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Abstract. This paper focuses on discussing Hecke operators in the theory of

modular forms and briefly relates it to Hecke rings which occur in represen-

tation theory. We will first introduce the basic definitions and properties of
modular forms and Hecke operators. In particular, we will show that the space

of cusp forms of an arbitrary weight with respect to a specific congruence sub-

group is an inner product space and discuss that the space has an orthogonal
basis of simultaneous eigenvectors for the Hecke operators. We will then shift

the focus to Hecke rings and do relevant computations regarding the Hecke

ring of GL2(Qp).
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1. Introduction

Modular forms are functions on the complex upper half plane that satisfy cer-
tain transformation conditions and holomorphy conditions. The theory of modular
forms forms a significant branch of modern number theory – for instance, the Mod-
ularity Theorem suggests that all rational elliptic curves arise from modular forms
with some restrictions. This theorem was essential to the proof of Fermat’s Last
Theorem by Richard Taylor and Andrew Wiles.

In this paper, we aim to discuss Hecke operators in the theory of modular forms.
We will show how the Hecke ring H(GL2(Qp), GL2(Zp)), the ring of all locally
constant, compactly supported GL2(Zp)-bi-invariant functions f : GL2(Qp) →
C, is associated with the Hecke operator attached to p. To do so, we will first
give an introduction to modular forms with some relevant properties and basic
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computations. We will then introduce Hecke operators and discuss some of their
properties. From here, we will shift topics to discuss Hecke rings and give relevant
computations on the Hecke ring of GL2(Qp).

This expository paper is written in part for the University of Chicago REU
programme of 2020. For the paper, we will presume basic knowledge of linear
algebra, algebra and complex analysis.

2. Modular Form and Congruence Subgroup

In order to define modular forms, we will first introduce principal congruence
subgroup and congruence subgroups.

Definition 2.1. Let N be a positive integer. The principal congruence subgroup
of level N is

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
mod N

}
.

A subgroup Γ of SL2(Z) is a congruence subgroup if Γ(N) ⊆ Γ for some N ∈ Z+,
in which case Γ is a congruence subgroup of level N .

Some important congruence subgroups are

(2.2) Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(
? ?
0 ?

)
mod N

}
and

(2.3) Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 ?
0 1

)
mod N

}
where ? denotes unspecified value at that position.

We need two more definitions to define what a modular forms with respect to a
congruence subgroup.

Definition 2.4. Let H denote the upper half complex plane, i.e.

H = {τ ∈ C : Im(τ) > 0}.

Let γ ∈ SL2(Z) be

(
a b
c d

)
and τ ∈ H. The factor of automorphy j(γ, τ) is

j(γ, τ) = cτ + d.

Now, let f be a function mapping from H to C and k be an element in Z. The
weight-k operator [γ]k on f is

(f [γ]k)(τ) = j(γ, τ)−kf(γ(τ))

where γ(τ) is

(2.5) γ(τ) =
aτ + b

cτ + d
.

Using the above notation,

Definition 2.6. Let Γ be a congruence subgroup of SL2(Z) and k be an integer.
A function f : H→ C is a modular form of weight k with respect to Γ if

(i) f is holomorphic
(ii) f is weight-k invariant under Γ, i.e. for all γ ∈ Γ, f [γ]k = f
(iii) f [α]k is holomorphic at ∞ for all α ∈ SL2(Z).
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The set of modular forms of weight k with respect to Γ is denoted as Mk(Γ). In
addition, the set of Mk(Γ) forms a graded ring. This can be denoted as

M(Γ) =
⊕
k∈Z
Mk(Γ).

In addition, Mk(Γ) are vector spaces over C.
Some trivial examples include constant functions on H – they are modular forms

of weight 0; in particular, the zero function on H is a modular form of every weight.
For non-trivial examples, we turn to Eisenstein series of even weight greater than
2. They are defined as follows,

Definition 2.7. An Eisenstein series of weight 2k, with k > 1, k ∈ Z, is defined as

G2k(τ) =
∑

(c,d)∈Z2−{(0,0)}

1

(cτ + d)2k
, τ ∈ H.

By checking conditions in the definition, we see that Eisenstein series of weight
2k for k > 1 is a modular form of weight 2k.

Each congruence subgroup Γ of SL2(Z) contains a translation matrix

(
1 h
0 1

)
for some minimal h ∈ Z+. Thus, if f is a modular form with respect to Γ, then f
has a Fourier expansion,

f(τ) =

∞∑
n=0

anqh
n, qh = e2πiτ/h.

By considering the Fourier expansion of f [α]k for all α ∈ SL2(Z), we can define
a cusp form with respect to Γ.

Definition 2.8. A cusp form of weight k with respect to Γ is a modular form of
weight k with respect to Γ such that for all α ∈ SL2(Z), the Fourier expansion of
f [α]k has no constant coefficients, i.e. a0 = 0.

The set of cusp forms of weight k with respect to Γ is denoted as Sk(Γ) and the
set of cusp forms with respect to Γ forms a graded ideal in M(Γ), denoted as

S(Γ) =
⊕
k∈Z
Sk(Γ).

3. Action of GL+
2 (Q) on H

Hecke operators are defined by double coset operators, which are defined by
the action of GL+

2 (Q), the group of 2-by-2 matrices with positive determinant and
rational entries, on modular forms. We will first look at how GL+

2 (Q) acts on
H. From here, by extending the definition of factors of automorphy and weight-k
operators to GL+

2 (Q), we get an action of GL+
2 (Q) on the space of modular forms.

For γ ∈ GL+
2 (Q) and τ ∈ H, define γ(τ) as

γ(τ) =

(
a b
c d

)
(τ) =

aτ + b

cτ + d
.

Because Im(γ(τ)) = det γ · Im(τ)/|cτ +d|2 and det γ ≥ 0, iγ(τ) ∈ H. The definition
above gives us an action of GL+

2 (Q) on H.
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Definition 3.1. Let γ =

(
a b
c d

)
∈ GL+

2 (Q) and τ ∈ H. The factor of automorphy

j(γ, τ) is

(3.2) j(γ, τ) = cτ + d.

For f : H→ C and k ∈ Z+. The weight-k operator [γ]k on f is

(3.3) (f [γ]k)(τ) = (det γ)k−1j(γ, τ)−kf(γ(τ)).

The following result gives us that by mapping f ∈ Mk(Γ) to f [γ]k for γ ∈
GL+

2 (Q), GL+
2 (Q) acts on Mk(Γ) for a congruence subgroup Γ.

Lemma 3.4. For all γ, γ′ ∈ GL+
2 (Q) and τ ∈ H

(i) j(γγ′, τ) = j(γ, γ′(τ))j(γ′, τ)
(ii) (γγ′)(τ) = γ(γ′(τ))

(iii) [γγ′]k = [γ]k[γ′]k

Proof. The first two parts of the lemma can be proven by direct computations. For
the last part of the lemma, take f : H→ C. By direct substitution on the left hand
side of the equation,

(3.5) (f [γγ′]k)(τ) = (det(γγ′))k−1j(γγ′, τ)−kf(γγ′(τ)).

On the right hand side of [γγ′]k = [γ]k[γ′]k,

((f([γ]k))[γ′]k)(τ) = (det γ′)k−1j(γ′, τ))−k(f([γ]k))(γ′(τ)).

Expanding the equation gives

(3.6) ((f([γ]k))[γ′]k)(τ) = (det γ′ · det γ)k−1j(γ′, τ))−kj(γ, γ′(τ))−kf(γ(γ′(τ))).

By rearranging, applying the first two parts of the current proposition and the fact
that the determinant is multiplicative, the right-hand side of (3.6) is thus equal to
the right-hand side of (3.5). Therefore, [γγ′]k = [γ]k[γ′]k. �

4. Hecke Operators

Since Hecke operators are defined through double coset operators, we will first
introduce double coset operators and prove the definition is well-defined. Then, we
will define Hecke operators and introduce some of their properties, in particular,
proving that the Hecke operators commute with each other. From here, we will
focus on the space of cusp forms Sk(Γ1(N)) and show that it is an inner product
space with an orthogonal basis of simultaneous eigenvectors of Hecke operators.

4.1. Double Coset Operator. Let Γ1 and Γ2 be congruence subgroups of SL2(Z).
For α ∈ GL+

2 (Q),
Γ1αΓ2 = {γ1αγ2 : γ1 ∈ Γ1, γ2 ∈ Γ2}

is a double coset of GL+
2 (Q). Because Γ1 acts on the double coset Γ1αΓ2 by left

multiplication, we can rewrite Γ1αΓ2 as a disjoint union of orbit spaces of the group
action,

Γ1αΓ2 =
⋃

Γ1βj

where βj are orbit representatives.
We will define the double coset operator as the sum of the weight-k operator

for each right coset representative. However, for the definition to be well-defined,
we need to show the decomposition of the double coset is a finite disjoint union of
right cosets of Γ1.
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Proposition 4.1. The double coset Γ1αΓ2 =
⋃

Γ1βj and the union is finite.

Proof. We will follow the proof presented on [1] P164. In order to show that the
union is finite, we will first show two following lemmas:

Lemma 4.2. Let α be an element in GL2
+(Q) and Γ be a congruence subgroup.

Then α−1Γα ∩ SL2(Z) is also a congruence subgroup.

Proof of the lemma. By α ∈ GL2
+(Q), there exists minimal positive integers n0, n1

such that n0α ∈ M2(Z), n1α
−1 ∈ M2(Z). Additionally, as Γ is a congruence

subgroup, there exists n ∈ Z such that Γ(n) ⊆ Γ. Let Ñ be the product n0n1n and

N be Ñ3. This gives us the following containment,

αΓ(N)α−1 ⊆ α(I +N ·M2(Z))α−1 = I + Ñ · α · Ñ ·M2(Z) · Ñ · α−1.

By above, we have

αΓ(N)α−1 ∩ SL2(Z) ⊆ Γ(Ñ).

Rearranging the equation gives

Γ(N) ⊆ α−1Γ(Ñ)α ∩ SL2(Z) ⊆ α−1Γ(n)α ∩ SL2(Z) ⊆ α−1Γα ∩ SL2(Z),

hence proving the lemma. �

Lemma 4.3. Let Γ3 = αΓ1α
−1 ∩ Γ2. Γ3 is a subgroup of Γ2 and it acts on Γ2 by

left multiplication. Let lα denote left multiplication by α,

lα : Γ2 → Γ1αΓ2

(4.4) γ2 7−→ αγ2.

The left multiplication induces a bijection mapping from the orbit space of left
multiplication by Γ3 on Γ2 to the orbit space of the left multiplication by Γ1 on
Γ1αΓ2.

Proof of the lemma. Notice that all orbit space representatives are of the form
γ1αγ2 for some γ1 ∈ Γ1 and γ2 ∈ Γ2. Since Γ1 acts on Γ1αΓ2 by left multipli-
cation, each orbit representative can be rewritten as α · βi for some βi ∈ Γ2. This
shows that lα is a surjection.

For proving the map is an injection, let γ, γ′ ∈ Γ2 be two orbit space represen-
tatives such that

Γ1αγ = Γ1αγ
′.

This implies that

αγγ′
−1 ∈ Γ1α.

Multiplying on the left with α−1 on both sides of the equations gives us

γγ′
−1 ∈ α−1Γ1α.

Since γ, γ′ ∈ Γ2, γγ′
−1

is also contained in Γ2. This implies that

γγ′
−1 ∈ α−1Γ1α ∩ Γ2 = Γ3.

Therefore,

Γ3γ = Γ3γ
′,

and the left multiplication by α induces a bijection on orbit spaces. �
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By definition of left multiplication, all orbit spaces of the action by Γ3 are right
cosets of Γ3 in Γ2. Hence, the number of orbits is the same as [Γ2 : Γ3]. By
Lemma 4.3, the fact that Γ1 is a congruence subgroup implies that αΓ1α

−1 is also
a congruence subgroup. Since the index [SL2(Z) : Γ(N)] is finite for any n ∈ Z ([1]
P13) and there exists a N ∈ Z such that Γ(N) ⊆ Γ3, [SL2(Z) : Γ3] is finite. This
implies that [Γ2 : Γ3] is also finite. By bijection of orbit spaces,

Γ1αΓ2 =
⋃

Γ1βj

is a finite union. �

Because the double coset is a finite union of orbit spaces, we can define an action
on modular forms.

Definition 4.5. Let Γ1 and Γ2 be congruence subgroups of SL2(Z) and α be an
element in GL+

2 (Q). The weight–k Γ1αΓ2 operator takes functions f ∈Mk(Γ1) to

(4.6) f [Γ1αΓ2]k =
∑
j

f [βj ]k

where {βj} are orbit representatives.

For any two orbit representatives β, β′ of the same orbit, ββ′−1 ∈ Γ1. For
f ∈Mk(Γ1), this implies that

f [β]k = f [ββ′−1]k[β′]k = f [β′]k.

The definition of the double coset operator is therefore well-defined.

4.2. 〈d〉 and Tp operator. For this section, we will first define two types of Hecke
operators and then generalize the definitions. The operators we introduced are
presumed to be on modular forms with respect to Γ1(N).

Definition 4.7. Let α be the matrix

(
a b
c d

)
∈ Γ0(N) and define

〈d〉 :Mk(Γ1(N))→Mk(Γ1(N))

by

〈d〉f = f [α]k for any α =

(
a b
c δ

)
∈ Γ0(N) with δ ≡ d mod N.

This is the first type of Hecke operators, also known as a diamond operator. To
prove that the diamond operator is well-defined, we will first show that Γ1(N) is a
normal subgroup of Γ0(N). By definition of Γ0(N), the map

φ : Γ0(N)→ (Z/NZ)×

(4.8)

(
a b
c d

)
7−→ d mod (N)

is well-defined and has Γ1(N) as the kernel. Hence, Γ1(N) / Γ0(N).
For α and α′ with φ(α) = φ(α′), we have

α′ ∈ Γ1(N)αΓ1(N).

Given Γ1(N) / Γ0(N) and equation above, Γ1(N) acts trivially on Mk(Γ1(N)).
Thus 〈d〉 is well-defined. The second type of Hecke operator is denoted as Tp. It is
defined as follows,

Tp :Mk(Γ1(N))→Mk(Γ1(N))
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Tpf = f [Γ1(N)

(
1 0
0 p

)
Γ1(N)]k

for p prime.

Recall that the weight-k double coset operator is defined to be the sum of weight-
k operators of the right coset representatives of the double coset. (Definition 4.5)

Therefore, by finding the right coset representatives of Γ1(N)

(
1 0
0 p

)
Γ1(N), we

can find an explicit representation of the Tp operator.

Proposition 4.9. Let N be a positive integer, and let both Γ1 and Γ2 be equal to

the congruence subgroup Γ1(N) (as in (2.3)), and let α be the matrix

(
1 0
0 p

)
where

p is prime. The operator Tp = [Γ1αΓ2]k on Mk(Γ1(N)) is given by

Tpf =



∑p−1
j=0 f

[(
1 j

0 p

)]
k

if p|N

∑p−1
j=0 f

[(
1 j

0 p

)]
k

+ f

[(
m n

N p

)(
p 0

0 1

)]
k

if p 6 |N , and mp− nN = 1.

Proof. By definition of Tp, it suffices to find the orbit representatives of Γ1(N)αΓ1(N)
for α as defined by (4.15). By Lemma 4.3, the orbits of Γ1(N)αΓ1(N) correspond
bijectively with right cosets of Γ3 = α−1Γ1(N)α ∩ Γ1(N) in Γ1(N). In particular,
since lα (defined in 4.4) denotes left multiplication with α, all orbit representatives
of Γ1(N)αΓ1(N) are of the form αβj with βj are right coset representatives of Γ3

in Γ1(N). Thus, it suffices to find the right coset representatives of Γ3 in Γ1(N).
Let

Γ0(N, p) :=

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(
? 0
? ?

)
mod p

}
∩ Γ1(N).

We claim that

Γ3 = Γ0(N, p).

By computation, for α−1 =

(
1 0
0 p−1

)
and γ =

(
a b
c d

)
∈ Γ3, we have

(4.10) α−1

(
a b
c d

)
α =

(
a pb

p−1c d

)
.

In order for α−1γα ∈ Γ1(N), c must be divisible by p and(
a pb

p−1c d

)
≡
(

1 ?
0 1

)
mod N.

In addition, by (4.10), (
a pb

p−1c d

)
≡
(
? 0
? ?

)
mod p.

This implies Γ ⊆ Γ0(N, p).

For reverse containment, take

(
a b
c d

)
∈ Γ0(N, p), in particular, let c′ denotes

the element p · c and b denotes the element p · k, where k ∈ Z by definition of
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Γ0(N, p). By computation,(
a b
c d

)
=

(
1 0
0 p−1

)(
a k
c′ d

)(
1 0
0 p

)
where

(
a k
c′ d

)
∈ Γ1(N). Thus, Γ3 = Γ0(N, p). In fact, Γ3 is just Γ1(N) with the

additional requirement that b ≡ 0 mod p.
Now let

γ2,j =

(
1 j
0 1

)
for 0 ≤ j < p.

We claim that γ2,j are right coset representatives of Γ3 in Γ1(N). For

(4.11) γ =

(
a b
c d

)
∈ Γ1(N),

consider

γγ−1
2,j =

(
a b
c d

)(
1 −j
0 1

)
=

(
a b− aj
c d− cj

)
.

If γγ2,j ∈ Γ3 for some 0 ≤ j < p, we then must have

b ≡ aj mod p.

This splits into 2 possible cases: p 6 | a and p|a. If p 6 | a, then we are done by taking
j ≡ a−1b mod p. If p|a, b has to be divisible by p by computation. However,
this would contradict that ad − bc = 1, so a has to be indivisible by p. Instances
of γ ∈ Γ1(N) with p|a occurs if and only if p 6 |N . This happens when the set
{γ2,j | 0 ≤ j < p} fails to be the complete right coset representatives of Γ3 in
Γ1(N). In this case, let

γ2,∞ =

(
mp n
N 1

)
where mp− nN = 1.

For γ defined by (4.11) with p|a,(
a b
c d

)(
1 −n
−N mp

)
=

(
a−Nb bmp− na
c− dN dmp− nc

)
with bmp− na ≡ 0 mod p as p|a,

implies that γγ−1
2,∞ ∈ Γ3.

We will now show that γ2,∞ and γ2,j for j between 0 and p−1 represent distinct
right cosets. Let 0 ≤ j, j′ < p be distinct and consider

γ2,j · γ2,j′ =

(
1 j − j′
0 1

)
.

γ2,j ·γ−1
2,j′ is contained in Γ3 if and only if j−j′ ≡ 0 mod p. This could only happen

if j ≡ j′ mod p. Since 0 ≤ j, j′ < p, γ2,j and γ2,j′ must represent distinct right
cosets.

For

γ2,j · γ−1
2,∞ =

(
1−Nj jmp− n
−N mp

)
,

because nN = 1 + mp and p 6 | n (as p is prime and p 6 | nN), γ2,jγ
−1
2,∞ 6∈ Γ3.

Therefore, γ2,∞ and γ2,j (0 ≤ j < p) represent distinct right cosets.
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This suggests that βj = αγ2,j represents distinct orbit representatives of Γ1(N)αΓ1(N).
By computation,

βj =

(
1 j
0 p

)
for 0 ≤ j < p

and

β∞ = αγ2,∞ =

(
m n
N p

)(
p 0
0 1

)
.

Since

(
m n
N p

)
∈ Γ1(N), it suffices to define β∞ =

(
p 0
0 1

)
. Therefore,

Tpf =



∑p−1
j=0 f

[(
1 j

0 p

)]
k

if p|N

∑p−1
j=0 f

[(
1 j

0 p

)]
k

+ f

[(
m n

N p

)(
p 0

0 1

)]
k

if p 6 |N , and mp− nN = 1.

�

The explicit representation of Tp allows us to prove result on how Tp operators
affect the Fourier coefficients of a modular form.

Proposition 4.12. Let χ : (Z/NZ)× → C× be a character and Mk(N,χ) denote
the set,

Mk(N,χ) = {f ∈Mk(Γ1(N) : 〈d〉f = χ(d)f for all d ∈ (Z/NZ)×}.

If f is an element in Mk(N,χ), then Tpf is also contained in Mk(N,χ). Further-
more, its Fourier expansion is

(Tpf)(τ) =

∞∑
n=0

anp(f)qn + χ(p)pk−1
∞∑
n=0

an(f)qnp

=

∞∑
n=0

(
anp(f) + χ(p)pk−1an/p(f)

)
qn.

That is

(4.13) an(Tpf) = anp(f) + χ(p)pk−1an/p(f) for f ∈Mk(N,χ).

Proof. The proof of the proposition is on Page 171-172 of [1]. �

The result above allows us to prove that the Hecke operators commute.

Proposition 4.14. Let d and e be elements in (Z/nZ)∗, and let p, q be prime.
Then

(a) 〈d〉Tp = Tp〈d〉
(b) 〈d〉〈e〉 = 〈e〉〈d〉
(c) TpTq = TqTp

Proof. We will prove each part of the proposition separately. Let

(4.15) α =

(
1 0
0 p

)
for some prime p.
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(a) We will compute both side of the equation for f ∈ Mk(Γ1(N)). Let

γ =

(
a b
c δ

)
∈ Γ0(N) with δ ≡ d mod N and βj be orbit representatives

of the double coset Γ1(N)αΓ1(N). Because showing that 〈d〉Tpf = Tp〈d〉f
is equivalently to showing that

〈d〉Tpf =
∑

f [βjγ]k =
∑

f [γβj ]k = Tp〈d〉f,

it suffices to show that⋃
Γ1(N)βjγ =

⋃
Γ1(N)γβj .

For this, we will first check that γαγ−1 ∈ Γ1(N)αΓ1(N). By definition
of the double coset, it suffices to check that

γαγ−1 ≡
(

1 ?
0 p

)
mod N.

For γ =

(
a b
Nk δ

)
, γαγ−1 is

γαγ−1 =

(
a b
Nk δ

)(
1 0
0 p

)(
δ −b
−Nk a

)
=

(
aδ − pbNk pab− ab
Nkδ −Nkpδ aδp−Nkb

)
.

Taking the equation modulo N ,

γαγ−1 ≡
(
aδ − bNk ?

0 p(aδ −Nkb)

)
mod N.

Since aδ −Nkb = det γ = 1,

γαγ−1 =

(
1 ?
0 p

)
∈ Γ1(N)αΓ1(N).

Hence,

Γ1(N)αΓ1(N) = Γ1(N)γαγ−1Γ1(N) = γΓ1(N)αΓ1(N)γ−1

= γ
⋃

Γ1(N)βjγ
−1 =

⋃
Γ1(N)γβjγ

−1.

This gives us that⋃
Γ1(N)βjγ =

⋃
Γ1(N)γβj .

Referring back to the definition of 〈d〉 and Tp, we have that

〈d〉Tpf =
∑

f [βjγ]k =
∑

f [γβj ]k = Tp〈d〉f.

Thus, the two operators commute.

(b) Let α =

(
a b
c δ

)
such that δ ≡ d mod N and β =

(
a′ b′

c′ ε

)
such that

ε ≡ e mod N . Thus,

αβ ≡
(
? ?
? de

)
mod N.

On the other hand,

βα ≡
(
? ?
? de

)
.

This gives us that

〈d〉〈e〉f = f [βα]k = 〈de〉f = f [αβ]k = 〈e〉〈d〉f.
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(c) To prove that the Tp operators commute, we will apply Proposition 4.12
and follow the proof on [1] Page 173. By applying (4.13) twice, we have

an(Tp(Tqf)) = anp(Tpf) + χ(p)pk−1an/p(Tpf)

= anpq(f) + χ(q)qk−1anp/q(f) + χ(p)pk−1(anq/p(f) + χ(q)qk−1an/pq(f))

= anpq(f) + χ(q)qk−1anp/q(f) + χ(p)pk−1anq/p(f) + χ(pq)(pq)k−1an/pq(f)

which is symmetric in p and q. Given all coefficients of the Fourier expan-
sion of TpTq and TqTp are the same, the Tp operators commute.

�

The definitions of the two type of Hecke operators can be generalised for any
n ∈ Z+. This gives us an algebra generated by Hecke operators. By Proposition
4.14, the algebra formed is commutative.

Definition 4.16. Let Γ be Γ1(N). Then,

〈n〉 =


Γ

(
? ?

? n

)
Γ where

(
? ?

? n

)
∈ Γ0(N) if gcd(n,N) = 1

0 if gcd(n,N) > 1

and

Tn =
∏

Tprii
, where n =

∏
prii

with T1 = 1 and Tpr is defined inductively

Tpr = TpTpr−1 − pk−1〈p〉Tpr−2 , for r ≥ 2.

The C-algebra generated by all 〈n〉 and Tn operators for n ∈ Z+ is known as the
Hecke algebra over C.

4.3. Petersson Inner Product and Adjoints of Hecke Operators. In this
section, we will focus on studying the space Sk(Γ1(N)). In particular, we will
establish that Sk(Γ1(N)) is an inner product space and has an orthogonal basis of
simultaneous eigenvectors.

4.3.1. Petersson Inner Product. Define the hyperbolic measure on the upper half
plane as

dµ(τ) =
dxdy

y2
, for τ = x+ iy ∈ H.

One can check that the measure is invariant under the automorphism groupGL+
2 (R)

and in particular, dµ is SL2(Z)-invariant. Recall that a fundamental domain of H∗
under the action of SL2(Z) is

D∗ = {τ ∈ H : |Re(τ)| ≤ 1

2
, |τ | ≥ 1} ∪ {∞}.

Let Γ be a congruence subgroup and {αj} be the set of right coset representatives
of {±I}Γ in SL2(Z). Thus,

SL2(Z) =
⋃
j

{±I}Γαj
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and it is a disjoint union. For φ ∈ Mk(Γ), because φ is Γ-invariant and dµ is
SL2(Z)-invariant, ∑

j

∫
D∗
φ(αj(τ))dµ(τ) =

∫
∪αj(D∗)

φ(τ)dµ(τ).

Since ∪αj(D∗) represents the modular curve X(Γ) up to some boundary identifica-
tions, we denote that ∫

X(Γ)

φ(τ)dµ(τ) =

∫
∪αj(D∗)

φ(τ)dµ(τ).

In particular, when φ = 1, ∫
X(Γ)

dµ(τ) = VΓ.

The volume and index of a congruence subgroup are related by

VΓ = [SL2(Z) : {±I}Γ]VSL2(Z).

Definition 4.17. Let Γ ⊆ SL2(Z) be a congruence subgroup. The Petersson inner
product is defined as

〈·, ·〉Γ : Sk(Γ)× Sk(Γ)→ C

〈f, g〉Γ =
1

VΓ

∫
X(Γ)

f(τ)g(τ)(Im(τ))kdµ(τ).

The proof for the definition is well-defined and convergent is on Page 183 of
[1]. Furthermore, the product defined above is linear in f , conjugate linear in g,
Hermitian-symmetric and positive definite.

4.3.2. Adjoints of Hecke Algebra. Recall that if V is an inner product space and T
is a linear operator on V , then the adjoint T † is the linear operator on V defined
by the condition

〈Tv,w〉 = 〈v, T †w〉 for all v, w ∈ V .
The operator T is called normal when it commutes with its adjoint. We will con-
tinue working with the inner product space Sk(Γ1(N)) endowed with the Petersson
inner product. For this section, we will refer all the proofs of lemmas, propositions
and theorems mentioned to Section 5.5 of [1].

Let Γ ⊆ SL2(Z) be a congruence subgroup and SL2(Z) = ∪j{±I}Γαj . Consider
α ∈ GL+

2 (Q), then the map τ 7→ α(τ) induces a bijection from α−1Γα\H∗ to X(Γ).
We thus have that

Lemma 4.18. Let Γ ⊆ SL2(Z) be a congruence subgroup, and α ∈ GL+
2 (Q).

(a) If φ : H→ C is continuous, bounded and Γ-invariant, then∫
α−1Γα\H∗

φ(α(τ))dµ(τ) =

∫
X(Γ)

φ(τ)dµ(τ)

(b) If α−1Γα ⊆ SL2(Z), then Vα−1Γα = VΓ and [SL2(Z) : α−1Γα] = [SL2(Z) :
Γ].

(c) There exist β1, . . . , βn ∈ GL+
2 (Q), where n = [Γ : α−1Γα ∩ Γ] = [Γ :

αΓα−1 ∩ Γ], such that

ΓαΓ =
⋃

Γβj =
⋃
βjΓ.

Both unions are disjoint.
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With this fact established, we could now know how to compute the adjoints.

Proposition 4.19. Let Γ ⊆ SL2(Z) be a congruence subgroup, and α ∈ GL+
2 (Q).

Set α′ = det(α)α−1. Then

(a) If α−1Γα ⊆ SL2(Z), then for all f ∈ Sk(Γ) and g ∈ Sk(α−1Γα),

〈f [α]k, g〉α−1Γα = 〈f, g[α′]k〉Γ
(b) For all f, g ∈ Sk(Γ),

〈f [ΓαΓ]k, g〉 = 〈f, g[Γα′Γ]k〉.

In particular, if α−1Γα = Γ, then [α]†k = [α′]k, and in any case [ΓαΓ]†k =
[Γα′Γ]k.

Following the proposition above, we could deduce that

Theorem 4.20. In the inner product space Sk(Γ1(N)), the Hecke operators 〈p〉
and Tp for p 6 |N have adjoints

〈p〉† = 〈p〉−1 and T †p = 〈p〉−1Tp.

Thus, for n and N are relatively prime, the Hecke operators 〈n〉 and Tn are normal.

From the Spectral Theorem of linear algebra, since Sk(Γ1(N)) is a finite-dimensional
inner product space with a commuting family of normal operators, it has an or-
thogonal basis of simultaneous eigenvectors for the operators. We refer these eigen-
vectors as eigenforms. Therefore,

Theorem 4.21. The space Sk(Γ1(N)) has an orthogonal basis of simultaneous
eigenforms for the Hecke operators {〈n〉, Tn : (n,N) = 1}.

5. Another Interpretation of Hecke Algebra

We will now shift away from the theory of modular forms. In the greater theory
of the Langlands program, we view modular forms as automorphic forms. Under
the scenario of the Langlands program, modular forms generate sub-representations
of the space L2(G). There is also an analogous theory of Hecke operators in this
context. The Hecke algebra is commutative like in the classical setting. Analogous
to how the Hecke operators act on the modular forms and decompose spaces of mod-
ular forms into eigenspaces, here we look at how the Hecke ring acts on representa-
tions and how the representations break down into irreducible sub-representations.
In particular, because of Schur’s lemma, elements in the Hecke ring act as scalars on
the irreducible representations. Thus we have the following correspondence where
the eigenforms correspond to the irreducible sub-representations and the eigenval-
ues correspond to the scalars (as determined by Schur’s lemma) the ring acts by.
The material of the rest of the paper is primarily based on the paper [2].

For this section, we will ignore the general case but focus primarily on explaining
the theory for the case of GL2(Qp) (we will denote as GL2 for GL2(Qp) for the
rest of the section unless specified otherwise). Its maximal torus is T , the set of
invertible diagonal matrices over Qp, and is contained in the Borel subgroup, B,
the set of invertible upper triangular matrices over Qp. The Weyl group of T is S2,
which is isomorphic to Z/2Z.

The characters and co-characters for the maximal torus is defined by

X· = X·(T ) = Hom(T ,Gm)
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X· = X·(T ) = Hom(Gm, T ).

All characters in X· are generated by the characters εi : T → Gm with εi(g) = ti
(ti is the i-th diagonal entry of the matrix g). All co-characters in X· are generated
by the co-character ei : Gm → T with ei(a) = Ai (Ai is the diagonal matrix with a
at ii-th entry and the rest of the diagonal entries are 1). Thus, X· is a Z-module
generated by ε1, ε2 and X· is a Z-module generated by e1, e2.

For χ ∈ X· and γ ∈ X·, χ ◦ γ ∈ End(Gm) = Z (proof is on page 15-16 of [4]).
For a ∈ Gm, there exists an integer 〈γ, χ〉 with χ ◦ γ(a) = a〈γ,χ〉. In particular, for
εi and ej , 〈εi, ej〉 = δij .

The roots are ε1− ε2 and ε2− ε2 with ε1− ε2 being the positive root (due to our
choice of the Borel subgroup). The set of roots is denoted as Φ with Φ+ denotes
the set of positive roots. The positive Weyl chamber P+ in X·(T ) is

P+ = {λ ∈ X· : 〈λ, α〉 ≥ 0,∀α ∈ Φ+}.

Given ε1 − ε2 is the only positive root,

P+ = {λ ∈ X· : 〈λ, ε1 − ε2〉 ≥ 0}.

For all λ ∈ X·, λ = k1e1 + k2e2 for some k1, k2 ∈ Z. Because 〈λ, ε1 − ε2〉 is defined
by the exponent of (ε1 − ε2)(λ(t)) for t ∈ Gm and

(ε1 − ε2)(k1e1 + k2e2)((t)) = (ε1 − ε2))

(
tk1 0
0 tk2

)
= tk1−k2 ,

〈λ, ε1 − ε2〉 ≥ 0 is equivalent to k1 − k2 ≥ 0. This suggests that

P+ = {k1e1 + k2e2 ∈ X· : k1 − k2 ≥ 0}.

There is a partial ordering on P+: λ ≥ µ if λ−µ can be written as sum of positive
co-roots. In particular, for ρ = 1

2 (ε1 − ε2), λ ≥ µ implies that 〈λ− µ, ρ〉 ≥ 0 and is
an integer.

5.1. Hecke Ring. Let G denote the group GL2(Qp) and K denote GL2(Zp).

Definition 5.1. The Hecke ring H = H(G,K) is defined as the ring of all smooth,
compactly supported functions f : G → C which are K-bi-invariant, i.e. f(kx) =
f(xk′) = f(x) for all k, k′ ∈ K and x ∈ G. This is also denoted as C∞c (K\G/K).

The multiplication in H is defined by convolution

(f · g)(z) =

∫
G

f(x) · g(x−1z)dx

where dx is the unique Haar measure on G giving K volume 1 and the unit element
of H is the characteristic function of K.

Smooth functions on Qp are locally constant. Given functions in the Hecke ring
are also compactly supported and K-bi-invariant, they are finite sums of charac-
teristic functions of double cosets KxK. Thus, the characteristic functions 1KxK
form a C-basis of H.

Denote π as the unformizer of Qp, i.e. π = p. For any λ ∈ X·(T ), λ(π) is in
T . Since λ(Z∗p) ⊆ K, the double coset Kλ(π)K is independent of the choice of the
uniformizer. Furthermore, from [6] P51, which we will state without proof,



MODULAR FORMS AND HECKE OPERATORS 15

Proposition 5.2. The group G is the disjoint union of the double cosets Kλ(π)K,
where λ runs through the cocharacters in P+ [2].

It follows that the elements

cλ = 1Kλ(π)K : G→ C

g 7→

{
1 if g ∈ KxK
0 otherwise

form a C-basis of H and multiplication is determined by the products

(5.3) cλ · cµ =
∑

nλ,µ(ν) · cν , with nλ,µ(ν(π)) ∈ C.

From the proposition, GL2 is the disjoint union of the double cosetsGL2(Zp)λ(π)GL2(Zp),
where λ = ae1 + be2 has a− b ≥ 0, i.e.,

(5.4) GL2 =
∐
a≥b

GL2(Zp)
(
pa 0
0 pb

)
GL2(Zp).

We are particularly interested in the following two double cosets

K

(
p 0
0 1

)
K and K

(
p 0
0 p

)
K.

Define

Tp = 1

K

p 0
0 1

K and Rp = 1

K

p 0
0 p

K .

Notice that the Tp here is similar to that of the Tp operator in the theory of modular
forms.

We will now find an explicit formula for nλ,µ(ν(π)). Similar to the computation
for finding the explicit formula for Tp operators in the theory of modular forms,
we will consider the right multiplication action on the double cosets. The double
cosets are then written in terms of left coset representatives where

Kλ(π)K =
∐

xiK

and

Kµ(π)K =
∐

yjK.

Thus, we have the following result

Proposition 5.5.

nλ,µ(ν(π)) = |{(i, j) : ν(π) ∈ xiyjK}|.

Proof. Let t = ν(π). By the definition of characteristic function and (5.3), it suffices
to compute cλ · cµ at the left coset Kν(π)K for calculating nλ,µ(ν),. Thus,

nλ,µ(ν(π)) = (cλ · cµ)(ν(π)) =

∫
G

cλ(x)cµ(x−1t)dx.

Since cλ(x) = 1 if and only if x ∈ Kλ(π)K,

nλ,µ(ν(π)) =

∫
Kλ(π)K

cµ(x−1t)dx.
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Because Kλ(π)K =
∐
xiK, the equation can be rewritten as

nλ,µ(ν) =
∑
xi

∫
xiK

cµ((k · xi)−1t)dx.

By cµ is K-bi-invariant,

nλ,µ(ν) =
∑
xi

∫
K

cµ(xi
−1t)dx

=
∑
i

vol(K) · cµ(xi
−1t).

Given cµ is a characteristic function, cµ(xi
−1t) 6= 0 if and only if xi

−1t ∈ Kµ(π)K.
This is then equivalent to xi

−1t ∈
⋃
yjK, which is also equivalent to t ∈

⋃
xiyjK.

Thus,

nλ,µ(ν(π)) =
∑
i

vol(K) · cµ(xi
−1t) = |{(i, j) : ν(π) ∈ xiyjK}|.

�

By proposition,

nλ,µ(λ+ µ)(π) = |{(i, j) : (λ+ µ)(π) ∈ xiyjK}|.
and (λ+ µ)(π) ∈ λ(π)µ(π)K. This implies that

nλ,µ(λ+ µ)(π) ≥ 1.

In fact, nλ,µ(λ+ µ) = 1 and nλ,µ(ν) 6= 0 implies that ν ≤ (λ+ µ). Thus,

(5.6) cλ · cµ = cλ+µ +
∑

ν<(λ+µ)

nλ,µ(ν) · cν .

Following Proposition 5.2, we will find a set of left coset representatives for the

double coset K

(
p 0
0 1

)
K. Then, we will compute ce1 · ce1 . Similar to Lemma 4.3

and the proof of Proposition 4.9, consider the right multiplication action by K on

K

(
p 0
0 1

)
K and the right multiplication action by

(
p 0
0 1

)
K

(
p 0
0 1

)−1

∩K on

K. Analogous to Lemma 4.3, define

ρ : K → K

(
p 0
0 1

)
K

k 7−→ k

(
p 0
0 1

)
.

The map also induces a bijection between the orbit space of K

(
p 0
0 1

)
K and the

left cosets of

(
p 0
0 1

)
K

(
p 0
0 1

)−1

∩K in K. (The proof is almost exactly the same

as the proof for Lemma 4.3). Similar to the proof of Proposition 4.9, for

H =

(
p 0
0 1

)
K

(
p 0
0 1

)−1

∩K,

H =

{(
a b
c d

)
∈ K :

(
a b
c d

)
≡
(
? 0
? ?

)
mod p

}
.
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Thus, consider the elements

µ2,j =

(
1 j
0 1

)
for 0 ≤ j < p

and

µ2,∞ =

(
1 p− 1
1 p

)
.

They represent distinct cosets and form a complete set of left coset representatives
of H. Since ρ is a bijection on the cosets, the orbit representatives are

βj = µ2,j

(
p 0
0 1

)
for 0 ≤ j < p,

which is

βj =

(
p j
0 1

)
for 0 ≤ j < p.

Given

µ2,∞

(
p 0
0 1

)
=

(
1 0
0 p

)(
p p− 1
1 1

)
and

(
p p− 1
1 1

)
∈ GL2(Zp), define

β∞ =

(
1 0
0 p

)
.

Therefore,

(5.7) K

(
p 0
0 1

)
K =

p−1∐
k=0

(
p j
0 1

)
K
∐(

1 0
0 p

)
K.

We will now compute ce1 · ce1 . By Proposition 5.5, for ν = k1e1 + k2e2 with
a ≥ b,

ne1,e1 = ce1 · ce1(ν(p)) = |{(i, j) : ν(p) ∈ βiβjK}|
for βj defined above. We will now look at each βiβjK and check whether ν(p) =(
pk1 0
0 pk2

)
∈ βiβjK.

For both βi, βj with indices between 0 and p− 1,(
p i
0 1

)(
p j
0 1

)(
a b
c d

)
=

(
p2a p2b+ d(i+ pj)
c d

)
If ν(p) =

(
pk1 0
0 pk2

)
∈ βiβjK, then the matrix

(
a b
c d

)
must has c = 0 and d = 1.

Furthermore, since

(
a b
c d

)
∈ GL2(Zp), the determinant of the matrix must be in

Z×p . Given c = 0 and d = 1, a must be 1. In order for ν(p) ∈ βiβjK, ν(p) must
satisfy

ν(p) =

(
p2 0
0 1

)
.

Because p2b+ pj + i = 0 has integer solutions only if p|i (i has to be −p(pb+ j)),(
p2 0
0 1

)
is contained in βiβjK only if i = j = 0.
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Now consider βj = β∞ and βi with index between 0 and p− 1. Thus,(
p i
0 1

)(
1 0
0 p

)(
a b
c d

)
=

(
p(a+ ic) p(b+ id)

pc pd

)
.

Again given ν(p) =

(
pk1 0
0 pk2

)
, c has to be 0 and a = d = 1. Since for all i

between 0 and p − 1, there is an integer solution to b + i = 0. Therefore, for all i

between 0 and p− 1,

(
p 0
0 p

)
∈ βiβ∞K.

Now consider βi = β∞ and βj with index between 0 and p − 1. In order for
ν(p) ∈ β∞βjK, the computation(

1 0
0 p

)(
p j
0 1

)(
a b
c d

)
=

(
pa+ cj pb+ dj
pc pd

)
=

(
pk1 0
0 pk2

)
must imply that c = 0 and a = d = 1. Furthermore, for 0 ≤ j < p to be an integer
solution of pb+ j = 0, p must divides j. Therefore, j has to be 0.

For βi = βj = β∞, we have that(
1 0
0 p

)(
1 0
0 p

)(
a b
c d

)
=

(
a b
p2c p2d

)
.

By ν ∈ P+, ν(p) can not be contained in β∞β∞K.
Given ce1 = Tp and ce2 = Rp,

Tp · Tp = Tp2 + (p+ 1) ·Rp.
Compare to the formula of T 2

p in the theory of modular forms

Tp · Tp = Tp2 − pk−1〈p〉
for Tp operator onMk(Γ1(N), we see a similarity between the two formulas. More-
over, similar to the Hecke algebra in the theory of modular form,

Proposition 5.8. The Hecke ring H is commutative.

There are two ways to prove the proposition. One method of proving the com-
mutativity is through applying Gelfand’s lemma [3], which suggests that if there
exists an anti-involution of G that stabilizes K and acts trivially on the double coset
space K \ G/K, then the Hecke algebra is commutative and (G,K) is a Gelfand
pair. Consider the map

ι : GL2 7→ GL2(
a b
c d

)
7−→

(
a c
b d

)
=

(
a b
c d

)t
.

One can check by direct computation that ι2 = id, ι(gh) = ι(h)ι(g) for g, h ∈ GL2,
and GL2(Zp) is stable under ι. Furthermore, by (5.4), all double cosets are of

the form GL2(Zp)
(
pa 0
0 pb

)
GL2(Zp) with a ≥ b. By definition of transposition, ι

clearly acts trivially on the double coset space. Therefore, ι is an anti-involution
satisfying the condition of Gelfand’s lemma. This implies that the Hecke ring
H(GL2, GL2(Zp)) is commutative.

Another method of proving the commutativity is through applying the Satake
transform which injects H into the commutative ring C[e1, e2]S2 (the set of ho-
mogeneous polynomials in 2 variables over C). We will discuss about the Satake
transform in the next section.
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5.1.1. Hecke Ring of the Torus. Before we discuss about the Satake transform, we
will investigate further in propoerties of the Hecke ring for the torus. Denote the
Hecke ring for T the torus asHT . Since the set of invertible diagonal 2-by-2 matrices
over Qp (also denote as T ) is the torus of GL2, HT is commutative. Furthermore,
we have the following exact sequence
(5.9)

0

(
Z×p 0
0 Z×p

) (
Q×p 0
0 Q×p

)
X·
((

Q×p 0
0 Q×p

))
0

γ

with γ(t) a co-character satisfying

〈γ(t), χ〉 = ord(χ(t))

for all characters χ ∈ X·(T ). In fact, we can find an explicit formula for γ. Let t

be the matrix

(
a 0
0 b

)
∈ T with ab = 1. Given 〈γ(t), χ〉 = ord(χ(t)) and 〈γ(t), χ〉

is defined as the exponent of (χγ(t))(g) for g ∈ Gm, thus, define

γ(t) : Gm → T

g 7−→
(
gvp(a) 0

0 gvp(b)

)
.

Because X·(T ) = Z[ε1, ε2], for any χ ∈ X·, for χ = cε1 + dε2,

χ(t) = ac · bd.
This implies that

ord(χ(t)) = vp(a
c · bd) = cvp(a) + dvp(b).

On the other hand,

(χ(γ(t)))(g) = χ

((
gvp(a) 0

0 gvp(b)

))
= gc·vp(a)+d·vp(b)

implies that
〈γ(t), χ〉 = c · vp(a) + d · vp(b).

Since
ord(χ(t)) = c · vp(a) + d · vp(b),

for t ∈ D2, γ(t) defined above satisfies the condition

〈γ(t), χ〉 = ord(χ(t)).

Furthermore, because vp : Qp 7→ Z is a surjection, γ is a surjection. Because all
elements in Z×p has valuation zero, the sequence 5.9 with γ defined above forms an
exact sequence as we wanted.

We could actually deduce more about the exact sequence 5.9. It in fact has a
splitting,

(5.10) 0 T (Zp) T X·(T ) 0γ

λ

where
λ : X· → D2

is defined by
µ 7−→ µ(p).
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Take µ = k1e1 + k2e2 ∈ X·(T ),

γ(λ(µ)) = γ

((
pk1 0
0 pk2

))
: Gm → T

g 7−→
(
gk1 0
0 gk2

)
implies that γ(λ(µ)) = k1e1 + k2e2 = µ. Hence, γλ = idX·(T ) and the exact
sequence 5.10 splits.

For G (in the definition of the Hecke ring) is T and K is T (Zp) (the set of
invertible diagonal 2-by-2 matrices onver Zp), because T is commutative, the double
cosets T (Zp)xT (Zp) are single cosets xT (Zp). Thus, in HT ,

(5.11) cλ · cµ = cλ+µ.

By (5.11), the splitting of the exact sequence 5.10 and definition of the Hecke
ring, we have an isomorphism of rings

HT ∼= C[X·(T )].

cλ ↔ [λ].

This isomorphism is important when we discuss about the Satake transform.

5.2. Satake Isomorphism. Let N denote the set of unipotent matrix in GL2, i.e.

N =

(
1 Q×p
0 1

)
.

In particular, T ⊆ B = T · N ⊂ GL2. Let dn be the unique Haar measure on N
which gives vol(N(Zp)) = 1. Let

δ : B → R∗+
be the modular function on B, defined by the formula

d(bnb−1) = δ(b)dn.

By computation, for m = bnb−1,∫
N

1N d(bnb−1) =

∫
N

b−1mb 1N dm =

∫
b−1Nb

1N dm = vol(b−1Nb) =
vol(N)

[N : b−1Nb]
.

This implies that

(5.12) δ(b) =
1

[N : b−1Nb]
.

By (5.12), δ is trivial on N . Thus, we can define a character δ : T → R∗+ based
on the definition of δ as the modular function on B. In particular, if t = µ(p) for
µ ∈ X·(T ),

(5.13) δ(t)
1
2 = |det(adt|Lie(N))|p

1
2 .

From [2] (2.4), we have that

det(adt|Lie(N)) = 2ρ(t).

Substituting equation above into (5.13) gives us that

δ(t)
1
2 = |p〈µ,2ρ〉|p

1
2

= p−〈µ,ρ〉 ∈ C.



MODULAR FORMS AND HECKE OPERATORS 21

Now we can define the Satake transform,

S : HG → HT
f 7−→ Sf

where

Sf(t) = δ(t)
1
2 ·
∫
N

f(tn)dn.

The important result about the Satake transform is that the image of the Hecke
ring H(GL2, GL2(Zp)) lies in the subring

HT S2 = R(GL2(C))⊗ C.

Given

R(GL2(C)) = Z[X·(T )] = Z[e1, e2],

we have that

Proposition 5.14. The Satake transform gives a ring isomorphism

S : HG → C[e1, e2]S2 .

5.2.1. Sample Computation for S(Tp). We will now give a sample calculation using
the Satake transform. In particular, we will compute what S(Tp) is on t = µ(p) for
µ ∈ P+, i.e.

t =

(
pa 0
0 pb

)
with a ≥ b. Applying the definition of the Satake transform gives us that

S(Tp)(t) = p−〈µ,ρ〉 ·
∫
N

Tp(tn)dn.

Recall from (5.7),

K

(
p 0
0 1

)
K =

p−1∐
k=0

(
p j
0 1

)
K
∐(

1 0
0 p

)
K.

Thus,

S(Tp)(t) = p−〈µ,ρ〉

p−1∑
i=0

∫
N∩t−1

p j
0 1

K 1dn+

∫
N∩t−1

1 0
0 p

K 1dn

 .

Let xi =

(
p i
0 1

)
for i between 0 and p− 1 and x′ be

(
1 0
0 p

)
. Notice that the

statement

N ∩ t−1xiK 6= ∅ or N ∩ t−1x′K 6= ∅
is equivalent to

(5.15) x−1
i tN ∩K 6= ∅ or x′−1tN ∩K 6= ∅.

Given xi and x′ are in B = TN , we could write xi = t(xi)n(xi) and x′ =
t(x′)n(x′) for t(xi), t(x

′) ∈ T and n(xi), n(x′) ∈ N . Furthermore, given B normal-
izes N , (5.15) can be rewritten as

n(xi)
−1Nt(xi)

−1t ∩K 6= ∅ or n(x′)−1Nt(x′)−1t ∩K 6= ∅.
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Given n(xi), n(x′) ∈ N , statement above is simplified as

Nt(xi)
−1t ∩K 6= ∅ or Nt(x′)−1t ∩K 6= ∅.

This implies that in order for the intersection to be non-empty, t−1t(xi) ∈ T (Zp)
or t−1t(x′) ∈ T (Zp). For t−1t(xi) ∈ (Zp) or t−1t(x′) ∈ T (Zp), the intersection is
equal to N ∩K. Thus, for t−1t(xi) ∈ T (Zp),∫

N∩t−1

p j
0 1

K 1dn =

∫
N∩K

1dn = 1.

Therefore,

S(Tp)(t) = p−〈µ,ρ〉|{xi or x′ : t−1t(xi) or t−1t(x′) ∈ T (Zp)}|.

By computation, for all 0 ≤ i < p, t(xi) =

(
p 0
0 1

)
and t(x′) =

(
1 0
0 p

)
. For

µ ∈ P+ and t = µ(p) =

(
pa 0
0 pb

)
with a ≥ b, in order for t−1t(xi) to be contained

in T (Zp), (
p−a 0

0 p−b

)(
p 0
0 1

)
=

(
p1−a 0

0 p−b

)
must satisfy 1−a = 0 and −b = 0. On the other hand, in order for t−1t(x′) ∈ T (Zp),(

p−a 0
0 p−b

)(
1 0
0 p

)
=

(
p−a 0

0 p1−b

)
must satisfy −a = 0 and 1−b = 0. Therefore, for all t = µ(p) with µ ∈ P+, if µ 6= e1

or e2, then S(Tp)(t) = 0; otherwise, for t = e1(p) =

(
p 0
0 1

)
, t−1t(xi) = I ∈ T (Zp)

but t−1t(x′) 6∈ T (Zp). Given 〈e1, ρ〉 = 1
2 , computation gives us that

S(Tp)(e1(p)) = p−
1
2 · p = p

1
2 .

On the other hand, for t = e2(p) =

(
1 0
0 p

)
, since only t−1t(x′) is contained in

T (Zp) and 〈e2, ρ〉 = −1/2,

S(Tp)(e2(p)) = p
1
2 · 1 = p

1
2

This gives us that

S(Tp) = p
1
2 ·
(
1e1(p)T (Zp) + 1e2(p)T (Zp)

)
.

In fact, given S maps Tp from HG to R(GL2(C))⊗ C, according to [2] (3.9), in
general, we have that

S(Tp) = p〈e1,ρ〉χe1 +
∑
µ<e1

ae1(µ)χµ,

where χµ = Trace(Vµ) and Vµ is the irreducible representation of GL2(C) with
µ ∈ P+ is the highest weight for Vµ. Furthermore, given e1 is a minuscule weight
for GL2(C), i.e. there are no elements µ ∈ P+ with µ < e1, from [2] (3.14), we
have

S(Tp) = p
1
2 · Trace(C2)

with C2 is the standard representation.
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Moreover, from Proposition 5.14, it is clear that HG is commutative as we
wanted. As we can see from the previous section that multiplication in the Hecke
ring is quite difficult. Given the Hecke ring is isomorphic to a polynomial ring, the
multiplication of elements in the Hecke ring can therefore be identified with the
multiplication of elements in the polynomial ring, thus making the computation of
multiplication is easier.

Acknowledgement

I am particularly grateful for the continuous assistance and guidance given by
my mentor, Hao (Billy) Lee on the readings and revisions of this paper. Much
understanding of the materials mentioned in this paper come under his explanations
during our weekly meeting.

In addition, I am also immensely thankful to Professor Peter May on organizing
this REU. Without his support and making it possible as an online project, under
such difficult condition due to the COVID pandemic, the REU wouldn’t be possible,
not mentioning how much new materials I learnt from the REU during this summer.

References

[1] Fred Diamond, Jerry Shurman, A First Course in Modular Forms, Springer-Verlag, New

York, 2016, pp. 1-37, pp. 163-201
[2] Benedict H. Gross, On the Satake Isomorphism, In: Galois Representations in Arithmetic Al-

gebraic Geometry, London Mathematical Society Lecture Note Series, 254(1998), Cambridge

University Press, pp. 223-238
[3] Benedict H. Gross, Some Applications of Gelfand Pairs to Number Theory, In: Bulletin of

the American Mathematical Society, vol.24 no. 2, 1991
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