,N) the direct image of this sheaf on
Eτ . Using this notation, we have the following definition for A = S(aτ + b, V,N):

φτ (A) := (L, 1

2
, exp(2πib1V +N)).

Here, L is defined by (−a, t).

Now, to get a functor, we also have to define φτ for morphisms.
Notice that we have shift functors in both categories and that we can take finite

direct sums, thus we only have to define

φτ : HomDb(Coh(Eτ ))(A1, A2[n])→ HomFK0(Eτ )(φτ (A1), φτ (A2)[n]).

Since both sides vanish if n /∈ {0, 1}, we only have to define the map in case n = 0
and n = 1. Moreover, by using Serre duality

Hom(A1, A2[1]) ∼= Hom(A2, A1)∗

and

Hom(φτ (A1), φτ (A2)[1]) ∼= Hom(φτ (A2), φτ (A1))∗

in both sides, we only have to deal with the case when n = 0.

Step 1. We first define φτ for Ai = L(ϕi)⊗F (Vi, exp(Ni)), and we assume that
φτ (Ai) = (Li, αi,Mi).
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Case 1. We further assume that L1 6= L2. Then we have

HomDb(Coh(Eτ ))(A1, A2) = Hom(L(ϕ1)⊗ F (V1, exp(N1)), L(ϕ2)⊗ F (V2, exp(N2)))

= H0(Eτ , L(ϕ2ϕ
−1
1 )⊗ F (V ∗1 ⊗ V2, exp(N2 −N∗1 )))

∼= H0(Eτ , L(ϕ2ϕ
−1
1 ))⊗ V ∗1 ⊗ V2.

Here, the last isomorphism Vϕ2ϕ
−1
1 ,N2−N∗1

is given in Proposition 2.23, and we use

N2 −N∗1 to denote the endomorphism 1V ∗1 ⊗N2 −N∗1 ⊗ 1V ∗2 of V ∗1 ⊗ V2.

The degree of the line bundle L(ϕ2ϕ
−1
1 ) is n2−n1. Therefore, when n1 > n2, the

degree is negative and there are no holomorphic sections, i.e., Hom(A1, A2) = 0.
Moreover, Hom(φτ (A1), φτ (A2) also vanishes because α1 > α2. If n1 = n2, notice
that the only degree 0 line bundle that admits non-zero holomorphic sections is the
trivial bundle (or the structure sheaf), thus Hom(A1, A2) = 0 or L(ϕ1) ∼= L(ϕ2).
If it is the first case, then both morphism spaces are zero. If it is the second case,
then the problem reduces to homomorphisms of vector spaces. If n1 < n2, then

HomDb(Coh(Eτ ))(A1, A2) ∼= H0(Eτ , L(ϕ2ϕ
−1
1 ))⊗ V ∗1 ⊗ V2.

Moreover, one can compute that

ϕ2ϕ
−1
1 = t∗a1τ+b1ϕ0 · t∗a2τ+b2ϕ

−1
0 · ϕ

n2−n1
0 = t∗a12τ+b12(ϕn2−n1

0 ),

where

a12 =
a2 − a1

n2 − n1
and b12 =

b2 − b1
n2 − n1

.

Therefore, we have the standard basis of theta functions on H0(L(ϕ2ϕ
−1
1 )):

t∗a12τ+b12θ

[
k

n2 − n1
, 0

]
((n2 − n1)τ, (n2 − n1)z)

= θ

[
k

n2 − n1
, 0

]
((n2 − n1)τ, (n2 − n1)(z + a12τ + b12)),

k ∈ Z/(n2 − n1)Z. We use fk to denote this function. On the other hand, the
points of L1 ∩ L2 can easily be found from φτ to be

ek =

(
k + a2 − a1

n2 − n1
,
n1k + n1a2 − n2a1

n2 − n1

)
, k ∈ Z/(n2 − n1)Z.

Now we can define the map φτ by mapping fk to ek up to a constant. To be specific,
let T ∈ V ∗1 ⊗ V2, then we define

φτ (V(fk ⊗T )) = exp(−πiτa2
12(n2−n1)) exp[a12(N2−N∗1 − 2πi(n2−n1)b12)]T · ek.

Case 2. Now we deal with the case where L1 = L2. Under this assumption,
we know that n1 = n2 and a1 = a2. Therefore, L(ϕ2ϕ

−1
1 ) is of degree zero.

Because the trivial bundle is the only line bundle with nontrivial sections, we have
H0(L(ϕ2ϕ

−1
1 )) = 0 or ϕ1 = ϕ2. If ϕ1 6= ϕ2, then b1 6= b2 and there does not exist a

common eigenvalue of M1 = exp(−2πib11V1
+N1) and M2 = exp(−2πib21V2

+N2)
because of the lemma bellow. This tells us that Hom((L1, α1,M1)(L2, α2,M2)) = 0,
so the spaces of morphisms are zero on both sides.

Lemma 4.2. Let N be a nilpotent linear morphism of V and b be a real number.
Then M = exp(−2πib1V +N) only has the eigenvalue exp(−2πib).
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Proof. Since N is nilpotent, N only has the eigenvalue 0. So in N ’s Jordan normal
form J , its diagonal entries are all 0. Thus, exp(J) is a upper triangular matrix with
all its diagonal entries equal to 1, which tells us that exp(J) only has the eigenvalue
1. Since N and J are similar, so are exp(N) and exp(J), hence exp(N) only has the
eigenvalue 1. Then it is easy to see that exp(−2πib1V +N) = exp(−2πib) · exp(N)
only has the eigenvalue exp(−2πib). �

If ϕ1 = ϕ2, then the operators Mi have the same eigenvalue exp(−2πib1). This
tells us that

HomFK0(Eτ )(φτ (A1), φτ (A2)) = H0(L1,Hom(E1, E2))

= {f : V1 → V2|M1 ◦ f = f ◦M2}
= {f : V1 → V2| exp(N1) ◦ f = f ◦ exp(N2)}
= Hom(F (V1, exp(N1)), F (V2, exp(N2)))

∼= HomDb(Coh(Eτ ))(A1, A2)

Then we define φτ to be this isomorphism .

Step 2. Now we extend the definition of φτ to morphisms between locally
free sheaves. Assume that F and G are two locally free sheaves over Eτ , then by
Proposition 2.22 again, we know that F ∼= πr1∗E1 and G ∼= πr2∗E2, where r1 and r2

are two positive integers and Ei = L(ϕi) ⊗ F (Vi, exp(Ni)) are two vector bundles
(locally free sheaves) on Eriτ . Then we consider the cartesian product

E

π̃r1
��

π̃r2 // Er2τ

πr2

��
Er1τ

πr1 // Eτ

.

That is to say E := Er1τ×EτEr2τ , and we denote the projections by π̃ri : E → Eriτ .
When gcd(r1, r2) = 1, E ∼= Er1r2τ is an elliptic curve. In general, E is a disjoint
union of several elliptic curves. Concretely, we assume that d = gcd(r1, r2). Then
E ∼= Erτ × Z/dZ is a disjoint union of d elliptic curves, where r := r1r2

d . The
restriction of the map π̃ri to the v-th connected component is denoted to be πri,v.
It is the composition of the isogeny π r3−i

d
: Erτ × {ν} → Eriτ with the translation

by ντ on Er1τ and with the identity on Er2τ . We can also use translations by siτ
on Eriτ for any pair of integers (s1, s2) satisfying s1 − s2 ≡ ν mod d. The choice
of the pair does not affect our conclusion because they only differ by a translation
on Erτ by sτ for some s ∈ Z.

Using Corollary 2.21, which tells us the adjointness properties of π∗ and π∗, we
have the following canonical isomorphism

Hom(F ,G) = Hom(πr1∗E1, πr2∗E2)

∼= Hom(π̃∗r1E1, π̃
∗
r2E2)

=

d⊕
ν=1

Hom(π∗r1,νE1, π
∗
r2,νE2)
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On the other hand, we can do the similar construction in the symplectic side.
To be specific, we also consider the following Cartesian diagram

Ẽ

p̃r1
��

p̃r2 // Er2τ

pr2

��
Er1τ

pr1 // Eτ

Here, Ẽ := Er1τ ×Eτ Er2τ and pri are the corresponding projections. Similar to

the case of coherent sheaves, we know that Ẽ = Erτ ×Z/dZ, where d = gcd(r1, r2)
and r = r1r2

d . We denote pri,ν to be the map p̃ri stricted to the ν-th connected
components. Similar to πri,ν , pri,ν is the composition of the map p r3−i

d
: Erτ ×

{ν} → Eriτ with a translation of the form (x, y) 7→ (x−n, y), where n is determined
by corresponding translations on the elliptic curve Eriτ .

Since p∗ and p∗ are also adjoint, there exists a functorial isomorphism

Hom(pr1∗(L1, α1, E1),pr2∗(L2, α2, E2))

∼=
d⊕
ν=1

Hom(p∗r1,ν(L1, α1, E1), p∗r2,ν(L2, α2, E2)).

Combining these isomorphisms, we can define φτ by the following commutative
diagram

Hom(πr1∗E1, πr2∗E2)

φτ

��

∼= // ⊕Hom(π∗r1,νE1, π
∗
r2,νE2)

⊕φrτ
��

⊕Hom(φrτ (π∗r1,νE1), φrτ (π∗r2,νE2))

∼=
��

⊕Hom(p∗r1,νφr1τ (E1), p∗r2,νφr2τ (E2))

Hom(φτ (πr1∗E1), φτ (πr2∗E2))
= // Hom(pr1∗φr1τ (E1), pr2∗φr2τ (E2)).

∼=

OO

Here, we use the isomorphism φrτ (π∗(E)) ∼= p∗(φτ (E)), where E ∼= L(ϕ)⊗F (V, exp(N))
and π is an isogeny, and the compatibility of translations with φ. And notice that
π∗r1,νEi still have the form of L(ϕ′) ⊗ F (V ′, exp(N ′)), so we can apply φrτ to the
morphism space between then as in Step 1.

Step 3. Now we have to deal with the case where A1 or A2 is a torsion sheaf.
By Serre Duality, we know that Hom(A1, A2) ∼= Ext1(A2, A1) = 0 when A1 is a
torsion sheaf and A2 is locally free. Meanwhile, one can obtain α1 = 1

2 > α2 by
definition, and thus Hom((L1, α1, E1), (L2, α2, E2)) = 0 and everything fits nicely.
The only case that remains is when A2 = S(a2τ + b2, V2, N2) is a torsion sheaf.
Now, we have two cases to consider: A1 is a locally free sheaf or A1 is a torsion
sheaf.

Case 1. In this case, we assume that A1 is a locally free sheaf.
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Case 1.1. Since every locally free sheaf is isomorphic to the push-forward of a
vector bundle of the form L(ϕ1)⊗F (V1, exp(N1)), we first consider the case where
A1 = L(ϕ1)⊗F (V1, exp(N1)). Since A2 has only one non-zero stalk, V2 at a2τ +b2,
we have

Hom(A1, A2) = Hom(V1, V2) ∼= V ∗1 ⊗ V2.

On the other hand, L1 ∩ L2 has only one point in this case, thus

Hom(φτ (A1), φτ (A2)) = Hom(V1, V2) ∼= V ∗1 ⊗ V2.

And the isomorphism φτ : V ∗1 ⊗ V2 → V ∗1 ⊗ V2 is defined by

exp[−πiτ(na2
2 + 2a1a2)− 2πi(a2b1 + a1b2 + na2b2)]·

exp[−(a1 + na2) · 1V ∗1 ⊗N2 + a2 · tN1 ⊗ 1V2 ].

Case 1.2. Now we assume that A1 is an arbitrary locally free sheaf. Then
A1
∼= πr∗E1 for some isogeny πr and E1 = L(ϕ1) ⊗ F (V1, exp(N1)). We define φτ

by the following commutative diagram:

Hom(πr∗E1, A2)

φτ

��

Hom(E1, π∗rA2)
∼=oo

∼= φrτ

��
Hom(φrτ (E1), φrτ (π∗rA2))

∼=
��

Hom(φrτ (E1), p∗rφτ (A2))

∼=
��

Hom(φτ (πr∗E1), φτ (A2)) Hom(pr∗φrτ (E1), φτ (A2)).=
oo

Here, we use the isomorphism φ(π∗rA2) ∼= p∗rφ(A2), which can be easily verified
from the definitions. Notice that E1 has the form of L(ϕ1)⊗F (V1, exp(N1)), so we
can apply φrτ to the morphism space Hom(E1, π∗rA2) as in Case 1.1.

Case 2. Now we discuss the second case where A1 = S(a1τ + b1, V2, N2) is
also a torsion sheaf. If A1 and A2 have different support, then Hom(A1, A2) =
Ext1(A1, A2) = 0. On the symplectic side, φ(Ai) = (Li, 1

2 ,Mi) where Li = (−ai, t).
Therefore, if a1 6= a2, then L1 ∩ L2 = ∅ and Hom(φτ (A1), φτ (A2)) = 0. If a1 = a2

but b1 6= b2, then M1 and M2 do not have common eigenvalues. Therefore, we have

H0(L1,Hom(M1,M2)) = H1(L1,Hom(M1,M2)) = 0,

and thus

Hom(φτ (A1), φτ (A2)) = 0.

Finally, if A1 and A2 have the same support, i.e., a1 = a2 and b1 = b2, then

Hom(A1, A2) = HomOEτ ,a1τ+b1 ((V1, N1), (V2, N2))

= {f ∈ Hom(V1, V2) | f ◦N1 = N2 ◦ f}
= {f ∈ Hom(V1, V2) | f ◦M1 = M2 ◦ f}
= H0(L1,Hom(E1, E2))

= Hom(φτ (A1), φτ (A2)).
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We have finished the definition of the functor φτ . The next step is to verify that
φτ is indeed a functor, i.e., we have to show the compatibility of φ with compositions
or to prove the commutativity of the following diagram

Hom(A1, A2[k])⊗Hom(A2[k], A3[l])

φτ⊗φτ
��

// Hom(A1, A3[l])

φτ

��
Hom(φτ (A1), φτ (A2)[k])⊗Hom(φτ (A2)[k], φτ (A3)[l]) // Hom(φτ (A1), φτ (A3)[l]).

To have non-zero morphism spaces in the diagram, we have to require that
0 ≤ k ≤ l ≤ 1. We denote φ(Ai) = (Li, αi,Mi). If l = 1, then using the canon-
ical isomorphism Hom(V1 ⊗ V ∗2 , V

∗
3 ) ∼= Hom(V3 ⊗ V1, V2) and the isomorphism

Hom(A,B[1]) ∼= Hom(B,A)∗ in both categories, we know that the diagram above
is equivalent to the following diagram

Hom(A3, A1)⊗Hom(A1, A2)

φτ⊗φτ
��

// Hom(A3, A2)

φτ

��
Hom(φτ (A3), φτ (A1))⊗Hom(φτ (A1), φτ (A2)) // Hom(φτ (A3), φτ (A2)).

Therefore, we only have to deal with the case where k = l = 0.
The detailed proof of this case can be found in section 4 of Kreussler’s paper [3],

and we will omit it here.

Now, we have constructed a functor φτ : Db(Coh(Eτ )) → FK0(Eτ ) that is, by
definition, additive, fully faithful and compatible with shift functors. To prove our
main theorem that φτ is an equivalence, we only need to prove that any indecom-
posible object in FK0(Eτ ) is isomorphic to an object of the form φτ (A), where A
is a vector bundle or a skyscraper sheaf on Eτ . Let (L, α,M) be an indecomposible
object in FK0(Eτ ). Then recall that (L, α,M1) ⊕ (L, α,M2) = (L, α,M1 ⊕M2),
thus (L, α,M) is indecomposible implies that M is indecomposible. Therefore,
there exists only one Jordan block in M ’s Jordan normal form. Moreover, since
we only consider locally free sheaves whose monodromy only has eigenvalues of
modulus one, the diagonal entries of M ’s Jordan form should be the same complex
number with modulus one. Therefore, we can describe M , up to conjugation, as

M = exp(−2πib+N) ∈ GL(V ),

where b is a real number and N is a cyclic nilpotent endomorphism of V . Be-
cause φτ is compatible with the shift functors, we can assume that α ∈ (− 1

2 ,
1
2 ]. If

α = 1
2 , then the line L is perpendicular to the x-axis, and we denote a ∈ (−1, 0]

to be the x-intercept of a line in R2 that represents L. One can easily verify that
φτ (S(−aτ − b, V,N)) = (L, α,M). If α < 1

2 , we first fix a pair of relatively prime
nonnegative integers (r, n) such that n

r is the slope of the line passing through the
origin and exp(iπα), i.e., r + in is a real multiple of exp(iπα). Next, we can de-
termine a real number a by requiring ra

n ∈ [0, 1
n ) to be the smallest nonnegative

x-intercept of L. Then we define ϕ = t∗raτ+bϕ0 · ϕn−1
0 . And one can easily verify

that φτ (πr∗(Lrτ (ϕ) ⊗ Frτ (V, exp(N)))) = (L, α,M). In conclusion, any object in
FK0(Eτ ) is isomorphic to an object in the image of φτ , and φτ is indeed an equiv-
alence from Db(Coh(Eτ )) to FK0(Eτ ).
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Appendix A. Minimal, Calibrated, and Special Lagrangian
Submanifolds

A detailed discussion of these three kinds of submanifolds can be found in Port’s
paper [8]. Moreover, D. Lotay’s paper [5] also serves as a decent reference. We will
be satisfied with presenting the main theorems without proof here.

First, we define the notion of minimal submanifolds of a Riemannian manifold.
Let M be a Riemannian manifold. The Riemannian metric of M restricts to any

submanifold of it. Let S be a submanifold of M . Then the tangent bundle of M
splits into two orthonormal parts when restricted to S: M |S = TS⊕NS. Now, we
can define the Levi-Civita connections ∇M for M and ∇S for S. Then we define the
second fundamental form B by B(X,Y ) = ∇MX Y −∇SXY . Then B is a symmetric
bilinear form that takes value in NS. The mean curvature H is then given by the
average of the eigenvalues of the second fundamental form, i.e., H = 1

n Trace(B),
where n is the dimension of S. Using the mean curvature, we can define the notion
of minimal submanifolds.

Definition A.1. Let M be a Riemann manifold and S be a submanifold of M .
Then S is called a minimal submanifold of M if its mean curvature H = 0.

Remark A.2. Geometrically, one can prove that a minimal manifold is a submani-
fold such that any small deformation of its embedding does not change its volume.
This can be seen by calculating the first variation formula. The detailed proof can
be found in Port’s paper, so we will omit it here.

Next, we define the notion of calibrated submanifolds of a Riemannian manifold.

Definition A.3. Let M be a Riemannian manifold. The Riemannian metric in-
duces a volume form volV on any subspace V ⊂ TxM and any x ∈ M . Then a
k-form η is called a calibration on M if it is closed and η|V = λ ·volV for some λ ≤ 1
for any oriented k-dimensional subspace V ⊂ TxM and any x ∈M . A submanifold
N ↪→M is calibrated with respect to calibration η (or η-calibrated) if η|TxN = volV
for all x ∈ N .

It turns out that a calibrated submanifold (with respect to any calibration) is
always a minimal submanifold. To be specific, we have the following proposition.

Proposition A.4. Let M be a Riemannian manifold and η be a calibration on
M . Let N be a compact calibrated submanifold of M with respect to η. Then N is
volume minimizing in its homology class.

Proof. Let N ′ be a submanifold of M such that it belongs to the same homology
class of N . Then we have∫

N

volN =

∫
N

η =

∫
N ′
η ≤

∫
N ′

volN ′ .

Here, the first equation holds because N is a calibrated submanifold, and the in-
equality holds because η is a calibration on M . �

Remark A.5. Since any small variation of N results in a submanifold lying in
the same homology class of N , the proposition above tells us that a calibrated
submanifold is always volume-minimizing, and thus is a minimal manifold defined
above.
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Finally, we define the notion of special Lagrangian submanifolds of a Calabi-Yau
manifold.

Definition A.6. Let M̃ be a Calabi-Yau manifold with the Calabi-Yau form Ω =
Ω1 + iΩ2. Than L is a special Lagrangian submanifold of M̃ if L is Lagrangian and
Ω2|L = 0.

The main goal of this section is the following proposition.

Proposition A.7. Let M̃ be a Calabi-Yau manifold with its Calabi-Yau form Ω =

Ω1 + iΩ2. Then the special Lagrangian submanifolds of M̃ are the Ω1-calibrated

submanifolds, and thus they are minimal submanifolds of M̃ .

The proof of this proposition can also be found in Port’s paper [8], and we will
not repeat it here.

In this paper, we are only concerned with the case where M̃ is a torus. In this

case, all 1-dimensional minimal submanifolds of M̃ are just geodesics, i.e., the im-
age of lines in R2 under the map R2 → R2/Z2 ∼= M . Moreover, to define a closed
submanifold of M , the slope of the line must be rational. We can identify the slope
with a pair of coprime intergers (p, q), and the slope is p/q. Apart from the slope,
in order to fix the line, we need to know its interception point with the y-axis (or
x-axis if q=0).
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