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Abstract. Hilbert’s theorem is a key result in early differential and hyper-

bolic geometries, proving that no complete model of hyperbolic geometry can
be isometrically immersed in R3. This expository paper presents a proof of

Hilbert’s theorem, much of which follows the same logic used in Hilbert’s orig-

inal proof.
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1. Introduction

For hundreds, if not thousands, of years, geometers tried and failed to prove
Euclid’s parallel postulate, but in the early 19th century several mathematicians
discovered what is now known as hyperbolic geometry. Lobachevsky, Bolyai, and
a few others independently formulated self-consistent geometries in which Euclid’s
parallel postulate did not hold. Their discovery set off a great deal of exploration
in geometry, which began to converge with another blossoming field at the time.

A few years earlier, Gauss had published his Theorema Egregium on the curva-
ture of surfaces, the crowning result in the early differential geometry of surfaces.
Gauss had investigated surfaces in three dimensions, but the Theorema Egregium
showed that the curvature of a surface was intrinsic to the surface itself. That
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distinction allowed for the treatment of geometry on surfaces and the construction
of an abstract surface that modeled the geometry discovered by Lobachevsky and
others, called the hyperbolic plane.

It was not yet known, however, whether such a surface could exist in three
dimensional space. The hyperbolic plane was shown to have constant negative
Gaussian curvature, but no such ‘complete’ surface in R3 was known. There exist
surfaces with constant negative curvature, but they were found to have holes or
edges, unlike the models of the hyperbolic plane. Some surfaces have negative-
everywhere curvature and no edges, but have regions that are almost flat, which
also contradicted the hyperbolic plane. In 1901, David Hilbert proved that such a
surface cannot exist in R3.

In this paper, we first lay out the necessary tools of elementary differential ge-
ometry for Hilbert’s theorem. Section 3 presents a few particular properties that
we then use in the proof of Hilbert’s theorem, after which some generalizations are
discussed.

2. Properties of Surfaces

We begin by laying out the tools to describe the geometry of surfaces.

Definition 2.1. A surface is a set S with a family of injective maps xa : Ua → S
from open sets Ua ⊂ R2 with the following properties:

(a) The images
⋃
a xa(Ua) = S cover S

(b) For any two Ua, Ub with non-disjoint images V := xa(Ua) ∩ xb(Ub) 6= ∅,
the preimages x−1a (V ),x−1b (V ) are open, and the maps x−1a ◦ xb,x

−1
b ◦ xa

(restricted to the appropriate sets) are differentiable.

For p ∈ Ua, we call xa a parametrization of S at p, and V := xa(Ua) a coordi-
nate neighborhood of x(p). For a point q = x(u, v) ∈ V , we call (u, v) ∈ R2 the
coordinates of q in the parametrization xa.

This definition characterizes a surface as any topological space that is locally
diffeomorphic to R2.

Example 2.2 (One-Sheet Hyperboloid). The one-sheet hyperboloid H1 (Fig. 2.3)
given by

x2 + y2 − z2 = 1

can be parametrized except for one meridian by

x1 : (−π, π)× R→ H1 ⊂ R3

x1(θ, v) = (cosh v cos θ, cosh v sin θ, sinh v),

and the same map can be rotated around the z axis to cover H1:

x2(θ, v) = (− cosh v cos θ, − cosh v sin θ, sinh v).

Each map is bijective onto its image and differentiable with non-singular differential,
so the compositions x−11 ◦ x2, x−12 ◦ x1 are differentiable. Hence H1 equipped with
x1,x2, and U1 = U2 = (−π, π)× R is a surface.

Definition 2.4. A function ϕ : S1 → S2 from surface S1 to surface S2 is differen-
tiable at p ∈ S1 if for parametrizations xp of S1 at p and yϕ(p) of S2 at ϕ(p) the

map y−1ϕ(p) ◦ ϕ ◦ xp is differentiable. A differentiable function α : I → S1 from an

interval I to S1 is a curve in S1.
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Figure 2.3. One-Sheet Hyperboloid

Definition 2.5. Let α : I → S be a curve in a surface S, and let D be the set of
differentiable functions f : S → R. We define the tangent vector of α at t0 as the
function α′(t0) : D → R given by

[α′(t0)](f) =
d(f ◦ α)

dt

∣∣∣∣∣
t0

A tangent vector to S at p ∈ S is the tangent vector at 0 of some curve α with
α(0) = p.

Note in particular that in R2 as a surface, this definition coincides with the usual
notion of tangent vectors in R2.

In a neighborhood of p := α(0) we can express the curve α(t) = x(u(t), v(t)) and
the function f = f(u, v) and write

[α′(0)](f) =
d

dt

(
f [x(u(t), v(t))]

)
0

= u′(0)
∂(f ◦ x)

∂u

∣∣∣
0

+ v′(0)
∂(f ◦ x)

∂v

∣∣∣
0
,

hence we distinguish the function û(f) := ∂(f◦x)
∂u

∣∣∣
0

and likewise v̂ analogously. We

can consider û to be the tangent vector to the coordinate curve α(t) = x(t, 0) at 0
(and similarly for v̂). One can directly check that the set of tangent vectors at p
is a vector space under usual function operations, with {û, v̂} as a basis. We will
denote this vector space Tp(S).

Definition 2.6. Let S1 and S2 be surfaces and ϕ : S1 → S2 be differentiable at
p ∈ S1. For each w ∈ Tp(S1), choose a curve αw in S1 with α(0) = p, α′(0) = w.
Then the differential of ϕ at p is the linear map dϕp : Tp(S1)→ Tϕ(p)(S2) given by

dϕp(w) = (ϕ ◦ αw)′(0).

Definition 2.7. Let S be a surface. A Riemannian metric on S is an inner product
〈·, ·〉p on the tangent plane Tp(S) at each point p such that for every p in S there
is some parametrization x : U → S of p on which the functions

E(q) := 〈û, û〉q F (q) := 〈û, v̂〉q G(q) := 〈v̂, v̂〉q
are differentiable at every q ∈ U .
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From now on we will assume unless stated otherwise that every surface comes
equipped with a Riemannian metric.

2.1. The First Fundamental Form. A Riemannian metric on a surface S allows
us to define a quadratic form Ip : Tp(S)→ R by

Ip(w) = 〈w,w〉p,

called the first fundamental form of S. Notice that
√
Ip defines a norm on Tp(S),

so for a vector w ∈ Tp(S) we write |w| =
√
Ip(w).

Using the first fundamental form, we can define various metric properties on
abstract surfaces.

Definition 2.8. The arc length of a curve α in S is the value

L =

∫
I

√
Ip(α′(t)) dt.

Recalling that in a parametrization x, α′ can be expressed α′(t) = u′(t)û+v′(t)v̂,
we can rewrite the arc length as

L =

∫
I

√
(u′)2E + 2u′v′F + (v′)2Gdt

where E,F , and G are evaluated at α(t). We also say that a curve α : I → S is
parametrized by arc length if |α′(t)| = 1 for all t ∈ I.

For the standard inner product of vectors v, w ∈ R3, we have that 〈v, w〉 =
|v||w| cos θ, where θ is the angle between v and w, which leads us to the following
definition in an abstract surface:

Definition 2.9. The angle θ between the coordinate directions û, v̂ at a point

p ∈ S is given by cos θ =
(

F√
EG

)
.

We can also define area in a surface, as follows.

Definition 2.10. A simple region of S is a subset R ⊂ S that is the image by a
differentiable homeomorphism of a closed disc in R2.

To compute the area, we note that in R2, the area of the parallelogram formed
by vectors v and w is given by

√
|v|2|w|2 − 〈v, w〉2, where 〈v, w〉 is the usual inner

product of R2. We adapt this to the following definition of the area.

Definition 2.11. The area of a simple region R ⊂ S contained in a parametrization
x is the value ∫∫

x−1(R)

√
EG− F 2 du dv

We claim that this value is independent of the parametrization chosen, and
various proofs of this fact can be found (e.g. [1, p.100]).

2.2. Isometry and Immersion. To proceed further, we need to introduce the
tools that describe maps between surfaces, as well as notions of a surface as a
subset of R3.
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Definition 2.12. A bijection ϕ : S1 → S2 is a diffeomorphism if ϕ and ϕ−1 are
both differentiable. A map ψ : S1 → S2 is a local diffeomorphism at p ∈ S1 if there
is some neighborhood V of p such that the restriction ψ̄ : V → ψ(V ) of ψ to V is
a diffeomorphism.

We say ψ is a local diffeomorphism if it is a local diffeomorphism at every point of
S1. Surfaces S1 and S2 are diffeomorphic if there exists a diffeomorphism between
them.

Diffeomorphism captures the concept of a smooth map between surfaces, and we
similarly define the stronger condition that a map preserves a surface’s metric.

Definition 2.13. A diffeomorphism ϕ : S1 → S2 is an isometry if for all p ∈ S1

and v, w ∈ Tp(S1), we have

〈v, w〉p = 〈dϕp(v), dϕp(w)〉ϕ(p).
A local diffeomorphism ψ : S1 → S2 is a local isometry if for all p ∈ S1 there
exists a neighborhood V of p such that the restriction of ψ to V is an isometry
onto ψ(V ). Surfaces S1 and S2 are said to be isometric if there exists an isometry
between them.

Remark 2.14. It follows immediately that isometry preserves the first fundamental
form; if ϕ is a local isometry at p, then Ip(w) = Iϕ(p)(dϕp(w)). Additionally,
a Riemannian metric is symmetric and the first fundamental form captures its
diagonal values, so a map that preserves the first fundamental form must be a
(local) isometry. Hence all the metric properties discussed so far are preserved
under local isometry, and in general the properties that are preserved by isometry
are called the intrinsic geometry of a surface.

Example 2.15 (Hypberbolic plane). Let H2 := R2 be a surface, and define a
Riemannian metric by

E(u, v) = 1 F (u, v) = 0 G(u, v) = e2u

The surface H2 is called the hyperbolic plane.
We can see immediately that the hyperbolic plane is diffeomorphic to the Eu-

clidean plane (R2 equipped with E = G = 1, F = 0), but not isometric. Also
note that the map ϕ : H2 → (0,∞) × R, ϕ(u, v) = (v, e−u) is an isometry to the
Poincaré half-plane model of hyperbolic geometry.

In Example 2.2, we defined H1 as a subset of R3, whereas we define the hyerbolic
plane abstractly, without reference to an ambient space, which leads us to formalize
the notion of a surface ‘sitting in’ a space.

Definition 2.16. A differentiable map ϕ : S → R3 is an immersion (into R3) if
the differential dϕp is non-singular (i.e. injective) for all p. If also for all p ∈ S,

〈v, w〉p = 〈dϕp(v), dϕp(w)〉ϕ(p),
where the second inner product is the usual inner product of R3, then ϕ is an
isometric immersion.

Note that an immersion ϕ need not be injective, only its differential; an immer-
sion requires only that the tangent space not collapse to a line (or point) anywhere.
An immersion into any differentiable manifold can also be naturally defined, but
only R3 is used in this paper. In the example of the hyperbolic plane, the map
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ϕ(u, v) = (u, v, 0) is an immersion but is not isometric, and Hilbert’s theorem
proves the non-existence of an isometric immersion.

Definition 2.17. An (isometric) immersion ϕ : S → R3 is an (isometric) embed-
ding if it is a homeomorphism onto the image ϕ(S).

Unlike an immersion, an embedding must be injective. A regular or embedded
surface is the image by an isometric embedding of a surface into R3.

2.3. The Gauss Map and Second Fundamental Form. At a point p of a
regular surface S, we can treat Tp(S) as a vector subspace of R3, in which the basis

{û, v̂} of Tp(S) allows us to define a unit normal vector N ∈ R3 by Np = û×v̂
|û×v̂| .

Definition 2.18. The map N : S → S2, N(p) = û×v̂
|û×v̂| , where S2 denotes the unit

sphere in R3, is called the Gauss map.

Remark 2.19. The Gauss map is defined by reference to R3; hence the properties
developed from the Gauss map are referred to as the extrinsic geometry of an
embedded surface.

Remark 2.20. The Gauss map is defined independently of the parametrization x
up to orientation. For any two parametrizations x(u, v), y(s, t) of a coordinate

neighborhood of a point p ∈ S, either ŝ×t̂
|ŝ×t̂| = û×v̂

|û×v̂| or t̂×ŝ
|t̂×ŝ| = û×v̂

|û×v̂| . Reversing the

coordinates of a parametrization is equivalent to a sign change in N , so the choice
of parametrization determines an orientation on V .

Definition 2.21. The Gaussian curvature K at a point p ∈ S is the determinant
det(dNp) of the differential of the Gauss map at p.

It follows from Remark 2.20 that Gaussian curvature is independent of parametriza-
tion.

As with the first fundamental form, we can define a quadratic form on embedded
surfaces:

Definition 2.22. The quadratic form IIp : Tp(S) → R, IIp(w) = −〈dNp(w), w〉
is called the second fundamental form of S at p.

It can be shown that the differential of the Gauss map is self-adjoint (see [1,
Proposition 1, p.142]), which allows us to express the second fundamental form of
a vector w = αû + βv̂ in some parametrization as

IIp(w) = α2e+ 2αβf + β2g

with the values

e = −〈dNp(û), û〉
f = −〈dNp(û), v̂〉 = −〈dNp(v̂), û〉
g = −〈dNp(v̂), v̂〉.

We call e, f , and g the coefficients of the second fundamental form.

Lemma 2.23. Gaussian curvature can be written as K = eg−f2

EG−F 2 .

This property follows from the definition of curvature K as the determinant of
dN .
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Example 2.24 (Pseudosphere). The tractricoid (Fig. 2.25) is a surface of revo-
lution of a curve called the tractix. The tractricoid, minus one meridian, can be
given by the following parametrization:

x(θ, v) = (sech v cos θ, sech v sin θ, v − tanh v) − π < θ < π, 0 < v

We can compute directly the coefficients of the first fundamental form:

E = sech2 v F = 0

G = (tanh v sech v)2 + tanh4 v = tanh2 v

From here, the computation of the coefficients of the second fundamental form is
straightforward, and we find

e = 〈N, ∂θ θ̂〉 =
〈θ̂ × v̂, ∂θ θ̂〉√
EG− F 2

= · · · = sech v tanh v

f = 〈N, ∂v θ̂〉 = 0

g = 〈N, ∂vv̂〉 = · · · = − sech v tanh v.

Applying Lemma 2.23 shows that at each point of the tractricoid

K =
eg − f2

EG− F 2
=
− sech2 v tanh2 v

sech2 v tanh2 v
= −1.

Because the tractricoid has constant negative curvature, it is more commonly known
as the pseudosphere, in analogy with the usual sphere which has constant positive
curvature. The pseudosphere is not, however, a solution to Hilbert’s problem,
because it has a boundary at the unit circle in the xy plane, and it is thus not a
complete surface (cf. Sec. 2.5).

Figure 2.25. The Pseudosphere

2.4. Covariant Derivative. To continue building the necessary structures of in-
trinsic geometry for our purposes, we introduce the covariant derivative, which
generalizes differentiation to tangent vector fields on a surface. For vector fields
X,Y, Z the covariant derivative DXY is uniquely defined by the properties

(a) Compatibility with the metric; ∂X〈Y,Z〉 = 〈DXY,Z〉+ 〈Y,DXZ〉
(b) Symmetry; Dûi

ûj −Dûj
ûi = 0
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where i, j ∈ {1, 2} and u1 = u, u2 = v. A formal treatment is outside the scope of
this paper, but can be found in [2, p.53–55] and [3]. The above properties imply
that the covariant derivative is fully determined by the expressions

Dûi
(ûj) = Γ1

ijû + Γ2
ijv̂.

The values Γkij are called Christoffel symbols, and are determined by the derivatives
of the Riemannian metric. Note that for an embedded surface, the covariant deriv-
ative is the orthogonal projection of the derivative in R3 onto the tangent plane.

We then take the notational convention of writing gij = 〈ûi, ûj〉, and if we
consider gij as a matrix, then gij is the inverse matrix. We can then use the
following formula for the Christoffel symbols.

(2.26) Γkij =
1

2

∑
l

gkl
(
∂ujgil + ∂uigjl − ∂ul

gij

)
Definition 2.27. Let α : I → S be a parametrized curve with α(t) = x(u(t), v(t)),
and let w be a differentiable tangent vector field along α given by w(t) = a(α(t))û+
b(α(t))v̂. The value

Dw

dt
=

(
da

dt
+ Γ1

11au
′ + Γ1

12av
′ + Γ1

21bu
′ + Γ1

22bv
′
)

û

+

(
db

dt
+ Γ2

11au
′ + Γ2

12av
′ + Γ2

21bu
′ + Γ2

22bv
′
)

v̂, t ∈ I

with terms evaluated at t and α(t), is the covariant derivative of w at t.

Theorem 2.28 (Theorema Egregium — Gauss). Gaussian curvature of an embed-
ded surface is invariant under local isometry.

Proof Sketch. By differentiating û, v̂ as vectors in R3 and expressing them in terms
of the Christoffel symbols, a calculation (see [1, p.235–37]) shows that

(2.29) K =
−1

E

(
∂uΓ2

12 − ∂vΓ2
11 + Γ2

11Γ1
12 − Γ1

11Γ2
12 + Γ2

12Γ2
12 − Γ2

11Γ2
22

)
,

hence locally the Riemannian metric totally determines curvature. �

This result lets us conclude that Gaussian curvature is in fact part of a sur-
face’s intrinsic geometry, and we can use the above formula for the curvature of an
arbitrary surface, not just an embedded surface.

A similar result, the Bonnet Theorem, states that a neighborhood U of R2 and
differentiable functions E,F,G, e, f , and g, satisfying E > 0, G > 0, EG−F 2 > 0,
and the Gauss and Mainardi-Codazzi compatibility equations, on U characterize a
neighborhood of a regular surface up to rigid motion. See [1, Theorem (Bonnet),
p.239].

Example 2.30 (Curvature of the Hyperbolic Plane). Recalling the hyperbolic
plane H2 (Ex. 2.15), we can use (2.29) to find its curvature. From (2.26), we find
all the Christoffel symbols are zero except

Γ2
21 = Γ2

12 = 1 Γ1
22 = −e2u

which we can then substitute into (2.29) and find

K = −1.
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Remark 2.31. The hyperbolic plane can be embedded in three dimensional Minkowski
space M3, which is R3 equipped with a metric of signature (2,1). In M3, one sheet
of the two-sheet hyperboloid is isometric to the hyperbolic plane. For a history and
more complete treatment, see [5].

2.5. Geodesics and Completeness. Using the covariant derivative, we can define
a ‘straight line’ on a surface as a parametrized curve that does not turn in the
surface:

Definition 2.32. A non-constant parametrized curve γ : I → S is a geodesic if for

all t ∈ I its tangent vector has zero covariant derivative; Dγ′

dt = 0.

One important tool that arises from geodesic curves is the exponential map, a
map from the tangent plane to a surface that preserves distance from some center
point in the surface. The following property of geodesics is necessary for this
construction, but for conciseness is presented without proof. For proof, see [1,
Proposition 5, p.257].

Lemma 2.33. In a neighborhood V ⊂ S of a point p, for every non-zero vector
w ∈ Tp(S) there is ε > 0 such that there exists exactly one parametrized geodesic
γ : (−ε, ε)→ V with γ(0) = p and γ′(0) = w.

Definition 2.34. For a point p ∈ V ⊂ S of a neighborhood of a regular surface and
a vector w ∈ Tp(S), let γw : [0, 1] → S be the unique geodesic of S with γ(0) = p
and γ′(0) = w. The exponential map

expp : U ⊂ Tp(S)→ S, expp(0) = p, expp(w) = γw(1)

sends w to the point obtained by traveling a length |w| along a geodesic from p in
the direction of w.

Note that expp is not always defined on the whole tangent plane. For instance,
on the upper hemisphere of the unit sphere, denoting by N the north pole, expN
is defined only on the open disc of radius π

2 centered at the origin of TN (S).
It also follows from the definition of a geodesic that |γ′w(t)| = |w| is constant,

and hence that the arc length L(γw) is |w|, as noted above.
We now can set another constraint on surfaces, which is necessary for Hilbert’s

theorem.

Definition 2.35. A surface S is geodesically complete if every parametrized geo-
desic γ : I → S can be extended to a parametrized geodesic γ̄ : R→ S.

We use this particular definition because of the Hopf–Rinow theorem, which
further characterizes geodesic completeness using the following tool: for points
p, q ∈ S, let αqp denote a parametrized curve with αqp(0) = p, αqp(1) = q. The
intrinsic metric dl on S is then defined as dl(p, q) := inf{L(αqp)}.

Theorem 2.36 (Hopf–Rinow). For any surface S, the following are equivalent:

(a) S is geodesically complete.
(b) Any closed and bounded subset of S is compact.
(c) S is a complete metric space under the intrinsic metric.

Proof Sketch. That (a) implies (b) follows from the fact that a closed and bounded
subset of S is contained in the image by the exponential map of a closed disc. It
follows from (b) that the closure of a Cauchy sequence is compact, and therefore
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contains a convergent subsequence, which implies (c). By considering a Cauchy
sequence along a geodesic, (c) implies that the maximal domain a geodesic can be
extended to is closed, open, and non-empty, and must therefore be the real line,
hence (a).

For a full proof, see [4, Theorem 1.48, p.27–30]. �

3. Prerequisites to Hilbert’s Theorem

In this section we discuss several particular concepts used in our proof of Hilbert’s
theorem.

Definition 3.1. The coordinate curves x(u, const.), x(const., v) form a Chebychev
net if every quardilateral formed by those curves has opposite sides of equal length.

Lemma 3.2. If the coordinate curves of a neighborhood V ⊂ S satisfy the condition
∂vE = ∂uG = 0, then the coordinate curves form a Chebychev net.

Proof. In a Chebychev net, any curve given by α : [u1, u2]→ S, α(u) = x(u, const.)
has the same arc length for all v. By construction α varies only in u, so we have
for v constant that ∫ u2

u1

|α′(u)| du =

∫ u2

u1

√
E(u) du = const.

Differentiating by v yields that∫ u2

u1

∂v
√
E(u) du = 0,

which holds for ∂uE = 0. The same logic can be applied to curves given by
x(const., v) to prove the lemma. �

Intuitively, if the ‘length element’ along one coordinate curve is independent of
position along the other, then any quadrilateral formed by the coordinate curves
must have opposing sides of the same length.

Definition 3.3. A vector w ∈ Tp(S) lies in an asymptotic direction at p if IIp(w) =
0.

Note that all vectors linearly dependent with w lie in the same asymptotic di-
rection.

Remark 3.4. If the Gaussian curvature at a point p is positive, then IIp has no
zeroes in Tp(S), and thus no asymptotic directions. If K = 0 at p, then either there
is exactly one asymptotic direction or all directions are asymptotic. If K < 0, then
there are exactly two asymptotic directions at p.

Example 3.5 (Asymptotic Directions of the Hyperboloid). To find the asymptotic
directions at a point p ∈ H1 (Ex. 2.2) we note that the lines αφ, βφ : R→ R3 given
by

αφ(t) = (cosφ− t sinφ, sinφ+ t cosφ, t)

βφ(t) = (cosφ− t sinφ, sinφ+ t cosφ, −t)

lie in H1 (see Fig. 3.6). Since αφ is a straight line, α′φ(t) must be an asymptotic di-

rection at α(t), and likewise for βφ. We also have by Remark 3.4 that the curvature
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of H1 is non-positive. In fact, a computation similar to that for the pseudosphere
(Ex. 2.24) shows that the curvature at (θ, v) is

K = −
(

sinh2(v) + cosh2(v)
)−2

.

Figure 3.6. Asymptotic Curves in One-Sheet Hyperboloid

The following two tools are necessary for the proof of Hilbert’s theorem.

Lemma 3.7. In a parametrization with E = G = 1 and F = cos θ, the curvature
is given by K = −∂uvθ

sin θ .

Proof. As in the Example 2.30, the Christoffel symbols may be calculated directly
and substituted into (2.29). �

Lemma 3.8. In a complete surface S with non-positive curvature, the exponential
map expp is a local diffeomorphism for any p ∈ S. That is, for any p, q ∈ S, there
exists a neighborhood V of q such that expp restricted to V is a diffeomorphism.

Proof Sketch. This follows from the fact that in Euclidean or hyperbolic spaces
geodesics that start together tend to ‘spread out’ as they travel, and thus the
differential of the exponential map is non-singular.

For a full proof, see [1, p.363–72]. �

4. Hilbert’s Theorem

Theorem 4.1 (Hilbert). There exists no isometric immersion of a complete surface
with constant negative Gaussian curvature in R3.

Hilbert’s theorem describes how the intrinsic geometry of the hyperbolic plane
cannot be reconciled with the external structure of R3, so a reasonable place to look
for this incompatibility is in the extrinsic structure an immersion into R3 would
induce on a surface. In particular, one would look at the extrinsic structure unique
to points of negative curvature. At any hyperbolic point in an immersed surface,
there are exactly two asymptotic directions.

For the remainder of this section, we will assume that there exists an isometric
immersion of the hyperbolic plane H2. Let S be an immersed surface isometric to
H2. We will develop a parametrization of S by the asymptotic curves, and then
show a contradiction with the area of rectangles formed by these parametric curves,
and finally generalize the result to any immersion of a complete surface of constant
negative curvature.
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Proposition 4.2. S can be locally parametrized by asymptotic curves that form a
Chebychev net.

Proof. K < 0 in H2, so at any point p ∈ S, there is a neighborhood V ⊂ S that
can be parametrized by its asymptotic curves.

To prove this, we refer to the Gauss map and second fundamental form of S.
The defining characteristic of our choice of parametrization is that at a point p, we
have IIp(û) = e = 0. Because N is defined to have norm 1, 〈∂uN,N〉 = 0 as well,
so ∂uN is perpendicular to both N and û. Likewise, ∂vN is perpendicular to both
N and v̂. This property proves the proposition with the following manipulation.

Since ∂uN is perpendicular to û and likewise for ∂vN , v̂, the angle between ∂uN
and ∂vN is the same as the angle between û and v̂, so we find

∂uN × ∂vN = dN(û)× dN(v̂) =

(
|∂uN ||∂vN |
|û||v̂|

)(
û× v̂

)
=
(

det dN
)(
N
√
EG− F 2

)
∂uN × ∂vN = −N

√
EG− F 2.(4.3)

We then differentiate and find

∂

∂v
(∂uN ×N) = (∂vuN ×N) + (∂uN × ∂vN)

∂

∂u
(∂vN ×N) = (∂uvN ×N) + (∂vN × ∂uN)

2(∂uN × ∂vN) = ∂v(∂uN ×N)− ∂u(∂vN ×N).(4.4)

We can then further expand this to

∂v(∂uN ×N) = ∂v

(
∂uN ×

(û× v̂)

|û× v̂|

)
= ∂v

(
1

|û× v̂|
û〈∂uN, v̂〉 − v̂〈∂uN, û〉

)
= ∂v

(
f û√

EG− F 2

)
since 〈∂uN, û〉 = e = 0. However, we have K = eg−f2

EG−F 2 , and since K is assumed to
be constant, this simplifies to

(4.5) ∂v(∂uN ×N) = ±
√
−K(∂vux) = ±∂vux.

Applying the same manipulations gives also

(4.6) ∂u(∂vN ×N) = ±∂uvx.

Now, we can combine (4.5), (4.6), (4.4), and (4.3) and we find

N
√
EG− F 2 = ±∂uvx,

and therefore ∂uvx is proportional to N . It follows that 〈∂uvx, û〉 = 0, and hence
∂vE = 2〈∂vux, û〉 = 0. Likewise, ∂uG = 0, proving the proposition. �
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Remark 4.7. The manipulation here boils down to showing that ∂uvx is parallel to
N , which means intuitively that as you travel along the curve x(u, const.), the v̂
direction twists around the û direction, but is not stretched at all (and the same
for x(const., v)).

Remark 4.8. Since E depends only on u and G only on v, the coordinate curves
x̄(u, v1) and x̄(u1, v) can be reparametrized by arc length:

s(u) =

∫ u

u0

√
E(ū)dū t(v) =

∫ v

v0

√
G(v̄)dv̄

Thus for the parametrization x = x̄(s(u), t(v)) we have E = G = 1, and therefore
F = cos θ(q), where θ(q) is the angle between the coordinate curves at a point q.

By Lemma 3.7, we then have in a parametrization of S by the asymptotic curves
that ∂uvθ = sin θ.

4.1. Parametrizing S by Asymptotic Curves.

Construction 4.9. We now fix a point p0 ∈ S and define a map x : R2 → S as
follows. Fix an asymptotic curve α, parametrized by arc length, with α(0) = p0.
Since S is complete, the domain of α can be extended to the whole real line. We
define x(u, 0) := α(u). To define x(u, v) in general, we take the asymptotic curve
βu parametrized by arc length with βu(0) = x(u, 0) and α′(u)×β′u(v) = λ(N(u, v))
for λ > 0 (so β′u(0) is always on the ‘same side’ of α) and let x(u, v) := βu(v).

To prove that x(u, v) is well defined for all (u, v) ∈ R2, note that by Proposition
4.2, α is well-defined on some open interval around 0. Thus if α cannot be extended
to the whole real line, then there is minimal u0 > 0 such that α(u0) is not defined.
However, for a sequence un < u0 that converges to u0, limn→∞ α(un) ∈ S, by
completeness. Again by Proposition 4.2, limn→∞ α(un) can be parametrized locally
by asymptotic curves one of which must agree with α, so α can be extended to u0.
Thus α can be extended to all of R, and the same argument can be applied to βu
to show that x(u, v) can be extended to all of R2.

Proposition 4.10. The curves αv(u) := x(u, v = const.) are asymptotic curves.

Proof. For any u0, v0 with v0 6= 0, the segment of curve βu0 between x(u0, 0) and
x(u0, v0) is compact, and can thus be covered by a finite family Ui of coordinate
neighborhoods such that, by Proposition 4.2, each Ui can be parametrized by as-
ymptotic curves which form a Chebychev net. Let U1 be a neighboorhood of x(u0, 0)
and αv1 intersect U1. Then, by the construction of αv1 , the curves βu all trace out
the same arc length between α(u) and αv1(u). Since the asymptotic curves form a
Chebychev net in U1 and α is an asymptotic curve, αv1 must also be an asymptotic
curve. In particular, if αv1 were not an asymptotic curve, then there would exist
an asymptotic curve γ such that the curves βu did not trace out equal arc lengths
between α and γ, which contradicts Proposition 4.2.

Suppose U2 intersects U1. Then there is an asymptotic curve αv1 in the inter-
section, by the above paragraph. We can extend the argument to all αv2 in U2

by noting that the point αv2(u) is found by tracing a length (v2 − v1) along βu,
starting at αv1(u). By the same argument as above, since asymptotic curves form
a Chebychev net in U2 and αv1 is an asymptotic curve, αv2 must be an asymptotic
curve as well.
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The same argument can be repeated for all Ui; hence αv0 is an asymptotic curve
in a the neighborhood of (u0, v0), which, since u0, v0 were arbitrary, proves the
proposition. �

Remark 4.11. The curves αv are parametrized by arc length, as each traces out the
same length in S as α on a given interval.

Proposition 4.12. The map x is a local diffeomorphism.

Proof. Every point x(u0, v0) has a neighborhood V that can be parametrized by
asymptotic curves by Proposition 4.2. By Proposition 4.10, the coordinate curves
of x are asymptotic curves, so since each point has only two asymptotic curves, x
restricted to some neighborhood U of (u0, v0) is a parametrization of S as x(u0, v0).
Hence x restricted to U is a diffeomorphism. �

Proposition 4.13. The map x is surjective.

Proof. Suppose x is not surjective. Because S is homeomorphic to a plane, it is
simply connected, and thus the boundary ∂(x(R2)) is non-empty. Choose a point
p in ∂(x(R2)). Since x is a local diffeomorphism, x(R2) is open and thus p is not
in x(R2). We choose some neighborhood V of p such that, by Proposition 4.2,
V is parametrized by asymptotic curves that form a Chebychev net. One of the
asymptotic curves γ at p must then pass through x(R2) (or else the asymptotic
curves would be tangent at p, and x would not be a parametrization), so we pick
a point q ∈ x(R2) along γ. Because q has exactly two asymptotic curves, γ must
then be a coordinate curve of x, and hence p must be in x(R2). �

Injectivity follows from topological considerations that can be found in Appendix
A. We then have that x is a diffeomorphism.

4.2. Area in S.

Proposition 4.14. Any rectangle formed by coordinate curves of x has finite area.

Proof. LetR ⊂ S be a rectangular region with vertices x(u0, v0),x(u1, v0),x(u1, v1),
and x(u0, v1), whose interior angles are φ(u0, v0), etc. By Remark 4.8 we have
∂uvθ = sin θ, so the area of R is given by

A(R) =

∫∫
x−1(R)

√
EG− F 2 du dv =

∫∫
x−1(R)

sin θ du dv

=

∫∫
x−1(R)

∂uvθ du dv

= φ(u1, v1)− (π − φ(u1, v0))− (π − φ(u0, v0)) + φ(u0, v1)

< 2π

and is therefore finite. �

Lemma 4.15. The area of S is infinite.

Proof. Since S is isometric to H2, it suffices to find A(H2) in the parametrization
of Example 2.15

A(H2) =

∫∫
R2

√
EG− F 2 du dv =

∫∫
R2

eu du dv =∞.

�
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With this discrepancy in hand, we can now prove the theorem. By Proposition
4.14, we can cover S with coordinate rectangles Ra := x

(
[−a, a]× [−a, a]

)
such that

for a < b, Ra is a proper subset of Rb. Every Ra has area at most 2π, though,
which contradicts that the area of S is infinite. Hence there exists no isometric
immersion in R3 of a surface homeomorphic to a plane with curvature K = −1.

To generalize this result to any complete surface of constant negative curvature,
note we can transform any surface of constant negative curvature into one with
K = −1 by multiplying its metric by a constant factor.

For a complete surface S′ with K = −1 not homeomorphic to a plane, we have
that the exponential map expp : Tp(S

′) → S′ is a local diffeomorphism (Lemma
3.8). We can then treat Tp(S

′) as a surface, and give it a metric by pulling back
the metric of S′ via the exponential map. That is, for v, w ∈ Tq(Tp(S′)), we define

〈v, w〉q := 〈d(expp)q(v), d(expp)q(w)〉p.

Under this metric on Tp(S
′), we have that the exponential map is an isometry, and

therefore Tp(S
′) has constant negative curvature. Then if there existed an isometric

immersion ϕ of S′, we would also have ϕ ◦ expp being an isometric immersion of
Tp(S

′), which we have just proven does not exist.

5. Further Results

In 1963, N. V. Efimov [6] published a generalization of Hilbert’s theorem, proving
that any any complete surface with curvature K ≤ δ < 0 cannot be isometrically
immersed in R3 (The one-sheet hyperboloid (Ex. 2.2) is not a counterexample, as
the curvature approaches zero for large z).

The Nash embedding theorem states that for a sufficiently differentiable manifold
M , there exists a finite n such that M can be isometrically embedded in Rn. In
the case of the hyperbolic plane, it guarantees the existence of an embedding in
R51. In fact, D. Blanusa [7] found in 1955 an explicit smooth isometric embedding
of H2 into R6.

Appendix A. Arc Lifting

The proof that x, as defined in Construction 4.9, is a diffeomorphism relies on a
topological argument which is laid out in this appendix.

Definition A.1. An arc from p to q is a continuous map a : [0, 1] → X with
a(0) = p, a(1) = q. An arc a is closed if a(0) = a(1).

Definition A.2. Let a and b be arcs from p to q. A homotopy between a and b is
a continuous map H : [0, 1] × [0, 1] → S with H(0, t) = p, H(1, t) = q, H(s, 0) =
a(s), H(s, 1) = b(s). Arcs a and b are homotopic if there exists a homotopy between
them.

Lemma A.3. Every closed arc in R2 is homotopic to a constant arc; R2 is simply
connected.

Proof. Let a : [0, 1]→ R2 be a closed arc and r = a(0) = a(1). Consider the map

H̄(s, t) = tr + (1− t)a(s).

It is immediate that H̄ is a homotopy between a and the constant arc r(s). �
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Definition A.4. Let ϕ : X → Y be a continuous map. If for every arc a in Y and
point p in X with ϕ(p) = a(0) there exists a unique arc ā in X such that ā(0) = p
and ϕ ◦ ā = a, then ϕ has the unique arc lifting property.

Lemma A.5. Let ϕ : X → Y be a local homeomorphism with the unique arc
lifting property. Then for every homotopy H in Y and point r in X such that
ϕ(r) = H(0, t), there is a unique homotopy H̄ in X with ϕ◦H̄ = H and H̄(0, t) = r.

Proof. To prove uniqueness, suppose there exist homotopies H̄, H̄ ′ in X that satisfy
the above conditions. Then the set P ⊂ [0, 1] × [0, 1] of points (s, t) such that
H̄(s, t) = H̄ ′(s, t) is non-empty. Since, however, H̄ and H̄ ′ are continuous, P must
be closed in [0, 1] × [0, 1], and since ϕ is a local homeomorphism, P must also be
open. The set [0, 1]× [0, 1] is connected, so P = [0, 1]× [0, 1] and thus H̄ = H̄ ′.

We can construct H̄ as follows: let at be the arc t = const. of H. Then we define
H̄(s, t) := āt(s), since ϕ has the arc lifting property. All the desired properties
except continuity follow immediately.

To prove that H̄ is continuous, we fix (s0, t0) and define ψ as the restriction of ϕ
to some neighborhood U of (s0, t0) such that ψ is a homeomorphism from H̄(U) to
ψ(H̄(U)). We have that ψ ◦ H̄ = H and ψ is invertible, so in some neighborhood of
(s0, t0), we can write H̄ = ψ−1 ◦H. Since (s0, t0) was arbitrary, H̄ is continuous,
proving the lemma. �

Proposition A.6. The map x as defined in Construction 4.9 is closed; the image
of a closed set by x is closed.

Proof. Suppose Y ⊂ R2 is closed but x(Y ) is not closed. Then there is a convergent
sequence zn whose limit z0 := limn→∞ zn is in Y , but limn→∞ x(zn) is not in x(Y ).
Consider a compact set C ⊂ R2 that contains the sequence zn. The closed map
lemma states that a continuous function from a compact set to a Hausdorff space is
closed, so x restricted to C is a closed map. Hence x(C∩Y ) is closed. In particular,
zn ∈ C ∩Y , so we have that x(zn) ∈ x(C ∩Y ) and therefore limn→∞ x(zn) ∈ x(Y ).

�

Proposition A.7. The map x as defined in Construction 4.9 has the unique arc
lifting property.

Proof. Let a be an arc in S with x(p) = a(0), and suppose there does not exist a
unique arc ā in R2 with ā(0) = p and x ◦ ā = a. Since x is a local diffeomorphism,
there is a neighborhood U of p such that x restricted to U is a homeomorphism.
Let y be the restriction of x to U . Then in U , the arc y−1 ◦ a must agree with ā,
and since U is open, there exists minimal s0 ∈ (0, 1] such that the arc as0 given by
the restriction of a to [0, s0] has no unique lifting.

In particular, for any strictly increasing sequence tn with limn→∞ tn = s0, the
sequence ās(tn) has no convergent subsequence; if such a subsequence converged
to q, then by continuity of x, we would have lims→s0(as(s)) = a(s0) = x(q) and
the restriction of x onto a neighborhood of q would produce a unique lifting of
as0 . Since no such sequence exists, we have that the set {ās(s) | 0 < s < s0} ∪ {p}
is closed in R2. However, the set {a(s) | 0 ≤ s < s0} is not closed in S, which
contradicts that x is closed. �

Remark A.8. This proposition is adapted from the slightly more general case in [8,
Proposition 6.14, p.144].



HILBERT’S THEOREM ON IMMERSION OF THE HYPERBOLIC PLANE 17

Proposition A.9. The map x as defined in Construction 4.9 is a diffeomorphism.

Proof. Since we have that x is a surjective local diffeomorphism, it suffices to show
that x is injective. Supposing the contrary, there are p, q ∈ R2 such that x(p) =
x(q). Let a be an arc from p to q. The composition b := x ◦ a is then a closed
arc. Because S is homeomorphic to a plane, there exists a homotopy H between b
and a constant arc c. Since x has the path lifting property, by Lemma A.5 there
is a unique homotopy H̄ in R2 with H̄(0, t) = p. By uniqueness, we have that
H̄(s, 0) = a(s), and also that H̄(s, 1) = p; hence a(1) = p = q. �
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