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ON THE PRINCIPAL EIGENVECTOR OF A GRAPH

YUEHENG ZHANG

The University of Chicago

ABSTRACT. The principal ratio of a connected graph G, v(G), is the ratio
between the largest and smallest coordinates of the principal eigenvector of the
adjacency matrix of G. Over all connected graphs on n vertices, 7(G) ranges
from 1 to n¢". Moreover, v(G) = 1 if and only if G is regular. This indicates
that v(G) can be viewed as an irregularity measure of G, as first suggested
by Tait and Tobin (EL. J. Lin. Alg. 2018). We are interested in how stable
this measure is. In particular, we ask how v changes when there is a small
modification to a regular graph G. We show that this ratio is polynomially
bounded if we remove an edge belonging to a cycle of bounded length in G,
while the ratio can jump from 1 to exponential if we join a pair of vertices
at distance 2. We study the connection between the spectral gap of a regular
graph and the stability of its principal ratio. A naive bound shows that given
a constant multiplicative spectral gap and bounded degree, the ratio remains
polynomially bounded if we add or delete an edge. Using results from matrix
perturbation theory, we show that given an additive spectral gap larger than
2y/n, the ratio stays bounded after adding or deleting an edge.
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1. INTRODUCTION

It is known that the adjacency matrix Ag of every connected graph G has a
simple largest eigenvalue A1, and that \; has an eigenvector with all-positive coor-
dinates, called the principal eigenvector of G, which we denote by q. Therefore a
unique-up-to-scaling all-positive eigenvector can be associated with every connected
graph. Then it is natural to study how q reflects the structure of the graph. All
our discussions will be asympototic as the number of vertices approaches infinity
in a family of graph.

Cioaba and Gregory [11] first defined the principal ratio of G, Y(G) = qmax/qmin,
to be the ratio between the largest and smallest coordinates of . This ratio is 1
for regular graphs, while it can grow at factorial rate (i.e., v(G) > n°" for some
positive constant ¢) [11]. Since v(G) > 1 where equality holds if and only if G is
regular, it is natural to think of v(G) as a measure of the irregularity of G. This
view was suggested by Tait and Tobin [13].

A basic observation is that, given a connected graph G with largest eigenvalue
A1 and diameter D, the principal ratio satisfies

(1.1) v(G) < AP,

We are interested in the stability of v, i.e., how a slight change of G influences
~v(G). In particular, given a d-regular graph G, we ask how v(G) changes from the
constant 1 if we add or remove one edge in G. (We call the resulting graphs G + e
and G — e, respectively.) We always assume the edge we remove will not disconnect
G (i.e., e is a non-bridge edge), so that the principal eigenvector of G — e is defined.

In Section 4.1, we study the cases where the edge we add to or remove from a
regular graph is between vertices of bounded distance. We show that

e v(G + ¢e) can jump to exponential in n when the degree is bounded [The-
orem 4.3]. In our example, e connects two vertices at distance 2 in G.
By (1.1), boundedness of the degree is necessary here.

e If we remove an edge belonging to a cycle of bounded length in G, v(G —e¢)
is always polynomially bounded regardless of the degree [Theorem 4.11].

We also study the relevance of the spectral gap to the stability of v(G) for regular
graphs. In Section 4.2, based on (1.1), we note that

e (G *e) is always polynomially bounded in n when G is a bounded-degree
expander graph, i.e., when the degree is bounded and the spectral gap of
G is bounded from below [Observation 4.15].
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In Section 4.3.2, we put this problem in the more general context of perturbations
of matrices. By adapting theorems and proofs from Stewart and Sun’s book [5] to
our special case, we show that

e If there is an additive spectral gap larger than 24/n, then v(G=e) is bounded
[Theorem 4.17].

This result does not follow from (1.1). Indeed, in Section 4.3.1 we construct graphs
with degree of order n(2**)/3 and additive spectral gap of order n?, having diam-
eter of order n!~1/3 for any constant 0 < ¢ < 1. Similar applications of matrix
perturbation theory in link analysis for networks can be found in [9].

When computing or giving bounds on the coordinates of the principal eigenvec-
tor for certain types of graphs, we take advantage of the properties of Chebyshev
polynomials, a family of orthogonal polynomials which has found numerous appli-
cations in discrete mathematics. Here is an incomplete list of the areas of such
applications:

e the matchings polynomial of graphs, by Heilmann and Lieb [1]

e approximate Inclusion—Exclusion, by Linial and Nisan [4]

e analysis of Boolean functions, in bounding the real degree of the OR func-
tion, by Nisan and Szegedy [6]

e the diameter of regular and bipartite biregular graphs, by van Dam and
Haemers [7]

e counting restricted permutations, by Mansour and Vainshtein [8]

e the mixing rate of non-backtracking random walks, by Alon et al. [10].

In Section 3.2, we state some properties of Chebyshev polynomials and show
their connection with the principal eigenvectors of certain graphs.

2. GENERAL PRELIMINARIES

2.1. Definitions and notation.

By a graph we mean what is often called a simple graph (undirected graph with
no self-loops and no parallel edges). G will always denote a connected graph with
n vertices. We denote by V(G) and E(G) the set of vertices and edges of G,
respectively. We usually identify the set of vertices with the set [n] = {1,2,...,n},
so the vertices are labeled 1,...,n. We write ¢ ~¢ j if vertices ¢, j are adjacent in
G. We denote by Ng(j) the set of neighbors of j in G. We use deg(j) to denote
the degree of vertex j in G. We write G for the complement of G. Let distg (i, j)
denote the distance between vertices ¢ and j in G. Let D(G) := max; ; dist(4, j)
denote the diameter of G.

We use M, (R) to denote the set of n xn real matrices. We write j for the all ones
vector, and J for the all-ones matrix. We use Ag to denote the adjacency matrix
of G. We note that Ag is a real symmetric matrix, so its eigenvalues are real. We
write A1 (G) > A2(G) > -+ > A\,(G) to denote the eigenvalues of Ag. We also
denote A\ (G) by Ag. We write q(G) for the principal eigenvector of Ag scaled to
have [2 norm 1. Let ¢;(G) denote the coordinate corresponding to vertex i in q(G).
We write gmax(G) and gmin(G) for the maximum and minimum coordinates of q(G),
and vimax(G) and vmin (G) for corresponding vertices. Recall that the principal ratio
of GG is defined as

L Imax(G)
(2.1) Q) = P
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We write L¢g for the Laplacian of G, defined as the n x n matrix
Lg = diag(deg(1),deg(2),...,deg(n)) — Ag.

Lg is positive semidefinite. The principal eigenvalue of L is defined to be the
eigenvalue corresponding to the eigenvector j; its value is zero. We write §(G) to
denote the smallest non-principal eigenvalue of Lg. We note that §(G) = 0 if and
only if G is disconnected. 0(G) is the algebraic connectivity of the graph G, as first
defined by Fiedler [2].

For a d-regular graph G, let fa(¢) be the characteristic polynomial of its adja-
cency matrix Ag. The characteristic polynomial of the Laplacian Lg is

(2.2) Folt) = fald—1).
It follows that
(2.3) (G) =d— X(G).
We refer to the right-hand side as the additive spectral gap of G. We refer to
oG Ao
(2.4) % =1- i
as the multiplicative spectral gap of G. We use this terminology for regular graphs
only.

In all notation, we omit the graph G when it is clear from context.

Let C), denote the cycle with n vertices. Let P, denote the path with r vertices;
it has 7 — 1 edges. Let K, denote the clique with s vertices; it has (3) edges.
Following the notation used in previous papers on this subject, we use P, - K, to
denote the graph obtained by merging the vertex at one end of P, with one vertex
in K. So P.- K, hasn =r+s—1 vertices, r — 1+ (;) edges, and diameter r. This
has been called a kite graph or a lollipop graph. We will call it a kite graph.

By a family of graphs, we mean an infinite set of non-isomorphic finite graphs.

Let f(n) > 1. We say the rate of growth of f(n) is polynomially bounded if for all
sufficiently large n, f(n) < n° for some constant c. We say f(n) is exponential if for
all sufficiently large n, f(n) > a” for some constant a > 1. We say f(n) has factorial
growth if for all sufficiently large n, f(n) > n®" for some positive constant c.

Given a family G of graphs, we label the graphs as Gi,...,G;,..., and let
ni,...,n;,... be the corresponding number of vertices. We say v(G) is polyno-
mially bounded in n if there is some constant ¢ such that for all sufficiently large 7,
v(Gi) < n§. We say v(G) grows exponentially in n if there is some constant a > 1
such that for all sufficiently large i, G; > a™.

2.2. Results from linear algebra.

In this section we introduce results from linear algebra that we will use for later
proofs. Orthonormality in R™ refers to the standard dot product. Given a matrix A,
we write a;; for the entry on the i-th row and in the j-th column of A, and we write
A= (aij).

Definition 2.5. For an m x n real matrix M, the operator norm induced by {2
vector norm (|| - ||) is

Mx
)= sup WXL
xeRn, x20 |||

Fact 2.6. In addition to being subadditive, the operator norm is also submulti-
plicative, i.e., || AB|| < ||A||||B|| for A, B € M, (R).
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Fact 2.7. For a symmetric real matrix M, ||M|| = maxj<;<p |Ai|. Moreover, if M
is non-negative, maxj<;<n |A;| is attained by A;. In particular, for the adjacency
matrix Ag of a graph G,

(2.8) [Acl = M(G).

Theorem 2.9 (Spectral theorem for real symmetric matrices). If M is an n X n
real symmetric matriz (i.e., M = M?T), then M has an orthonormal eigenbasis
over R. In particular, all eigenvalues of M are real.

Definition 2.10 (Fractional powers of positive semidefinite real symmetric matri-
ces). Let M € M, (R) be symmetric and positive semidefinite. Then we can write
M as M = QAQT where Q is an orthogonal matrix, A = diag(\,...,\,), and
Ai > 0. For a € R, we define

M= Qdiag()\{,...,\%)QT.
This definition is sound. (It does not depend on the particular choice of Q.) Tt
follows that for a,b € R, M® - M® = M+,

In the rest of Section 2.2, A = (a,;) will always denote a real symmetric n x n
matrix with eigenvalues Ay > Ao > -+ > A,

Definition 2.11. A multiset is a set in which elements are allowed to have multiple
instances. We denote a multiset by double braces. For example, {{a,a,a,b,c,c}}
is a multiset. We also write {{a, a,a,b,c,c}} as {{a3,b,c?}}.

Definition 2.12. The spectrum of an n X n matrix M is the multiset of its eigen-
values. We denote it by spec(M).

Fact 2.13 (Spectrum of polynomials of a matrix). If g is a polynomial, then
spec(g(A4)) = {{g(M), 9(X2), ..., 9(An)}}-

Definition 2.14. The Rayleigh quotient of the matrix A is the function

y? Ay _ Z1§z‘,j§n AijYiYj

yTy i vi

Ra(y) =

defined for y € R", y # 0.
Observation 2.15. If y is an eigenvector to eigenvalue \;, then Ra(y) = A;.
Theorem 2.16 (Rayleigh’s principle).

AL = m)f;meA(y).

An =max R4(y).
y

Moreover, Ra(y) = A1 if and only if y is an eigenvector to A;.
Corollary 2.17. Given vectory = (y1,...,yn)", we let [y| be the vector (|y1l, . .., |yal)T .
If y is an eigenvector to eigenvalue A1, then |y| is also an eigenvector to ;.

Definition 2.18. Let B = (b;;) be an m X n matrix and let M be a p x ¢ matrix.
The Kronecker product of B and M, B ® M, is the mp x ng matrix

buuM  bioM - by M
borM  booM - b M

bmlM bm2M e bmnM
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Fact 2.19. Let B € M,(R) and M € M,,(R). Let the eigenvalues of B be
A1 > -+ > A, and let the eigenvalues of M be p; > -+ > iy, Then

spec(B@ M) = {{\ip;, 1 <i<n,1<j<m}}

2.3. Results from spectral graph theory.

In this section we introduce well-known results from spectral graph theory that
will be of use later.
2.3.1. Observations about the adjacency operator.

In Sections 2.3.1 through 2.3.3, we fix the graph G and write A for Ag.

We first note how the adjacency operator A of a graph G acts on vectors.

Observation 2.20. Given'y = (y1,...,Yn), the ith coordinate of Ay is given by

(Ay)i= > v

G

Corollary 2.21. Ify = (y1,...,Yn) 1s an eigenvector of A to eigenvalue p, then

PYi = Z Yj-

Jijei
Recall that j denotes the all-ones vector.
Corollary 2.22. j is an eigenvector of A if and only if G is reqular.

Proof. Suppose G is d-regular. Then Aj = (deg(1),deg(2),...,deg(n))T = dj.
Suppose Aj = dj. Then for any i € n, |[N(i)| = (d-1)/1 = d. O

2.3.2. Ezistence of the principal eigenvector for a connected graph.

In this section we establish the existence of the principal eigenvector for a con-
nected graph. This follows from the Perron—Frobenius theorem for irreducible ma-
trices, though given that the adjacency matrix is real and symmetric, it can be
proved in much simpler ways using Rayleigh’s principle.

Proposition 2.23. If G is a connected graph andy is an eigenvector to eigenvalue
A1, then y has no zero coordinates.

Proof. Tt suffices to prove that |y| has no zero entries. By Corollary 2.17, |y]|
is an eigenvector to eigenvalue A;. Suppose |y;| = 0. Then by Corollary 2.21,
Zj:jNi ly;] = 0. Therefore |y;| = 0 for all j ~ i. Since G is connected, by repeating
this argument we have y = 0, but by assumption y # 0. (I

Proposition 2.24. If G is a connected graph andy is an eigenvector to eigenvalue
A1, then the coordinates of y are either all positive or all negative.

Proof. Suppose there are entries of opposite signs in y. Since G is connected and
y has no zero entries, there has to be edges between vertices of positive entry and
vertices of negative entry. Since the entries of Ag corresponding to these edges
are 1, we can strictly increase R4, (y) by changing the sign of all negative entries
into positive. But this contradicts Theorem 2.16 (Rayleigh’s principle). O

Corollary 2.25. For a connected graph G, A1 is simple.
Proof. Two all-positive or all-negative vectors cannot be orthogonal. ([l

Theorem 2.26. For every connected graph G, the largest eigenvalue A\ is simple,
and it has a unique-up-to-scaling all-positive eigenvector (the principal eigenvector).
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Proof. Proposition 2.24 together with Corollary 2.17 proves the existence of an
all-positive eigenvector to A;. Since A; is simple, this eigenvector is unique up to
scaling. 0

Corollary 2.27. If G is connected and y is an eigenvector to eigenvalue A with
all-positive coordinates, then X is the largest eigenvalue of A.

Proof. Since \; is simple, any eigenvector y to an eigenvalue other than A; must
be orthogonal to the principal eigenvector. (I

Corollary 2.28. For a connected d-reqular graph G, A\ = d.

Proof. Follows from Corollary 2.22. O
Corollary 2.29. For the clique on n vertices, Ay =n — 1.

Observation 2.30. Corollary 2.28 also proves (2.3).

2.3.3. Bounds on the largest eigenvalue for a graph.
Let A denote maxj<;<p deg(i), the maximum degree of G.

Fact 2.31. For every graph G, A\; < A. For connected graphs, equality holds if
and only if G is regular.

Proof. Let y be an eigenvector to A1, and let y; be the maximum coordinate, then

Ay = Z y; < Ay;.
jiinj
Therefore Ay < A. Suppose G is d-regular, then A = d = A\; by Corollary 2.28.
On the other hand, suppose G is connected and A\; = A. Then Ay; = Zj:iNj Y-
Therefore vertex ¢ has degree A and the neighbors of ¢ have coordinates as large
as i. Repeat this argument for the neighbors of i. Since the graph is connected, we
have that every vertex has degree A and the same coordinate as y;. 0

We denote the arithmetic and quadratic mean of the degrees of vertices by

(2.32) davg = -
and

> iy deg(i)?
(2.33) Aoy 1= || S0

n

It is well-known that the quadratic mean of a multiset of numbers is not less than
the arithmetic mean.

Fact 2.34. For every graph G, A\i > day,.

Proof. By Theorem 2.16 (Rayleigh’s principle),
§TA] _ YL deg(i) _

)\ A - > 1) =
1(4) fbfljngA(Y)fRA(J) 77 "

We can improve this to a stonger bound.

Fact 2.35. For every G, A1 > dgavg-



ON THE PRINCIPAL EIGENVECTOR OF A GRAPH 8

Proof. Let spec(G) = {{A1,...,An}}, where Ay > -+ > \,. By Fact 2.13,
spec(A?) = {{A%,..., AT} )

e
Lety = (y1,...,yn)" bean eigenvector of A, then by Observation 2.15, Y = Y _ An-
y'y
Since A is non-negative,
T Aly| i 2 [yilaislysl - | i 2o Yiaigys| ’yTAYI —
= - — |\n]|-

ylTlyl yTy yTy yTy
Then by Theorem 2.16 (Rayleigh’s principle), A\; > |\,|. Therefore A\ is the largest
eigenvalue of A2. Again by Rayleigh’s principle,

oo dTA% JTATA] (A)TA) Y deg()®
N L i n

Thus

n N9
A > > iy deg(d) . 0
n

2.3.4. The largest eigenvalue of subgraphs.
Fact 2.36. If H is a proper subgraph of a connected graph G, then A1 (G) > A1 (H).

Proof. Let y be a non-negative eigenvector of Ay to eigenvalue A\ (H), which exists
by Corollary 2.17. Let G have n vertices. We define y as the vector with n
coordinates obtained by adding zero coordinates to y where vertices are deleted. If
¥ has zero coordinates, then by Proposition 2.23, ¥ is not an eigenvector to A1 (G).
Therefore by Rayleigh’s principle, A\;(G) > Ra,(¥) > Ra, (y) = M (H). If y does
not have zero coordinates, then y = y. For H to be a proper subgraph of G, at
least one edge is deleted. Therefore

vy Acy _ vy Acy S y Ay

M(G) > L€
1(6) yTy yTy yTy

=\ (H). O

2.3.5. Graph products.

Notation 2.37. Given a graph G and U C V(G), we denote the induced subgraph
of G on the set U by G[U].

Definition 2.38. For graphs H = (W, F) and G = (V, E), the Cartesian product
of H and G, denoted by HOG, is the graph with the set W x V as vertices, and
(w1,v1) ~ (we,v2) if and only if wy = we and v; ~g va, Or v1 = vy and wy ~g wa.
For each v € V, we call (HOG)[W x {v}] the horizontal layer corresponding to v.
For each w € W, we call (HOG)[{w} x V] the vertical layer corresponding to w.
The horizontal layers are copies of H and the vertical layers are copies of G.

Definition 2.39. For graphs H = (W, F) and G = (V, E), the lezicographic product
of H and G, denoted by H o G, is the graph with the set W x V as vertices, and
(w1,v1) ~ (wa,va) if and only if either wy ~gy wy or wy = wy and vy ~¢g ve. For
each w € W we call (H o G)[{w} x V) the vertical layer corresponding to w.

Recall that J denotes the all-ones matrix.

Observation 2.40. The ajacency matrix of Go H is Ag ® J‘V(H)‘ + I|V(G)‘ QR Ag.
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3. PRELIMINARY RESULTS ABOUT THE PRINCIPAL EIGENVECTOR

As previously introduced, G will always denote a connected graph. We write
A for A1, the largest eigenvalue of the adjacency matrix of G. We use q to mean
the principal eigenvector of the adjacency matrix, the all-positive eigenvector to A;.
We assume q is scaled to have /2 norm 1 unless otherwise stated.

3.1. Observations and naive bounds on the ratio.
First, we note that q reflects the symmetries of G.

Notation 3.1. Given a permutation 7 on a set X and an element a € X, we write
m(a) for the image of a under 7. We use M™ to mean the row permutation matrix
of 7, where M[; = 1if 7(j) = i and M]; = 0 otherwise. Given a vector y, we write
7m(y) to denote M™y.

Definition 3.2. Given a permutation group S on a set X, the orbit of a € X
under S is

Os(a) :={n(a) | m € S}.

Definition 3.3. Given a graph G, an automorphism of G is a permutation 7 on
the set of vertices that preserves adjacency relation, i.e., for each pair of vertices
i,j € V(G), m(i) ~ w(j) if and only if ¢ ~ j.

Notation 3.4. We note that the set of automorphisms of a graph G is a group
under composition. We denote this group by Aut(G). For a vertex i € V(G), we
denote the orbit of ¢ under Aut(G) by O(3).

Observation 3.5. If 7 is an automorphism of G, then Ag = M™Ag(M™)T.

Proposition 3.6. Given a graph G and m € Aut(G), if y is an eigenvector of Ag
to eigenvalue p, then w(y) is also an eigenvector of Ag to p.

Proof. Since any permutation matrix is an orthonormal matrix, (M™)TM™ = I.
Then by Observation 3.5, AgM™ = M™Ag. Then AcM™y = M™Agy = pM™y.
Therefore 7(y) is an eigenvector of Ag to p. O

Fact 3.7. The principal eigenvector q is constant on orbits of Aut(G), i.e., if
j € O(i), then ¢; = g;.

Proof. Let j € O(4). Then there is 7 € Aut(G) with 7(¢) = j. By Proposition 3.6,
m(q) is an eigenvector to A. Since q is all-positive, 7(q) is also all-positive. Therefore
by Theorem 2.26, m(q) = q when scaled to the same norm. Therefore ¢; = ¢;. O

Next we note some basic bounds on the ratio between the coordinates of q.
Observation 3.8. For two vertices 4,j in G, let dist(z,j) = k. Then
9 < \k,
a4

Proof. If dist(i,j) = 0, then g;/q; = 1 = A% 1If dist(i,j) = 1, then by Corol-
lary 2.21, Ag; = > . Gw > ¢; since all g, are positive. Now, suppose k > 2 and
Guw/qi < M= for all vertices w at distance k — 1 from i. We know j is adjacent to
at least one vertex w at distance k — 1 from ¢. Then

&:&.qﬂg)\.)\k—lz)\k. O
qi qw 41
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Recall that D denotes the diameter of the graph.

Corollary 3.9. For every connected graph G with diameter D,
vy < AP < AP < (n—-1)P.

Corollary 3.10. If D is bounded for some family G of graphs , then v(G) is poly-
nomaally bounded in n.

Since D is relevant in bounding the ratio, we introduce a bound on D for regular
graphs.

3
Fact 3.11. Let G be a connected d-regular graph. Then D < Fn

Proof. Pick vg,vp in G so that dist(vg,vp) = D. Let vg,v1,...,vp be a shortest
path from vy to vp. Any v;,v; with | —j| > 3 cannot have any common neighbors,
since otherwise the path will not be a shortest path. Thus

D
Therefore D < 3n/d. O

We know D(G + ¢€) < D(G) for any e € G. The following result shows that
D(G + e), and consequently, also D(G — e) (if still connected), cannot differ from
D¢ by more than a factor of 2.

Fact 3.12. For any connected graph G with D(G) = D and e € E(G),
1
D(G+e) > §D(G).

Proof.

(Notation: By dist;(x,y), where [ is a path, we mean the distance between z and y
along the path.)

We need to prove that there is a pair of vertices at distance at least % in G+ e.
Let u,v € V(G) be such that distg(u,v) = D. If distgie(u,v) = D, we are done.
Otherwise, let p be a shortest path between u and v in G, and ¢ a shortest path
between u and v in G 4+ e. Then e must be on g. Denote by x the endpoint of e
which is closer to u on ¢, and by y the other endpoint. Pick the middle vertex w
of p with dist,(u,w) = [2]. If distgie(u, w) = diste(u,w) = [2], we are done.
Otherwise, any shortest path r in G + e from v to w must pass through edge e.
Suppose we go along r from u to w, by the optimality of ¢, we can assume that r
and g overlap from u to y. Now we look at the vertex w’ adjacent to w on p which
is closer to u than to v. We have

(3.13) distg(w',v) = dist,(w',v) = {SJ + 1.

We claim that there is a shortest path in G + e from w’ to v that does not pass
through e. Let s be a shortest path in G + e from w’ to v that passes through e.
By the optimality of ¢, we may assume that s and ¢ overlap from x to v. Then by
the optimality of r,

dist(z, w") + distgre(w', w) > dist,.(z,w) = distgie(x,y) + dist,(y, w),

that is,
dist(x, w") > dist,.(y, w).
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Therefore

dist(w', y) = dists(w', ) + distgye(z, y) > distgre(w’, w) + dist,. (w, y).
Thus s is equivalent to a path that does not pass through e in G + e. As a result,
a shortest path between w’ and v in G + e is also available in G. Then by (3.13),

D
distrs (u'0) = dista(w',0) = | 5 | +1. o

3.2. Chebyshev polynomials and principal eigenvectors.

3.2.1. Chebyshev polynomials.

The Chebyshev polynomials of the first kind, T, can be characterized by the
recurrence

(3'14) Tn-‘rl(t) =2t- Tn(t) - Tn—l(t)v

with initial values Ty(t) = 1 and T3 (t) = ¢.
The Chebyshev polynomials of the second kind, U, , can be characterized by the
same recurrence

(3.15) Up+1(t) =2t - Up(t) — Up—1(2),
with initial values Up(t) = 1 and Uy (t) = 2¢.
Fact 3.16. When |t| > 1, the explicit formula for T, is

(3.17) T, (t) = 1((t Ve 1)” + (1 Ve - 1)")

2
and the explicit formula for U, is

n+1 n+1
(t—i-\/t?—l) —(t— t2—1)
212 — 1 '

m(k +1/2)

(3.18) Un(t) =

Fact 3.19. The roots of T}, are cos <

U, arecos< i >,k1,...,n.
n+1

3.2.2. Applications to prinicpal eigenvectors.

>,k:0,...,n—1. The roots of

Fact 3.20. When z > 1, both T,,(z) and U, (x) are strictly increasing.

Definition 3.21. A pendant path of length k in G consists of k vertices such that
the induced subgraph on them is a path; moreover, one vertex has degree 1 in G
and k — 2 vertices have degree 2 in (G. For example, in the graph P, - K, there is
a pendant path of length 7.

Observation 3.22. Let 1,2,...,k be a pendant path in G where consecutive ver-
tices are adjacent and deg(1) = 1. Then for 1 < j < k,

4 A)
= =U;,_1(=].
q1 / 1(2

Proof. By Corollary 2.21, A¢;1 = ¢2 and ¢j41 = Agj —¢qj—1 for 1 < 57 < n —1.
Therefore g;/q; satisfies the initial values and recurrence relation of U;_1(A/2). O
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Observation 3.22 along with Fact 2.36 can be used to show that most kite graphs
have a very large (factorial) principal ratio, since P, - K has a pendant path of
length r and A is larger than s — 1. In fact, Tait and Tobin [13] proved that the
maximum principal ratio over all graphs of n vertices is attained by a kite graph.

4. MAIN RESULTS

Let G be a d-regular graph. As introduced before, we use G 4 e to denote the
graph obtained by adding an edge e € F(G) to G, and G — e to denote the graph
obtained by deleting an edge e € E(G) from G. We always assume G — e is still
connected. We are interested in the possible asymptotic behaviors of v(G + ¢) and

(G —e).

We first make two simple observations.

Observation 4.1. If the diameter D(G) is bounded, then (G +e) is polynomially
bounded in n.

Proof. Fact 3.12 shows that D(G =+ e) is also bounded, and the statement follows
from Cororllary 3.10. O

Observation 4.2. If d is linear in n, then (G % ¢) is polynomially bounded in n.

Proof. Fact 3.11 shows that D(G) is bounded, and the statement follows from
Observation 4.1. (|

4.1. Adding or removing an edge in bounded distance.

4.1.1. Adding an edge.
We show that if we add an edge e between two vertices at distance 2 to a
connected regular graph G of bounded degree, then (G + €) can be exponential.
Let e = {1,2}.

Theorem 4.3. For any fived d, there is a family G of connected d-regular graphs
where for each G; € G, there is an edge e; € G; whose endpoints are at distance
two in G; — e;, such that for the family

G ={Gi+e | Gi€G},
v(G") grows exponentially in n.

The proof of this theorem will be based on a series of constructions. The graphs
produced by Construction 4.6 and Construction 4.7 are the pair of graphs that are
used in the proof.

Construction 4.4 (Ring, ;,). Let r > 0 be a parameter. We label the vertices
in Py.41 from one end to the other end as p_,., P41, ..oy D=1, P05 D1y «oey Pr—1, Dr-
Let G1 = Py, 110K 1. We label the vertical layer corresponding to p; as L;. Let
G, which we will call a “gadget,” be a connected graph with two vertices vy, vo of
degree 1 and all other vertices of degree d, and an automorphism that switches vy
and vo. We connect vy with every vertex in L_, and connect vo with every vertex
in L,. We call the graph obtained Ring, ; ¢,

Observation 4.5. Let X < Aut(G;) be the subgroup of automorphisms of G4
that fixes the vertical layers and permutes the horizontal layers. The orbits of X
are the vertical layers. X is isomorphic to the symmetric group Syz—1. This group
extends to G. The automorphism of G; that switches L; and L_; for 0 < j < r also
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extends to G. Therefore the coordinates of the principal eigenvector of Ring,. ; &,
corresponding to all vertices in L; U L_; are the same. We denote this value by a;,
for0<j<r.

Construction 4.6. [Ring, ;] Now we specify the gadget Ga. We take two copies
of K441 and call them Hy, Hy. We label the vertices in Hy, Hs from 1 to d + 1.
We remove the edge {1,2} from Hs, the edge {3,4} from Hp, and add the edges
{1,3} and {2,4}. We find two vertices u1, uz in V(Hy) such that ug € O(uq) in
Hy, —{3,4}. We remove the edge {u1,us}. Finally, we attach a dangling vertex w,
to u1, and a dangling vertex ws to us. wi and we are the vertices that connect
with L_, and L,, respectively. For this specific Ga, Ring(r,d, G2) is a d-regular
graphonn=2r+1)(d—1)+2+2(d+1) = 2rd — 2r + 3d + 3 vertices. We write
Ring(r, d) for this graph.

Construction 4.7. [Ring, ;+e] We add the edge e = {3,4} € E(Ring, ) to
Ring, ;4.

7T
/

Proposition 4.8. For 0 <j <r,

ao 2

where a; is as defined in Observation 4.5.

Proof. By Corollary 2.21,
Aag = (d — 2)ag + 2a;
and
Aaj = (d—2)a; +aj1+ a4
for 1 < j < n—1. Therefore a;/ag satisfies the initial values and recurrence relation

of T; (A — d +2)/2) according to (3.14). O

Lemma 4.9. \(Ring, ,+e) > d+c(d), where c(d) is a constant depending only on
d.

Proof. Let H be the induced subgraph of Ring, ;, on V(H;) UV (Hz). Then

degH+e(1) = degH+e(2) = d+ 1’ degH-‘re(ul) = degH+e<u2> =d— 17
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while the rest of the vertices in H + e are of degree d. Then by Fact 2.36 and
Fact 2.35,

' (2d + 2)d? + 4 2
H+e) > dgag(H+e) =\ —FF—=d\ |1+ 77—
A(Ring, 4 +€) > MH + €) = dqavg(H + €) 2d + 2 W BaFD

Let

1

Since v1+ z > 1—&—§avvvhen0<an<37

MG +e) > d+c(d). O
Proof of Theorem 4.3. By Lemma 4.9,

A(Ri +e)—d+2 1
( lngr,d 6) >1+ )

2 3d(d+1)

By Observation 4.8, Fact 3.20, and Fact 3.16,

. ar A(Ring, ;+e) —d+2 1 1

>4, : Tt > (14—

V(Ring,.q) 2 2 ( 2 > Lty > 2 U saaaa
n—3d—3

0
Since r = ————— and d is bounded,

2d — 2
7(Ring, 4) > (a(d) —€)"

where

o) = (14 3 >1/<2dz>

and 0 < € < a — 1 is any fixed constant. O

4.1.2. Removing an edge.

We show that in the case of removing an edge e = {1,2} when distg_.(1,2) is
bounded, v(G —e) is polynomially bounded for all D. We make use of the following
theorem.

Let e = {1, 2}.

Theorem 4.10 (Cioaba, Gregory, Nikiforov[12]). If G is a connected nonregular
graph with n vertices, diameter D, and maximum degree A, then
1

A — >
AG_MD+U

Theorem 4.11. For a connected d-regular graph G and an edge e = {1,2} € E(G),
if distg_e(1,2) < ¢ where ¢ is some constant, then v(G—e) is polynomially bounded
mn.

Lemma 4.12. ¢u,in(G — €) is either q1 or ¢a.

Proof. If qui, corresponds to some vertex j with degree d, then the average of the
coordinates corresponding to the neighbors of j would be

MG — e)g; < MG — e)g; _
d ANG—e) W

which is a contradiction. O
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Proof of Theorem 4.11. Without loss of generality suppose ¢1 = Gumin. Then sum-

ming n equations of the form MG —e)g; = >_;.;; j, we have

/\(G—e)Zqi =(@d-1)q +(d—1)g2+dgs+-- +dg, =d (Z%) —q— Qe
i=1 i=1
Therefore by Theorem 4.10,

1 1
NE® _ g NG-e)> >
Zi:l qi

n(D(G—e)+1) ~ n?
By Observation 3.8, g2 < A(G — €)°qy. Therefore

WG —e) < Zq—lq < n? (1+ ‘qp> <21+ MG —e)°) <n2(1+d°). O
1 1

4.2. Multiplicative spectral gap and stability of the ratio.
We use a known bound on the diameter of a graph in terms of the spectral graph
to show that (G + e) is polynomially bounded for bounded-degree expanders.

Definition 4.13. For 0 < € < 1, a regular graph of degree d is an e-expander if
A2 < (1—¢€)d, ie., d > ed.

We note that this definition implies that an expander graph is connected.

Theorem 4.14 (N. Alon, V. D. Milman[3]). Let G be a connected graph on n
vertices with maximum degree A and let § denote the smallest positive eigenvalue
of the Laplacian matriz §. Then

D(G) <2 {\/?105;2 nJ .

Corollary 4.15. For expander graphs G with bounded degree, v(G + e) is poly-
nomially bounded in n. More specifically, for an e-expander graph G with bounded
degree d,

(4.16) (G + ) < ntV2/elogs(d+1)
Proof. By definition,
AG)_ 4 _1
5(G)  8GQ) T €
Then
2
D(G) <2 {flogQ nJ .
€
By Fact 3.12,

D(G+e) <4 \‘\/flo& nJ .
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Since v < AP (Corollary 3.9),
(G te) < (d+ 1)4L‘/ﬂ10g2 ]
< (d+ 1)4\/ﬂlog2n
_ 24mlog2 nlogy(d+1)

nt 2/elogy(d+1) 0

4.3. Additive spectral gap and stability of the ratio.

We show that a large ((2 + €)y/n) additive spectral gap implies that v(G + e) is
bounded. Specifically, we prove the following.
Theorem 4.17. Let G be a connected d-regular graph. If the spectral gap § = d— Ao

2
of G satisfies § > —+/n + 2 for some value 0 < ¢ < 1, then
c

(G te)< 1—’—6

—c

To motivate this result, we first point out that graphs with such an additive
spectral gap are not necessarily expanders. Indeed, when d is larger than ©(y/n),
the multiplicative spectral gap of graphs with a ©(y/n) additive spectral graph will
go to zero. Moreover, the diameter of graphs with such an additive spectral gap
can still grow quite fast (polynomially in n), approaching the upper bound derived
from Theorem 4.14.

4.3.1. Ezistence of graphs with large additive spectral gap and large diameter.

Proposition 4.18. For a regular graph with additive spectral gap 0, the diameter
D is O((n/8)/3(logn)?/3).

Proof. Let the regular graph have degree d. From Theorem 4.14, we know that
d
(4.19) D?* < cg(log n)?

where c is some constant. By Fact 3.11, we also have
3
(4.20) D< F".

Multiplying (4.19) and (4.20), we have
1/3

(4.21) D < (3¢)!/3 (%) (log n)/3. O
Corollary 4.22. For a regular graph with an Q(y/n) additive spectral gap, the
diameter is O(n'/%(logn)?/?).

We show that this bound is nearly tight.
Proposition 4.23. There are connected reqular graphs with diameter (1/2)n'/6
and an additive spectral gap of cn'/? where ¢ = 272(1 + O(n=1/3)).

We prove a more general statement.

Proposition 4.24. For any constant 0 < t < 1, there are connected regular graphs
with diameter (1/2)n"=Y/3 and an additive spectral gap of cnt where
c=2m2(1+ 0(n(#=2)/3)),
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Proof. Recall the lexicographic product and its properties in Definition 2.39, Ob-
servation 2.40, and Fact 2.19. Let G := C, o K, where r - s = n. Then G is a
connected regular graph of degree 2s and diameter |r/2]. The adjacency matrix of
G can be expressed as

(4.25) Ac=A4c, @ Js+ 1, 0= Ac, ® Js.

Since

(4.26) spec(Js) = {{s,0°71}},

we have

(4.27) spec(G) = {{sM(Cy), sAa(Cy), ..., sAp(Cr), 065717 1}
Thus

0(G) = s(M(Cr) — X2(C)).
o
It is well-known that the eigenvalues of a cycle C,. are {2 cos (7]) 1,
r

where j =0,1,...,7 — 1. Thus

M (Cr) — he(Cr) =2 <1 ~ cos (2”>> A

25 4
where |€| < 4[771—4 We take r = ’I’L(l_t)/3 and s = ’I’L(2+t)/3. Then
r
1 B
5(G) = 47T2nt <1 +0 (2>) — 471'27’Lt (1 + O(n(2t72)/3)) ) 0
r

4.3.2. Large additive spectral gap implies bounded ratio.

Now we prove Theorem 4.17 which shows that v(G £ e) is bounded when G has
an additive spectral gap of (2 4 €)y/n for some € > 0. This is an application of
the theory developed in Chapter V. 2 in Stewart and Sun’s book [5], dealing with
perturbation of invariant subspaces. The outline of the proof is from this book. We
adapt the proofs to our special case and fill in some details.

Notation 4.28. Let U € M,(R) be the orthogonal matrix whose columns are
eigenvectors of A. We can write it as

(4.29) U=xY)=(xy2 - ¥n),

where the columns x,ys,ys,...,¥, are eigenvectors of A corresponding to eigen-
values A\ > Ao > A3 > --- > \,,. Then \; = d, and we can assume

(4.30) x = (\}ﬁ\}ﬁ)T

In the context of adding an edge e to GG, we label the two endpoints of e to be 1
and 2, and let E € M,,(R) have E2; = F12 = 1 while all other coordinates are zero.
In the context of deleting an edge e from G, we also label the two endpoints of e to
be 1 and 2, and let E € M,,(R) have Fy; = Ej2 = —1 while all other coordinates
are zero. In both cases, A+ E is the adjacency matrix of the graph obtained.

We know x is not an eigenvector of A + E. We want to know how close x is to
the principal eigenvector of G £ e, in the sense that we want to find a vector v with

~ X+v . L .
small norm such that x = ———— is the unit principal eigenvector of G + e.

%+ vl
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Proposition 4.31. Let p be a vector in R*™ 1. Let U = (x Y) € M,(R) be
orthogonal, where X is a vector in R"™1 and Y is an n x (n — 1) matriz. Define
UeM,(R) asU = (XY), where

~ x+Yp

432)  x=—""P g V= —xp")(In_r +pp’) V2
1+p[?

Then U is an orthogonal matriz.

Proof.
r~  X'x+p'YTYp 1+ |p|?
X xX= 2 = 2~
L+ pl L+ pl
?T? = (In—l + ppT)il/z(YT - pXT)(Y - XpT)(In—l + ppT)71/2
= (In-1 +pp") V*(In-1 + pP")(In-1 + pp") " '/?
= In—l-
ry _ 7 +pTYT)(Y —xp") (L1 +pp”) 712
1+ pl?
_ (=" +p")Up1 +pp")
1+ [p|*
=0.
Therefore
SO Iz Ty
Ut =(XX* X1 )=, O
<YT§ YTy

We want to find p such that x is the principal eigenvector of A + E and the
columns of (x Y') form an orthogonal eigenbasis for A + E.

Notation 4.33. We define
e11 =x'Ex€R, ey :=YTExecR" "}, FEy:=YTEY € M,_(R),
and L:=YTAY =diag(\z,...,\n) € M,,_1(R).
Observation 4.34. Since |E| = 1 and (xY) is orthogonal, |e11], ||e21]], || F2z2|| < 1.
Proposition 4.35. If
(4.36) ((d+e11)In-1 = (L + E22))p = ea1 — pe, p,
then X is an eigenvector of A+ E.
Proof. (4.36) is equivalent to
(YT —px")(A+ E)(x +Yp) =0,
which gives
YT(A+ E)x =0.
Since (X 37) is an orthogonal matrix, X is an eigenvector of A + FE. O

Notation 4.37. We define M € M,,_1(R) as M = (d+ e11)In-1 — L — Eaa.
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2
Proposition 4.38. If § > —\/n +2 for some value 0 < ¢ < 1, then M is non-
c

singular and

1
4.39 MY < —
(4.39) M7 < 5= <

c
2\/n’
Proof. Since (d+e11)I,—1 — L is a diagonal matrix and Fsy is a symmetric matrix,

M is symmetrix. Recall that ||Ea2|| < 1. By Theorem 2.16 (Rayleigh’s principle)
and Observation 4.34,

minspec(M) = min x* ((d+ e11)ln—1 — L — Ea)x

lIxl=1

> HmHim xT((d+e) 1 — L)x—1
x||=1

= thin spec((d+e11)I —L)—1
x||=1

= d —+ €11 — )\2 -1
>6—2.
Therefore all eigenvalues of M are positive, and

1 1 c
M7 = MY = < : 0
| | = maxspec( ) min spec(M) — § —2 < 2y/n

Proposition 4.40. We write (4.36) in terms of M:
(4.41) Mp = ey — ped;p.

Let 0 = |M~Y|™' and n = |e21]|. We claim that if 6 > 2\/n+ 2 for some value
0 < ¢ < 1, then there exists p with

2
<—
Pl < 7=

such that (4.41) holds. The X defined by (4.32) is an eigenvector of A+ E.

(4.42)

Proof. We want to find a solution with small norm to the non-linear equation (4.41).
We do this by an iterative construction.
We define a sequence of vectors pg, p1, ... such that

Po=0 and p;= M71(621 - pi_leglpi_1)7 for ¢>1.

Then
77(1 + ||Pi71||2)
0

pill < M7 H[(le21] + [Ipiz11?[e21]) <
We claim that the sequence {p;} converges. We define

1+&
£ =0, gi:w, for i>1.
Then [|p;|| < &. Since {1 = 7 > &o, we can prove by induction that &o, &1, &2, . ..
is monotone increasing. Let

1+
P(&) = 9

2
This function is monotone increasing in &, and has a fixed point at £ = S N—

0+/02 — 42

Then & < &1 = ¢(&) < ¢(&) = £ Therefore the sequence {§;} converges to &.
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Thus ) )
n n
pi| <& <= ———— < .
il < & <€ 0+ 02— 4 0
Next we prove the convergence of {pg, p1,...}. For any i > 2
[pi — pi-1ll = |M71(Pi—1€2T1p11—1 - Pz‘—zelepz'—z)
= M~ (pi—1 + Pi—2)e; (Pi—1 — Pi—2)|
<2 M Hlpicalllpi-all -7+ IPic1 — pi-al|
4n?
< 072||P¢71 —Ppi2|-
) 4n? 2 .
Then ||p; — poll < p*llp1 — Pol|, where p = 2 < e < 1. Therefore {p;} is a

Cauchy sequence in R®~! and has a limit p. Thus a solution p exists, with norm
satisfying (4.42).
O

Proposition 4.43. If 6 > %\/ﬁ—i— 2 for some value 0 < ¢ < 1, then the principal
eigenvector of A+ E, X, can be writen in the form
~ Y
= PP here Ilpll < -

EE Vi
Proof. We showed that there exists p with
2n 2n c
pl< —m— < L < —
Il 0+/02—42 0 /n
Y
m is an eigenvector of A+ F. It remains to show that this is the
+lp
principal eigenvector. Since ||Y]| =1 and ||p|| <
1

ﬁ7...7

x is the principal eigenvector of A + F. (I

such that

7

1 ~
——), all coordinates of X are positive. Therefore by Corollary 2.27,
n

where 0 < ¢ < 1, and since

x=(

Proof of Theorem 4.17. Following the argument above, we know the smallest pos-
1+¢c

N

Therefore the ratio of G + e is as claimed. This completes the proof. O

~. l—c . . ~ .
sible coordinate of X is ——, and the largest possible coordinate of X is
n

4.4. Open questions.

In Section 4.1.2, we showed that if we remove a non-bridge edge e from a con-
nected regular graph such that the endpoints of e are of bounded distance in G — e,
then v(G — e) is polynomially bounded. Is there also a polynomial bound when the
endpoints of e are of unbounded distance in G — e?

Question 4.44. If we remove a non-bridge edge e from a connected regular graph
G, is (G — e) always polynomially bounded?

In Section 4.1.1, we showed that if we add an edge e between two vertices at
distance 2 to a connected regular graph G of bounded degree, then (G + e) can
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be exponential. Can (G + e) be exponential when e is between two vertices of
unbounded distance in G?

Question 4.45. If we add an edge e to a connected regular graph G with bounded
degree d, such that the disance between the endpoints of e in G is unbouneded, can
v(G + e) be exponential in n?

In Section 4.3.2, we showed that for a connected regular graph G, an additive
spectral gap larger than 2/n implies that v(G + e) is bounded (Theorem 4.17).
However, this bound ceases to work at all for G with an additive spectral gap
6 < 24/n. Is this a limitaton of the method, or is there really an abrupt change at

§=2yn?

Question 4.46. Is there a family of connected regular graphs G with an additive
spectral gap slightly less than 2/n and with v(G £ e) not bounded?
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