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Abstract. In this paper, we explore the localization theorem in equivari-

ant cohomology due to Atiyah and Bott. We introduce the concept of Borel

equivariant cohomology, a generalization of cohomology for spaces with group
actions. We then prove the localization theorem, which relates the equivariant

cohomology of the space and the fixed points. Finally, we present examples of

its applications.
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1. Introduction

One of the ubiquitous tasks in mathematics is to compute integrals over spaces,
that is to ask questions of the form ∫

X

φ =?

for a space X. Depending on what φ means in different contexts, this integral can
represent different concepts. To get the volume of the space, we integrate the volume
form; to get topological invariants or numerical answers to enumerative problems,
we may integrate certain characteristic classes; to compute some partition functions
of physical systems (in particular, path integrals in field theories) we try to integrate
over the states with a phase weight given by a prescribed action functional.

Such computation can be difficult, and there are many different strategies to
tackle such a problem. There are two ideas that are particularly fruitful; namely,
symmetry and localization.
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By symmetry, we mean we have a group G acting on our space X. The points of
X in the same G-orbits are identified by the symmetry G, and we reduce ourselves
to a smaller space X/G which is likely easier to work in. An elementary example
can already be found in the theory of ODE’s, where one seeks conserved quantities
attached to the symmetry (the first integrals) to reduce the dimension of the dy-
namical system. The same idea generalizes to the theory of symplectic reductions,
mathematical gauge theory and integrable systems.

Localization is another idea that is immensely useful. Informally, localization
refers to the idea that we should try to represent global values as a combination of
local contributions. An example of this idea would be the Poincaré–Hopf theorem
in differential topology, which relates the Euler characteristic of a compact manifold
X with the sum of indices at zeroes of a vector field on it:

χ(X) =

∫
X

e(TX) =
∑

v(p)=0

indexv(p).

Looking at a single point at a time is usually much easier than to deal with the
whole global data. One may be familiar with the idea of localization in algebra,
which is geometrically the same thing as looking at a single point (a prime) at a
time. In all of such discussions the overarching idea is to understand a global object
by understanding the local picture first and combining them in a coherent way.

These two ideas, symmetry and localization, intersect beautifully through the
Atiyah–Bott localization theorem. The theorem states that in a situation
where a smooth manifold X admits an action of a (compact connected Lie) group
G then the integral on X localizes at the fixed points i : F = XG ↪→ X of the
group action. More precisely, if F is a set of isolated points p with associated
normal bundles νp in X with Euler classes e(νp), we have∫

X

φ =
∑
p∈F

∫
p

i∗φ

e(νp)
.

(It must be noted that a formula of nearly the same flavor was obtained by
Berline–Vergne in [4]. We focus on the Atiyah–Bott version because of its concep-
tual clarity and generality.)

The computational power of the integration formula is immense, and the idea
has led to many applications in widely varying fields. The goal of this article is to
provide an explanation of this theorem and a (necessarily inexhaustive) survey of
its applications.

A considerable portion of the article will go in to setting up the necessary frame-
work of equivariant cohomology, which is a generalization of ordinary cohomol-
ogy to the setting where group actions are available. We will begin in Section 2
by defining equivariant cohomology and explain its basic properties. In Section 3
we provide a description of de Rham models for equivariant cohomology. The de
Rham models allow us to interpret equivariant cohomology and its integration in
terms of differential forms, which are much more familiar objects.

Once we are done with setting up the framework, we will prove the Atiyah–Bott
localization theorem and the integration formula in Section 4. We will be following
Atiyah–Bott’s original paper [1]. In section 5, we conclude by explaining some
selections of its applications in algebraic geometry and symplectic geometry.
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We will assume some familiarity with algebraic topology and the theory of com-
pact Lie groups. In particular, concepts such as ordinary and compactly supported
cohomology, principal bundles, differential forms, the adjoint representation of a
Lie group, maximal tori and Weyl groups are used without definition. All of these
concepts are clearly explained in [6] for algebraic topology and in [8] for Lie theory.
The final chapter on applications may introduce less familiar topics, and references
will be provided.

2. Borel equivariant cohomology

In this section we introduce Borel equivariant cohomology and describe some
of its basic properties. We first explain the Borel construction, also known as the
homotopy orbit space. We then introduce the Borel equivariant cohomology as the
ordinary cohomology of the Borel construction. Bott gave a more detailed version
of the exposition to follow in his article [11] targeted towards a physics audience.

Let a compact Lie group G smoothly act on a smooth manifold X. We want our
equivariant cohomology to serve as an invariant that remembers something about
both the space and the group action. Our intuition is that the equivariant theory
will consider the G-orbits as “equivariant points,” and therefore the role of the
points in the ordinary theory will be replaced by those of the G-orbits.

In this viewpoint, the first guess for the definition of equivariant cohomology
would then be as the ordinary cohomology of the orbit space X/G. This is the
right guess when G acts freely on X, but there are two severe limitations of this
description in the general case.

The first reason not to use this definition is that the orbit space X/G itself
does not remember about the stabilizers of the group action, which may vary along
different orbits. Ideally we would want an object that knows about both the orbits
and the stabilizers. The second and perhaps the more important reason is that
equivariant homotopy equivalences X → Y do not necessarily induce homotopy
equivalences X/G → Y/G. For an example, consider X = R, Y = ∗ with Z-
action on X by translation. So if we want to require the equivariant homotopy
invariance axiom on our equivariant cohomology, we should not use this orbit space
construction.

The fix to the idea comes from the Borel construction. Before we give the
definition, we first introduce the necessarily preliminary; namely, the universal G-
bundle.

Theorem 2.1. For a topological group G, there exists a principal G-bundle EG→
BG where the total space EG is contractible.

Theorem 2.2. Given a topological space X, there is a bijection between the ho-
motopy classes of maps from X into BG and the isomorphism classes of principal
G-bundles over X: that is, [X,BG] ' BunG(X)/iso.

The proposed bijection is given by pulling back the universal bundle EG →
BG along a chosen map f : X → BG to a bundle over X. The content is that
this association is well-defined (that is, pulling back under homotopic maps give
isomorphic bundles) and that it is indeed bijective. In this sense, the base space
BG is called the classifying space and the “platonic” bundle EG→ BG is called
the universal bundle. The classifying space is well-defined up to homotopy type.
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Example 2.3. Let G = S1, the unit norm subgroup of the multiplicative group
C∗. Then the fiber bundle S1 ↪→ S∞ → CP∞, obtained inductively from the fiber
bundles S1 ↪→ S2n+1 → CPn, is a principal S1-bundle with a contractible total
space S∞. Therefore

ES1 ' S∞ → BS1 ' CP∞

is a universal S1-bundle.

For a more thorough treatment of the theory of classifying spaces see [7]. It in
particular contains the proofs of Theorem 2.1 and 2.2. Now we are ready to define
the Borel construction.

Definition 2.4. Let G be a topological group acting on a space X. The Borel
construction or the homotopy orbit space of X by the action of G is EG×GX,
the quotient of the product EG × X by the diagonal action: (e, x) ∼ (eg, g−1x).
We denote this space by XhG. In particular, ∗hG = BG.

In the Borel construction, we replace the näıve quotient of X by the action
of G with the quotient of EG × X by the action of G. This space EG × X is
homotopy equivalent to X, because EG is contractible. It has the advantage that
G necessarily acts freely on it, since the G-action on EG is free. In particular, we
can now return to our original guess for equivariant cohomology as the cohomology
of the orbit space which worked fine for free actions, and make it into a definition.
We simply replace the plain old orbit space with the homotopy orbit space.

Definition 2.5. The (Borel) equivariant cohomology of X for a G-action is defined
as the singular cohomology of the homotopy quotient:

H∗G(X) = H∗(XhG).

The ring of coefficients can be chosen as we want. For convenience, we fix the
coefficients to be C. As stated, the definition depends on the choice of EG→ BG.
However the homotopy type of XhG is well-defined, so equivariant cohomology is
well-defined up to isomorphism.

Remark 2.6. There is a more general version of equivariant cohomology, known
as Bredon equivariant cohomology. Bredon equivariant cohomology takes values
in coefficient systems, which is an algebraic tool that allow us to assign different
coefficients for different orbits in the picture. If one takes the constant coefficient
system, i.e. assign the identical abelian group as the coefficients for all orbits, then
Bredon equivariant cohomology of the space computes the ordinary cohomology
of the orbit space (quotient by the group action) with the chosen coefficients. In
particular, the Bredon cohomology of EG × X with constant coefficient systems
recovers the Borel cohomology. For an accessible introduction to the more general
theory of Bredon equivariant cohomology, see [19]. In this article, equivariant
cohomology will always mean Borel equivariant cohomology.

Let us consider the extreme example where our space X is a point.

Example 2.7. Let G act on X = {pt} by the trivial action. Then

XhG = EG×G {pt} ∼= EG/G = BG,

so

H∗G({pt}) = H∗(BG).
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That is, the equivariant cohomology of a point is the group cohomology of G. Let
us denote this ring by H∗G, following [1].

More generally, if G acts trivially on X we have

H∗G(X) = H∗(EG×G X) = H∗(BG×X) = H∗G ⊗H∗(X)

by Künneth formula. The other extreme is when G acts freely on X.

Proposition 2.8. Let G act on X freely. Then the natural projection

σ : EG×G X → X/G

given by collapsing the EG summand is a weak homotopy equivalence.

Proof. From the fact that the G-action on X is free, one can show that σ is a fiber
bundle with a contractible fiber EG. Now the result follows from the homotopy
long exact sequence. �

As a corollary, we have

H∗G(X) = H∗(XhG) ∼= H∗(X/G)

in this situation. Therefore we recover the cohomology of the orbit space as the
equivariant cohomology, as expected.

Remark 2.9. Using the map X → ∗, one sees that H∗G(X) naturally carries a
H∗G = H∗G({pt})-module structure. Later in Section 4 we will consider the torsion
of H∗G(X) as H∗G-modules.

Many properties from ordinary cohomology transfer to the equivariant setting.
For example, functoriality works perfectly well. The long exact sequence of a pair
also works well, and the definition is as follows. If we are given a space Y with a
G-action and a G-invariant subspace X ↪→ Y , we obtain an inclusion XhG ↪→ YhG.
This map allows us to define relative equivariant cohomology of pairs as the relative
cohomology of the homotopy quotients:

H∗G(Y,X) = H∗(YhG, XhG).

The corresponding long exact sequence then works exactly as in the ordinary case.
We can construct equivariant tubular neighborhoods, because the usual averaging
techniques (we are assuming G to be compact) allow us to define G-invariant met-
rics to the spaces if we want. Such tubular neighborhoods allow us to define an
equivariant Thom isomorphism; the construction is carefully outlined in [13].

If we are working with manifolds, we would want an equivariant version of the
notion of pushforward (the “wrong way” maps) as well. There does not exist an
obvious theory of Poincaré duality in the equivariant setting, so the situation is more
difficult here; näıvely bringing over the notion from the non-equivariant setting does
not immediately work.

The fix is to factor every map f : X → Y of compact, oriented manifolds into
the composition

f : X → X × Y → Y

where the first map is the graph map Γf : X → X × Y and the second map is
the projection map πY : X × Y → Y . If we can make sense of the pushforward
for both Γf and πY , the pushforward of f can be declared as the composition
f∗ = (Γf )∗ ◦ (πY )∗. More generally, we would like to define pushforwards for
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inclusions and fiber bundles. The former corresponds to Thom isomorphism and
the latter corresponds to integration along the fiber.

Equivariant integration can be understood quite intuitively once we introduce
the de Rham-type models (that is, description in terms of differential forms) for
equivariant cohomology, which is our excuse for introducing them now.

3. The de Rham models and integration in equivariant cohomology

In this section, we assume our space X to be a smooth manifold. In particular,
the space comes with the de Rham complex Ω∗(X) of differential forms on X. To
be consistent with our choice of complex coefficients, one may consider the complex
valued differential forms C ⊗R Ω∗(X). We will write this as Ω∗(X) anyways by
abuse of notation.

The goal of this section is to obtain a de Rham model for equivariant cohomology,
namely to associate a de Rham-type complex to the space X whose cohomology will
compute the equivariant cohomology. We will introduce two models, the Weil model
and the Cartan model. Using the Cartan model, we will define the pushforward in
equivariant cohomology.

We begin by introducing the Weil model of equivariant cohomology. The in-
tuition is as follows. Suppose we have a compact connected Lie group G and a
principal G-bundle G ↪→ P → X of smooth manifolds. The image of the pullback
map

Ω∗(X)→ Ω∗(P )

is characterized as the basic forms, which we will define now. Let g = Lie(G) be the
Lie algebra corresponding to G. For an element v ∈ g we consider the corresponding
vertical vector field v# on P , given by the derivative of the G-action on P along
the direction of v. More precisely,

v# : P → T (G× P )→ TP

where the first map is the inclusion p 7→ ((g, p), (v, 0)) and the latter map is the de-
rivative of the G-action. By abuse of notation, let Lv, ιv represent the Lie derivative
and the interior product with respect to the vector field v#, respectively.

Definition 3.1. A differential form ω ∈ Ω∗(P ) is basic if it satisfies Lvω = 0,
ιvω = 0 for all v ∈ g = Lie(G).

The condition ιvω = 0 means that the form is horizontal, i.e. it does not have
any components in the fiber (vertical) direction. The condition Lvω = 0 means
that the form is G-invariant. A form is basic if and only if it is a pullback of a form
from the base space.

We want a complex that would serve as a model for differential forms on XhG.
The idea of the Weil model is to find a model of EG×X and declare the basic forms
as the forms corresponding to XhG. For the manifold X, the de Rham complex
Ω∗(X) is already available so it suffices to describe the model for EG. This model
will be obtained from the Weil algebra associated to the group.

Definition 3.2. The Weil algebra associated to the group G is the algebra

W = W (g) = Λ (g∗)⊗ S (g∗)

where Λ(g∗) is the exterior algebra as a graded commutative algebra and S(g∗) is
the symmetric algebra as an algebra with all elements in even degree.



ATIYAH–BOTT LOCALIZATION IN EQUIVARIANT COHOMOLOGY 7

In particular, we have a copy of g∗ in degree 1 as odd elements and another copy
in degree 2 as even elements in the Weil algebra. We would like to identify this
algebra as a de Rham-type complex of EG. In particular, we would like to define
derivations L, d, I on W (g) that resembles the Lie derivative L, exterior derivative
d, and interior product ι on differential forms, respectively.

Remark 3.3. The notions of such derivations and their relations are axiomatized
by the language of G∗-modules, which we will not introduce. An interested reader
may consult [13].

The canonical action of G on g∗ is through the coadjoint representation. This
representation induces an action of G on W . For clarity let us choose a basis va for
g, which in turn yields the generators θa, xa of Λ(g∗), S(g∗), respectively. In terms
of the structure constants

[va, va] = f cabvc,

we define the degree 0 derivations La analogously to the Lie derivative, i.e.

Laθ
b = −f bacθc, Lax

b = −f bacxc

using the definition of coadjoint representation. We also have the Koszul differ-
ential d = dK acting on the generators by

dKθ
a = xa, dKx

a = 0.

This map extends by the Leibniz rule to define a differential graded algebra struc-
ture on Weil algebra.

Proposition 3.4. The Koszul complex is acyclic.

Proof. We can also define a derivation Q = QK so that QKx
a = θa, QKθ

a = 0
on the generators. Then Q2 = 0, and dQ + Qd = id on generators. It follows
that dQ+Qd on Λk ⊗Sl is (k+ l)id, and hence the cohomology is concentrated at
Λ0 ⊗ S0 ∼= C. �

Note that up to this point the analogue of an interior product is not defined on
W . Let us keep in mind that we would like W to be an analogue of the de Rham
complex for EG. From this perspective, interpreting the degree 1 generators θa’s
as the vertical forms in the bundle EG→ BG, it is natural to define

Iaθ
b = δba, Iax

b = Iadθ
b = (Iad+ dIa)θb = Laθ

b = −f bacθc.

Here the equation

(3.5) La = Iad+ dIa

is the Cartan formula which is (an infinitesimal version of) the claim that flowing
by vector fields is homotopic to the identity. Of course, the interior product and
Lie derivative are considered only as formal algebraic derivations on W (g) in our
current setting, so this description should only be regarded as a geometric intuition.

Now we would like to describe the analogue of basic elements. Following Def-
inition 3.1, these elements of W should be G-invariant and also horizontal in the
sense that the interior product always vanishes for them.

If one makes the change of variables

ua = xa +
1

2
fabcθ

bθc,
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the definition of the interior product on WG implies (after some computation)

Iau
b = 0.

Since the θ’s and x’s generate W , so do the θ’s and u’s. From this description it
is clear that the even part S(g∗) generated by the ua’s is exactly the horizontal
subcomplex of W . Taking the G-invariants, we see that the basic elements of W
are exactly the G-invariant polynomials

(W (g))basic = S(g∗)G.

Remark 3.6. The possibly mysterious change of variables amounts to adding the
Chevalley–Eilenberg differential in Lie algebra cohomology to the Koszul differen-
tial. The action of this operator on the generators is given by

dCEθ
a = −1

2
fabcθ

bθc, dCEu
a = −fabcθbuc.

One can start by defining the differential on W as d = dK + dCE , but acyclicity is
more difficult to see from such approach.

In sum, we now have the complex

WG = Λ(g∗)⊗ S(g∗),

with odd generators θa ⊗ 1 in degree 1 and even generators 1 ⊗ ua in degree 2,
equipped with the differential d = dK . The de Rham model for equivariant differ-
ential forms can now be obtained as

the basic subcomplex of W (g)⊗ Ω∗(X),

namely those elements that are annihilated by both

Ia ⊗ 1 + 1⊗ ιa, La ⊗ 1 + 1⊗ La.
This basic subcomplex is the Weil model of equivariant de Rham complex. Its
cohomology computes the G-equivariant cohomology of X.

Remark 3.7. In the case where X is a point, this construction reduces to the
statement that the cohomology ring of BG is the cohomology of the G-invariant
polynomials on g. One can show that d annihilates all basic elements, so taking
cohomology preserves the complex. That is, we have

H∗G = H∗(BG) = S(g∗)G

which is at the heart of the Chern–Weil theory of characteristic classes.

The Weil model has an advantage that it is constructed in a conceptually natural
manner. In practice, however, one prefers to work with a model that yields itself
to easier computation. Mathai–Quillen give such a model by proving the following
proposition in [18], which they attribute to Cartan:

Theorem 3.8. Consider the algebra map

ε : W (g)⊗ Ω∗(X)→ S(g∗)⊗ Ω∗(X)

defined by ε(θa) = 0, ε(ua) = ua on generators of W (g) and ε(α) = α for α ∈
Ω∗(X). Then there is an algebra map

φ = exp(−θa ⊗ ιa) : S(g∗)⊗ Ω∗(X)→W (g)⊗ Ω∗(X)

such that ε and φ are algebra isomorphisms when restricted to horizontal subcom-
plexes, i.e. to the subcomplexes of elements that are annihilated by Ia ⊗ 1 + 1⊗ ιa.
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The map φ is called the Mathai–Quillen isomorphism. It is moreover true
that these maps are G-equivariant, so there is an induced isomorphism

φ : (S(g∗)⊗ Ω∗(X))
G ∼= (W (g)⊗ Ω∗(X))basic

by taking G-invariants. We can define a differential on the former algebra by

dG = ε ◦ d ◦ φ
which acts on generators by

dG(ua ⊗ 1) = 0, dG(1⊗ α) = 1⊗ dα− ua ⊗ ιaα.

The complex (S(g∗)⊗ Ω∗(X))
G

equipped with dG is called the Cartan model of
equivariant de Rham complex. Equivariant differential forms in the Cartan complex
that vanish under dG are called equivariantly closed forms.

Remark 3.9. Note that the Cartan differential defined as it is is not a differential
on the full complex S(g∗)⊗Ω∗(X), i.e. d2G 6= 0 in general. It is a differential when

restricted to the invariant subcomplex (S(g∗)⊗ Ω∗(X))
G

, by Cartan formula.

Example 3.10. Consider the case G = T =
(
S1
)m

. The Lie algebra is Rm and
the structure constants vanish as T is abelian. Therefore the adjoint (and hence
the coadjoint) action is trivial and all of

S(g∗) = C
[
u1, . . . , um

]
are G-invariant. It follows that the Cartan model is exactly

(S(g∗)⊗ Ω∗(X))
G

= Ω∗(X)G
[
u1, . . . , um

]
,

i.e. the polynomial ring on m generators with coefficients in G-invariant differential
forms on X.

Using the Cartan complex it is now straightforward to define the pushforward
in equivariant cohomology. Let X and Y be compact oriented manifolds with
dimensions m and n, respectively. Let d = n−m and consider a map f : X → Y .
We would like to construct a map in cohomology

f∗ : H∗G(X)→ H∗+dG (Y ).

In the case f is an inclusion of a submanifold, the equivariant version of Thom
isomorphism can be applied. Let νX be the G-equivariant tubular neighborhood of
X in Y .

Theorem 3.11. There is a G-equivariant isomorphism H∗G(X) → H∗G(νX)c from
the cohomology of X to the compactly supported cohomology of νX , given by multi-
plying the Thom class Φ ∈ Hd

G(νX)c.

A proof is more or less verbatim from the ordinary case. The ordinary version is
covered in detail in [6], and Chapter 10 of [13] explains the modifications that need
to be made in the equivariant version. Now there is a composition

H∗G(X) ∼= H∗+dG (νX)c → H∗+dG (Y )c = H∗+dG (Y ).

Recall our setup in the end of the previous section. Given a map f : X → Y ,
there is an inclusion of X into X ×Y by the graph Γf of f . Moreover, f = πY ◦Γf
for the projection πY : X × Y → Y . So it now suffices to define the pushforward
along πY , and declare f∗ = (πY )∗ ◦ (Γf )∗. In other words, we are reduced to the
case where f : X → Y is a fiber bundle.
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Let α = P i ⊗ αi be a form in the Cartan complex, where P i ∈ S(g∗) and
αi ∈ Ω∗(X). Integration along the fiber gives a map f∗ : Ω∗(X)→ Ω∗+d(Y ) (note
that d = n−m < 0 is the negative of the fiber dimension), so we define

f∗α = P i ⊗ f∗αi.

When Y is a point, this gives a definition of integration for equivariant forms.

Definition 3.12. The equivariant integral of an equivariant differential form
α = P i ⊗ αi ∈ S(g∗)⊗ Ω∗(X) is defined as∫

X

α =

(∫
X

αi

)
P i ∈ S(g∗)G = H∗G.

As usual, integrals of forms αi ∈ Ω∗(X) of degree not equal to the dimension of X
are always zero.

Since P i’s also carry a degree (the generators ui ∈ S(g∗) are assigned degree 2),
we can integrate equivariant differential forms of degree not equal to the dimension
of X. The result is not a number but a polynomial in general.

In sum, via the Cartan model we have given a construction of pushforward in
equivariant cohomology. By construction it factors through the Thom isomorphism.
It also satisfies functoriality. It also satisfies the “projection formula”

f∗ (αf∗β) = (f∗α)β

for α ∈ H∗G(X), β ∈ H∗G(Y ) which is the claim that f∗ is a map of H∗G(Y )-modules.
Quite importantly, we have the equivariant version of the Euler class. For an

inclusion f : X → Y of compact oriented manifolds, we have

f∗f∗1 = e
(
νX/Y

)
∈ H∗G(X)

where νX/Y is the equivariant normal bundle of X in Y and e is its equivariant
Euler class, which is the pullback of the Thom class in H∗G(Y ). The upshot of
the Atiyah–Bott localization theorem is that when one is given a action of G on a
manifold X with fixed locus F ⊂ X, one can invert the Euler class after localizing.
We are ready to explain the theorem.

4. Atiyah–Bott localization and the integration formula

We are now ready to state the Atiyah–Bott localization theorem. Recall that by
functoriality the terminal map X → ∗ induces a H∗G = H∗G({pt})-module structure
on the equivariant cohomology rings H∗G(X). In particular, we can discuss the
torsion in H∗G(X) as H∗G-algebras. While our coefficients are fixed to be a field C,
there may indeed be elements in H∗G(X) that are annihilated by nontrivial elements
in H∗G (which are in the general case some subring of a polynomial ring). In this
section, torsion will always mean torsion as a H∗G-algebra.

The content of the theorem is that all information in the equivariant cohomology
modulo torsion as a H∗G-algebra is contained in the fixed point set of the action.
From the localization theorem one can deduce the powerful abstract integration
formula as a corollary. We will closely follow the original paper [1] by Atiyah–Bott.

Let T ⊂ G be a maximal torus. The case G = T is the most important case,
essentially by the following proposition:
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Proposition 4.1. Let T ⊂ G be a maximal torus, and W = N(T )/Z(T ) = N(T )/T
be the Weyl group. Then

H∗G(X) ∼= H∗T (X)W ,

where H∗T (X)W is the W -invariant elements of the equivariant cohomology.

Proof. (Sketch; see [21] for a slightly different proof.) Consider the principal G/T -
bundle

G/T ↪→ XhT → XhG.

In [5], Bott–Samelson shows that H∗(G/T ) is concentrated in even degrees and
that the Euler characteristic (in this case, the dimension of the cohomology ring as
a vector space) is exactly |W |. Now we allude to the Lefschetz fixed point theorem
which states that given a map f : Z → Z of compact spaces, if

τ(f) =
∑
k

(−1)ktr
(
f∗ : Hk(Z)→ Hk(Z)

)
is non-zero then f has a fixed point. The action of W on H∗(G/T ) is induced by
the canonical action of W on G/T , which acts without fixed points for 1 6= w ∈W
and fixes everything for 1 = w. In particular applying the fixed point theorem to
Z = G/T , the trace of w∗ for 1 6= w ∈ W is zero and |W | for 1 = w. We conclude
that W acts on H∗(G/T ) by the regular representation. The proposition then
follows from inspecting the Serre spectral sequence associated to the fiber bundle
and taking W -invariants. �

In the case where X is a point, we recover the splitting principle. Another proof
can be found in [13] which directly compares the relevant spectral sequences asso-
ciated to the Cartan models for G-equivariant and N(T )-equivariant cohomology.
Their proof is via Chern–Weil theory and uses a nontrivial theorem of Chevalley in
the theory of Lie algebras.

Now we are justified to restrict to the case G = T . We now proceed to the proof
of the localization theorem. We first state the preliminary definitions.

Definition 4.2. Let A be a ring. A support of a (finitely generated) A-module
M is the set of prime ideals

Supp(M) = {p ∈ Spec(A) |Mp 6= 0}

where Mp is the localization of the module M at p.

In sheaf-theoretic terms, we interpret M as a sheaf over Spec(A) and the support
is where the stalk of this sheaf is not zero. This is a closed subset of Spec(A).

In the case we are interested in, A = H∗T = C[u1, . . . , um] is the polynomial ring
on m = dimT generators. The (complex points of the) spectrum of A is the vector
space Cm. The support of a H∗T -module M is the closed (in Zariski topology) subset

Supp(M) =
⋂
f

{x ∈ Cm | f(x) = 0}

where f ∈ C[u] ranges over the annihilators of M , i.e. the elements such that
fM = 0. In particular, we consider the support of H∗T -modules naturally as subsets
of tC = t ⊗R C = Cm, where the generators ui ∈ H∗T should be thought of as
coordinates on this Lie algebra.

The key lemma to the localization theorem is the following.
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Lemma 4.3. If there is a T -equivariant map V → T/K for a closed subgroup
K ≤ T , then

Supp (H∗T (V )) ⊂ kC.

Proof. The maps V → T/K → ∗ induce the maps H∗T → H∗T (T/K) → H∗T (X) of
H∗T -modules. Now H∗T (T/K) = H∗K , which shows that the H∗T -module structure on
H∗T (V ) factors through the H∗K = H∗K0

-module structure (K0 ≤ K is the identity
component, a subtorus of T ). In particular, the support of H∗T (V ) naturally lies in
kC. �

The key idea to the localization theorem is as follows. The assumption of the
lemma holds when V ⊂ X is a T -orbit of the action of T on X with isotropy group
K. In particular, if K 6= T (i.e., the orbit is not a fixed point of T ) then the
support of H∗T (X) lies in a positive codimension subspace of tC. This implies in
turn that the module H∗T (V ) is torsion, because free modules necessarily have the
whole space as their supports.

In sum, all the information in H∗T (X) from the T -orbits that are not from the
fixed points is torsion. The non-torsion part is completely governed by the data at
the fixed points. This is the content of the Atiyah–Bott localization theorem.

Theorem 4.4. (Atiyah–Bott, 1984) Let a torus T =
(
S1
)m

act on a smooth man-
ifold X. Let i : F → X denote the inclusion of fixed points of the T -action. Then

i∗ : H∗T (X)→ H∗T (F ), i∗ : H∗T (F )→ H∗T (X)

have torsion kernels and cokernels. More precisely, the support of the kernels and
cokernels lie in ∪KkC where K ranges for all proper isotropy subgroups K < T .

Proof. The proof is by Mayer–Vietoris. We stratify X by T -orbits of varying
isotropy groups. By the compactness of T we can construct T -invariant tubu-
lar neighborhoods of these orbits. Take U to be the neighborhood of F in X, and
X − U by compactness is covered by finitely many such neighborhoods of orbits.

It is a fact that a short exact sequence of modules L→M → N gives Supp(M) ⊂
Supp(L) ∪ Supp(N). By a combination of this fact with Mayer–Vietoris on the
finite cover of X −U by neighborhoods of orbits, we see that H∗T (X −U) is torsion
by Lemma 4.3. Now since U has a T -equivariantly deformation retracts onto F ,
H∗T (X−F ) is torsion. The same proof shows that the result holds for all T -invariant
subspaces of X − F , and consequently for all pairs of such subspaces in X − F .

In particular, H∗T (X,F ) ∼= H∗T (X − U, ∂(X − U)) (by excision) is torsion. The
long exact sequence for the pair (X,F ) now shows the desired result for the pullback
map i∗ : H∗T (X)→ H∗T (F ).

Similarly, the pushforward map i∗ : H∗T (F )→ H∗+dT (X) factors through

H∗T (F ) ∼= H∗+dT (νF , νF − F ) ∼= H∗+dT (X,X − F )→ H∗+dT (X)

as equivariant pushforward was defined via Thom isomorphism. Now the fact that
H∗T (X −F ) is torsion with the long exact sequence for the pair (X,X −F ) implies
the desired result.

�

The theorem says that once we invert certain polynomials in the ring H∗T , the
equivariant cohomology of X becomes isomorphic to the equivariant cohomology
of the fixed point set F . More precisely, we must invert all polynomials that vanish
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on all of kC for the proper isotropy subgroups K < T . This fact allows us to reduce
the computations of equivariant cohomology classes of X to computations at the
fixed points, which in many cases simplifies the computation greatly. This powerful
idea is formalized as follows.

Corollary 4.5. The maps i∗ and i∗ are isomorphisms, modulo torsion. Moreover,
for a class φ ∈ Frac(H∗T )(X) we have∫

X

φ =
∑
P

1

e(νP )

∫
P

i∗Pφ

in the field of fractions Frac(H∗T ), where the index P ranges over the connected
components of F .

Note that with

i∗i∗1 = e(νF )

we know that e(νF ) is invertible in some ring by the localization theorem. This
is always true if we localize at the generic point (that is, tensor everything with
the field of fractions C(ui)), although it suffices in general to invert only those
polynomials that occur in the H0

T -component of the relevant Euler classes (see [1]).
In particular, the condition on the Corollary 4.5 that φ should lie in the equivariant
cohomology ring fully localized to the field of fractions can be relaxed.

Remark 4.6. As an example of the calculation of the Euler class, consider the case
where F is a finite set of isolated fixed points. The normal bundle at a point p ∈ F
is just the restriction of the tangent bundle TX|p = TpX. This vector space is T -
invariant and therefore splits as a direct sum of irreducible representations. (Note
that the existence of such structure is crucially dependent on the fact that p is a
fixed point.) These weights can be identified by the characters exp(2πiaj) : T → S1,
and the Euler class of the normal bundle is exactly the product of the linear forms

e(νp) =
∏
j

aj ∈ H∗T .

It suffices to invert these polynomials in u to obtain the desired isomorphism.

Corollary 4.5 now follows from the fact that i∗ and i∗/e(νF ) are inverses to each
other, i.e.

φ =
∑
P

1

e(νP )
(iP )∗(iP )∗φ.

One applies (πX)∗ to both sides and use that πF = πX ◦ iF to obtain the final
formula in Corollary 4.5, which is the Atiyah-Bott integration formula.

Remark 4.7. Note that the formula applies to equivariant cohomology classes φ ∈
H∗T (X). If we want to use the formula for ordinary cohomology classes φ ∈ H∗(X),

we must find an equivariant class φ̃ ∈ H∗(XT ) such that its image under the pull-
back along the inclusion of fiber X ↪→ XT → BT is equal to φ. From the Cartan
model, in the form level we know that equivariant forms are just polynomials in

ui’s with coefficients in the ordinary forms, and that φ̃|u=0 = φ must hold. Such

φ̃ is called an equivariantly closed extension of the closed form φ. Equivari-
antly closed extensions are guaranteed to always exist for certain classes of spaces
known as equivariantly formal spaces; these include all manifolds with cohomology
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concentrated in even degrees. They also exist for characteristic classes of vector
bundles when the action on the base space lifts to an action on the bundle: see [22].

The usefulness of the integration formula cannot be understated and in the next
section we will explore its applications in wide range of fields. Before we dive into
these applications, we end this section by quickly showing how a special case of
the Gauss–Bonnet–Hopf theorem can be deduced immediately from the integration
formula.

Let the circle T = S1 act on a manifold X by diffeomorphisms. There is a
natural action on the tangent bundle TX which induces a bundle on XhT . Suppose
the action on X has finitely many isolated fixed points F under T . These are the
zeroes of the vector field generated by the circle action. From the fact that TX
restricted to a fixed point is exactly the normal bundle of the fixed point in X, the
integration formula yields

χ(X) =

∫
X

e(TX) =
∑
F

∫
F

e(νF/X)

e(νF/X)
=
∑
F

1 = |F |.

The first equality is the Gauss–Bonnet theorem, and the second equality can be
interpreted as the Hopf theorem. For a visual example, imagine a 2-sphere rotating
along a fixed axis.

5. Applications

In this section, we explore three applications of the Atiyah–Bott localization
theorem. As noted in [22], the theorem has found many applications in fields as
diverse as enumerative algebraic geometry, symplectic geometry, and mathemati-
cal physics. In this section we explore some selected flavors of such applications.
This section may not be self-contained and results will mostly be provided without
proofs, but pointers to references will be provided when necessary.

5.1. Enumerative algebraic geometry. The idea of Atiyah–Bott localization
has great applications in enumerative algebraic geometry and intersection theory.
A first approximation to the goal of enumerative algebraic geometry is to count the
number of geometric objects. In a lot of cases such questions reduce to computing
characteristic classes on a variety.

Example 5.1. In how many points do two lines in a (projective) plane intersect?
The answer is obviously one, which can also be computed as the integral∫

P2

h2 = 1

where h ∈ H2(P2) denotes the generator, which is the Poincaré dual of a hyperplane
(line) in P2.

The above example generalizes to higher dimensional projective spaces. It gives
us the first hands-on example of equivariant cohomology so we might as well work
out the example. The treatment follows [14], and rigorous proofs of the statements
we make are provided in [25].

Example 5.2. We consider the complex projective space Pm, thought of as a
projectivization of a (m + 1)-dimensional vector space V = Cm+1. There is a
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natural action of T = (S1)m+1 on V , given by

(t0, . . . , tm) · (z0, . . . , zm) = (t0z0, . . . , tmzm).

On BT , we can consider the vector bundle VhT = ET ×T V obtained by gluing
in the representation V to the principal T -bundle ET → BT . One can show that
this vector bundle is isomorphic to the direct sum of line bundles L0 ⊕ · · · ⊕ Lm,
where Li is the pullback of the tautological bundle O(−1) over BS1 = P∞ along
the projection BT = (P∞)m+1 → BS1 to the ith factor.

The action on V induces an action on Pm, with fixed points p0, . . . , pm where
pi = [0, . . . , 1, . . . , 0] are the coordinate axes of V (1 in the ith projective coordi-
nate). The Borel construction of Pm with this action is now identified with the
projectivization of this vector bundle over BT:

PmhT = ET ×T Pm = ET ×T PV = P (ET ×T V ) = P (L0 ⊕ · · · ⊕ Lm) .

By the splitting principle (see [6]) the equivariant cohomology of Pm can now be
computed as

H∗T (Pm) = H∗ (PmhT ) = C[x, u0, . . . , um]/

(
m∏
i=0

(x− ui)

)

where ui = −e(Li) is the Chern class of the dual of Li and x = e(O(1)) is the
hyperplane class, i.e. the Chern class of the dual of the tautological line bundle
OPm

hT
(−1) over PmhT .

Note that the pullback

ι∗i : H∗T (Pm)→ H∗T ({pi}) = H∗T = C[u0, . . . , um]

under the inclusion of the ith fixed point pi ↪→ Pm sends x to ui by observing that
the tautological line bundle over PmhT restricts to Li over {pi}hT = BT .

The normal bundle of pi in Pm is the quotient of the tangent bundle at Pm
restricted at pi by the tangent bundle of the point pi. In particular, it is isomorphic
to the restriction of the tangent bundle of Pm at pi because the tangent bundle of a
point is trivial. The weights of the T -action on the tangent space are (ui − uj), as
one sees by identifying the cotangent vectors to pi with linear forms on the affine
coordinates zj/zi. Therefore the Euler class is

∏
j 6=i(u

i − uj).
With the information above, Atiyah–Bott integration formula now specializes to

the Bott residue formula:

(5.3)

∫
Pm

f(x, u) =

m∑
i=0

Resx=ui

f(x, u)∏m
j=0(x− uj)

=
1

2πi

∮
dx

f(x, u)∏m
j=0(x− uj)

.

In particular taking f(x, u) ∈ H∗T (Pm) in (5.3) as xm, we obtain the enumerative
result ∫

Pm

hm =

m∑
i=0

(ui)m∏
j 6=i(u

i − uj)
= 1

which says that m generic hyperplanes in Pm intersect at a point.

Remark 5.4. In the previous example the final equality depends on seemingly mirac-
ulous cancellations. However, note that one can take different representatives of
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the hyperplane class h ∈ H2(Pm) in the equivariant cohomology. If we take x− ui
to represent the ith copy in the product hm, the residue formula yields∫

Pm

hm =

∫
Pm

m∏
i=1

(x− ui) =

∏
j 6=0(u0 − uj)∏
j 6=0(u0 − uj)

+

m∑
i=1

0 = 1.

Choosing x − ui instead of x as a representative for the hyperplane class h cor-
responds to twisting the T -action induced on O(1) (whose Euler class is x) by a
one-dimensional representation Vi defined by (t0, . . . , tm) · z = tiz. We have chosen
different Vi’s for different copies of the hyperplane class h in the product hm.

For a more involved and interesting application, let us show how one can use the
tool of equivariant integration to recover the classical enumerative result that there
are 27 straight lines on a cubic surface.

Recall that a cubic surface is a zero set in a projective space P3
k over a field k

of a cubic homogeneous polynomial f ∈ k[x0, x1, x2, x3]. There is a general notion
of smoothness for algebraic surfaces, but we will fix k = C so that a surface being
smooth is equivalent to being a complex manifold.

Theorem 5.5. (Cayley, 1849) A generic smooth cubic complex surface contains
exactly 27 lines.

Proof. We will see how equivariant integration can be used to obtain this result.
We should first reduce the problem of finding the number of lines in the surface
into a problem of integration, in a similar spirit to Example 5.1. Once we have an
integral, the equivariant integration formula will allow an easy computation.

Let S ⊂ P3 be a smooth cubic complex surface. It is cut out by a cubic homo-
geneous polynomial f ∈ C[x0, x1, x2, x3].

Consider the set Gr(2, 4) of 2-planes in C4, or equivalently the set of lines in
the projective space P3. This set, known as the Grassmannian, in fact carries the
structure of a smooth complex projective variety. On a point ` ∈ Gr(2, 4) (which
is a line in a projective 3-space), we can consider the vector space

E` = {homogeneous cubic polynomials on `}.

For example, if ` is the zero set of x2 and x3, then E` is generated by cubic
monomials in x0 and x1. For every `, E` is a vector space of dimension 4, and in
fact fits into a rank 4 complex vector bundle E over Gr(2, 4).

The homogeneous cubic polynomial f ∈ C[x0, x1, x2, x3] that cuts out our surface
S ⊂ P3 can then naturally be thought of as a section of E. A line ` ∈ Gr(2, 4) is
contained in S if and only if this section vanishes at `. So the question of finding
the number of lines contained in S is equivalent to the question of determining the
vanishing locus of a section of E.

The Grassmannian Gr(2, 4) has complex dimension 4. To see this, observe that
generically 2 · 4 complex numbers determine a 2-plane in 4-space but this is only
unique up to 2× 2 invertible matrices corresponding to the change of basis. Hence
2 · 4− 2 · 2 = 4 is the dimension of the Grassmannian. Since E is a rank 4 bundle
over a 4-dimensional manifold, the vanishing locus of a generic section is expected
to be of dimension 0, i.e. a finite set of points. In particular, the number of lines
contained in S is expected to be finite.
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The actual number can be computed by the following integral of the Chern class
(cf. Example 5.1): ∫

Gr(2,4)

c4(E).

From here, the classical approach is to exploit the geometry of the Grassmannian
to compute this integral. This calculation scheme goes by the name of Schubert
calculus and a computation of this flavor is outlined in [17]. Instead of following
this approach, we would like to apply the Atiyah–Bott integration formula.

Note that T = (S1)4 acts on C4 by componentwise multiplication

(t0, t1, t2, t3) · (x0, x1, x2, x3) = (t0x0, t1x1, t2x2, t3x3)

as in Example 5.2. This action induces an action on P3. Moreover, since lines in
P3 are cut out by two linear forms, this action takes lines in P3 to lines in P3. In
other words, there is also an induced action on Gr(2, 4).

The torus action on Gr(2, 4) has six isolated fixed points, which we denote by

`ij = {x ∈ C4 | xi = 0, xj = 0} ∈ Gr(2, 4), 0 ≤ i < j ≤ 3.

By the Atiyah–Bott formula, we have

(5.6)

∫
Gr(2,4)

c4(E) =

∫
Gr(2,4)

e(E) =
∑
i<j

e(E|`ij )

e(TGr(2, 4)|`ij )
,

where we identified the normal bundle of `ij in Gr(2, 4) with the restriction of the
tangent bundle at that point (cf. Example 5.2). It remains to compute the Euler
classes, and this reduces to computing the T -weights of the action on the fiber of
the vector bundles at the fixed points.

Without loss of generality, consider `01. On `01 we have x0 = x1 = 0, and the
remaining coordinates x2, x3 define the projective coordinates on this line. The
fiber E`01 is then generated by

{x32, x22x13, x12x23, x33}

and the corresponding weights are

(3u2), (2u2 + u3), (u2 + 2u3), (3u2).

The Euler class is therefore

e (E|`01) = (3u2)(2u2 + u3)(u2 + 2u3)(3u2) = 18u32u3 + 45u22u
2
3 + 18u2u

3
3 ∈ H∗T .

The Euler class of the normal bundle can also be computed. It is known that
the tangent space at a point ` of a Grassmannian (a 2-plane in a 4-space) can be
described as the space of linear transformations from that point:

TGr(2, 4)|` ∼= Hom
(
`,C4/`

)
.

In particular, at `01 this is the vector space of linear transformations from the
2-space spanned by x2, x3 to the 2-space spanned by x0, x1. The weights of the
induced torus action on the tangent space are then

(u0 − u2), (u1 − u2), (u0 − u3), (u1 − u3)

and the Euler class is given by the product

e (TGr(2, 4)|`01) = (u0 − u2)(u1 − u2)(u0 − u3)(u1 − u3)..
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In sum, (5.6) reduces to the following sum over the choice of indices i, j, where k, l
denotes the other two indices:∫

Gr(2,4)

e(E) =
∑

0≤i<j≤3

18u3kul + 45u2ku
2
l + 18uku

3
l

(ui − uk)(uj − uk)(ui − ul)(uj − ul)
= 27.

The computation is straightforward and indeed recovers the desired result.
�

As the examples we have explored demonstrate, many enumerative questions
in intersection theory can be reduced to computations of certain integrals. In
such cases, T -equivariant localization is often available as a powerful tool. Torus
actions abound mainly because one works with projective spaces. Applications of
equivariant localization in enumerative algebraic geometry (in particular, Gromov–
Witten theory) are carefully explained in [14], [17], and [25].

We now turn to a different branch of mathematics where group actions and
equivariant integration often appear: symplectic geometry.

5.2. Symplectic geometry. As already noted by Atiyah and Bott in [1], equi-
variant cohomology has deep and natural connections to symplectic geometry. The
connection comes from the fact that equivariantly closed extensions (cf. Remark
4.7) of the symplectic form are in one-to-one correspondence with Hamiltonian
maps. In this subsection we review this correspondence. As a result we see how the
Atiyah–Bott integration formula can be specialized to the Duistermaat–Heckman
formula, which characterizes the variation of the symplectic volume for symplectic
quotients.

We begin by reviewing the relevant notions in symplectic geometry. A thorough
treatment is given in [10].

A symplectic manifold is an even dimensional manifold X equipped with a non-
degenerate closed 2-form ω called the symplectic form. The symplectic form has the
property that the top exterior power ωn/n! is nowhere vanishing where 2n = dimX;
it is the Liouville volume form. A map of symplectic manifolds that preserve the
symplectic form is called a symplectomorphism.

Example 5.7. A canonical example of a symplectic manifold is the phase space,
which is mathematically just a cotangent bundle T ∗X over some manifold X. In
local coordinates (q1, . . . , qn) of the manifold for which there are corresponding
cotangent coordinates (p1, . . . , pn) (called the conjugate momenta in physics), the
symplectic form is locally written as ω = dpi ∧ dqi.

We are interested in the case where a compact Lie group G acts on a symplectic
manifold X by symplectomorphisms. The goal is to be able to construct what is
essentially a quotient of X by G.

Definition 5.8. An action ψ : G×X → X by symplectomorphisms is Hamilton-
ian if there exists a moment map

µ : X → g∗

that satisfies the following constraints.

• For v ∈ g, µ(v) : X → R is a function on X. For the vector field v# on X
that the one-parameter flow in the direction of v generates on X, we have
d (µ(v)) (·) = ω(v#, ·).
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• The map µ is G-equivariant with g∗ given the coadjoint action.

The function µ(v) : X → R associated to each v ∈ g is called the Hamiltonian
map for the vector field v#.

This definition is quite technical. The geometric picture is as follows. Given a
G-action on X, one-parameter subgroups {exp tv : t ∈ R} ⊂ G generated by v ∈ g
generate corresponding vector fields v# on X by taking the derivative of the flow
by the one-parameter subgroups. Then the fact that G-action on X is symplectic
implies ιv#ω is a closed 1-form. To see this, note that

dιv#ω = (dιv# + ιv#d)ω = Lv#ω = 0

by the Cartan formula (3.5). The last equality comes from the fact that the action
is symplectic and hence flowing by the action leaves the symplectic form invariant.
If ιv#ω is not only closed but also exact, there is some function µv such that dµv =
ιv#ω. We are asking that these functions µv must satisfy some sort of compatibility.

Namely, the association v 7→ µv must be a map of Lie algebras, where C∞(X)
is given the Lie algebra structure by the Poisson bracket: {f, g} = ω(χf , χg) for
ω(χf , ·) = df(·). This description defines a map from the Lie algebra g to C∞(X),
and dualizing it defines a map X → g∗, just as in Definition 5.6. If we further
ask that the map g → C∞(X) is G-equivariant with G acting on g by the adjoint
representation, then we exactly recover the definition of moment maps if we assume
that G is connected.

Example 5.9. Let G = SO(3) act on R3 by rotations. There is a lift of this action
on the phase space T ∗R3 = R6 (which is a symplectic manifold; cf. Example 5.5)
as a symplectic action. The corresponding moment map is

µ : R6 → R3 = Lie(SO(3))∗, µ : (q,p)→ (a 7→ (q× p) · a) ,

and it is called the angular momentum in physics.

The physical picture comes from Noether’s principle in classical mechanics, which
states that when there is a symmetry of a system there is a corresponding conserved
quantity (the Hamiltonian map of the symmetry). For each conserved quantity the
degree of freedom of the dynamical system decreases by two. The idea is formalized
in the framework of symplectic geometry in terms of symplectic quotients.

Theorem 5.10. Let (X,ω,G, µ) denote the data of a Hamiltonian action. If G acts
freely on the preimage i∗ : µ−1(0) ↪→ X, then π : µ−1(0)→ µ−1(0)/G is a principal
G-bundle. Moreover, µ−1(0)/G can be given a canonical symplectic structure ω0

such that i∗ω = π∗ω0.

The space X0 = µ−1(0)/G with its canonical symplectic structure is the sym-
plectic quotient and has dimension dimX − 2 dimG, as expected by classical
mechanics. The rigorous construction of symplectic quotients can be found in [10].

Remark 5.11. When G is a torus, moment maps are only unique up to a constant
t ∈ g∗ (see [10]). So in particular the construction makes sense by replacing µ−1(0)
with µ−1(t) as long as G acts freely on µ−1(t) (that is, t ∈ g∗ is a regular value of
µ). The corresponding symplectic quotient will be denoted (Xt, ωt).

The theory of Hamiltonian torus actions is well studied. One theorem in the
area is the Duistermaat–Heckman theorem [12], which characterizes the push-
forward of the Liouville measure under the moment map as a piecewise polynomial.
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Let G = T be a torus acting on a symplectic manifold (X,ω) and let this torus
action be Hamiltonian.

Definition 5.12. The Duistermaat–Heckman measure mDH on t∗ is the push-
forward of the Liouville measure ωn/n! under the moment map µ : (X,ω) → t∗.
That is,

mDH(U) =

∫
µ−1(U)

ωn

n!
.

Theorem 5.13. (Duistermaat–Heckman, 1982) The density obtained as the Radon–
Nikodym derivative of the Duistermaat–Heckman measure with respect to the Lebesgue
measure

f(t) =
dmDH

dλ

on t∗ ∼= Rd is piecewise polynomial on t ∈ t∗, with breaks occuring at critical values
of µ.

Duistermaat–Heckman in [12] note that this property of the density f being
piecewise polynomial implies—in fact, is equivalent to—that the inverse Fourier
transform is exactly equal to the sum of contributions from the fixed points of
the action. In other terms, the oscillatory integral is equal to its stationary phase
approximation. Their formula writes

(5.14)

∫
X

eit〈v,µ(x)〉
ωn

n!
=
∑
j

vol(Xj)e
it〈v,µ(Xj)〉(

t
2πi

)nj ∏nj

k=1〈v, ωjk〉
.

Here t is just a real parameter and v ∈ t. Moreover, F = {Xj} is the fixed point set
of the T -action on X, with connected components Xj of codimensions 2nj . Finally,
ωjk ∈ t∗ is the coefficient of the quadratic term in the Taylor expansion of µ at a
fixed point xj ∈ Xj in the coordinates in which the T -action is linear (this is always
possible):

µv(x) = µv(xj) +

m∑
k=1

ωjk(v)
p2k + q2k

2
.

We relabel the k’s so that the first nj coefficients ωjk with k = 1, . . . , nj at xj are
the nonzero coefficients. In particular, the product in the denominator of the right
hand side in (5.14) makes sense.

In the case where T is a circle and the fixed points F are isolated points, the
formula (5.14) reduces to

(5.15)

∫
X

eitµv
ωn

n!
=
∑
p∈F

eitµv(p)

(t/i)nEp
.

Here µv = µ(v) ∈ C∞(X) is the evaluation of the moment map at a chosen v ∈ t,
and Ep is the integer multiple that appears in the equivariant Euler class of the
normal bundle of p ∈ X:

e(νp) = Epu
n ∈ H∗S1({p}) = C[u].

Now (5.15) is a special case of Atiyah–Bott integration formula; this observation
was the initial stimulus of Atiyah and Bott for [1]. The connection comes from the
following proposition (also proved in [1], essentially by computation).
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Lemma 5.16. For any choice of v ∈ g, the Hamiltonian map µv = µ(v) gives an
equivariantly closed extension (in the Cartan model) of the symplectic form:

ωv = ω − µvu =⇒ dS1ωv = 0.

Given Lemma 5.16, one now applies Atiyah–Bott integration formula to each
term in the power series

exp (ωv) = exp (ω) exp (−µvu) ∈ H∗T (X)⊗H∗
T
C[[u]]

to get

(5.17)

∫
X

e−µvueω =
∑
p∈F

∫
p
e−µvueω

e(νp)
.

The only term that survives on the left hand side of (5.17) after integrating over
X is the Liouville form ωn/n! by dimension reasons. That is, the only term in
the power series eω =

∑
k ω

k/k! that has the same degree as the dimension of the
manifold X is the Liouville form ωn/n!. Similarly on the right hand side only the
constant term is picked up. It follows that∫

X

e−µvu
ωn

n!
=
∑
p∈F

e−µv(p)u

Epun

and (5.15) follows from replacing u by −it.
Hamiltonian torus actions are particularly nice with many interesting properties;

Duistermaat–Heckman theorem is only one of them. They have deep connections
to the theory of integrable systems as well. In fact, the primary example of an
integrable system is indeed a phase space with given an effective Hamiltonian torus
action. A thorough treatment of torus actions and their connections to equivariant
cohomology/integrable systems is given in [3].

Nonabelian generalizations of the Duistermaat-Heckman theorem were found and
extensively used by Witten in [24]. Later, Jeffrey and Kirwan in [15] used Witten’s
ideas to prove a residue formula type result that is closer to the expression of the
Atiyah–Bott integration formula.

5.3. Further remarks. We note that the idea of localization and equivariant co-
homology have been used in far more extensive situations than what was presented
here. Tu gives a list of some examples in [22], and has also used equivariant co-
homology in his original research [21] to compute the characteristic numbers of
homogenous spaces. Vergne also gave a survey of the applications in ICM 2006
[23]. Analogous results in K-theory were discussed by Atiyah himself with Segal
in [2] and used extensively in the study of equivariant index theory. In quan-
tum physics, equivariant cohomology is also studied extensively in the context of
supersymmetric quantum field theories, cohomological field theories, and BRST
quantization of gauge theories. For a survey of the applications in physics, [20] and
[9] are recommended. Ideas from physics has also influenced the study of equivari-
ant cohomology in mathematics. For one example, Kalkman in [16] showed that
the construction from physics can be used to interpolate between the Weil model
and the Cartan model of equivariant de Rham theory. I hope that the article has
convinced the reader that localization in equivariant cohomology is an interesting
and important topic that appears in a wide range of subjects.
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