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Introduction

A finite space is a topological space that has only finitely many points. At first
glance, it seems ludicrous to think that such spaces can be of any interest. In fact,
from the point of view of homotopy theory, they are equivalent to finite simplicial
complexes. Therefore they support the entire range of invariants to be found in
classical algebraic topology. For a striking example that sounds like nonsense, there
is a space with six points and infinitely many non-zero homotopy groups. That is
like magic: it sounds impossible until you know the trick, when it becomes obvious.
We usually restrict attention to finite T0-spaces, and those are precisely equivalent
to finite posets (partially ordered sets). Therefore finite spaces are also of interest
in combinatorics. In fact, there is a large and growing literature about finite spaces
and their role in other areas of mathematics and science.

My own interest in the subject was aroused by 1966 papers by McCord [32] and
Stong [40] that are the starting point of this book. However, I should admit that I
came upon these papers while casting about for material to teach in Chicago’s large
scale REU, which I organize and run. I wanted something genuinely fascinating,
genuinely deep, and genuinely accessible, with lots of open problems. Finite spaces
provide a perfect REU topic for an algebraic topologist. Most experts in my field
know nothing at all about finite spaces, so the material is new even to the experts,
and yet it really is accessible to smart undergraduates. This book will feature several
contributions made by undergraduates, some from Chicago’s REU and some not.

When I first started talking about finite spaces, in the summer of 2003, my
interest had nothing at all to do with my own areas of research, which seemed
entirely disjoint. However, it has gradually become apparent that finite spaces can
be integrated seamlessly into a global picture of how posets, simplicial complexes,
simplicial sets, topological spaces, small categories, and groups are interrelated by
a web of adjoint pairs of functors with homotopical meaning. The undergraduate
may shudder at the stream of undefined terms!

The intention of this book is to introduce the algebraic topology of finite topo-
logical spaces and to integrate that topic into an exposition of a global view of a
large swathe of modern algebraic topology that is accessible to undergraduates and
yet has something new for the experts. A slogan of our REU is that “all concepts
will be carefully defined”, and we will follow that here. However, proofs will be se-
lective. We aim to convey ideas, not all of the details. When the results are part of
the mainstream of other subjects (group theory, combinatorics, point-set topology,
and algebraic topology) we generally quote them. When they are particular to our
main topics and not to be found on the textbook level, we give complete details.

These notes started out entirely concretely, without even a mention of things
like categories or simplicial sets. Chicago students won’t stand for oversimplifica-
tion, and their questions always led me into deeper waters than I intended. They
were also impatient with the restriction to finite spaces and finite simplicial com-
plexes, one reason being that as soon as their questions forced me to raise the level
of discourse, the restriction to finite things seemed entirely unnatural to them.

The infinite version of finite topological spaces is readily defined and goes back
to a 1937 paper of Alexandroff [1]. We call these spaces Alexandroff spaces, and
we use the abbreviation A-space for Alexandroff T0-space. (The T0 property means
that the topology distinguishes points.) To go along with this, we also use the
abbreviation F -space for finite T0-space. Just as F -spaces are equivalent to finite
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posets, so A-spaces are equivalent to general posets. Similarly, from the point of
view of homotopy theory, F -spaces are equivalent to finite simplicial complexes and
A-spaces are equivalent to general simplicial complexes.

Roughly speaking, the first part of the book focuses on the homotopy theory of
F -spaces and A-spaces. A central theme is the difference between weak homotopy
equivalences and homotopy equivalences. A continuous map f : X −→ Y is a
homotopy equivalence if there is a map g : Y −→ X such that the composite g ◦ f
is homotopic to the identity map of X and the composite f ◦ g is homotopic to the
identity map of Y . The map f is a weak homotopy equivalence (usually abbreviated
to weak equivalence) if for every choice of basepoint x ∈ X and every n ≥ 0, the
induced map f∗ : πn(X,x) −→ πn(Y, f(x)) is an isomorphism (of sets if n = 0, of
groups if n = 1, and of abelian groups if n ≥ 2).

Every homotopy equivalence is a weak homotopy equivalence. A map between
nice spaces, namely CW complexes, is a homotopy equivalence if it is a weak homo-
topy equivalence. All of the spaces that one encounters in standard introductions
to algebraic topology are nice, so that the distinction seems parenthetical and of
minor interest. It is by now very well understood by algebraic topologists that the
definitively “right” notion of equivalence is weak equivalence, not homotopy equiv-
alence. However, to get a feel for the strength of the distinction, one needs to see
serious examples where the two notions are genuinely different.

The first half of the book offers just such a perspective. The work of Stong
makes it very easy to understand homotopy equivalences of finite spaces. The work
of McCord relates weak equivalences of Alexandroff spaces to weak equivalences,
and therefore homotopy equivalences, of simplicial complexes. As we shall explain,
a reinterpretation in terms of finite spaces of a conjecture of Quillen about the poset
of non-trivial elementary subgroups of a finite group illuminates precisely this dis-
tinction between weak homotopy equivalences and actual homotopy equivalences.
Another open problem also illuminates the distinction. The problem of enumer-
ating homotopy equivalences of finite spaces combinatorially has been solved by a
pair of Chicago undergraduates, Alex Fix and Stephan Patrias. The problem of
enumerating weak homotopy equivalences combinatorially is still open.

The second half of the book guides the reader through the following oversim-
plified diagram of categories and functors between them.

Groups
K(−,1) //

i

��

Spaces

S

��

π1

oo

Categories

Sd2

��

N //

B

99

Simp. Sets

T

OO

Sd2 //
Π

oo Ordered Simp. Complexes
i

oo

U

��
Posets

i

OO

∼= // A-Spaces

K

77

∼=
oo Abstract Simp. Complexes

X
oo
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The connections among these categories are remarkably close. It has been
understood since the 1950’s that topological spaces and simplicial sets can in prin-
ciple be used interchangeably in the study of homotopy theory. In fact, except that
groups only model very special spaces, called K(π, 1)’s, all of these categories can
in principle be used interchangeably in the study of homotopy theory. We’d like
people outside algebraic topology to become more aware of these interconnections.

One thing that is largely new is a careful combinatorial analysis of exactly
how subdivision ties together the categories of simplicial sets, (small) categories,
and posets, alias A-spaces. This is due in large part to Rina Foygel, a recent
Chicago PhD and now faculty member in Statistics , and her work is included with
her permission. In particular, we give a careful explanation of the classical result
that the second subdivision of a suitably well-behaved simplicial set is a simplicial
complex and the folklore result that the second subdivision of any (small) category
is a poset. One striking result is that, when regarded as a simplicial set, any classical
(ordered) simplicial complex is the nerve of a category. As far as I know, that has
never before been noticed. We ask the novice not to be intimidated. We will go
slow! We ask the expert to be patient. There will be new things along the way.

There are all sorts of possible choices of material and presentation for a book
on this general topic, and I’ll explain, but not justify, my choices rather flippantly.
The main justification is that the REU is supposed to be fun, and so is this book.

It is a standard saying that one picture is worth a thousand words. It is a
defect of the author that he is not good at drawing pictures, and there will not be
as many as there should be. The reader should draw lots of them! In mathematics,
it is perhaps fair to say that one good definition is worth a thousand calculations.
The author likes to make up definitions and to see relations between seemingly
unrelated concepts, so we will do lots of that.

However, to quote a slogan from a T-shirt worn by one of the author’s students,
“calculation is the way to the truth”. There is a need for more calculational un-
derstanding of the subject here, and the author, being too old and lazy to compute
himself, hopes that readers will be inspired.

In fact, the author’s notes on this subject have been online since 2003, and a
number of people have been inspired by them. In particular, Gabriel Minian, in
Buenos Aires, and his students have followed up problems in my notes. His student
Jonathan Barmak wrote a 2009 thesis, now a book [5], that has a good deal of
overlap with the first half of this book.1 I’ll content myself with the basic theory
and refer to Barmak’s book for more recent advances made in Argentina.

Pedagogically, I’ve been using this material as a device to offer beginning un-
dergraduates capsule introductions to point-set topology, algebraic topology, and
category theory. I’ve also used the evolution of concepts as a means to help students

1I’ll quote from his introduction. “In 2003, Peter May writes a series of unpublished notes in

which he synthesizes the most important ideas on finite spaces until that time. In these articles,
May also formulates some natural and interesting questions and conjectures which arise from his
own research. May was one of the first to note that Stong’s combinatorial point of view and the
bridge constructed by McCord could be used together to attack algebraic topology problems using
finite spaces. Those notes came to the hands of my PhD advisor Gabriel Minian, who proposed

me to work on this subject. May’s notes and problems, jointly with Stong’s and McCord’s papers,
were the starting point of our research on the Algebraic Topology of Finite Topological Spaces
and Applications.”
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gain an intuition for abstraction and conceptualization in modern mathematics.2

These twin purposes pervade and guide the exposition. Add comments on
REU paper contri-
butions!

2An advertisement for just such a use of the subject of finite spaces as a pedagogical tool has
been published by two students of a student of mine [19].





Part 1

Alexandroff spaces, posets, and
simplicial complexes





CHAPTER 1

Alexandroff spaces and posets

1.1. The basic definitions of point set topology

The intuitive notion of a set in which there is a prescribed description of near-
ness of points is obvious. So is the intuitive notion of a function that takes nearby
points to nearby points. However, formulating the “right” general abstract notion
of what a “topology” on a set should be and what a “continuous map” between
topological spaces should be is not so obvious. Since, intuitively, nearness is thought
of in terms of distance, the most immediate way to make the intuition precise is
to use distance functions. That leads to metric spaces and the ε-δ description of
continuity, which is how we usually think of spaces and maps. Hausdorff came up
with a much more abstract and general notion that is now universally accepted.

Definition 1.1.1. A topology on a set X consists of a set U of subsets of X,
called the “open sets of X in the topology U ”, with the following properties.

(i) The empty set ∅ and the set X are in U .
(ii) A finite intersection of sets in U is in U .
(iii) An arbitrary union of sets in U is in U .

A neighborhood of a point x ∈ X is an open set U such that x ∈ U .

We write (X,U ) for the set X with the topology U . More usually, when the
topology U is understood, we just say that X is a topological space. We say that
a topology U is finer than a topology V if every set in V is also in U (U has
more open sets). We then say that V is coarser than U . We have two obvious and
uninteresting topologies on any set X.

Definition 1.1.2. The discrete topology on X is the topology in which all sets
are open. It is the finest topology on X. The trivial or coarse or indiscrete topology
on X is the topology in which ∅ and X are the only open sets. It is the coarsest
topology on X. We write Dn and Cn for the discrete and coarse topologies on a
set with n elements. These are the largest and the smallest possible topologies (in
terms of the number of open subsets).

Definition 1.1.3. Let X be a topological space. A subset of X is closed if its
complement is open. The closed sets satisfy the following conditions.

(i) The empty set ∅ and the set X are closed.
(ii) An arbitrary intersection of closed sets is closed.

(iii) A finite union of closed sets is closed.

We shall make little or no use of the following definition, but it may help make
clear how the abstract definitions correspond to common notions in calculus.

Definition 1.1.4. Let A be a subset of a topological space X. The interior Å
of A is the union of the open subsets of X contained in A. The closure Ā of A is

3



4 1. ALEXANDROFF SPACES AND POSETS

the intersection of the closed sets containing A. A point x ∈ X is a limit point of A
if every neighborhood of x contains a point a 6= x of A. A is dense in X if Ā = X.

We shall omit proofs of many standard results that are part of basic point-set
topology, such as the next one. While this result is not too hard and can safely
be left as an exercise, other omitted proofs will be more substantial. This is not a
textbook and we do not aspire to completeness.

Proposition 1.1.5. A point x ∈ X is in Ā if and only if every neighborhood
of x contains a point of A, and Ā is the union of A and the set of limit points of
A. The set A is closed if and only if it contains all of its limit points.

1.2. Alexandroff and finite spaces

It is very often interesting to see what happens when one takes a standard
definition and tweaks it a bit. The following tweaking of the notion of a topology
is due to Alexandroff [1], except that he used a different name for the notion1.

Definition 1.2.1. A topological space X is an Alexandroff space if the set U
is closed under arbitrary intersections, not just finite ones.

Remark 1.2.2. The notion of an Alexandroff space has a pleasing complemen-
tarity. If X is an Alexandroff space, then the closed subsets of X give it a new
topology in which it is again an Alexandroff space. We write Xop for X with this
opposite topology. Then (Xop)op is the space X back again.

A space is finite if the set X is finite, and the following observation is immediate.

Lemma 1.2.3. A finite space is an Alexandroff space.

It turns out that a great deal of what can be proven for finite spaces applies
equally well more generally to Alexandroff spaces, with exactly the same proofs.
When that is the case, we will prove the more general version. However, finite
spaces have recently captured people’s attention. Since digital processing and image
processing start from finite sets of observations and seek to understand pictures that
emerge from a notion of nearness of points, finite topological spaces seem a natural
tool in many such scientific applications. There are quite a few papers on the
subject, although few of much mathematical depth, starting from the 1980’s.

There was a brief early flurry of beautiful mathematical work on this subject.
Two independent papers, by McCord and Stong [32, 40], both published in 1966,
are especially interesting. We will work through them. We are especially interested
in questions that are raised by the union of these papers but are answered in
neither. These questions have only recently been pursued. We are also interested
in calculational questions about the enumeration of finite topologies.

There is a hierarchy of “separation properties” on spaces, and intuition about
finite spaces is impeded by too much habituation to the stronger of them.

Definition 1.2.4. Let (X,U ) be a topological space.

(i) X is a T0-space if for any two points of X, there is an open neighborhood
of one that does not contain the other. That is, the topology distinguishes
points.

(ii) X is a T1-space if each point of X is a closed subset.

1His name was Diskrete Räume, which translates as discrete spaces.
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(iii) X is a T2-space, or Hausdorff space, if any two points of X have disjoint
open neighborhoods.2

Lemma 1.2.5. If X is a T2-space, then it is a T1-space. If X is a T1-space,
then it is a T0-space.

There are still stronger separation properties, as summarized in §13.3 below.
In most of topology, the spaces considered are at least Hausdorff. For example,
metric spaces are Hausdorff. We discuss them briefly in §13.1. It is commonplace
to use the following property.

Proposition 1.2.6. Let A be a subset of a Hausdorff space X and let x ∈ X.
Then x is a limit point of A if and only if every neighborhood of x contains infinitely
many points in A.

Obviously, intuition gained from thinking about Hausdorff spaces is likely to
be misleading when thinking about finite spaces! In fact, there are no interesting
spaces that are both Alexandroff and T1, let alone T2.

Lemma 1.2.7. If an Alexandroff space is T1, then it is discrete.

Proof. Every subset of any set is the union of its subsets with a single element.
In an Alexandroff space, all unions of closed subsets are closed. In a T1-space, all
singleton subsets are closed. If both of these conditions hold, every subset is closed.
Therefore every subset is open. �

In contrast, Alexandroff T0-spaces are very interesting. The following warm-up
problem might seem a bit difficult right now, but its solution will shortly become
apparent.

Exercise 1.2.8. Show that a finite T0-space has at least one point which is a
closed subset.

Notation 1.2.9. As in the introduction, we define an F -space to be a finite
T0-space and an A-space to be an Alexandroff T0-space.

1.3. Bases and subbases for topologies

Alexandroff spaces have canonical minimal bases, which we describe in this
section. We first recall the notions of a basis and a subbasis for a topology. The
idea is that one often has a preferred collection of “small” or canonical open sets,
a“basis” from which all other open sets are generated.

Definition 1.3.1. A basis for a topology on a set X is a set B of subsets of
X such that

(i) For each x ∈ X, there is at least one B ∈ B such that x ∈ B.
(ii) If x ∈ B′ ∩ B′′ where B′, B′′ ∈ B, then there is at least one B ∈ B such

that x ∈ B ⊂ B′ ∩B′′.
The topology U generated by the basis B is the set of subsets U such that, for
every point x ∈ U , there is a B ∈ B such that x ∈ B ⊂ U . Equivalently, a set U is
in U if and only if it is a union of sets in B.

2The terminology is due to a 1935 paper of Alexandroff and Hopf [2]. The German word for
separation is “Trennung”, hence the letter T for the hierarchy of separation properties.
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In the definition, we did not assume that we started with a topology on X. If
we do start with a given topology U , then it usually admits many different bases.
We can easily characterize which subsets of U give bases.

Lemma 1.3.2. Let (X,U ) be a topological space. A subset B of U is a basis
that generates U if and only if for every U ∈ U and every x ∈ U , there is a B ∈ B
such that x ∈ B ⊂ U .

We can generate bases for topologies from subbases.

Definition 1.3.3. A subbasis for a topology on a set X is a set S of open
subsets of X whose union is X; that is, S is a cover of X. The set of finite
intersections of sets in S is the basis generated by S . If (X,U ) is a topological
space, a subbasis S for the topology U is a subset of U such that every set in U
is a union of finite intersections of sets in S .

Example 1.3.4. The set of singleton sets {x} is a basis for the discrete topology
on X. The set of open balls B(x, r) = {y|d(x, y) < r} is a basis for the topology
on a metric space X.

Returning to Alexandroff spaces, we find that such a space has a canonical
basis which is minimal in the strong sense that the open sets in the canonical basis
are open sets in any basis for the topology on X.

Definition 1.3.5. Let X be an Alexandroff space. For x ∈ X, define Ux to be
the intersection of the open sets that contain x. Define a relation ≤ on the set X
by x ≤ y if x ∈ Uy or, equivalently, Ux ⊂ Uy. Write x < y if the inclusion is proper.

Lemma 1.3.6. The set of open sets Ux is a basis B for X. If C is any other
basis, then B ⊂ C . Therefore B is the unique minimal basis for X.

Proof. The first statement is clear from the definitions. If C is another basis
and x ∈ X, then there is a C ∈ C such that x ∈ C ⊂ Ux. This implies that C = Ux,
so that Ux ∈ C . �

We can detect whether or not an Alexandroff space is T0 in terms of its minimal
basis.

Lemma 1.3.7. Two points x and y in X have the same neighborhoods if and
only if Ux = Uy. Therefore X is T0 if and only if Ux = Uy implies x = y.

Proof. If x and y have the same neighborhoods, then obviously Ux = Uy.
Conversely, suppose that Ux = Uy. If x ∈ U where U is open, then Uy = Ux ⊂ U
and therefore y ∈ U . Similarly if y ∈ U , then x ∈ U . Thus x and y have the same
neighborhoods. �

1.4. Operations on spaces

There are many standard operations on spaces that we shall have occasion to
use. We record four of them now and will come back to others later.

Definition 1.4.1. The subspace topology on A ⊂ X is the set of all intersections
A ∩ U for open sets U of X.

Subspace topologies are defined for injective functions. There is a perhaps less
intuitive analogue for surjective functions.
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Definition 1.4.2. Let X be a topological space and q : X −→ Y be a surjective
function. The quotient topology on Y is the set of subsets U such that q−1(U) is
open in X.

Definition 1.4.3. The topology of the union on the disjoint union X q Y has
as open sets the unions of an open set of X and an open set of Y . More generally,
for a set {Xi|i ∈ I} of topological spaces, the topology of the union on the disjoint
union

∐
i∈I Xi has as open sets the unions of open sets Ui ⊂ Xi. Note that a subset

is closed if and only if it intersects each Xi in a closed subset.

Definition 1.4.4. The product topology on the cartesian product X ×Y is the
topology with basis the products U×V of an open set U in X and an open set V in
Y . More generally, for a set {Xi|i ∈ I} of topological spaces, the product topology
on the product set

∏
i∈I Xi is the topology generated by the basis consisting of all

products
∏
i∈I Ui where Ui is open in Xi and Ui = Xi for all but finitely many i.

There is a consistency observation relating the subspace and product topologies.

Proposition 1.4.5. If A ⊂ X and B ⊂ Y , then the subspace and product
topologies on A×B ⊂ X × Y coincide.

For Hausdorff spaces, we have the following observations, which make good
exercises.

Proposition 1.4.6. A space X is Hausdorff if and only if the diagonal subspace
{(x, x)} ⊂ X ×X is closed.

Proposition 1.4.7. A subspace of a Hausdorff space is Hausdorff. A quotient
of a Hausdorff space need not be Hausdorff. A disjoint union of Hausdorff spaces
is Hausdorff. Any product of Hausdorff spaces is Hausdorff.

We leave it as another good exercise to verify the following analogue for Alexan-
droff spaces.

Proposition 1.4.8. A subspace of an Alexandroff space is an Alexandroff
space. A quotient of an Alexandroff space is an Alexandroff space. A disjoint
union of Alexandroff spaces is an Alexandroff space. A product of finitely many
Alexandroff spaces is an Alexandroff space.

Here is a thought exercise for the reader.

Problem 1.4.9. Is the product of infinitely many Alexandroff spaces an Alexan-
droff space?

1.5. Continuous functions and homeomorphisms

Definition 1.5.1. Let X and Y be spaces. A function f : X −→ Y is contin-
uous if f−1(U) is open in X for all open subsets U of Y . A continuous function is
often called a map.

It suffices that f−1(U) be open for each U in a basis for the topology on Y ,
or even for each U in a subbasis. The reader is encouraged to use that to verify
that the abstract definition of continuity just given coincides with the usual ε-δ
definition of continuity on metric spaces; see §13.1. By passage to complements, a
function f is continuous if and only if f−1(C) is closed in X for all closed subsets
C of Y . This can be reinterpreted in terms of closures (and thus in terms of limit
points).
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Lemma 1.5.2. A function f : X −→ Y is continuous if and only if, for all
A ⊂ X, f(Ā) ⊂ f(A).

Lemma 1.5.3. Let A be a subspace of a space X. A continuous function from A
to a Hausdorff space Y admits at most one extension to a continuous map Ā −→ Y .

Identity functions and composites of continuous functions are continuous.

Lemma 1.5.4. Let X be a space, let A ⊂ X, and give A the subspace topology.
Then the inclusion i : A −→ X is a continuous function. If B is a space and
j : B −→ A is a function such that i ◦ j is continuous, then j is continuous.

Lemma 1.5.5. Let X be a space, let q : X −→ Y be a surjective function, and
give Y the quotient topology. Then q is a continuous function. If Z is a space and
r : Y −→ Z is a function such that r ◦ q is continuous, then r is continuous.

Lemma 1.5.6. Let Xi be spaces and let ιi : Xi −→
∐
Xi be the inclusion. Then

ιi is a continuous function. If Z is a space and ηi : Xi −→ Z are continuous func-
tions, then the unique function

∐
Xi −→ Z that restricts to ηi on Xi is continuous.

Lemma 1.5.7. Let Xi be spaces and let πi :
∏
iXi −→ Xi be the projection.

Then πi is a continuous function. If Y is a space and ρi : Y −→ Xi are continuous
functions, then the unique function Y −→

∏
Xi with ith coordinate ρi is continuous.

The four previous propositions state that the subspace, quotient, union, and
product topologies satisfy certain “universal properties”. In each of these results,
the specified topology is the only topology for which the last statement is true.

Continuity is a local condition on a function.

Lemma 1.5.8. A function f : X −→ Y is continuous if and only if for each
x ∈ X and each neighborhood V of f(x), there is a neighborhood U of x such that
f(U) ⊂ V .

Lemma 1.5.9. A function f : X −→ Y is continuous if and only if its restriction
to each set in an open cover of X is continuous.

There is an analogue for finite closed covers.

Lemma 1.5.10. A function f : X −→ Y is continuous if and only if its restric-
tion to each set in a finite closed cover of X is continuous.

In particular, if X = A ∪ B where A and B are closed subsets of X, then
continuous functions A −→ Y and B −→ Y that agree on A∩B induce a continuous
function X −→ Y .

Definition 1.5.11. A continuous bijection f : X −→ Y is a homeomorphism
if its inverse f−1 is also continuous. That is, a homeomorphism is a continuous
bijection with a continuous inverse. Equivalently, a map f : X −→ Y is a homeo-
morphism if there is a map g : Y −→ X such that g ◦ f = idX and f ◦ g = idY . An
inclusion or embedding is a continuous injection that is a homeomorphism onto its
image. We write X ∼= Y to indicate that X is homeomorphic to Y .

Intuitively, homeomorphism is the topological counterpart of the algebraic no-
tion of isomorphism. Topologists are interested in properties of spaces that are
invariant under homeomorphism. We shall later (Lemma 1.7.1, Theorem 13.2.7)
give conditions on X and Y that ensure that a continuous bijection is a homeomor-
phism.
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1.6. Alexandroff spaces, preorders, and partial orders

Here we relate Alexandroff spaces to the combinatorial notions of preorder and
partial order.

Definition 1.6.1. A preorder on a set X is a reflexive and transitive relation,
denoted ≤. This means that x ≤ x and that x ≤ y and y ≤ z imply x ≤ z. A
preorder is a partial order if it is antisymmetric, which means that x ≤ y and y ≤ x
imply x = y. Then (X,≤) is called a poset. A poset is totally ordered if for all
x, y ∈ X, either x ≤ y or y ≤ x.

Recall from Definition 1.3.5 that, in an Alexandroff space X, x ≤ y means that
Ux ⊂ Uy.

Lemma 1.6.2. The relation ≤ on an Alexandroff space X is reflexive and tran-
sitive, so that the relation ≤ is a preorder. The relation is also antisymmetric, so
that (X,≤) is a poset, if and only if the space X is T0.

Proof. The first statement is clear and the second holds by Lemma 1.3.7. �

Lemma 1.6.3. A preorder (X,≤) determines a topology U on X with basis the
set of all sets Ux = {y|y ≤ x}. It is called the order topology on X. The space
(X,U ) is an Alexandroff space. It is a T0-space if and only if (X,≤) is a poset.

Proof. If x ∈ Uy and x ∈ Uz, then x ≤ y and x ≤ z, hence x ∈ Ux ⊂ Uy ∩Uz.
Therefore {Ux} is a basis for a topology. The intersection U of a set {Ui} of open
subsets is open since if x ∈ U , then Ux ⊂ Ui for each i and therefore U is the union
of these Ux. Therefore (X,U ) is an Alexandroff space with minimal basis {Ux}.
Since Ux = Uy if and only if x ≤ y and y ≤ x, Lemma 1.3.7 implies that (X,U ) is
T0 if and only if (X,≤) is a poset. �

We put things together to obtain the following conclusion.

Proposition 1.6.4. For a set X, the Alexandroff space topologies on X are in
bijective correspondence with the preorders on X. The topology U corresponding
to ≤ is T0 if and only if the relation ≤ is a partial order.

Remark 1.6.5. If ≤ is a preorder on X, the opposite preorder is given by
x ≤op y if and only if y ≤ x. The corresponding Alexandroff space is Xop.

The real force of the comparison between Alexandroff spaces and preorders
comes from the fact that continuous maps correspond precisely to order-preserving
functions.

Definition 1.6.6. Let X and Y be preorders. A function f : X −→ Y is
order-preserving if w ≤ x in X implies f(w) ≤ f(x) in Y .

Lemma 1.6.7. A function f : X −→ Y between Alexandroff spaces is continuous
if and only if it is order preserving.

Proof. Let f be continuous and suppose w ≤ x. Then w ∈ Ux ⊂ f−1Uf(x)

and thus f(w) ∈ Uf(x). This means that f(w) ≤ f(x). For the converse, let f be
order preserving and let V be open in Y . If f(x) ∈ V , then Uf(x) ⊂ V . If w ∈ Ux,

then w ≤ x and thus f(w) ≤ f(x) and f(w) ∈ Uf(x) ⊂ V , so that w ∈ f−1(V ).

Thus f−1(V ) is the union of these Ux and is therefore open. �
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1.7. Finite spaces and homeomorphisms

In this section we specialize the theory above to finite spaces. Thus let X be
a finite space and write |X| for the number of points in X. One might think that
finite spaces are uninteresting since they are just finite preorders in disguise, but
that turns out to be far from the case.

Topologists are only interested in spaces up to homeomorphism, and we proceed
to classify finite spaces up to homeomorphism.

Lemma 1.7.1. A map f : X −→ X is a homeomorphism if and only if f is
either one–to–one or onto.

Proof. By finiteness, one–to–one and onto are equivalent. Assume they hold.
Then f induces a bijection 2f from the set 2X of subsets of X to itself. Since
f is continuous, if f(U) is open, then so is U . Therefore the bijection 2f must
restrict to a bijection from the topology U to itself. Alternatively, observe that
the function f is a permutation of the set X and the set of permutations of X is a
finite group. Therefore fn is the identity for some n, and the continuous function
fn−1 is f−1. �

The previous lemma fails if we allow different topologies on X: there are con-
tinuous bijections between different topologies. We proceed to describe how to
enumerate the distinct topologies up to homeomorphism. We say that two topolo-
gies U and V on X are equivalent if there is a homeomorphism (X,U ) −→ (X,V ).
There are quite a few papers on this enumeration problem in the literature, although
some of them focus on enumeration of all topologies, rather than homeomorphism
classes of topologies [8, 9, 12, 12, 21, 22, 23, 25, 36, 37]. The difference already
appears for two point spaces, where there are four distinct topologies but three
inequivalent topologies, that is three non-homeomorphic two point spaces. Here is
a table lifted straight from Wikipedia that gives an idea of the enumeration.

n Distinct Distinct Inequivalent Inequivalent
topologies T0-topologies topologies T0-topologies

1 1 1 1 1
2 4 3 3 2
3 29 19 9 5
4 355 219 33 16
5 6942 4231 139 63
6 209,527 130,023 718 318
7 9,535,241 6,129,859 4,535 2,045
8 642,779,354 431,723,379 35,979 16,999
9 63,260,289,423 44,511,042,511 363,083 183,231
10 8,977,053,873,043 6,611,065,248,783 4,717,687 2,567,284

Through n = 9, a published source for the fourth column is [23]. However, this
is not the kind of enumeration problem for which one expects to obtain a precise
answer for all n. Rather, one expects bounds and asymptotics. There is a precise
formula relating the second column to the first column, but we are really only
interested in the last column. In fact, we are far more interested in refinements of
the last column that shrink its still inordinately large numbers to smaller numbers
of far greater interest to an algebraic topologist.
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We shall explain how to reduce the determination of the third and fourth
columns to a matrix computation, using minimal bases. For this purpose, it is
convenient to describe minimal bases for a topology on X without reference to
their enumeration by the elements x ∈ X, since the latter can give redundant in-
formation when the space is not T0. The following sequence of lemmas applies to
the study of general Alexandroff spaces, not necessarily finite.

Lemma 1.7.2. A set B of nonempty subsets of X is the minimal basis for an
Alexandroff topology U if and only if the following conditions hold.

(i) Every point of X is in some set B in B.
(ii) The intersection of two sets in B is a union of sets in B.

(iii) If a union of sets Bi in B is again in B, then the union is equal to one
of the Bi.

Proof. Conditions (i) and (ii) are equivalent to saying that B is a basis for
a topology, which we call U . We suppose this topology is Alexandroff. Then each
B in B must be a union of sets of the form Ux and each Ux must be in B by
Lemma 1.3.6. If (iii) holds, then B must be one of the Ux and thus B is the
minimal basis. Conversely, suppose that B is the minimal basis. Each given set Bi
in (iii) must then be Uy for some y ∈ X. If the union of these Uy is also in B, then
the union must be Ux for some x ∈ X. But then x is in Uy for some y and thus
Ux = Uy, so that (iii) holds. �

This result implies the following relationships between minimal bases and sub-
spaces, quotients, disjoint unions, and products of Alexandroff spaces.

Lemma 1.7.3. If A is a subspace of X, the minimal basis of A consists of the
intersections A ∩ U , where U is in the minimal basis of X.

Lemma 1.7.4. If Y is a quotient space of X with quotient map q : X −→ Y ,
the minimal basis of Y consists of the subsets U of Y such that q−1(U) is in the
minimal basis of X.

Lemma 1.7.5. The minimal basis of X q Y is the union of the minimal basis
of X and the minimal basis of Y .

Lemma 1.7.6. The minimal basis of X ×Y is the set of products U ×V , where
U and V are in the minimal bases of X and Y .

Returning to finite spaces X, we shall show how to enumerate the homeo-
morphism classes of spaces with finitely many elements. This is meant only to
illustrate how such an enumeration problem can be reduced to computationally
accessible form. To allow spaces that are not T0, the finite number to focus on is
not |X| but rather the number of elements in the minimal basis for the topology
on X. These numbers are equal if and only if X is a T0-space.

Definition 1.7.7. Consider square matrixes M = (ai,j) with integer entries
that satisfy the following properties.

(i) ai,i ≥ 1.
(ii) ai,j is −1, 0, or 1 if i 6= j.
(iii) ai,j = −aj,i if i 6= j.
(iv) ai1,is = 0 if there is a sequence of distinct indices {i1, · · · , is} such that

s > 2 and aik,ik+1
= 1 for 1 ≤ k ≤ s− 1.
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Say that two such matrices M and N are equivalent if there is a permutation matrix
T such that T−1MT = N and let M denote the set of equivalence classes of such
matrices.

Theorem 1.7.8. The homeomorphism classes of finite spaces are in bijective
correspondence with M . If the homeomorphism class of X corresponds to the equiv-
alence class of an r × r matrix M , then r is the number of sets in a minimal basis
for X, and the trace of M is the number of elements of X. Moreover, X is a
T0-space if and only if the diagonal entries of M are all one.

Proof. We work with minimal bases for the topologies rather than with ele-
ments of the set. For a minimal basis U1, · · · , Ur of a topology U on a finite set
X, define an r × r matrix M = (ai,j) as follows. If i = j, let ai,i be the number of
elements x ∈ X such that Ux = Ui. Define ai,j = 1 and aj,i = −1 if Ui ⊂ Uj and
there is no k (other than i or j) such that Ui ⊂ Uk ⊂ Uj . Define ai,j = 0 otherwise.
Clearly (i)–(iv) hold, and a reordering of the basis results in a permutation matrix
that conjugates M into the matrix determined by the reordered basis. Thus X
determines an element of M .

If f : X −→ Y is a homeomorphism, then f determines a bijection from the
basis for X to the basis for Y . This bijection preserves inclusions and the number
of elements that determine corresponding basic sets, hence X and Y determine
the same element of M . Conversely, suppose that X and Y have minimal bases
{U1, · · · , Ur} and {V1, · · · , Vr} that give rise to the same element of M . Reordering
bases if necessary, we can assume that they give rise to the same matrix. For each
i, choose a bijection fi from the set of elements x ∈ X such that Ux = Ui and the
set of elements y ∈ Y such that Vy = Vi. We read off from the matrix that the
fi together specify a homeomorphism f : X −→ Y . Therefore our mapping from
homeomorphism classes to M is one–to–one.

To see that our mapping is onto, consider an r× r-matrix M of the sort under
consideration and let X be the set of pairs of integers (u, v) with 1 ≤ u ≤ r and
1 ≤ v ≤ au,u. Define subsets Ui of X by letting Ui have elements those (u, v) ∈ X
such that either u = i or u 6= i but u = i1 for some sequence of distinct indices
{i1, · · · , is} such that s ≥ 2, aik,ik+1

= 1 for 1 ≤ k ≤ s − 1, and is = i. We see
that the Ui give a minimal basis for a topology on X by verifying the conditions
specified in Lemma 1.3.6.

Condition (i) is clear since (u, v) ∈ Uu. To verify (ii) and (iii), we observe that
if (u, v) ∈ Ui and u 6= i, then Uu ⊂ Ui. Indeed, we certainly have (u, v) ∈ Ui for
all v, and if (k, v) ∈ Uu with k 6= u, then we must have a sequence connecting k to
u and a sequence connecting u to i. These can be concatenated to give a sequence
connecting k to i, which shows that (k, v) is in Ui. To see (ii), if (u, v) ∈ Ui ∩ Uj ,
then Uu ⊂ Ui∩Uj , which implies that Ui∩Uj is a union of sets Uu. To see (iii), if a
union of sets Ui is a set Uj , there is an element of Uj in some Ui and then Uj ⊂ Ui,
so that Uj = Ui. A counting argument for the diagonal entries and consideration of
chains of inclusions show that the matrix associated to the topology whose minimal
basis is {Ui} is the matrix M that we started with. �

1.8. Spaces with at most four points

We describe the homeomorphism classes of spaces with at most four points,
with just a start on taxonomy. Recall Definition 1.1.2.
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There is a unique space with one point, namely C1 = D1.
There are three spaces with two points, namely C2, P2 = CD1, and D2.
Proper subsets of X are those not of the form ∅ or X. Since ∅ and X are in

any topology, we often restrict to proper subsets when specifying topologies. The
following definitions prescribe the two names for the second space in the short list
just given.

Definition 1.8.1. We define certain topologies on a set Sn with n elements.
Let Pn = P1,n be the space (unique up to homeomorphism) which has only one
proper open set, containing only one point s ∈ Sn; for 1 < m < n, let Pm,n be the
space whose proper open subsets are all of the non-empty subsets of a given subset
Sm of Sn with m elements.

Definition 1.8.2. For a space X define the non-Hausdorff cone CX by ad-
joining a new point + and letting the proper open subsets of CX be the non-empty
open subsets of X. For example, CDn−1 is homeomorphic to Pn−1,n as we see by
identifying Dn−1 with Sn−1 ⊂ Sn and identifying the cone point + with the point
of Sn not in Sn−1.

We shall see that CX is contractible in Lemma 2.3.2 below. This means that
it is a point to the eyes of homotopy theory or algebraic topology.

Here is a table of the nine homeomorphism classes of topologies on a three point
set X = {a, b, c}. All of these spaces are disjoint unions of contractible spaces. A
space that is not the disjoint union of proper open and closed subspaces is connected.

Proper open sets Name T0? connected?
all D3 yes no

a, b, (a,b), (b,c) D1 q P2 yes no
a, b, (a,b) P2,3

∼= CD2 yes yes
a P3 no yes

a, (a,b) CP2
∼= (CP2)op yes yes

a, (b,c) D1 q C2 no no
a, (a,b), (a,c) (CD2)op yes yes

(a,b) CC2
∼= P op3 no yes

none C3 = Dop
3 no yes

It is a perhaps instructive exercise to check that the spaces said to be homeo-
morphic in the above list are in fact homeomorphic.

We tabulate the proper open subsets of the thirty-three homeomorphism classes
of topologies on a four point space X = {a, b, c, d}. That is, these topologies are
obtained by adding in the empty set and the whole set. The list is ordered by
decreasing number of singleton sets in the topology, and, when that is fixed, by
decreasing number of two-point subsets and then by decreasing number of three-
point subsets.3

3I thank Mark Bowron for sending me a correction and suggesting a reordering.
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1 all
2 a, b, c, (a,b), (a,c), (b,c), (a,d), (a,b,c), (a,b,d), (a,c,d)
3 a, b, c, (a,b), (a,c), (b,c), (a,b,c), (a,b,d)
4 a, b, c, (a,b), (a,c), (b,c), (a,b,c)
5 a, b, (a,b), (a,c), (a,d), (a,b,c), (a,b,d), (a,c,d)
6 a, b, (a,b), (a,c), (b,d), (a,b,c), (a,b,d)
7 a, b, (a,b), (a,c), (a,b,c), (a,b,d)
8 a, b, (a,b), (a,c), (a,b,c), (a,c,d)
9 a, b, (a,b), (c,d), (a,c,d), (b,c,d)
10 a, b, (a,b), (a,c), (a,b,c)
11 a, b, (a,b), (a,b,c), (a,b,d)
12 a, b, (a,b), (a,b,c)
13 a, b, (a,b), (a,c,d)
14 a, b, (a,b)
15 a, (a,b), (a,c), (a,d), (a,b,c), (a,b,d), (a,c,d)
16 a, (a,b), (a,c), (a,b,c), (a,b,d)
17 a, (a,b), (a,c), (a,b,c)
18 a, (a,b), (c,d), (a,c,d)
19 a, (a,b), (a,b,c), (a,b,d)
20 a, (b,c), (a,b,c), (b,c,d)
21 a, (a,b), (a,b,c)
22 a, (a,b), (a,c,d)
23 a, (b,c), (a,b,c)
24 a, (a,b)
25 a, (a,b,c)
26 a, (b,c,d)
27 a
28 (a,b), (c,d)
29 (a,b), (a,b,c), (a,b,d)
30 (a,b), (a,b,c)
31 (a,b)
32 (a,b,c)
33 none

Problem 1.8.3. Determine which of these spaces are T0 and which are con-
nected. Give a taxonomy in terms of explicit general constructions that accounts
for all of these topologies. That is, determine appropriate “names” for all of these
spaces. How many are not contractible spaces or disjoint unions of contractible
spaces? (Hint: there is a connected 4-point space that is not contractible; which one
of the 33 is it?)



CHAPTER 2

Homotopy equivalences of Alexandroff and finite
spaces

2.1. Connectivity and path connectivity

We begin the exploration of homotopy properties of Alexandroff spaces by
discussing connectivity and path connectivity. We recall the general definitions. We
let I = [0, 1] denote the unit interval with its usual metric topology as a subspace
of R. A path in a space X is a map f : I −→ X; it is said to connect the points
f(0) and f(1).

Definition 2.1.1. Let X be a space.

(i) X is connected if the only subspaces of X that are both open and closed
are ∅ and X.

(ii) X is path connected if any two points of X can be connected by a path.

A path connected space is connected, but not conversely. The following results
can be found in any text in point-set topology, such as [33]. They also make good
exercises.

Lemma 2.1.2. Let Y be a subspace of a space X and let Y = A ∪ B. Then A
and B are both open and closed in Y if and only if Ā∩B and A∩ B̄ are both empty
or, equivalently, A contains no limit point of B and B contains no limit point of
A. We then say that Y = A ∪B is a separation of Y . Thus Y is connected if and
only if it has no separation.

The following consequence is used very frequently.

Proposition 2.1.3. Let X = A ∪ B be a separation. If Y ⊂ X is connected,
then Y is contained in either A or B.

Proposition 2.1.4. A union of connected or path connected spaces that have
a point in common is connected or path connected.

Proposition 2.1.5. If f : X −→ Y is a continuous map and X is connected
or path connected, then the image of f is connected or path connected.

For example, I is a connected space, hence the image of a path in X is a
connected subspace of X.

Proposition 2.1.6. Any product of connected or path connected spaces is con-
nected or path connected.

Definition 2.1.7. Define two equivalence relations ∼ and ≈ on X.

(i) x ∼ y if x and y are both in some connected subspace of X. A component
of X is an equivalence class of points under ∼. Let π′0(X) denote the set
of components of X.

15
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(ii) x ≈ y if there is a path connecting x and y. A path component of X is
an equivalence class of points under ≈. Let π0(X) denote the set of path
components of X.

If x ≈ y, then x ∼ y since the image of a path connecting x and y is a
connected subspace. Therefore each component of X is the union of some of its
path components. For nice spaces, components and path components are the same.

Definition 2.1.8. Let X be a space.

(i) X is locally connected if for each x ∈ X and each neighborhood U of x,
there is a connected neighborhood V of x contained in U .

(ii) X is locally path connected if for each x ∈ X and each neighborhood U of
x, there is a path connected neighborhood V of x contained in U .

Proposition 2.1.9. Let X be a space.

(i) X is locally connected if and only if every component of an open subset U
is open in X.

(ii) X is locally path connected if and only if every path component of an open
subset U is open in X.

(iii) If X is locally path connected, then the components and path components
of X coincide.

Now return to a finite or, more generally, Alexandroff space X. At first sight,
one might imagine that there are no continuous maps from I to a finite space, but
that is far from the case. The most important feature of finite spaces is that they
are surprisingly richly related to the “real” spaces that algebraic topologists care
about.

Lemma 2.1.10. Let X be an Alexandroff space. Then each Ux is connected. If
X is connected and x, y ∈ X, there is a finite sequence of points zi, 1 ≤ i ≤ q, such
that z1 = x, zq = y and either zi ≤ zi+1 or zi+1 ≤ zi for i < q.

Proof. Suppose that Ux = AqB, where A and B are open and disjoint. We
may as well assume that x is in A. Then Ux ⊂ A and therefore B = ∅ and Ux = A.
Therefore Ux is connected. Now assume that X is connected. Fix x and consider
the set A of points y that are connected to x by some sequence of points zi, as in
the statement. We see that A is open since if z is in A then the open set Uz of
points w ≤ z is contained in A. We see that A is closed since if y is not connected
to x by a finite sequence of points, then neither is any point of Uy, so that the
complement of A is open. Since X is connected, it follows that A = X. �

Lemma 2.1.11. If x ≤ y in an Alexandroff space X, then there is a path p : I −→
X connecting x and y.

Proof. Define p(t) = x if t < 1 and p(1) = y. We claim that p is continuous.
Let V be an open set of X. If neither x nor y is in V , then p−1(V ) = ∅. If x is in
V and y is not in V , then p−1(V ) = [0, 1). If y is in V , then x is in Uy ⊂ V since
x ≤ y, hence p−1(V ) = I. In all cases, p−1(V ) is open. �

Proposition 2.1.12. An Alexandroff space is connected if and only if it is path
connected.

Proof. The previous two lemmas, the second generalized by concatenation of
paths to finite sequences as in the first, imply that x ∼ y if and only if x ≈ y. �
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2.2. Function spaces and homotopies

An open cover of a space X is any set of open subsets whose union is all of X.
The following notion is fundamental to point-set topology. It is discussed in more
detail in §13.2.

Definition 2.2.1. A space is compact if every open cover has a finite subcover.

For example, a classical result called the Heine-Borel theorem says that a sub-
space of Rn is compact if and only if it closed and bounded.

Definition 2.2.2. Let X and Y be spaces and consider the set Y X of maps
X −→ Y . The compact–open topology on Y X is the topology in which a subset is
open if and only if it is a union of finite intersections of sets

W (C,U) = {f |f(C) ⊂ U},
where C is compact in X and U is open in Y . This means that the set of all
W (C,U) is a subbasis for the topology.

Ignoring topology, for sets X, Y , and Z, functions f : X × Y −→ Z are in

bijective correspondence with functions f̂ : X −→ ZY via the relation

f(x, y) = f̂(x)(y).

Returning to topology, and so restricting ZY to consist only of the continuous

functions Y −→ Z, one would like to have that f is continuous if and only if f̂
is continuous. The compact-open topology, which at first sight seems to be un-
motivated, is designed to minimize conditions on X, Y , and Z which force this
conclusion. In fact, there are several different criteria which guarantee the conclu-
sion. We recall one due to Fox [13] which applies to both Alexandroff spaces and
metric spaces.

Definition 2.2.3. A space is first countable if every point x has a countable
neighborhood basis Bx. This means that if U is a neighborhood of x, then there is
a B ∈ Bx such that x ∈ B ⊂ U .

Example 2.2.4. An Alexandroff space X is first countable since the singleton
set {Ux} is a neighborhood basis for x. A metric space is first countable since the
ε-neighborhoods B(x, ε) = {y|d(x, y) < ε} for positive rational numbers ε form a
countable neighborhood basis.

Proposition 2.2.5. Let X and Y be first countable spaces. Then a function

f : X × Y −→ Z is continuous if and only if f̂ : X −→ ZY is continuous.

We shall use function spaces to study the notion of homotopy.

Definition 2.2.6. A homotopy h : f ' g is a map h : X × I −→ Y such that
h(x, 0) = f(x) and h(x, 1) = g(x). Two maps are homotopic, written f ' g, if
there is a homotopy between them.

It is impossible to overstate the importance of this notion. We will be studying
the homotopy theory of finite topological spaces. For finite spaces, the use of
function spaces allows us to recognize homotopic maps in a very simple way. The
first statement of the following result is clear, and the reader should check the
second statement from the definitions. The conclusion reduces the determination
of whether or not two maps are homotopic to the determination of whether or not
they are in the same path component of Y X .
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Corollary 2.2.7. If X is first countable, then homotopies h : X × I −→ Y
correspond bijectively to paths j : I −→ Y X via h↔ j if h(x, t) = j(t)(x). Therefore
the homotopy classes of maps X −→ Y are in canonical bijective correspondence
with the path components of Y X .

When Y is Alexandroff, we can use its preorder to compare maps X −→ Y for
any space X.

Definition 2.2.8. If Y is Alexandroff, define the pointwise ordering of maps
X −→ Y by f ≤ g if f(x) ≤ g(x) for all x ∈ X.

Proposition 2.2.9. If Y is Alexandroff, then the intersection Vg of the open
sets in Y X that contain a map g is {f |f ≤ g}.

Proof. Let f ∈ Vg and x ∈ X. Since g ∈ W ({x}, Ug(x)) and {x} is compact,
f ∈ W ({x}, Ug(x)), so f(x) ∈ Ug(x) and f(x) ≤ g(x). Since x was arbitrary, f ≤ g.
Conversely, let f ≤ g. Consider any W (C,U) that contains g and let x ∈ C. Then
g(x) ∈ U and, since f(x) ≤ g(x), f(x) ∈ Ug(x) ⊂ U . Therefore f ∈W (C,U) and f

is in all open subsets of Y X that contain g. �

Unfortunately, however, Vg need not be open in Y X in general. This problem
is addressed in work of Kukiela [26]. Since our primary interest is in finite spaces,
we shall not go into detail, but the following remarks indicate the subtleties here.

Remark 2.2.10. Michal Kukiela [26] studied the behavior of the compact open
topology on Y X when X and Y are possibly infinite Alexandroff spaces.1 He
showed that Y X is rarely an Alexandroff space. In particular XX is never an
Alexandroff space if X is infinite, which contradicts an assumption made by Arenas
[3]. However, Kukiela proved that Y X is Alexandroff if X is finite. For any X we
have an ordering on the set Y X , hence we have the Alexandroff topology on Y X

that it determines. However the Alexandroff topology is generally finer (has more
open sets) than the compact open topology.

When X and Y are both finite, so is Y X , and then Proposition 2.2.9 has the
following interpretation.

Corollary 2.2.11. If X and Y are finite, then the pointwise ordering on Y X

coincides with the preordering associated to its compact open topology.

Here, finally, is our easy way to recognize homotopic maps between finite spaces.
Part of the result holds for all Alexandroff spaces.Relate to natural

transformations
later

Proposition 2.2.12. If X and Y are Alexandroff spaces and f ≤ g, then f ' g
by a homotopy h such that h(x, t) = f(x) for all t and all points x ∈ X such that
f(x) = g(x). Conversely, if X and Y are finite and f ' g, then there is a sequence
of maps {f = f1, f2, · · · , fq = g} such that either fi ≤ fi+1 or fi+1 ≤ fi for i < q.

Proof. For the first statement, we have the path p connecting f to g in Y X

that is specified by p(t) = f if t < 1 and p(1) = g. By Lemma 2.1.11, it is
continuous if we give Y X the Alexandroff topology associated to ≤. Since that
topology has more open sets than the compact open topology, by Kukiela’s result

1Kukiela made his contribution as an undergraduate at Nicolaus Copernicus University, in
Toru’n, Poland. Quoting from an email from him, “my study of Alexandroff spaces was in a great

degree inspired by your notes on finite spaces”.
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just mentioned, it is also continuous if we give Y X the compact open topology.
By Proposition 2.2.9, the corresponding function X × I −→ Y is also continuous,
giving us the claimed homotopy. For the second statement, Corollary 2.2.7 shows
that homotopies between maps X −→ Y are paths in Y X , hence two maps are
homotopic if and only if they are in the same path component. Now Lemma 2.1.10
and Corollary 2.2.11 give the conclusion. �

2.3. Homotopy equivalences

We have seen that enumeration of finite sets with reflexive and transitive rela-
tions ≤ amounts to enumeration of the topologies on finite sets. We have refined
this to consideration of homeomorphism classes of finite spaces. We are much more
interested in the enumeration of the homotopy types of finite spaces. We will come
to a still weaker and even more interesting enumeration problem later, one which
is still unsolved.

Definition 2.3.1. Two spaces X and Y are homotopy equivalent if there are
maps f : X −→ Y and g : Y −→ X such that g ◦ f ' idX and f ◦ g ' idY . A space
is contractible if it is homotopy equivalent to a point.

This relationship can change the number of points. We have a first example.

Lemma 2.3.2. If X is a space containing a point y such that the only open
(or only closed) subset of X containing y is X itself, then X is contractible. In
particular, the non-Hausdorff cone CX is contractible for any X.

Proof. This is a variation on a theme we have already seen twice. Let ∗ denote
a space with a single point, also denoted ∗. Define r : X −→ ∗ by r(x) = ∗ for all
x and define i : ∗ −→ X by i(∗) = y. Clearly r ◦ i = id. Define h : X × I −→ X
by h(x, t) = x if t < 1 and h(x, 1) = y. Then h is continuous. Indeed, let U be
open in X. If y ∈ U , then U = X and h−1(U) = X × I, while if y /∈ U , then
h−1(U) = U × [0, 1). The argument when X is the only closed subset containing y
is the same. Clearly h is a homotopy id ' i ◦ r. �

Definition 2.3.3. A point x of an Alexandroff space X is maximal if there is
no y > x in X; minimal points are defined similarly.

Corollary 2.3.4. If X is an Alexandroff space and x ∈ X, then Ux is con-
tractible. In particular, if X is finite and has a unique maximal point or a unique
minimal point, then X is contractible.

Proof. The only open subset of Ux that contains x is Ux itself. If X is finite
and x is the unique maximal point in X, then X = Ux. If x is the unique minimal
point in X, then the only closed set containing x is X. �

A result of McCord [32, Thm. 4] says that, when studying finite or, more
generally, Alexandroff spaces up to homotopy type, there is no loss of generality if
we restrict attention to T0-spaces, that is, to posets. The proof is based on use of
the Kolmogorov quotient of a space.

Definition 2.3.5. Let X be any space. Define an equivalence relation ∼ on X
by x ∼ y if x and y have the same open neighborhoods. The Kolmogorov quotient
X0 of X is the quotient space X/(∼) obtained by identifying equivalent points. It
is a T0 space. Let qX : X −→ X0 be the quotient map.
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The Kolmogorov quotient satisfies a universal property.

Lemma 2.3.6. Let Z be a T0-space and f : X −→ Z be a map. Then there is a
unique map f0 : X0 −→ Z such that f0 ◦ qX = f . Therefore, if f : X −→ Y is any
map, there is a unique map f0 : X0 −→ Y0 such that qY ◦ f = f0 ◦ qX .

Proof. Since the topology on Z separates points, f must take equivalent
points to the same point. Therefore f factors through a function f0 : X0 −→ Y0,
and f0 is continuous by the universal property of the quotient topology. �

Theorem 2.3.7. For an Alexandroff space X, the quotient map qX : X −→ X0

is a homotopy equivalence.

Proof. The equivalence relation ∼ on X is given by x ∼ y if Ux = Uy, or,
equivalently, if x ≤ y and y ≤ x. The relation ≤ on X induces a relation ≤ on
X0. We claim that q(Ux) = Uq(x) for all x ∈ X. To see this, observe first that

q−1q(Ux) = Ux since if q(y) = q(z) where z ∈ Ux, then y ∈ Uy = Uz ⊂ Ux.
Therefore q(Ux) is open, hence it contains Uq(x). Conversely, Ux ⊂ q−1(Uq(x)) by
continuity and thus q(Ux) ⊂ Uq(x).

We conclude that the quotient topology on X0 agrees with the topology deter-
mined by ≤. It follows that q(x) ≤ q(y) if and only if x ≤ y. Indeed, q(x) ≤ q(y)
implies q(x) ∈ Uq(y) = q(Uy). Thus q(x) = q(z) for some z ∈ Uy and Ux = Uz ⊂ Uy,
so that x ≤ y. Conversely, if x ≤ y, then Ux ⊂ Uy and therefore Uq(x) ⊂ Uq(y), so
that q(x) ≤ q(y).

To prove that q is a homotopy equivalence, let f : X0 −→ X be any function
such that q ◦ f = id. That is, we choose a point from each equivalence class. By
what we have just proven, f preserves ≤ and is therefore continuous.2 Let g = f ◦q.
We must show that g is homotopic to the identity. We see that g is obtained by
first choosing one xu with Uxu = U for each U in the minimal basis for X and then
letting g(x) = xu if Ux = U . Thus Ug(x) = Ux and g(x) ∈ Ux, which means that
g ≤ id. Now Proposition 2.2.12 gives the required homotopy h : id ' g. Note that
h(g(x), t) = g(x) for all t. �

We conclude that to classify Alexandroff spaces up to homotopy equivalence,
it suffices to classify A-spaces up to homotopy equivalence.

2.4. Cores of finite spaces

Stong [40, §4] has given an interesting way of studying homotopy types of
finite spaces. An attempt to extend his results to Alexandroff spaces was made by
Arenas [3], but his work had a mistake that was noticed and corrected by Kukiela
[26]; see Remark 2.2.10. Since the generalization is not an immediate one, we give
proofs for the finite space case in this section, turning to Alexandroff spaces in the
next. However, we give the basic definitions in full generality. We change Stong’sOr Fix-Patrias first
language a bit in the following exposition. We first single out an especially nice
class of homotopy equivalences.

Definition 2.4.1. Let Y be a subspace of a space X, with inclusion denoted by
i : Y −→ X. We say that Y is a deformation retract of X if there is map r : X −→ Y

2I have seen it claimed in an undergraduate thesis that Theorem 2.3.7 holds for any space
X, not necessarily Alexandroff. However, there need not be a continuous function f : X0 −→ X

such that q ◦ f = id.
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such that r ◦ i is the identity map of Y and there is a homotopy h : X × I −→ X
from the identity map of X to i ◦ r such that h(y, t) = y for all y ∈ Y and t ∈ I.

Definition 2.4.2. Let X be a finite space.

(a) A point x ∈ X is upbeat if there is a y > x such that z > x implies z ≥ y.
(b) A point x ∈ X is downbeat if there is a y < x such that z < x implies

z ≤ y.
(c) A point x ∈ X is a beat point if it is either an upbeat point or a downbeat

point.

X is a minimal finite space if it is a T0-space and has no beat points. A core of
a finite space X is a subspace Y that is a minimal finite space and a deformation
retract of X.

Remark 2.4.3. If we draw a graph of a poset by drawing a line downwards
from y to x if x < y, we see that, above an upbeat point x, the graph of those edges
with y as a vertex looks like

z1 z2 · · · zn

y

x

For a more complicated example, both x1 and x2 are upbeat points in the poset

z1 z2 · · · zn

y

x1 x2

w1 w2

Turning the pictures upside down, we see what the graphs below downbeat points
look like. The essential point is that a beat point has either exactly one edge
connecting to it from above or exactly one edge connecting to it from below.

Intuitively, identifying x and y and erasing the line between them should not
change the homotopy type. We say this another way in the proof of the following
result, looking at inclusions rather than quotients in accordance with our definition
of a core.

Theorem 2.4.4. Any finite space X has a core.

Proof. With the notations of the proof of Theorem 2.3.7, identify X0 with its
image f(X0) ⊂ X. The proof of Theorem 2.3.7 shows that X0, so interpreted, is a
deformation retract of X. Thus we may as well assume that X is T0. Suppose that
X has an upbeat point x. We claim that the subspace X − {x} is a deformation
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retract of X. To see this define f : X −→ X − {x} ⊂ X by f(z) = z if z 6= x and
f(x) = y, where y > x is such that z > x implies z ≥ y. Clearly f ≥ id. We
claim that f preserves order and is therefore continuous. Thus suppose that u ≤ v.
We must show that f(u) ≤ f(v). If u = v = x or if neither u nor v is x, there is
nothing to prove. When u = x < v, f(u) = y and f(v) = v ≥ y. When u < x = v,
f(u) = u < x < y = f(v). Now Proposition 2.2.12 gives the required deformation.
A similar argument applies to show that X − {x} is a deformation retract of X
if x is a downbeat point. Starting with X0, define Xi from Xi−1 by deleting one
upbeat or downbeat point. After finitely many stages, there are no more upbeat or
downbeat points left, and we arrive at the required core. �

Theorem 2.4.5. If X is a minimal finite space and f : X −→ X is homotopic
to the identity, then f is the identity.

Proof. First suppose that f ≥ id. For all x, f(x) ≥ x. If x is a maximal point,
then f(x) = x. Let x be any point of X and suppose inductively that f(z) = z for
all z > x. Then, by continuity, z > x implies z = f(z) ≥ f(x) ≥ x. If f(x) 6= x,
this implies that x is an upbeat point, contradicting the minimality of X. Therefore
f(x) = x. By induction, f(x) = x for all x. A similar argument shows that f ≤ id
implies f = id. By Proposition 2.2.12, it now follows that the component of the
identity map in the finite space XX consists only of the identity map. That is, any
map homotopic to the identity is the identity. �

Corollary 2.4.6. If f : X −→ Y is a homotopy equivalence of minimal finite
spaces, then f is a homeomorphism.

Proof. If g : Y −→ X is a homotopy inverse, then g ◦ f ' id and f ◦ g ' id.
By the theorem, g ◦ f = id and f ◦ g = id. �

Corollary 2.4.7. Finite spaces X and Y are homotopy equivalent if and only
if they have homeomorphic cores. In particular, the core of X is unique up to
homeomorphism.

Proof. This is immediate since the cores of X and Y are minimal finite spaces
that are homotopy equivalent to X and Y . �

Remark 2.4.8. In any homotopy class of finite spaces, there is a representative
with the least possible number of points. This representative must be a minimal
finite space, since its core is a homotopy equivalent subspace. The minimal rep-
resentative is homeomorphic to a core of any finite space in the given homotopy
class.

2.5. Cores of Alexandroff spaces
revisit

Not yet written (and probably never will be). The key reference is [26]. But
see Cathy Chen REU paper.

2.6. Hasse diagrams and homotopy equivalence
revisit

Should definitely be added. The key reference is Fix and Patrias.



CHAPTER 3

Homotopy groups and weak homotopy
equivalences

3.1. Homotopy groups

We recall the definition of the homotopy groups πn(X,x) of a space X at x ∈ X.
We shall not give adequate motivation here. This is the first of several places where
the author will advertise his book [30] as a source for a more complete treatment,
but in fact all standard textbooks in algebraic topology treat these definitions. For
n = 0, we define π0(X) to be the set of path components of X, with the component
of x taken as a basepoint (and there is no group structure). When n = 1, we define
π1(X,x), or π1(X) when the basepoint is assumed, to be the fundamental group of
X at the point x.

For all n ≥ 0, πn(X) can be described most simply by considering the standard
sphere Sn with a chosen basepoint ∗. One considers all maps α : Sn −→ X such
that f(∗) = x. One says that two such maps α and β are based homotopic if there
is a based homotopy h : α ' β. Here a homotopy h is based if h(∗, t) = x for all
t ∈ I. If n = 1, the map α is a loop at x, and we can compose loops to obtain a
product which makes π1(X,x) a group. The homotopy class of the constant loop at
x gives the identity element, and the loop α−1(t) = α(1− t) represents the inverse
of the homotopy class of α. There is a similar product on the higher homotopy
groups, but, in contrast to the fundamental group, the higher homotopy groups are
abelian.

A path p from x to x′ induces an isomorphism πn(X,x) −→ πn(X,x′). On the
fundamental group, it maps a loop α to the composite p ◦α ◦ p−1, where p−1 is the
reverse path p−1(t) = p(1− t) from x′ to x.

A map f : X −→ Y induces a function f∗ : πn(X,x) −→ πn(Y, f(x)). One just
composes maps α and homotopies h as above with the map f . If n ≥ 1, f∗ is a
homomorphism.

3.2. Weak homotopy equivalences

Definition 3.2.1. A map f : X −→ Y is a weak homotopy equivalence if

f∗ : πn(X,x) −→ πn(Y, f(x))

is an isomorphism for all x ∈ X and all n ≥ 0. If n = 0, this means that components
are mapped bijectively. Two spaces X and Y are weakly homotopy equivalent if
there is a finite chain of weak homotopy equivalences Zi −→ Zi+1 or Zi+1 −→ Zi
starting at X = Z1 and ending at Zq = Y .

The definition may seem strange at first sight, but it has gradually become
apparent that the notion of a weak homotopy equivalence is even more important
in algebraic topology than the notion of a homotopy equivalence. The notions

23
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are related. We state some theorems that the reader can take as reference points.
Proofs can be found in [30]. We mention CW complexes in the following result
because they give the appropriate level of generality. They will be defined later, in
Definition 9.6.1. However, all the reader needs to know here is that the geometric
realizations of simplicial complexes, which will be defined in Definition 4.1.6, are
special cases of CW complexes.

Theorem 3.2.2. A homotopy equivalence is a weak homotopy equivalence.
Conversely, a weak homotopy equivalence between CW complexes (for example,
between simplicial complexes) is a homotopy equivalence.

Theorem 3.2.3. Spaces X and Y are weakly homotopy equivalent if and only
if there is a space Z and weak homotopy equivalences Z −→ X and Z −→ Y . When
this holds, there is such a Z which is a CW complex.

That is, the chains that appear in the definition need only have length two. For
those who know about homology and cohomology, we record the following result.

Theorem 3.2.4. A weak homotopy equivalence induces isomorphisms of all
singular homology and cohomology groups.

3.3. A local characterization of weak equivalences

An essential point in our work, which we will take for granted, is that weakNO: FIND A
QUICK PROOF;
maybe Quillen Thm
A analogue of Bar-
mak Or look at my
paper and Gray

homotopy equivalence is a local notion in the sense of the following theorem. Mc-
Cord [32] relies on point-by-point comparison with arguments in the early paper
[10], which doesn’t prove the result but comes close. More modern references are
[29, 43].

Expository paper
topic?

Theorem 3.3.1. Let p : E −→ B be a continuous map. Suppose that B has an
open cover O with either of the first two and the third of the following properties.

(i) If x is in the intersection of sets U and V in O, then there is some W ∈ O
with x ∈W ⊂ U ∩ V .

(ii) For each U ∈ O, the restriction p : p−1U −→ U is a weak homotopy
equivalence.

Then p is a weak homotopy equivalence.

3.4. The non-Hausdorff suspension

The suspension is one of the most basic constructions in all of topology. Fol-
lowing McCord [32], we show that it comes in two weakly equivalent versions, the
classical one and a non-Hausdorff analogue that preserves finite spaces. For the
purposes of these notes, we shall use the following unbased variant of the classical
suspension.

Definition 3.4.1. Define the cone CX of a topological space X to be the
quotient space X × I/X × {1} obtained by identifying X × {1} to a single point,
denoted +. Define the suspension SX of X to be the quotient space obtained from
X × [−1, 1] by identifying X × {1} to a single point + and identifying X × {−1}
to another single point, denoted −. Thus SX can be thought of as obtained by
gluing together the bases of two cones on X. For a map f : X −→ Y , define
Sf : SX −→ SY by (Sf)(x, t) = (f(x), t).
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It should be clear that CX is contractible to its cone point +. We defined the
non-Hausdorff cone CX by adjoining a new cone point ∗ and letting the proper open
subsets of CX be all of the open subsets of X, and we saw that CX is contractible.
We now change notation and call the added point +.

Definition 3.4.2. Define the non-Hausdorff suspension SX by adjoining two
points, + and − to X, and topologizing SX as the union of two copies of CX glued
along X. Thus the proper open subsets are the open subsets of X and the two
copies of CX. When X is an A-space, x < + and x < − for all x ∈ X. For a map
f : X −→ Y , define Sf : SX −→ SY by sending + to +, − to −, and letting Sf
restrict to f on X.

Observe that if X is a T0-space, then so are CX and SX.

Definition 3.4.3. Define a comparison map

γ = γX : SX −→ SX

by γ(x, t) = x if −1 < t < 1, γ(+) = + and γ(−) = −. It is an easy exercise to
check that γ is continuous. Observe that, for a map f : X −→ Y , γY ◦Sf = Sf ◦γX .
Inductively, define SnX = SSn−1X and SnX = SSn−1X and let γn : SnX −→ SnX
be the common composite displayed in the commutative diagram

SnX
Sγn−1

//

γ

��

γn

&&

SSn−1X

γ

��
SSn−1X

Sγn−1

// SnX

Theorem 3.4.4. For any space X, the map γ : SX −→ SX is a weak ho-
motopy equivalence. For any weak homotopy equivalence f : X −→ Y , the maps
Sf : SX −→ SY and Sf : SX −→ SY are weak homotopy equivalences. Therefore
γn : SnX −→ SnX is a weak homotopy equivalence for any space X.

Proof. This is an application, or rather several applications, of Theorem 3.3.1.
Take the three subspaces X, X∪{+}, and X∪{−} as our open cover of SX and ob-
serve that the latter two subspaces are copies of CX and are therefore contractible.
The respective inverse images under γ of these three subsets are the images in SX
of X × (−1, 1), X × (−1, 1], and X × [−1, 1). The restrictions of γ on these three
subspaces are homotopy equivalences, hence weak homotopy equivalences.

Similarly, taking the three subspaces Y , Y ∪ {+}, and Y ∪ {−} as our open
cover of SY , their inverse images under Sf are X, X ∪ {+}, and X ∪ {−}, and
the restrictions of Sf on these three subspaces are weak homotopy equivalences.
Finally, take the images in SY of Y × (−1/2, 1/2), Y × [−1, 1/2), and Y × (−1/2, 1]
as our open cover of SY . Their inverse images under Sf are the corresponding
subspaces of SX, and the restrictions of Sf to these subspaces are weak homotopy
equivalences. �

Example 3.4.5. Consider the discrete space D3. We have the five-point space
SD3 and the weak equivalence SD3 −→ SD3. The space SD3 is homotopy equiva-
lent to the wedge, or 1-point union, of two circles as the reader should check. We
can also form the opposite space (SD3)op corresponding to the opposite partial or-
der, so that we now have two minimal points. A moment’s reflection will convince
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the reader that we also have a weak equivalence SD3 −→ (SD3)op, and it will later
become clear that X and Xop have the same weak homotopy type for any finite
space X. Already in our five point example, this gives two weakly homotopy equiv-
alent minimal finite spaces with the same number of points that are not homotopy
equivalent. Moreover, there is no direct weak homotopy equivalence from one to
the other: one needs a chain, like SD3 SD3

oo //(SD3)op .

Example 3.4.6. Let X = S0, a two-point discrete space. Then SnX is home-
omorphic to the n-sphere Sn, while SnX is a T0-space with 2n+ 2 points. Thus we
have a weak homotopy equivalence γn from Sn to a finite space with 2n+ 2 points.

Proposition 3.4.7. Each SnS0, n ≥ 1, is a minimal finite space.

Proof. Certainly SnS0 is T0, and it has no upbeat or downbeat points since
each point has incomparable points above it or below it in the partial ordering. �

Example 3.4.8. There are minimal finite spaces with more than 2n+ 2 points
that are also weakly homotopy equivalent to Sn. For example, there is a six point
finite space weakly equivalent to a circle, with three minimal points and three
maximal points. You can draw it yourself, or you can look later at the finite space
associated to the barycentric subdivision of the boundary of a 2-simplex. As an
exercise, construct a weak homotopy equivalence from this 6-point circle to the 4-
point circle; the map cannot be a homotopy equivalence, since both of these finite
models for the circle are minimal finite spaces.

3.5. 6-point spaces and height

Up to homeomorphism, the only minimal connected spaces with at most five
points are the one point space, the 4-point circle, and the two 5-point minimal
spaces described in Example 3.4.5.

Proposition 3.5.1. Up to homeomorphism, there are seven connected minimal
6-point spaces X, and none of them are weakly contractible. One is the six point
two sphere S2S0, two are SD4 and its opposite. The remaining four have three
maximal and three minimal points.

Proof. We must have at least two minimal and at least two maximal points.
Indeed, if we have just one intermediate point y, any point greater or less than
it is upbeat or downbeat. If we have two intermediate points, they cannot be
comparable without again contradicting minimality, and if they are incomparable
we arrive by minimality at S2S0, which is homeomorphic to its opposite. The only
remaining cases have all points either minimal or maximal. By the minimality of
X, each minimal point must be less than at least two maximal points and each
maximal point must be greater than at least two minimal points. There is only one
example with two minimal points, and its opposite is the only example with four
minimal points. We are left with the case when there are three minimal and three
maximal points. Here each minimal point must be less than at least two maximal
points and zero, one, two, or all three of them can be less than all three maximal
points. In all four cases, the resulting space is homeomorphic to its opposite. �

Remark 3.5.2. In the next chapter we will define polytopes |K (X)| associated
to finite spaces. The polytope assigned to S2S0 is homeomorphic to S2. The
polytopes assigned to the remaining connected minimal 6-point spaces are graphs
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that are homotopy equivalent to the wedge (or 1-point union) of one, two, three,
or four circles.

The height h(X) of a poset X is the maximal length h of a chain x1 < · · · < xh
in X. It is one more than the dimension d(X) of the space |K (X)|. In the analysis
just given, we noticed that if X has six elements then h(X) is 2 or 3. Barmak and
Minian [6] observed the following related inequality.

Proposition 3.5.3. Let X 6= ∗ be a minimal finite space. Then X has at least
2h(X) points. It has exactly 2h(X) points if and only if it is homeomorphic to
Sh(X)−1S0 and therefore weakly homotopy equivalent to Sh(X)−1.

Proof. Let x1 < · · · < xh be a maximal chain in X. Since X cannot have
a minimimum point, there is a y1 which is not greater than x1. Since no xi is an
upbeat point, 1 ≤ i < h, there must be some yi+1 > xi such that yi+1 is not greater
than xi+1. The points yi are easily checked to be distinct from each other and from
the xj . Now suppose that X has exactly these 2h points. By the maximality of
our chain, the xi and yj are incomparable. For i < j, we started with xi < xj , and
we check by cases from the absence of upbeat and downbeat points that yi < xj ,
yi < yj , and xi < yj . Comparing with the iterated suspension, we see that this
implies that X is homeomorphic to Sh−1S0. �

When I first taught finite spaces in the REU, in 2003, I asked if 2n + 2 was
the least number of points in a finite space of the weak homotopy type of Sn.
Barmak and Minian [6] followed up by proving the previous result. Their proof
uses homology, but we have just seen that is easy to give a direct elementary proof.

Drawing posets, and thinking about them, leads to lots of eliminations from
the list of F -spaces that might not be contractible or weakly contractible (weakly
homotopy equivalent to a point). There is a well-known example of an 11-point
space that is weakly contractible but not contractible. Find it

Problem 3.5.4. What is the smallest number n that there is an n-point weakly
contractible space that is not contractible answer 9; CianciOt-
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topic?





CHAPTER 4

Simplicial complexes

4.1. A quick introduction to simplicial complexes

Simplicial complexes provide a general class of spaces that is sufficient for most
purposes of basic algebraic topology. There are more general classes of spaces, in
particular the CW complexes, that are more central to the modern development
of the subject, but they give exactly the same collection of homotopy types, as we
shall recall. We shall give basic material on simplicial complexes here, but largely
restricting ourselves to what we shall use later. More detail can be found in many
textbooks in algebraic topology (although not in my own book [30]). However, it
is hard to find as precise a demarkation between simplicial complexes and ordered
simplicial complexes as is needed for conceptual understanding, and this will become
increasingly important as we go on.

Definition 4.1.1. An abstract simplicial complex K is a set V = V (K), whose
elements are called vertices, together with a set K of (non-empty) finite subsets
of V , whose elements are called simplices, such that every vertex is an element of
some simplex and every subset of a simplex is a simplex; such a subset is called a
face of the given simplex. We say that K is finite if V is a finite set. The dimension
of a simplex is one less than the number of vertices in it.

Definition 4.1.2. A map g : K −→ L of abstract simplicial complexes is a
function g : V (K) −→ V (L) that takes simplices to simplices. We say that K is
a subcomplex of L if the vertices and simplices of K are some of the vertices and
simplices of L. We say that K is a full subcomplex of L if, further, every simplex
of L whose vertices are in K is a simplex of K.

As already said, there is a very important distinction to be made between
simplicial complexes as we have just defined them and ordered simplicial complexes.

Definition 4.1.3. An ordering of an abstract simplicial complex K is a partial
order on the vertices of K that restricts to a total order on the vertices of each sim-
plex of K. A map of ordered simplicial complexes is a map of simplicial complexes
that is given by an order preserving map on its poset of vertices.

While imposition of an ordering may seem artificial, since we have no canonical
choice, it is essential to a serious calculational theory. We shall later introduce
simplicial sets, which generalize simplicial complexes and elegantly systematize or-
derings. Many of the definitions below have evident ordered variants. We shall
not belabor the point. However, orderings will be essential to understanding the
relationship between simplicial complexes and finite spaces. Of course, this is not
surprising since finite spaces are essentially the same as finite posets.

Definition 4.1.4. A set {v0, · · · , vn} of points of RN is geometrically inde-
pendent if the vectors vi − v0, 1 ≤ i ≤ n, are linearly independent. An equivalent

29



30 4. SIMPLICIAL COMPLEXES

characterization that gives none of the vi a privileged role is that the equations∑t=n
t=0 tivi = 0 and

∑t=n
t=0 ti = 0 for real numbers ti imply t0 = · · · = tn = 0. The

n-simplex σ spanned by {v0, · · · , vn} is then the set of all points x =
∑t=n
t=0 tivi,

where 0 ≤ ti ≤ 1 and
∑
ti = 1. The ti are called the barycentric coordinates of

the point x. When each ti = 1/(n + 1), the point x is called the barycenter of σ.
The points vi are the vertices of σ. A simplex spanned by a subset of the vertices
is a face of σ; it is a proper face if the subset is proper. The standard n-simplex
∆[n] is the n-simplex spanned by the standard basis of Rn+1. Thus the standard
0-simplex is the point 1 ∈ R, the standard 1-simplex is the line{t, 1− t} ⊂ R2, and
so forth. Later, when necessary for clarity, we will sometimes denote these topolog-
ical n-simplices by ∆[n]t to distinguish them from other kinds of n-simplices that
will appear.

Definition 4.1.5. A simplicial complex, or geometric simplicial complex, K is
a set of simplices in some RN such that every face of a simplex in K is a simplex in
K and the intersection of two simplices in K is a simplex in K. The set of vertices
of K is the union of the sets of vertices of its simplexes. Note that although we
require all vertices to lie in some RN and we require each set of vertices that spans
a simplex of K to be geometrically independent, we do not require the entire set of
vertices to be geometrically independent. For example, we can have three vertices
on a single line in RN , as long as the two vertices furthest apart do not span a
1-simplex of K. A subcomplex L of a simplicial complex K is a simplicial complex
whose simplices are some of the simplices of K. It is a full subcomplex if every
simplex of K with vertices in L is in L.

Definition 4.1.6. The geometric realization |K| of a simplicial complex K
is the union of the simplices of K, each regarded as a subspace of RN , with the
topology whose closed sets are the sets that intersect each simplex in a closed subset.
If K is finite, but not in general otherwise, this is the same as the topology of |K| as
a subspace of RN . The open simplices of |K| are the interiors of its simplices (where
a vertex is an interior point of its 0-simplex), and every point of |K| is an interior
point of a unique simplex. The boundary ∂σ of a simplex σ is the subcomplex given
by the union of its proper faces. The closure of a simplex is the union of its interior
and its boundary. A space homeomorphic to |K| for some K is called a polytope.

The dimension of a simplicial complex is the maximal dimension of its simplices,
and that of course corresponds to our geometric intuition.

Definition 4.1.7. A map g : K −→ L of simplicial complexes is a function
from the vertex set V (K) to the vertex set V (L) such that, for each subset S of
V (K) that spans a simplex of K, the set g(S) is the set of vertices of a simplex
of L. Then g determines the continuous map |g| : |K| −→ |L| that sends

∑
tivi to∑

tig(vi). Note that although we do not require g to be one–to–one on vertices,
|g| is nevertheless well-defined and continuous. If g is a bijection on vertices and
simplices, we say that it is an isomorphism, and then |g| is a homeomorphism.

It is usual to abbreviate |g| to g and to refer to it as a simplicial map, but for
now we prefer to keep the distinction between g and |g| clear.

Remark 4.1.8. The reader can and should object to our insistence that all of
the vertices of K are in some RN . Why not allow an infinite set of vertices with
no bound on the allowed size of the simplices? The idea is to take the topological
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space given by the disjoint union of the simplices of a geometric simplicial complex,
ignoring their embeddings in Euclidean space, and to then form a quotient space
by glueing them together along their common faces. We might instead think of sets
of standard n-simplices ∆[n], and we might think of taking their disjoint union and
then gluing together along prescribed faces to construct the geometric realization
more abstractly. We shall allow ourselves to think of such infinite dimensional
simplicial complexes, but it is best not to take them too seriously for now. We shall
come back to them under the guise of simplicial sets, which are best treated later.
In that context, we will make the intuition precise and show how best to define
geometric realization in general.

4.2. Abstract and geometric simplicial complexes

Definition 4.2.1. The abstract simplicial complex aK determined by a geo-
metric simplicial complex K has vertex set the union of the vertex sets of the
simplices of K. Its simplices are the subsets that span a simplex of K. An abstract
finite simplicial complex K determines a geometric finite simplicial complex gK by
choosing any bijection between the vertices of K and a geometrically independent
subset of some RN . For specificity, we can take the standard basis elements of RN
where N is the number of points in the vertex set V (K). The geometric simplices
are spanned by the images of the simplices of K under this bijection. For an ab-
stract simplicial complex K, agK is isomorphic to K, the isomorphism being given
by the chosen bijection. Similarly, for a finite geometric simplicial complex K, gaK
is isomorphic to K.

We could remove the word finite from the previous definition by defining geo-
metric simplicial complexes more generally, without reference to a finite dimensional
ambient space RN , as in Remark 4.1.8. We also note that we do not have to realize
in such a high dimensional Euclidean space as a count of vertexes would dictate.
The following result holds no matter how many vertices there are. It is rarely used,
but it is conceptually attractive. A proof can be found in [20, 1.9.6].

Theorem 4.2.2. Any finite simplicial complex K of dimension n can be geo-
metrically realized in R2n+1.

In view of the discussion above, abstract and geometric finite simplicial com-
plexes can be used interchangeably. In particular, the geometric realization of an
abstract simplicial complex is K is understood to mean the geometric realization
of any gK.

We need a criterion for when the geometric realizations of two simplicial maps
are homotopic.

Definition 4.2.3. Continuous maps f and g from a topological space X to the
geometric realization |K| of a simplicial complex are simplicially close if, for each
x ∈ X, both f(x) and g(x) are in the closure of some simplex σ(x) of K.

Proposition 4.2.4. If f and g are simplicially close continuous maps from a
topological space X to some |K| ⊂ RN , then f and g are homotopic.

Proof. Define h : X × I −→ RN by

h(x, t) = (1− t)f(x) + tg(x).

Since h(x, t) is in the closure of σ(x) and therefore in |K|, we see that it is continuous
and specifies a homotopy as required. �
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4.3. Cones and subdivisions of simplicial complexes

Let K be a finite geometric simplicial complex in RN .MAYBE add simple
defn of subdivision
of an abstract sim-
plicial complex: in-
troduce poset of sim-
plices ordered un-
der inclusion: so
an n-simplex of K’
is a finite sequence
of simplices {σ0 ⊂
· · · ⊂ σn}. Then
go to more geometric
point of view. Reor-
ganize

Definition 4.3.1. Let x be a point of RN −K such that each ray starting at
x intersects |K| in at most one point. Observe that the union of {x} and the set of
vertices of a simplex of K is a geometrically independent set. Define the cone K ∗x
on K with vertex x to be the geometric simplicial complex whose simplices are all
of the faces of the simplices spanned by such unions. Then K is a subcomplex of
K ∗ x, x is the only vertex not in K, and |K ∗ x| is homeomorphic to C|K|. Define
the cone K ∗ x on an abstract simplicial complex K by adding a new vertex x and
taking the simplices to be all subsets of all unions of x with a simplex in K.

Example 4.3.2. A simplex is the cone of any one of its vertices with the
subcomplex spanned by the remaining vertices (the opposite face).

Definition 4.3.3. A subdivision of K is a simplicial complex L such that each
simplex of L is contained in a simplex of K and each simplex of K is the union of
finitely many simplices of L.

The following observation should be clear.

Lemma 4.3.4. If L is a subdivision of K, then |L| = |K| (as spaces).

The n-skeleton Kn of K is the union of the simplices of K of dimension at most
n. It is a subcomplex. There are many ways to subdivide a simplicial complex, and
in applications there can be advantages to one or another of them. However, we will
focus on the standard canonical choice. We give a somewhat pedantic inductive
geometric construction that should make the idea clear and then reexpress the
answer combinatorially.

Construction 4.3.5. We construct the barycentric subdivision K ′ of K. We
subdivide the skeleta of K inductively. Let L0 = K0. Suppose that a subdivision
Ln−1 of Kn−1 has been constructed. Let bσ be the barycenter of an n-simplex σ of
K. The space |∂σ| coincides with |Lσ| for a subcomplex Lσ of Ln−1, and we can
define the cone Lσ ∗ bσ. Clearly |Lσ ∗ bσ| = |σ| and |Lσ ∗ bσ| ∩ |Ln−1| = |Lσ| = |∂σ|.

If τ is another n-simplex, then |Lσ ∗ bσ| ∩ |Lτ ∗ bτ | = |σ ∩ τ |, which is the
realization of a subcomplex of Ln−1 and therefore of both Lσ and Lτ . Define Ln to
be the union of Ln−1 and the complexes Lσ ∗ bσ, where σ runs over all n-simplices
of K. Our observations about intersections show that Ln is a simplicial complex
which contains Ln−1 as a subcomplex. The union of the Ln is denoted K ′ and
called the barycentric subdivision of K.

The second barycentric subdivision of K is the barycentric subdivision of the
first barycentric subdivision, and so on inductively.

We can enumerate the simplices of K ′ explicitly rather than inductively.

Proposition 4.3.6. Define σ < τ if σ is a proper face of τ . Then K ′ is the
simplicial complex whose vertices are the barycenters of simplices of K and whose
n-simplices σ′ are the spans of the geometrically independent sets {bσ0 , · · · , bσn},
where σ0 > · · · > σn. The vertex bσ0 is called the leading vertex of the simplex σ′.

Proof. We show this inductively for the subcomplexes Ln. Since L0 = K0,
this is clear for L0. Assume that it holds for Ln−1. If τ is a simplex of Ln such that
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|τ | is contained in |Kn| but not contained in Kn−1, then τ is a simplex in the cone
Lσ ∗bσ for some n-simplex σ. By the induction hypothesis and the definition of Lσ,
each simplex of Lσ is the span of a set {bσ0 , · · · , bσm}, where σ > σ0 > · · · > σm.
Therefore τ is the span of a set {bσ, bσ0

, · · · , bσm}. �

Proposition 4.3.7. There is a simplicial map ξ = ξK : K ′ −→ K whose real-
ization is simplicially close to the identity map and hence homotopic to the identity
map.

Proof. Let ξ map each vertex bσ of K ′ to any chosen vertex of σ. If σ′ is a
simplex of K ′ with leading vertex bσ0 , then all other vertices of σ′ are barycenters
of faces of σ0, hence are mapped under ξ to vertices of σ0. Therefore the images
under ξ of the vertices of σ′ span a face of σ0, so that ξ is a simplicial map. With
these notations, if x ∈ |K ′| is an interior point of the simplex σ′, then it is mapped
under |ξ| to a point of σ0 ⊃ σ′, and we let σ(x) = σ0. Since ξ maps every vertex of
σ′ to a vertex of σ0, x and ξ(x) are both in the closure of σ0. �

Definition 4.3.8. For an ordered simplicial complex K, define the standard
simplicial map ξ : K ′ −→ K by letting ξ(bσ) be the maximal vertex xn of the
simplex σ = {x0, · · · , xn}.

Remark 4.3.9. Observe that K ′ has a canonical ordering even when K does
not. Explicitly, the partial ordering of the set of vertices {bσ} is given by bσ ≤ bτ if
σ is a face of τ . This partial order clearly restricts to a total order on the vertices
of each simplex.

Proposition 4.3.10. A simplicial map g : K −→ L induces a subdivided sim-
plicial map g′ : K ′ −→ L′ whose realization is simplicially close to |g| and hence
homotopic to |g|. Moreover, g′ is order-preserving.

Proof. The images under g of the vertices of a simplex σ of K span a simplex
g(σ), of possibly lower dimension than σ, and we define g′(bσ) = bg(σ) on vertices.
If bσ0

is the leading vertex of a simplex σ′ of K ′, then all other vertices of σ′ are
barycenters of faces of σ0. Their images under g′ are barycenters of faces of g(σ0). If
x is an interior point of σ′, then both g(x) and g′(x) are in the closure of g(σ0). �

Remark 4.3.11. When K and L are ordered and g is an order-preserving
simplicial map, the following “naturality” diagram commutes if we use the standard
simplicial maps ξ for K and L.

K ′ //

ξ

��

g′ // L′

ξ

��
K

g
// L

Remark 4.3.12. If we think of K ′ and K abstractly, then the barycenters of
the simplices of K (other than vertices) are vertices of K ′ that are not vertices of
K. All simplices of K ′ with more than one vertex have at least one vertex that is
not in K. Thus the only simplices in K ′ that are also simplices in K are the vertices
of K. However, if we think geometrically, then every simplex τ of K ′ is contained
in a unique simplex σ of K, as should be made clear by drawing a picture of the
barycentric subdivision. The simplex σ is called the carrier of τ .
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4.4. The simplicial approximation theorem

The classical point of barycentric subdivision is its use in the simplicial ap-
proximation theorem, which in its simplest form reads as follows. Starting with

K(0) = K, let K(n) = K(n−1)′ be the nth barycentric subdivision of a sim-
plicial complex K. By iteration of ξ : K ′ −→ K, we obtain a simplicial map
ξ(n) : K(n) −→ K whose geometric realization is homotopic to the identity map.

Theorem 4.4.1. Let K be a finite simplicial complex and L be any simplicial
complex. Let f : |K| −→ |L| be any continuous map. Then, for some sufficiently
large n, there is a simplicial map g : K(n) −→ L such that f is homotopic to |g|.

This means that, for the purposes of homotopy theory, general continuous maps
may be replaced by simplicial maps. Since this is proved in so many places, we shall
content ourselves with a slightly sketchy proof. It relies on the classical Lebesque
lemma, whose proof is not hard but just a little far afield.

Lemma 4.4.2 (Lebesque lemma). Let (X, d) be a compact metric space with a
given open cover U . Then there exists a number λ > 0 such that every subset of
X with diameter less than λ is contained in some set U ∈ U . The smallest such λ
is called the Lebesque number of the cover.

Definition 4.4.3. For a vertex v of a simplicial complex K, define star(v) to
be the union of the interiors of all simplices of |K| that contain v as a vertex. For
a subcomplex L of K, define star(L) ⊂ |K| to be the union over v ∈ L of the open
spaces star(v).

Proof of the simplicial approximation theorem. We are given a map
f : |K| −→ |L|. Give |K| the open cover by the sets f−1(star(w)), where w runs over
the vertices of L. Since |K| is a compact subspace of a metric space, the Lebesgue
lemma ensures that there is a number λ such that any subset of |K| of diameter less
than λ is contained in one of the open sets f−1(star(w)). The diameter of a (closed)
simplex is easily seen to be the maximal length of a one-dimensional face. Each
barycentric subdivision therefore has the effect of decreasing the maximal diameter
of a simplex. Precisely, the maximal diameter of the subdivision of a q-simplex
turns out to be q/q+ 1 times the maximal diameter of the given simplex (e.g. [39,
p.124], [20, p.24], [18, p. 120]), but the precise estimate is not important.

What is important is that, since K is finite, for any δ > 0 there is a large
enough n such that every simplex of K(n) has diameter less than δ/2. Then each
star(v) for a vertex v of K(n) has diameter less than δ, and we conclude that
f(star(v)) ⊂ star(w) for some vertex w of L. Define g : V (K(n)) −→ V (L) by
letting g(v) = w for some w such that f(star(v)) ⊂ star(w). One checks that g
maps simplices to simplices and so specifies a map of simplicial complexes. If u is
an interior point of a simplex σ of K, then f(x) is an interior point of some simplex
τ of L. One can check that g maps each vertex of σ to a vertex of τ . This implies
that |g| is simplicially close to f and therefore homotopic to f . �

4.5. Contiguity classes and homotopy classes

We are interested not just in representing maps up to homotopy as simplicial
maps, but in enumerating the resulting homotopy classes of maps. For two spaces
X and Y , we define the set [X,Y ] of homotopy classes of maps X −→ Y to be
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the set of equivalence classes of maps f : X −→ Y , where two maps are equivalent
if they are homotopic. We write [f ] for the homotopy class of f . This notion
has a number of variants. For example, we can consider based spaces, base-point
preserving maps, and homotopies that preserve the basepoints. We write [X,Y ]∗
for the resulting set of based homotopy classes of based maps. Thus, with this
notation, πn(X) = [Sn, X]∗.

We want to understand the relationship between simplicial maps K −→ L and
the set [|K|, |L|], where K is finite. Thus we fix K and L in the rest of this section,
taking K to be finite.

We know that any homotopy class is represented by a simplicial map f : K −→
L, provided that we first subdivide K sufficiently, and we ask for a simplicial de-
scription of when two simplicial maps f, g : K −→ L have homotopic geometric
realizations. The notion of “contiguity” can be used to give an answer. If q > n,
we agree to write ξ : K(q) −→ K(n) for the map obtained by iteration of maps ξ.

Definition 4.5.1. Let f, g : K −→ L be simplicial maps between (geometric)
simplicial complexes. We say that f is contiguous to g if for every simplex σ of K,
the union f(σ)∪g(σ) is contained in a simplex of L. More generally, let f : K −→ L
and g : K(n) −→ L be simplicial maps. We say that f is contiguous to g if for each
simplex τ of K(n) with carrier σ in K, f(σ) ∪ g(τ) is contained in a simplex of L.

If q > n, a check of definitions shows that if f and g are contiguous, then
so are f and g ◦ ξ. Similarly, if q > 0 and f and g are contiguous, then so are
f ◦ ξ and g, where now ξ : K(q) −→ K. The relation of contiguity is reflexive
and symmetric, but it is not transitive. We let ∼ denote the equivalence relation
generated by contiguity. Thus f ∼ g if there is a sequence of simplicial maps
{f = f1, f2, · · · , fq = g} such that fi is contiguous to fi+1 for i < q.

Proposition 4.5.2. If f, g : K −→ L are contiguous simplicial maps, then
|f | ' |g| : |K| −→ |L|.

Proof. In fact, |f | and |g| are simplicially close by a comparison of definitions.
Therefore this result is a special case of Proposition 4.2.4: the same simplex by
simplex linear homotopy does the trick. �

Remember that two simplicially close maps f, g : X −→ |L| have homotopic
realizations, where X is any space, not necessarily a simplicial complex. We used
that fact to show that if K is finite, then any map f : |K| −→ |L| is homotopic to
the realization of a simplicial map g : K(n) −→ L for some sufficiently large n. It
is natural to ask how unique that simplicial approximation is, and the notion of
contiguity gives a useful answer.

Proposition 4.5.3. If g and g′ are simplicial approximations of the same
continuous map f : |K| −→ |L|, K finite, then g and g′ are contiguous.

Proof. To see this, just look back at the proof of the simplicial approximation
theorem. �

Theorem 4.5.4. If f and f ′ are homotopic maps |K| −→ |L|, K finite, and
g and g′ are simplicial approximations to f and f ′, then g is contiguous to g′.
Therefore, for every pair of homotopic maps f, f ′ : |K| −→ |L|, there is a sufficiently
large n such that f and f ′ are represented by contiguous simplicial maps K(n) −→ L.
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Maybe revisit this
proof to make clear
L need not be finite;
compare Thibault’s
passage to limits in
his Thm 2.5.30

Sketch proof. Two slightly different detailed proofs may be found in [20, p.
40], [39, p. 132]. We follow [20]. Remember that |L| is a subspace of some RN ,
so that we can talk about the distance between two points of |L|. We define the
distance between two maps f, g : |K| −→ |L| to be the maximum of the distances
between f(x) and g(x) for x ∈ |K|. Let λ be the Lebesque number of the covering
of |L| by the open stars of its vertices and let ε = (1/3)λ. Then ε is small enough
that if the distance between f and g is less than ε, then there is a simplicial map
g that is a simplicial approximation of both f and f ′. The precise estimate ε is
unimportant. It is clear from the proof of the simplicial approximation theorem
that some small enough ε will have the stated property.

Returning to the hypotheses of the theorem, let h : |K| × I −→ |L| be a homo-
topy from f = h0 to f ′ = h1, where ht(x) = h(x, t). The claim is that there is a
simplicial approximation g to f , a simplicial approximation g′ to f ′, and a sequence
of simplicial maps {g = g1, g2, · · · , gq = g′} such that gi is contiguous to gi+1 for
i < q. We use an ε, δ proof. There is a δ > 0 such that |hs(x), ht(x)| < ε for all
x ∈ |K| and all s, t ∈ I such that |t − s| < δ. Choose q > 1/δ. Then, for i < q,
the distance between h(i−1)/q and hi/q is less than ε. Therefore these two maps
have a common simplicial approxmation gi. Since gi and gi+1 are both simplicial
approximations of hi/q, they are contiguous and we have chosen our maps so that
g = g1 is a simplicial approximation of f and g′ = gq is a simplicial approximation
to f ′. By the previous result, they are contiguous to any other such simplicial
approximations. �



CHAPTER 5

The relation between A-spaces and simplicial
complexes

Following McCord [32], we are going to relate A-spaces, and in particular F -
spaces, with simplicial complexes, explaining how to go back and forth between
them. Since any Alexandroff space is homotopy equivalent to a T0-space, there is
no loss of generality if we restrict attention to A-spaces. As usual, the reader may
prefer to think only in terms of F -spaces.

5.1. The construction of simplicial complexes from A-spaces

Definition 5.1.1. Let X be an A-space. Define K (X) to be the abstract
simplicial complex whose vertex set is X and whose simplices are the finite totally
ordered subsets of the poset X; K (X) is often called the order complex of A.
Observe that the partial order of X gives an ordering of K (X), since it restricts to
a total order on each simplex. Observe too that if V is a subspace of X, then K (V )
is a full subcomplex of K (X) since any totally ordered subset of X whose points are
in V is a totally ordered subset of V . Since a map f : X −→ Y is an order–preserving
function, it may be regarded as a simplicial map K (f) : K (X) −→ K (Y ).

Theorem 5.1.2. For an A-space X, there is a weak homotopy equivalence

ψ = ψX : |K (X)| −→ X

such that the following diagram commutes for each map f : X −→ Y .

|K (X)|
|K (f)|//

ψX

��

|K (Y )|

ψY

��
X

f
// Y

Proof. Each point u ∈ |K (X)| is an interior point of a simplex σ spanned
by some strictly increasing sequence x0 < x1 < · · · < xn of points of X. We define
ψ(u) = x0. For f : X −→ Y , K (f)(u) is in the simplex spanned by the f(xi)
and f(x0) ≤ f(x1) ≤ · · · ≤ f(xn). Omitting repetitions, we see that f(x0) is the
minimal vertex of this simplex, so that ψ(f(u)) = f(x0) = f(ψ(u)), which proves
that the diagram commutes. We must still prove that ψ is continuous and that it
is a weak homotopy equivalence.

For x ∈ X, let star(x) denote the union of the interiors of the simplices of
K (X) that have x as a vertex; it is an open neighborhood of x in |K (X)|. For
an open subset V of X, define the open star, star(V ), to be the union over the
vertices v ∈ V of the open subspaces star(v). It is the complement of |K (X − V )|
in |K (X)|. To see that ψ is continuous, we show that ψ−1(V ) = star(V ). If

37



38 5. THE RELATION BETWEEN A-SPACES AND SIMPLICIAL COMPLEXES

ψ(u) = v ∈ V , then v is the initial vertex x0 of a simplex σ. Since a vertex v is the
unique interior point of the simplex {v}, u ∈ star(V ). Conversely, suppose that
u ∈ star(v), where v ∈ V . Then u is an interior point of a simplex σ determined
by an increasing sequence x0 < x1 < · · · < xn such that some xi = v ∈ V . Since
x0 ≤ v, x0 ∈ Uv. Since V is open, Uv ⊂ V . Thus ψ(u) = x0 is in V .

It remains to prove that ψ is a weak homotopy equivalence. We shall do so by
applying Theorem 3.3.1 to the minimal open cover {Ux} of X. If x is in Uy ∩ Uz,
then x is in both Uy and Uz, so that Ux is contained in both Uy and Uz. This verifies
the first hypothesis of the cited theorem. For the second hypothesis, we know that
each Ux is a contractible subspace of V . We also know that each |K (Ux)| is a
contractible space. In fact, K (Ux) is a simplicial cone, in the sense that for every
simplex σ of K (Ux) which does not contain x, σ ∪ {x} is a simplex of K (Ux).
The realization of such a simplicial cone is contractible to the cone vertex x since
h(y, t) = (1 − t)y + tx gives a well-defined contracting homotopy. Specializing the
following general result to L = K (Ux), we see that star(Ux) is also contractible.
Therefore each restriction ψ : ψ−1(Ux) −→ Ux is a weak homotopy equivalence and
Theorem 3.3.1 applies to show that ψ is a weak equivalence. �

Proposition 5.1.3. Let L be a full subcomplex of a simplicial complex K.
Then |L| is a deformation retract of its open star, starL, in |K|.

Proof. Again, starL, is defined to be the union of the open stars of the
vertices of L. This result is a standard fact in the theory of simplicial complexes,
and a more detailed proof than we shall given can be found in [38, 70.1 and p. 427].
Consider a simplex σ that is in the closure of star(L). Then σ has vertex set the
disjoint union of a set of vertices in L and a set of vertices in K − L. Each point
u of σ that is neither in the span s of the vertices in L nor in the span t of the
vertices not in L is on a unique line segment joining a point in t to a point in s.
Define the required retraction r by sending u to the end point in s ⊂ L of this line
segment, letting r be the identity map on L and thus on s. Deformation along such
line segments gives the required homotopy showing that i ◦ r is homotopic to the
identity, where i is the inclusion of |L| in its open star. �

Example 5.1.4. Suppose that |K (X)| is homotopy equivalent to a sphere Sn.
Then the dimension of |K (X)|, which is h(X) − 1, must be at least n. Thus
h(X) ≥ n + 1. Therefore, by Proposition 3.5.3, X has at least 2n + 2 points and,
if X has exactly 2n+ 2 points, then it is homeomorphic to SnS0.

5.2. The construction of A-spaces from simplicial complexes

Now let K be a finite geometric simplicial complex with first barycentric sub-
division K ′. Remember that |K| = |K ′|.

Definition 5.2.1. Define an A-space X (K) as follows. The points of X (K)
are the barycenters bσ of the simplices of K, that is, the vertices of K ′. The required
partial order ≤ is defined by bσ ≤ bτ if σ ⊂ τ . The open subspace Ubσ coincides with
X (σ), where σ (together with its faces) is regarded as a subcomplex of K. For a
simplicial map g : K −→ L, define X (g) : X (K) −→ X (L) by X (g)(bσ) = bg(σ),
and note that this function is order–preserving and therefore continuous. Using
the barycenters themselves to realize the vertices geometrically, we see from the
description of K ′ in Proposition 4.3.6 that K X (K) = K ′ and K X (g) = g′.
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We use Theorem 5.1.2 to obtain the following complementary result.

Theorem 5.2.2. For a simplicial complex K, there is a weak homotopy equiv-
alence

φ = φK : |K| −→X (K)

such that the following diagram is commutative

|K ′|

φK

��

|g′| // |L′|

φL

��
X (K)

X (g)
// X (L)

Proof. Define

φK = ψX (K) : |K ′| = |K X (K)| −→X (K).

Then φK is a weak homotopy equivalence and the diagram commutes by Theo-
rem 5.1.2. Since |K| = |K ′| and |L| = |L′|, we could replace |g′| by |g| in the
diagram. By Proposition 4.3.10, |g′| is simplicially close to |g| and hence homo-
topic to |g|. Therefore, after the replacement, the diagram would only be homotopy
commutative, in the sense that the two composite maps in the diagram would be
homotopic. �

5.3. Mapping spaces

For completeness, we record results of Stong [40, §6] that were obtained about Recheck: add?
Expository paper
topic?

the same time as the results of McCord recorded above and that give a quite
different approach to the relationship between finite simplicial complexes and finite
spaces. Since the proofs are fairly long and combinatorial in flavor, and since the
statements do not have quite the same immediate impact as those in McCord’s
work, we shall not work through the details here.

Rather than constructing finite models for finite simplicial complexes, Stong
studies all maps from the geometric realizations of simplicial complexes K into
finite spaces X by studying the properties of the function space XK ≡ X |K|.
More generally, he fixes a subcomplex L of K and a basepoint ∗ ∈ X and studies
the subspace (X, ∗)(K,L) of maps f : |K| −→ X such that f(|L|) = ∗. Homotopies
relative to |L| between such maps are homotopies h such that h(p, t) = ∗ for p ∈ |L|.

Theorem 5.3.1. Let L be a subcomplex of a finite simplicial complex K, let X
be a finite space with basepoint ∗, and let F = (X, ∗)(K,L) denote the subspace of
XK consisting of those maps f : |K| −→ X such that f(|L|) = ∗.

(i) For any f ∈ F , there is a map g ∈ F such that the set V = {h|h ≤ g} ⊂ F
is a neighborhood of f in F ; that is, there is an open subset U such that
f ∈ U ⊂ V .

(ii) If f ' f ′ relative to L, then there is a sequence of elements {g1, · · · , gs}
in F such that g1 = f , gs = f ′, and either gi ≤ gi+1 or gi+1 ≤ gi for
1 ≤ i < s.

The essential point of this analysis is the following consequence.

Corollary 5.3.2. The path components and components of F coincide. That
is, the homotopy classes of maps f : (K,L) −→ (X, ∗) are in bijective correspon-
dence with the components of F .
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5.4. Simplicial approximation and A-spaces

There are two papers, [16, 17], that start with the simplicial approximation
theorem and take up where McCord and Stong leave off. In view of the explicit
constructions of K (X) and X (K), the following definition is reasonable.

Definition 5.4.1. Define the barycentric subdivision of an A-space X to beearlier, in section
defining X , and
clarify what it
looks like without
barycenter terminol-
ogy

X ′ = X K (X). For a map f : X −→ Y , define f ′ : X ′ −→ Y ′ to be X K (f).
Iterating the construction, define X(n) = (X(n−1))′, where X(0) = X. Observe
inductively that K (X(n)) = K (X)(n) since K X (K) = K ′.

Proposition 5.4.2. There is a map ζ = ζX : X ′ −→ X that makes the follow-
ing diagram commute, and ζ is a weak homotopy equivalence.

|K X K (X)|

ψX K (X)

��

|K (X)′|
|ξK (X)|// |K (X)|

ψX

��
X ′ = X K (X)

ζX

// X.

The simplicial map ξK (X) coincides with K (ζX) : K (X ′) −→ K (X). The follow-
ing diagram commutes for a map f : X −→ Y .

X ′
f ′ //

ζX
��

Y ′

ζY
��

X
f
// Y

Proof. The points of X K (X) are the barycenters of the simplices of K (X).
These simplices σ are spanned by increasing sequences x0 < · · · < xn of elements of
X. Let ζ(bσ) = xn. Since bσ ≤ bτ implies σ ⊂ τ and thus ζ(bσ) ≤ ζ(bτ ), ζ is contin-
uous. We understand ξK (X) to be the standard choice specified in Definition 4.3.8.
Inspection of definitions shows that ξK (X) = K (ζX). The commutativity of the
first diagram follows from the “naturality” of ψ with respect to the map ζX . That
is, this diagram is a specialization of the commutative diagram of Theorem 5.1.2,
with f there taken to be ζX here. That ζX is a weak homotopy equivalence follows
from the diagram, since all other maps in it are weak homotopy equivalences. The
last statement is clear by inspection of definitions. �

Theorem 5.4.3. Let X be an F -space and Y be an A-space, and let f : |K (X)| −→
|K (Y )| be any map. Then for some sufficiently large n there is a map g : X(n) −→
Y such that f is homotopic to |K (g)|. We call g a finite approximation to f .

Proof. By the classical simplicial approximation theorem for simplicial com-
plexes, for a sufficiently large n there is a simplicial approximation

j : K (X(n−1)) = K (X)(n−1) −→ K (Y )

to f . Let g be the composite

X(n) = X K (X(n−1))
X (j) //X K (Y ) = Y ′

ζY //Y.

Then
K (g) = K (ζY ) ◦K X (j) = K (ζY ) ◦ j′.
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We have |j′| ' |j| by Proposition 4.3.10 and |j| ' f by assumption. Since we also
have |K (ζY )| = |ξK (Y )| ' id, we have |K (g)| ' f , as required. �

The point to emphasize here is that finite models for spaces have far too few
maps between them. For example, πn(Sn, ∗) = Z, but there are only finitely many
distinct maps from any finite model for Sn to itself. The theorem says that, after
subdividing the domain sufficiently, we can realize any of these homotopy classes
in terms of maps between (different) finite models for Sn.

5.5. Contiguity of maps between A-spaces

Remembering the definition of K (X), we may as well refer to points of an A-
space X as vertices and to finite ordered subsets of X as simplices. Thus “simplex”
is just a convenient abbreviation of “finite totally ordered subset”. We use that
language in translating the notion of contiguity from simplicial complexes to finite
spaces. If q > n, we agree to write ζ for the composite X(q) −→ X(n) determined
by iteration of maps ζ.

Definition 5.5.1. Let f, g : X −→ Y be continuous maps between A-spaces.
We say that f is contiguous to g if for every simplex σ of X, there is a simplex
of Y that contains both f(σ) and g(σ). More generally, let f : X −→ Y and
g : X(n) −→ Y be continuous maps. We say that f is contiguous to g if for each
simplex σ of X(n), there is a simplex of Y that contains both (f ◦ζ)(σ) and g(σ). If
q > n, a check of definitions shows that if f and g are continguous, then so are f and
g ◦ ζ. Similarly, if q > 0 and f and g are contiguous, then so are f ◦ ζ and g, where
now ζ : K(q) −→ K. The relation of contiguity is reflexive and symmetric, but it
is not transitive. We let ∼ denote the equivalence relation generated by contiguity.
Thus f ∼ g if there is a sequence of continuous maps {f = f1, · · · , fq = g} such
that fi is contiguous to fi+1 for i < q.

Proposition 5.5.2. If f : X −→ Y and g : X(n) −→ Y are contiguous maps
between A-spaces, then f ◦ ζ ' g : X(n) −→ Y .

The analogue for simplicial maps used the notion of simplicially close maps
from an arbitrary space to a simplicial complex. We have an analogous notion for
maps to A-spaces. The term “approximate map” is sometimes used for either of
these notions.

Definition 5.5.3. Let X be any space and let Y be an A-space. Two maps
f, g : X −→ Y are simplicially close if for each x ∈ X there is a simplex τ = τx of
Y such that f(x) and g(x) are both in τ .

Clearly contiguous maps between A-spaces are simplicially close in this sense.
Therefore the following result implies Proposition 5.5.2.

Proposition 5.5.4. At least if both X and Y are A-spaces, simplicially close
maps f, g : X −→ Y are homotopic.

Proof. Define h : X × I −→ Y by

h(x, t) = f(x) if 0 ≤ t < 1/2

h(x, 1/2) =

{
g(x) if f(x) ≤ g(x)
f(x) if g(x) ≤ f(x).

h(x, t) = g(x) if 1/2 < t ≤ 1
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Since f(x) and g(x) are both in a simplex τx, either f(x) ≤ g(x) or g(x) ≤ f(x).
Therefore h is well-defined, and it suffices to prove that h is continuous. One way
to study the problem is to introduce the three point space J = {0, 1/2, 1} whose
proper open subsets are {0}, {1}, and their union {0, 1}. Define π : I −→ J by

π([0, 1/2)) = 0, π(1/2) = 1/2, π((1/2, 1]) = 1.

Certainly π is continuous, hence so is id×π : X× I −→ X×J . There is an obvious
function j : X × J −→ Y such that h = j ◦ (id×π), namely

j(x, 0) = f(x), j(x, 1/2) = h(x, 1/2), j(x, 1) = g(x).

It suffices to prove that j is continuous. When X is an A-space, this can be done by
giving X×J the product order, namely (x, i) ≤ (x′, i′) if and only if both x ≤ x′ and
i ≤ i′, and checking that j is order-preserving since f and g are order preserving.
Since both 0 < 1/2 and 1 < 1/2 and since x ≤ x′ implies both f(x) ≤ f(x′) and
g(x) ≤ g(x′), the check is easy and can be left to the reader. �

Comparing our two definitions of simplicially close maps, for simplicial com-
plexes and for Alexandroff spaces, we see the following properties of the construc-
tions K and X .

Proposition 5.5.5. If f : K (X(m)) −→ K (Y ) and g : K (X(n)) −→ K (Y )
are contiguous maps of simplicial complexes, then ζY ◦X (f) : X(m+1) −→ Y and
ζY ◦ X (g) : X(n+1) −→ Y are contiguous maps of A-spaces. If f : X(m) −→ Y
and g : X(n) −→ Y are contiguous maps of A-spaces, then K (f) and K (g) are
contiguous maps of simplicial complexes.

Now the simplicial results Theorems 4.5.3 and 4.5.4 have the following imme-
diate consequences.

Proposition 5.5.6. If g : X(m) −→ Y and g′ : X(n) −→ Y are finite approxi-
mations of the same map f : |K (X)| −→ |K (Y )|, then g and g′ are contiguous.

Theorem 5.5.7. If f and f ′ are homotopic maps |K X| −→ |K Y | and g and
g′ are finite approximations to f and f ′, then g is contiguous to g′. Therefore, for
every pair of homotopic maps f, f ′ : |K X| −→ |K Y |, there is a sufficiently large
n such that f and f ′ have contiguous finite approximations X(n) −→ Y .

We have focused on understanding homotopy classes of maps between finite
simplicial complexes in terms of contiguity classes of simplicial maps and conti-
guity classes of continuous maps between finite spaces, but one can also ask the
relationship between homotopy classes and contiguity classes of maps between fi-
nite spaces. We have seen that contiguous maps are homotopic, but the converse
is also true. To see that, we refine Proposition 2.2.12, following [5, 2.1.1].

Definition 5.5.8. Maps f, g : X −→ Y between Alexandroff spaces are very
close if f = g on all but one point x ∈ X, and either f(x) < g(x) or g(x) <
f(x). The maps f, g are closely equivalent if there is a sequence of maps {f =
f1, f2, · · · , fq = g} such that fi is very close to fi+1 for i < q.

Lemma 5.5.9. If f, g : X −→ Y are very close, then they are contiguous.

Proof. Without loss of generality, we may assume that f(x) < g(x) for the
unique point x on which f and g differ. For a simplex σ of X that does not contain
x, we have f(σ) = g(σ), which is clearly contained in a simplex of Y . If x is in a
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simplex σ = {x0 < x1 < · · · < xn}, then x = xi for some i and f(σ) ∪ g(σ) is the
simplex obtained by deleting repetitions from the ordered set

{f(x0) ≤ f(x1) ≤ · · · ≤ f(xi) ≤ g(xi) ≤ g(xi+1) ≤ · · · ≤ g(xn)} �

Theorem 5.5.10. If f, g : X −→ Y are homotopic maps between finite spaces,
then f and g are very closely equivalent and are therefore contiguous.

Proof. By Proposition 2.2.12, we may assume without loss of generality that
f ≤ g. Let A ⊂ X be the set of points x such that f(x) 6= g(x). Of course, we may
assume that A is non-empty, and we let x be a maximal point in A, so that x′ > x
implies f(x′) = g(x′). Define f2 by f2(x′) = f(x′) for x′ 6= x and f2(x) = g(x).
Certainly f2 is order–preserving and thus continuous. It differs from g at one less
point than f = f1 differs from g. Repeating the construction, we arrive at fq = g
after finitely many steps since X and Y are finite. �

5.6. Products of simplicial complexes

We here discuss several important constructions that we shall use later. The
discussion focuses on how these concepts compare in the worlds of posets, simplicial
complexes, and general spaces.

Inclusions of posets and simplicial complexes have an obvious meaning, and
they are characterized as in Lemma 1.5.4. Quotients are more subtle and we shall
return to them when we discuss simplicial sets.

We defined disjoint unions X q Y of topological spaces in Definition 1.4.3 and
characterized the disjoint union by a universal property in Lemma 1.5.6. Similarly,
we defined the product X × Y of topological spaces in Definition 1.4.4 and charac-
terized the product by a universal property in Lemma 1.5.7. We can ask similarly
for disjoint unions, often called “‘coproducts”, and products of other kinds of ob-
jects. Since posets are “the same” as A-spaces, we can translate the definitions of
their coproducts and products to obtain the following definitions.

Definition 5.6.1. The disjoint union of posets X and Y is the set XqY with
the partial order specified by requiring X and Y to be subposets, with no relations
x ≤ y or y ≤ x for x ∈ X and y ∈ Y . If f : X −→ Z and Y −→ Z are order-
preserving functions to a poset Z, then there is a unique order-preserving function
X q Y −→ Z that restricts to f and g on X and Y .

Definition 5.6.2. The product of posets X and Y is the set X × Y with the
partial order specified by (x, y) ≤ (x′, y′) if x ≤ x′ and y ≤ y′. The projections
to X and Y are order-preserving and if f : W −→ X and g : W −→ Y are order-
preserving maps defined on a poset W , then the unique function W −→ X × Y
with coordinates f and g is order-preserving.

The specified partial orders on X qY and X×Y are the only ones that satisfy
the specified universal property. We shall discuss definitions like this formally
when we discuss categories, but this categorical point of view can be inconsistent
with properties we might like, as we illustrate by considering products of simplicial
complexes. Disjoint unions behave as one would expect and require no discussion.

Definition 5.6.3. The product K ×L of two abstract simplicial complexes K
and L has V (K × L) = V (K) × V (L) and has simplices all subsets of products
σ × τ of sets σ and τ that prescribe simplices of K and L. We must take subsets
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here since a general subset of σ × τ is not a product of subsets of σ and τ . The
projections from V (K × L) to V (K) and V (L) prescribe simplicial maps and if
f : J −→ K and g : J −→ L are maps of simplicial complexes then the unique
function V (J) −→ V (K)×V (L) with coordinates V (f) and V (g) prescribes a map
of simplicial complexes. The product of geometric simplicial complexes in RM and
RN is defined similarly as a geometric simplicial complex in RM+N = RM × RN .

It is important to distinguish beween ordered and unordered simplicial com-
plexes here. If we construct realizations directly, without introducing orderings,
it is not true that the realization of a product of abstract simplicial complexes is
homeomorphic to the product of their realizations. The former just has too many
simplices. The difference already appears when K and L each have just two vertices
and their subsets. However, the difference disappears in the presence of orderings.

Proposition 5.6.4. Let X and Y be posets. Then K (X×Y ) is a subdivision of
K (X)×K (Y ), hence both have the same geometric realization, and their common
realization is homeomorphic to |K (X)| × |K (Y )|.

Proof. Clearly K (X) ×K (Y ) and K (X × Y ) have the same finite set of
vertices. Inspection shows that every simplex of K (X×Y ) is contained in a product
of simplices of K (X) and K (Y ) and that every simplex of K (X)×K (Y ) is a union
of finitely many simplices of K (X×Y ). In more detail, the n-simplices of K (X×Y )
are all sets of pairs τ = {(xi, yi)|0 ≤ i ≤ n} such that (xi, yi) < (xi+1, yi+1). This
means that xi ≤ xi+1 and yi ≤ yi+1, with not both equal. If there are p+1 distinct
xi and q + 1 distinct yj , then ρ = {xi} is a p-simplex of K (X), σ = {yj} is a
q-simplex of K (Y ), and τ is contained in ρ× σ. There are many choices of τ that
determine the same ρ and σ. Thus every simplex of K (X × Y ) is contained in a
simplex of K (X)×K (Y ). The projections X×Y −→ X and X×Y −→ Y induce
the coordinates of a map

|K (X × Y )| −→ |K (X)| × |K (Y )|.
A point on the right is a pair (u, v) where u is an interior point of some simplex
σ of the geometric simplicial complexe gK (X) and v is an interior point of some
simplex τ of gK (Y ). Since all simplices on the left are subsimplices of some σ× τ ,
this map is a homeomorphism. �

Definition 5.6.5. Let K and L be ordered simplicial complexes (abstract or
geometric). Order the elements of V (K) × V (L) by (x, y) ≤ (x′, y′) if x ≤ x′ and
y ≤ y′. The simplices of the ordered simplicial complex K × L are the sets of pairs
τ = {(xi, yi)|0 ≤ i ≤ n} such that (xi, yi) < (xi+1, yi+1), {x0, . . . , xn} is a simplex
of K and {y0, . . . , yn} is a simplex of L.

With this definition in place, the last statement of Proposition 5.6.4 generalizes,
with the same proof.

Proposition 5.6.6. Let K and L be ordered (geometric) simplicial complexes.
Then the projections induce a homeomorphism

|K × L| −→ |K| × |L|.
Intuitively, the point is that the product of two geometric simplices is not a

geometric simplex (a square is not a triangle) but can be subdivided into geometric
simplices. In effect, the displayed homeomorphism carries out this subdivision
consistently over all of the simplices of a product of simplicial complexes.
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5.7. The join operation

The join operation played a very substantial role in the early decades of al-
gebraic topology and is a very natural operation in the context of simplicial com-
plexes. We shall only use it peripherally, when we relate simplicial complexes to
finite groups, but it is best introduced here, where comparisons with disjoint unions
and with products can be seen clearly.

Definition 5.7.1. The join X ∗Y of posets X and Y is the poset given by the
disjoint union of the posets X and Y , together with the additional relations x < y
if x ∈ X and y ∈ Y .

As something of a joke, consider the opposite choice available in Definition 5.7.1.

Definition 5.7.2. Define the antijoin (X ∗ Y )− of posets X and Y to be
the poset given by the disjoint union of the posets X and Y , together with the
additional relations y < x if x ∈ X and y ∈ Y .

There is no order-preserving function relating X ∗Y and (X ∗Y )−, but we have
the following illuminating observation.

Proposition 5.7.3. The subdivisions of X ∗ Y and (X ∗ Y )− are isomorphic.

Proof. Remember that X ′ = X K X. We define an isomorphism f : (X ∗
Y )′ −→ (Sd(X ∗Y )−)′ that restricts to the identity map between the subcomplexes
X ′ and Y ′ of each. A typical point of (X ∗ Y )′ that is in neither X ′ nor Y ′ has the
form

(x0 < · · · < xm < y0 < · · · < yn)

where m ≥ 0, n ≥ 0, xi ∈ X, and yj ∈ Y . Define

f(x0 < · · · < xm < y0 < · · · < yn) = (y0 < · · · < yn < x0 < · · · < xm).

It is visibly clear that f is a well-defined isomorphism of posets with inverse given
by

f−1(y0 < · · · < ym < x0 < · · · < xn) = (x0 < · · · < xn < y0 < · · · < ym).

�

If Y is a single point, then X ∗Y is the cone CX as we defined it earlier. Quillen
defines CX = (X ∗Y )−. The choice is arbitrary and we have just seen that the two
choices have isomorphic subdivisions and therefore homeomorphic realizations.

Remark 5.7.4. It is perhaps illuminating to use both choices, and we write
C+X for the first choice and C−X for the second. There is a canonical map i from
X ∗ Y to the poset C+X × C−Y − {(cX , cY )}, where cX and cY denote the cone
points. Indeed, we set i(x) = (x, cY ) and i(y) = (cX , y). Since x < cX and cY < y,
i(x) < i(y) for all x and y, while i(x) ≤ i(x′) if and only x ≤ x′ and i(y) ≤ i(y′) if
and only if y ≤ y′.

Just as for products, the precise definition of which is different when we consider
products of posets, of simplicial complexes, and of topological spaces, we have dif-
ferent meanings of the notion of join, all of which are denoted by ∗. However, unlike
products, which are characterized by a universal property, the different definitions
of the join are primarily motivated by the comparisons among them.
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Definition 5.7.5. The join K ∗ L of abstract simplicial complexes K and L
has vertex set V (K ∗L) the disjoint union of V (K) and V (L) and has simplices the
simplices of K, the simplices of L, and all disjoint unions of simplices of K and L.

The join of geometric simplicial complexes is defined similarly, requiring the
disjoint union of V (K) and V (L) to be a linearly independent set.

Conceptually, it is helpful to note that, just like the product, where X×Y is not
literally the same as Y ×X but only isomorphic to it, we should think of disjoint
union as an operation only commutative up to isomorphism. Then the evident
choice of order on the join of ordered geometric simplicial complexes corresponds
to the analogous choice we had when defining the join of posets in Definition 5.6.2.

Definition 5.7.6. The join of topological spaces X and Y is the quotient space
of X×I×Y obtained by identifying (x, 0, y) with (x′, 0, y) and (x, 1, y) with (x, 1, y′)
for all x, x′ ∈ X and y, y′ ∈ Y . It is the space of lines connecting X to Y . If X and
Y are geometrically independent subspaces of some large Euclidean space, X ∗ Y
is defined geometrically as the subspace of points tx + (1 − t)y for x ∈ X, y ∈ Y ,
and 0 ≤ t ≤ 1, noting that the point is independent of x if t = 0 and of y if t = 1.

Lemma 5.7.7. For spaces X and Y , X ∗ Y is homeomorphic to the union
(CX ×Y )∪X×Y (X ×CY ) where the notation indicates that we identify the copies
of X × Y in CX × Y and X × CY .

Proof. We identify X ∗ Y and (CX × Y ) ∪X×Y (X ×CY ) as homeomorphic
quotients of subspaces of X × Y × I × I. Let J be the diagonal {(s, t)|s+ t = 1} in
the square. Then X ∗ Y is homeomorphic to the quotient of X × Y × J obtained
from the equivalence relation given by

(x, y, (1, 0)) ∼ (x′, y, (1, 0)) and (x, y, (0, 1)) ∼ (x, y′, (0, 1)).

Think of the cone coordinates of CX and CY as the edges I1 = [(0, 0), (1, 0)] and
I2 = [(0, 0), (0, 1)] of I × I. Let K = I1 ∪ I2 ⊂ I × I. Then the space

(CX × Y ) ∪X×Y (X × CY )

is homeomorphic to the quotient of X × Y ×K obtained from precisely the same
equivalence relation. Radial projection from the point (1, 1) gives a deformation

I × I − {1, 1} −→ K

that restricts to a homeomorphism J −→ K and thus induces the claimed homeo-
morphism. �

Proposition 5.7.8. For posets X and Y ,

K (X ∗ Y ) ∼= K (X) ∗K (Y ).

For abstract simplicial complexes K and L,

g(K ∗ L) ∼= gK ∗ gL.
For ordered geometric simplicial complexes K and L,

|K ∗ L| ∼= |K| ∗ |L|.

We give another way to think about the join |K|∗|L| in RN , where K and L are
geometric simplicial complexes. The notion of X −{x}, x ∈ X, is clear for a poset.
For a simplicial complex K, K − {v} for v ∈ V (K) means the simplicial complex
that is obtained from K by deleting all simplices which have v as a vertex, and
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K (X − {x}) = K (X) − {x}. However, |K − {v}| is quite different from |K| − v.
The cone CK of a geometric simplicial complex K is obtained by by adding a vertex
cK that is geometrically independent of all vertices in K and adding a new simplex
spanned by the union of cK and the vertices of σ for each simplex σ of K. If K is
ordered, then CK is ordered by requiring cK to be greater than all other vertices.

Proposition 5.7.9. Let K and L be ordered (geometric) simplicial complexes.
Then

CK × CL− {(cK , cL)} = (CK × L) ∪K×L (K × CL)

as subcomplexes of CK × CL. Therefore

|K| ∗ |L| ∼= |CK × CL− {(cK , cL)}|

.

Proof. The simplices of CK × CL that do not have (cK , cL) as a vertex are
the simplices in either CK×L or K×CL. The gives the first conclusion. Geometric
realization commutes up to homeomorphism with cones, products and unions, so
that

|(CK × L) ∪K×L (K × CL)| ∼= (C|K| × |L|) ∪|K|×|L| (|K| × C|L|).

Now Lemma 5.7.7 gives the second conclusion. �

5.8. Remarks on an old list of problems
Revisit

We give a few problems that spring immediately to mind. To the best of my
knowledge, these have not been studied, at least not thoroughly. The original 2003
list was considerably longer, but a number of people around the world have since
solved many of its problems. Some of their solutions are sprinkled through the
book.

Problem 5.8.1. For small n, determine all homotopy types and weak homotopy
types of spaces with at most n elements.

Addendum 5.8.1. We have given the answer or left it as an exercise when n ≤
6. Most finite spaces with so few points are disjoint unions of (weakly) contractible
spaces, but we have seen several more interesting examples. I’d like to see the
answer for larger n.

Problem 5.8.2. Is there an effective algorithm for computing the homotopy
groups of X in low degrees in terms of the increasing chains in X? An REU paper
of Weng described in §?? elaborated on the computation of the fundamental group Not written yet
by Barmak [5].

Remark 5.8.3. The dimension of the simplicial complex K (X) is the maximal
length of a sequence x0 < · · · < xn in X. A map g : K −→ L of simplicial complexes
of dimension less than n is a homotopy equivalence if and only if it induces an
isomorphism of homotopy groups in dimension less than n and an epimorphism of
homotopy groups in dimension n.

Problem 5.8.4. Let X be a minimal finite space. Give a descriptive interpre-
tation of what this says about |K (X)|.
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Addendum 5.8.2. There is a nice paper of Osaki [34] that interprets Stong’s
process of passing from an F -space to its core Y . He shows that K (Y ) is obtained
from K (X) by a sequence of elementary simplicial collapses, so that |K (X)| and
|K (Y )| have the same “simple” homotopy type. It follows that if X and Y are
homotopy equivalent F -spaces, then K (X) and K (Y ) have the same simple ho-
motopy type. If K is not collapsible, then X (K) is a minimal finite space. As
Osaki points out and is clear from Example 3.4.8, there are non-collapsible trian-
gulations K1 and K2 of S1 such that X (K1) and X (K2) are not homeomorphic
and therefore, being minimal, not homotopy equivalent. Barmak and Minian [7]
went further and proved that two finite spaces X and Y are homotopy equivalent
if and only if |K (X)| and |K (Y )| have the same simple homotopy type.reference to Bar-

mak’s book already
here?

Finite spaces can be weak homotopy equivalent but not homotopy equivalent,
as we have seen in Examples 3.4.5 and 3.4.8. The following problems are far more
difficult than their analogues for homotopy equivalence, which we have treated
in §??, following the REU paper of Fix and Patrias. Note that the work of FixNot written yet
and Patrias implicitly addresses the problem of finding a computationally effective
algorithm for enumerating the homotopy types of finite spaces.

Problem 5.8.5. Are there computationally effective algorithms for enumerating
the weak homotopy types of finite spaces for small n? What is the asymptotic
behavior of the number of weak homotopy types of spaces with at most n elements?

Addendum 5.8.3. Osaki [34] has given two theorems that describe when one
can shrink an F -space, possibly minimal, to a smaller weakly homotopy equivalent
F -space. He asks whether all weak homotopy equivalences are generated by the
simple kinds that he describes. The question has since been answered in the nega-
tive, by Barmak and Minian [6]. Barmak’s thesis, which was inspired by my 2003
REU notes and has now become the book [5], goes a good deal further. There is
much more to be done on this problem, which is still not well understood.

Problem 5.8.6. Is there a combinatorial way of determining when a weak
homotopy equivalence of finite spaces is a homotopy equivalence?

Problem 5.8.7. Rather than restricting to finite simplicial complexes, can we
model the world of finite CW complexes, or at least the world of finite regular CW
complexes, in the world of finite spaces. The discussion of spheres and cones in
§3.4 gives a possible starting point. This is related to the combinatorially interesting
question of relating finite topological spaces to discrete Morse theory.



CHAPTER 6

Really finite H-spaces

Later? Details! Get
rid of types below?
Focus on Type I,
which is the stan-
dard defn of an H-
space.

The circle is a topological group. If we regard it as the subspace of the complex
plane consisting of points of norm one, then complex multiplication gives the prod-
uct S1 × S1 −→ S1. How can we model such a basic structure in terms of a map
of finite spaces?

Stong proved a rather amazing negative result about this problem. We will
not go into the combinatorial details of his proof, contenting ourselves with the Expository REU

paper? Research:
Alexandroff H-
spaces?

statement.

Definition 6.0.1. Let (X, e) be a finite space with a basepoint e and let
φ : X ×X −→ X be a map We say that X is an H-space of type I if multiplication
by e on either the right or the left is homotopic to the identity. That is, the maps
x → φ(e, x) and x → φ(x, e) are each homotopic to the identity. Say that X is an
H-space of type II if the shearing maps X×X −→ X×X defined by sending (x, y)
to either (x, φ(x, y)) or (y, φ(x, y)) are homotopy equivalences.

A topological group is an H-space of both types, but it is much less restrictive
for a space to be an H-space than for a space to be a topological group. By
definition, the notion of H-space is homotopy invariant in the sense that if one
defines an H-space structure on (X, e) to be a homotopy class of products φ, then
one has the following result.

Proposition 6.0.2. If (X, e) and (Y, f) are homotopy equivalent, then H-space
structures on (X, e) correspond bijectively to H-space structures on (Y, f).

This motivated Stong to study H-space structures on minimal finite spaces.
Here the following result is immediate from Theorem 2.4.5.

Proposition 6.0.3. Let (X, e) be a minimal finite H-space of type I. Then the
maps X −→ X that send x to either φ(x, e) or φ(x, e) are homeomorphisms.

Examining the combinatorial relationship of general points of X to the point
e, Stong then arrives at the following striking conclusion.

Proposition 6.0.4. If (X, e) is an H-space of either type, then the point e is
both maximal and minimal under ≤.

This means that e is a component of X. Stong shows that this implies the
following conclusions for general finite H-spaces.

Theorem 6.0.5. Let X be a finite space and let e ∈ X. Then there is a product
φ making (X, e) an H-space of type I if and only if e is a deformation retract of
its component in X. Therefore X is an H-space for some basepoint e if and only
if some component of X is contractible.

49
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Theorem 6.0.6. Let X be a finite space. Then there is a product φ making X
an H-space of type II if and only if every component of X is contractible.

Corollary 6.0.7. A connected finite space X is an H-space of either type if
and only if X is contractible.

So there is no way that we can model the product on S1 by means of an H-
space structure on some finite space X. Our standard model T = SS0 of S1 can
be embedded in C as the four point subgroup {±1,±i}, but then the complex
multiplication is not continuous. However, the multiplication can be realized as a
map (T×T)(n) −→ T for some finite n, by the simplicial approximation theorem for
finite spaces. It is natural to expect that some small n works here. The following
result is proven in [17].

Theorem 6.0.8. Choosing minimal points e in T and f ∈ T′ as basepoints,
there is a map

φ : T′ × T′ −→ T
such that φ(f, f) = e and the maps x −→ φ(x, f) and x −→ φ(f, x) from T′ to T
are weak homotopy equivalences.

That is, we can realize a kind of H-space structure after barycentric subdivi-
sion. The proof is horribly unilluminating. The space T′ has eight elements, the
space T has four elements. One writes down an 8 × 8 matrix with values in T,
choosing it most carefully so that when the 8 point and 4 point spaces are given
the appropriate partial order, and the 64 point product space the product order,
the function represented by the matrix is order preserving. Then one checks the
row and column corresponding to multiplication by the basepoint.

Several other interesting spaces and maps are modelled similarly in the cited
paper, for example RP 2 and CP 2.



CHAPTER 7

Group actions and finite groups

We shall explain some of the results and questions in a beautiful 1978 paper
[35] by Daniel Quillen. He relates properties of groups to homotopy properties of
the simplicial complexes of certain posets constructed from the group. He does
not explicitly think of these posets as finite topological spaces. He seems to have
been unaware of the earlier papers of McCord [32] and Stong [40] that we have
studied, and it is interesting to look at his work from their perspective. Stong
himself first looked at Quillen’s work this way [41], and we will include his results
on the topic. We usually work with a finite group G, but the basic definitions apply
more generally.

7.1. Equivariance and finite spaces

We begin with some general observations about equivariance and F -spaces,
largely following Stong [41].

A topological group G is a group and a space whose product G×G −→ G and
inverse map G −→ G are continuous. An action of G on a topological space X is a
continuous map G ×X −→ X, written (g, x) 7→ gx, such that g(hx) = (gh)x and
ex = x, where e is the identity element of G. A map f : X −→ Y of G-spaces is a
continuous map f such that f(gx) = gf(x) for g ∈ G and x ∈ X.

For a space X, the automorphism group AutX is the topological group of
homeomorphisms X −→ X. The group operation is composition, and AutX is
topologized as a subspace of the space of maps X −→ X with the compact open
topology. Suppose a topological group G acts on X. Then the action of g on X gives
a homeomorphism g : X −→ X. This gives a group homomorphism G −→ AutX.
At least if X is first countable, this map is also continuous. That is, it is a map of
topological groups.

We say that G acts trivially on X if gx = x for all g and x. We let G act
diagonally on products X × Y , g(x, y) = (gx, gy). In particular, with G acting
trivially on I, we have the notion of aG-homotopy, namely aG-map h : X×I −→ Y .
There is a large subject of equivariant algebraic topology, in which one studies the
algebraic invariants of G-spaces.

We begin with some basic ideas of equivalence in this context. We say that a
G-map f : X −→ Y is a G-homotopy equivalence if there is a G-map f ′ : Y −→ X
and there are G-homotopies f ◦ f ′ ' id and f ′ ◦ f ' id. For a subgroup H of G,
define the H-fixed point space XH of X to be {x|hx = x for h ∈ H}. Say that
a G-map f is an H-equivalence if fH : XH −→ Y H is a nonequivariant homotopy
equivalence. For nice G-spaces, the sort one usually encounters in classical algebraic
topology, which are called G-CW complexes, a map f is a G-homotopy equivalence
if and only if it is an H-equivalence for all subgroups H. Note that we have the
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much weaker notion of an e-equivalence, namely a G-map which is a homotopy
equivalence of underlying spaces, forgetting the action of G.

We also have weak notions. A G-map f is a weak G-homotopy equivalence if
each fH : XH −→ Y H is a weak homotopy equivalence in the nonequivariant sense.
We also have the notion of a weak e-equivalence, meaning a G-map that is a weak
homotopy equivalence of underlying spaces, forgetting the action of G.

In general, the notions ofG-equivalence are very much stronger than the notions
of e-equivalence. There are lots of G maps that are e-equivalences but are not G-
equivalences. We show that cannot happen when G acts on a finite space. We start
with some general observations.

Lemma 7.1.1. If an F -space G is a topological group, then it is discrete.Maybe better at
start of H-space
section? True with
same proof for
A-spaces

Proof. If h ≤ g, then, by the continuity of the inverse map, h−1 ≤ g−1. By
the continuity of left multiplication by h, e ≤ hg−1, and then, by the continuity of
right multiplication by g, g ≤ h. Since G is T0, g = h. Thus Ug = g is open for all
g and therefore every subset is open. �

We have observed that if a topological group G acts on a space X, then we
can view the action as given by a map of topological groups G −→ AutX. This
homomorphism has a kernel K, and the action factors through the quotient group
G/K, which is a topological group with the quotient topology. When X is an F -
space, AutX is finite since there are only finitely many functions X −→ X. But
then G/K is finite and therefore discrete. Thus we lose no generality if we restrict
our attention to finite discrete groups G acting on F -spaces. Therefore G will be
finite from now on.

Recall the notion of upbeat and downbeat points in an F -space X. Note that
if x is upbeat, so that there is a y > x such that z > x implies z ≥ y, then y is
uniquely determined by x.

Theorem 7.1.2. Let X be an F -space with an action by a group G. Then there
is a core C ⊂ X such that C is a sub G-space and equivariant deformation retract
of X. We call C an equivariant core of X.

Proof. The orbit Gx of an element x is {gx|g ∈ G}. If x is upbeat, then gx
is also upbeat, with gy playing the role of y. The inclusion X − Gx ⊂ X is the
inclusion of a sub G-space. Define f : X −→ X − Gx ⊂ X by f(z) = z if z /∈ Gx
and f(gx) = gy, where y > x is such that z > x implies z ≥ y. Clearly f ≥ id
and thus f ' id. An explicit homotopy used to show this is given by h(z, t) = z
if t < 1 and h(z, 1) = f(z), and this homotopy is a G-map. Removing upbeat and
downbeat orbits successively until none are left, we reach an equivariant core. �

Corollary 7.1.3. If X is a contractible F -space with an action by a group G,
then X is equivariantly contractible to a G-fixed point.

Proof. A core of X is a point, so an equivariant core must be a point with
the trivial action by G. �

Corollary 7.1.4. If X is a contractible F -space, then X has a point that is
fixed by every homeomorphism of X.

Proof. The finite group G of homeomorphisms of X acts on X, and an equi-
variant core is a fixed point. �
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Theorem 7.1.5. Let X and Y be F -spaces with actions by G and f : X −→ Y
be a G-map. If f is an e-homotopy equivalence, then f is a G-homotopy equivalence.

Proof. Let C and D be equivariant cores of X and Y . Let iX : C −→ X
and rX : X −→ C be the inclusion and retraction, and similarly for Y . Let be the
composite

C
iX //X

f //Y
rY //D, p = rY ◦ f ◦ iX .

Then p is a G-map and a homotopy equivalence between minimal finite spaces. The
latter property implies that p is a homeomorphism, and p−1 is necessarily also a
G-map. Define g : Y −→ X to be the composite

Y
rY //D

p−1

//C
iX //X, g = iX ◦ p−1 ◦ rY .

Then g ◦ f and f ◦ g are equivariantly homotopic to the respective identity maps.
Indeed, we have the homotopies

gf = gf idX ' gf iXrX = iXp
−1rY fiXrX = iXp

−1prX = iXrX ' idX
and

fg = idY fg ' iY rY fg = iY rY fiXp
−1rY = iY pp

−1rY = iY rY ' idY . �

7.2. The basic posets and Quillen’s conjecture

Fix a finite group G and a prime p. We define two posets. Compare with Bar-
mak’s book. Any-
thing interesting fur-
ther in there?

Definition 7.2.1. Let Sp(G) be the poset of non-trivial p-subgroups of G,
ordered by inclusion. An abelian p-group is elementary abelian if every element
has order 1 or p. This means that it is a vector space over the field of p elements.
Define Ap(G) to be the poset of non-trivial elementary abelian p-subgroups of G,
ordered by inclusion and let i : Ap(G) −→ Sp(G) be the inclusion.

Remark 7.2.2. Quillen calls a non-trivial elementary abelian p-group a p-torus,
and he defines its rank to be its dimension as a vector space.

The reason these posets are interesting is that G acts on them in such a way that
their topological properties relate nicely to algebraic properties of G. The action of
G is by conjugation. If H is a subgroup of G and g ∈ G, write Hg = gHg−1. The
function fg that sends P to P g gives an automorphism of the posets Ap(G) and
Sp(G). Clearly fe = id, where e is the identity element of G, and fg′g = fg′ ◦ fg.
These automorphisms are what give these posets their interest: the poset together
with its group action describe how the different p-subgroups are related under
subconjugation in G.

In particular, a point P in Ap(G) is fixed under the action of G if and only if
P g = P for all g ∈ G, and this means that P is a normal subgroup of G. Thus the
poset (Ap(G))G of fixed points is the poset of normal p-tori of G. We can therefore
relate algebraic questions about the presence of normal subgroups to topological
questions about the existence of fixed points. Of course, we may regard these posets
as F -spaces with G actions, and the theory of the previous section applies.

Remark 7.2.3. Some of Quillen’s language for studying these posets is similar
to the language we have been using, but it can be quite confusing. For example,
he says that a subset S of a poset X is closed if x ∈ S and y ≤ x implies y ∈ S. In
our language, this means that x ∈ S implies Ux ⊂ S, which says that S is open.
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The posets Sp(G) and Ap(G) are both empty if p does not divide the order of
G. At first sight, it might seem that Sp(G) is a lot more interesting and complicated
than Ap(G), but that is not the case. To understand the discussion to follow, it is
helpful to keep the following commutative diagram of spaces in mind, remembering
that its vertical arrows are weak homotopy equivalences.

|K Ap(G)|
|K (i)| //

ψ

��

|K Sp(G)|

ψ

��
Ap(G)

i
// Sp(G)

We first consider p-groups.

Proposition 7.2.4. If P is a non-trivial p-group, then Ap(P ) and Sp(P ) are
both contractible.

Proof. There is a central subgroup B of P of order p. We will be accepting
as known some basic facts in the theory of finite groups, such as this one. But
the proof is just an easy counting argument. We think of P as a P -set, with P
acting on itself by conjugation. As is true for any finite P -set P is isomorphic to
a disjoint union of orbits, each isomorphic to some orbit P/Q. Unless the orbit
consists of a single point, its number of elements is divisible by p, and the total
number of elements is the order of P . Since the identity element is an orbit with a
single point, there must be at least p− 1 other orbits with a single point, and such
a point is a non-identity element in the center of P .

For any subgroup A of P , we have A ⊂ AB ⊃ B. If A is a p-torus, then so
is AB since B is central. Define three maps Ap(P ) −→ Ap(P ): the identity map
id, the map f that sends A to AB, and the constant map cB that sends A to B.
These are all continuous, and our inclusions say that id ≤ f ≥ cB . This implies
that id ' f ' cB . Since the identity is homotopic to the constant map, Ap(G) is
contractible. The proof for Sp(G) is the same. �

Quillen calls a poset X conically contractible if there is an x0 ∈ X and a map
of posets f : X −→ X such that x ≤ f(x) ≥ x0 for all x. He was thinking in terms
of associated simplicial complexes, but we are thinking in terms of F -spaces. The
previous proof says that the F -spaces Ap(P ) and Sp(P ) are conically contractible.
It is to be emphasized that conically contractible finite spaces are genuinely and
not just weakly contractible. As we shall see, the difference is profound in the case
at hand. In contrast with the previous result, we emphasize the word “weak” in
the following result.

Theorem 7.2.5. The inclusion i : Ap(G) −→ Sp(G) is a weak homotopy equiv-
alence. Therefore the induced map |K i| : |K Ap(G)| −→ |K Sp(G)| is a weak
homotopy equivalence and hence an actual homotopy equivalence.

Proof. We have the open cover of Sp(G) given by the UP , where P is a non-
trivial finite p-group. Clearly i−1UP is the poset of p-tori of G that are contained
in P , and this is the contractible space Ap(P ). Our general theorem that weak
homotopy equivalence is a local notion applies. �

Definition 7.2.6. Define the p-rank of G, denoted rp(G), to be the maximal
rank of a p-torus in G. Observe that this is one greater than the dimension of the
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simplicial complex K Ap(G). (We interpret the dimension of the empty complex
to be −1).

Example 7.2.7. If the p-Sylow subgroups of G are cyclic of order p and there
are q of them, then Ap(G) is a discrete space with q points. For example, this
holds for some q if G is the symmetric group on n letters, where p is a prime and
p ≤ n < 2p.

Remark 7.2.8. Sylow’s third theorem is relevant. The number of Sylow p-
subgroups of G is congruent to 1 mod p and divides the order of G.

Theorem 7.2.9. The following statements are equivalent.

(i) G has a non-trivial normal p-subgroup.
(ii) G has a non-trivial normal elementary abelian subgroup.

(iii) Sp(G) is contractible.

Moreover, they are implied by the statement

(iv) Ap(G) is contractible.

Proof. Obviously (ii) implies (i). Conversely, as a matter of algebra, (i) im-
plies (ii). To see that, let P be a non-trivial normal p-subgroup of G and let C be
its center. For g ∈ G, c ∈ C, and p ∈ P ,

gcg−1p = gcg−1pgg−1 = gg−1pgcg−1 = pgcg−1

since g−1pg is in P and therefore commutes with c. This shows that any conjugate
of an element of C commutes with any element of P and is therefore in C, showing
that C is normal in G. Now let B be the set of elements b ∈ C such that bp = e.
Any conjugate of an element of B is in C and has pth power e, hence is in B.
Therefore B is a non-trivial normal elementary abelian subgroup of G.

To see that (i) implies (iii), let P be a non-trivial normal p-subgroup of G. For
any nontrivial p-subgroup Q of G, Q ⊂ QP ⊃ P , where QP denotes the subgroup
generated by P and Q. Since P is normal in G, QP = {qp|q ∈ Q and p ∈ P}.
This implies that id ≤ f ≥ cP , where f(Q) = QP and cP (Q) = P , hence Sp(G)
is conically contractible, hence contractible. The same argument does not apply to
show that (ii) implies (iv) since QP need not be abelian when Q and P are abelian.

Conversely, to see that (iii) implies (i) and (iv) implies (ii), we use Corol-
lary 7.1.3, which states that contractibility implies G-contractibility to a fixed point.
A fixed point of Sp(G) is a normal p-subgroup and a fixed point of Ap(G) is a nor-
mal elementary abelian p-subgroup. �

The inclusion i : Ap(G) −→ Sp(G) is not generally a homotopy equivalence.
To see this, we use the following observation.

Lemma 7.2.10. Let Qp(G) ⊂ Sp(G) be the subposet of nontrivial intersec-
tions of Sylow p-subgroups. Then Qp(G) is a G-equivariant deformation retract of
Sp(G).

Proof. For P ∈ Sp(G), let f(P ) be the intersection of the Sylow p-subgroups
that contain P . Then f : Sp(G) −→ Qp(G) is continuous and G-equivariant. More-
over, f(P ) = P if P is itself a p-Sylow subgroup. Let j : Qp(G) −→ Sp(G) be the
inclusion. Then fj = id. Since P ≤ f(P ), id ' jf via an equivariant homotopy. �
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Example 7.2.11. Let G = Σ5 be the symmetric group on five letters. Then
A2(G) and S2(G) are not homotopy equivalent. There are 6 conjugacy classes of
2-subgroups of G, as follows.

(i) Dihedral groups D4 of order 8, the Sylow 2-subgroups.
(ii) Cyclic groups C4 of order 4.

(iii) Elementary 2-groups C2 × C2 generated by transpositions (ab) and (cd).
(iv) Elementary 2-groups C2×C2 generated by products of disjoint transpositions

(ab)(cd), (ac)(bd), whose product in either order is (ad)(bc).
(v) Cyclic groups C2 generated by a transposition.
(vi) Cyclic groups C2 generated by a product of two disjoint transpositions.

Of course, each C2 × C2 contains three C2’s. Each C2 of type (v) is contained in
three C2 × C2’s of type (iii) and each C2 of type (vi) is contained in one C2 × C2

of type (iii) and one C2 × C2 of type (iv). This information shows that A2(G)
is minimal, hence not homotopy equivalent to any space with fewer points. The
intersections of Sylow 2-subgroups of G are the dihedral groups in (i), the groups
C2 × C2 of type (iv) and the subgroups C2 of type (v). In fact, Q2(G) is a core of
S2(G)). Counting, one sees that there are fewer points in Q2(G) than there are in
the minimal F -space A2(G), so these two F -spaces cannot be homotopy equivalent.

Quillen conjectured the following stronger version of the implication (iii) implies
(i) of Theorem 7.2.9, and he proved the conjecture for solvable groups.

Conjecture 7.2.12 (Quillen). If Ap(G) or equivalently Sp(G) is weakly con-
tractible, then G contains a non-trivial normal p-subgroup.

The hypothesis holds if and only if |K Ap(G)| or equivalently |K Sp(G)| is
weakly contractible and therefore contractible. We have seen that if G has a non-
trivial normal p-subgroup, then Ap(G) is contractible and therefore weakly con-
tractible. Quillen’s conjecture is that, conversely, if Ap(G) is weakly contractible,
then it is contractible and thus G has a non-trivial normal p-subgroup. In this
form, we see that the conjecture can be thought of as a problem in the equivariant
homotopy theory of F -spaces.

In particular, if G is simple and not isomorphic to Cp, then it has no non-
trivial normal subgroups and the conjecture implies that Ap(G) cannot be weakly
contractible. This consequence of the conjecture has been verified for many but
not all finite simple groups, using the classification theorem and proving that the
space Ap(G) has non-trivial homology. A conceptual proof would be a wonderful
achievement!

7.3. Some exploration of the posets Ap(G)

As an illustration of the translation of algebra to topology, we show how to
compute Ap(G×H) in terms of joins for finite groups G and H. We then see how
the computation appears in Quillen’s analysis of the poset Ap(Σ2p).

Proposition 7.3.1. The poset Ap(G×H) is homotopy equivalent to the poset
C−Ap(G)× C−Ap(H)− {(cG, cH)}.

Proof. Let T be the subposet of Ap(G × H) whose points are the p-tori in
G = G×e, the p-tori in H = e×H, and the products A×B of p-tori A in G and B
in H. (Remember that p-tori are non-trivial elementary abelian p-groups). Visibly,
thinking of trivial groups as conepoints and therefore < non-trivial subgroups, T
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is isomorphic to C−Ap(G)× C−Ap(H)− {(cG, cH)}. Let i : T −→ Ap(G×H) be
the inclusion. The projections π1 : G × H −→ G and π2 : G × H −→ H induce a
map r : Ap(G × H) −→ T such that r ◦ i = id. Explicitly, for C ∈ Ap(G × H),
r(C) = π1(C) × π2(C). Then i(r(C)) ⊃ C, which means that i ◦ r ≥ id and thus
i ◦ r ' id. �

In view of Proposition 5.7.9, this has the following immediate consequence.

Corollary 7.3.2. The space |K (Ap(G ×H))| is homotopy equivalent to the
space |K (Ap(G))| ∗ |K (Ap(H))|.

Proposition 7.3.3. Quillen’s conjecture holds if rp(G) ≤ 2.

Proof. The hypothesis cannot hold if rp(G) = 0, since Ap(G) is then empty
and hence not contractible. If rp(G) = 1, then the space Ap(G) is discrete since
there are no proper inclusions. It is weakly contractible if and only if it consists
of a single point, and then its single point must be fixed by the action of G. This
means that there is a unique p-torus in G, and it is a normal subgroup of order p. If
rp(G) = 2, then |K (Ap(G))| is one dimensional and contractible, which means that
it is a tree. According to Quillen, “one knows (Serre) that a finite group acting on a
tree always has a fixed point”. This means that G has a normal p-torus. The trees
here are of a particularly elementary sort, but the conclusion is still not altogether
obvious. The following problem gives a way of thinking about it. �

Problem 7.3.4. Consider an F -space X such that |K (X)| is a tree (a con-
tractible graph). Clearly X is weakly contractible. Prove that X is contractible.
(Search for upbeat or downbeat points). It follows that if a finite group G acts on
X, then X is G-contractible and therefore has a G-fixed point.

Much of Quillen’s paper is devoted to proving that the conjecture holds for
solvable groups G. This means that there is a decreasing chain of subgroups of G,
each normal in the next, such that the subquotients are cyclic of prime order. We
shall not repeat the proof.

However, following Quillen, we shall work out the structure of Ap(G) when
G = Σ2p is the symmetric group on 2p letters for an odd prime p. This is a first
interesting case since Ap(Σn) is empty if n < p and is a discrete space with one
element for each cyclic subgroup of order p if p ≤ n < 2p. (In fact, there are
n!/(n − p)!p(p − 1) such subgroups.) The analysis shows just how non-trivial the
posets Ap(G) are.

Let g ∈ G = Σ2p have order p. The group 〈g〉 it generates has order p, and its
action on the set S = {1, · · · , 2p} partitions S into two disjoint subsets, one given
by the orbit generated by an element s such that gs 6= s and the other given by
its complement, on which 〈g〉 acts either freely or trivially. If A ∼= Z/p × Z/p is a
maximal elementary abelian p-subgroup of G with generators g and g′, then since
g and g′ commute we can see that they give the same partition of S, so that each
such A gives a unique partition of the set S into two A-invariant subsets, each with
p elements. The set of such partitions of S into two subsets with p elements gives
a corresponding decomposition of Ap(G) into disjoint subposets, each consisting of
those A which partition S in the prescribed way.

Under the action of G, these partitions are permuted transitively, meaning that,
given two partitions, there is an element of G that permutes one into the other.
Consider for definiteness the partition into the first p and last p elements of S. Let
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H be the subgroup of those elements of G that fix this partition. The corresponding
subposet of Ap(G) is Ap(H). Here H is the wreath product Σ2

∫
Σp, which is the

semi-direct product of Σ2 with Σp × Σp determined by the permutation action of
Σ2 on Σp × Σp.

Since p is odd, Ap(H) = Ap(Σp × Σp), which, after passage to realizations of
simplicial complexes, is the join Ap(Σp) ∗ Ap(Σp). Since Σp has (p − 2)! Sylow
subgroups, each of order p, Ap(Σp) is the disjoint union of (p − 2)! points. After
counting the number of partitions and inspecting the join of our two discrete spaces
Ap(Σp), Quillen informs us, and we can work out for ourselves, that |Ap(Σ2p)|
is a disconnected graph with (2p)!/2(p!)2 components, each of which is homotopy
equivalent to a one-point union of ((p−2)!−1)2 circles. For example, for p = 5, there
are 25 circles. The same analysis applies to the alternating groups An for n ≤ 2p
since Ap(An) = Ap(Σn). Of course, these Ap(G) are not weakly contractible.

7.4. The components of Sp(G)

Let p be a prime which divides the order of G. We describe the set of com-
ponents π0(Sp(G)), which of course is the same as π0(Ap(G)). Recall that two
elements of a poset are in the same component if they can be connected by a chain
of elements, each either ≤ or ≥ the next. In the poset π0(Sp(G)), each element
is a p-group and is contained in a Sylow subgroup. Therefore there is at least one
Sylow subgroup in each component. Since any one Sylow subgroup P generates all
the others by conjugation by elements of G, G acts transitively on π0(Sp(G)), in
the sense that there is a single orbit. If N = NP denotes the subgroup of G that
fixes the component [P ] of P , then G/N is isomorphic to the G-set π0(Sp(G)) via
gN 7→ [P g]. We want to determine the subgroup N . Let Sylp(G) denote the set of
p-Sylow subgroups of G and let NGH denote the normalizer in G of a subgroup H.
Recall that Hg = gHg−1.

Proposition 7.4.1. The following conditions on a subgroup M of G are equiv-
alent.

(i) For some P ∈ Sylp(G), M ⊃ NP .
(ii) For some P ∈ Sylp(G), M ⊃ NGH for all H ∈ Sp(P ).

(iii) For some P ∈ Sylp(G), M ⊃ NGP and K ⊂ M whenever K is a p-
subgroup of G that intersects M non-trivially.

(iv) p divides the order of M and M ∩Mg is of order prime to p for all g /∈M .

Moreover, Sp(G) is connected if and only if there is no proper subgroup M which
satisfies these equivalent conditions.

Proof. The last statement holds since G is connected if and only if G = NP for
all P ∈ Sylp(G), in which case no proper subgroup can satisfy the stated conditions.
(i) =⇒ (ii): If g ∈ NGH with H ⊂ P , then Hg = H is contained in both P and
P g, so that [P ] = [P g] = g[P ]. This means that g ∈ NP ⊂M .
(ii) =⇒ (iii): Obviously M ⊃ NGP . Since P is a p-Sylow subgroup of G, it is
also a p-Sylow subgroup of M . Thus if H is a non-trivial p-subgroup of M , then
H is conjugate in M to a subgroup, Hm say, of P . Since M ⊃ NG(Hm) and
(NGH)m = NG(Hm), M ⊃ NGH. Let K be a p-subgroup of G such that K ∩M
is non-trivial. We have

K ∩M ⊂ NK(K ∩M) = K ∩NG(K ∩M) ⊂ K ∩M.
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Since K is a p-group, the first inclusion is proper if K ∩M is a proper subgroup of
K. Since this is a contradiction, we must have K ∩M = K and K ⊂M .
(iii) =⇒ (iv): Since M ⊃ P , p divides the order of M . Assume that p divides
the order of M ∩ Mg for some g ∈ G. Then there is a non-trivial p-subgroup
H ⊂ M ∩Mg. Let H ⊂ Q for Q ∈ Sylp(G). Since Q ∩M is non-trivial, we have

Q ⊂M . Since Hg−1 ⊂ Qg−1

and Hg−1 ⊂M , we also have Qg
−1 ⊂M . Since P , Q,

and Qg
−1

are p-Sylow subgroups of M , they are conjugate in M , say Qm = P and

Qg
−1

= Pn for m,n ∈ M . Then a quick check shows that mgn ∈ NGP ⊂ M and
therefore g ∈M , proving (iv).
(iv) =⇒ (i): Writing G as the disjoint union of double cosets MgM , one calculates
that the index of M in G is the sum over double coset representatives g of the
indices of M ∩Mg in M . Since p divides the order of M and does not divide the
order of M ∩Mg if g /∈ M , these indices are divisible by p except for the double
coset represented by e. Thus the index of M in G is congruent to 1 mod p, hence
M must contain some p-sylow subgroup P . Let N = NP . For n ∈ N , P and
Pn are in the same component. Considering p-Sylow subgroups containing groups
in a chain connecting them, we see that there is a sequence of p-Sylow subgroups
P = P0, P1, . . ., Pq = Pn such that Pi ∩ Pi+1 6= {e}. There are elements gi such
that P gii−1 = Pi, and we can choose gq so that gq · · · g1 = n. We have P ⊂ M ,
and we assume inductively that Pi−1 ⊂ M . Then Pi−1 ∩ Pi ⊂ M ∩Mgi , so this
intersection contains a p-group and, by (iv), gi ∈ M . This implies that Pi ⊂ M
and, inductively, we conclude that n ∈M , so that N ⊂M . �

Corollary 7.4.2. NP is generated by the groups NGH for H ∈ Sp(P ).

Proof. NP contains all of these NGH, so it contains the subgroup they gen-
erate, and it is the smallest such subgroup by the equivalence of (i) and (ii). �

By the contrapositive, G is not connected if and only if there is a proper
subgroup M of G that satisfies the equivalent properties of the proposition. For
example, if rp(G) = 1 and G has no non-trivial normal p-subgroup, then Ap(G)
is discrete and not contractible, and is therefore not connected. Quillen gives a
condition on G under which these are the only examples.

Proposition 7.4.3. Let H (= Op′(G)) be the largest normal subgroup of G of
order prime to p and let K (= Op′,p(G)) be specified by requiring K/H to be the
largest normal p-subgroup of the quotient group G/H. If K/H is non-trivial and
Sp(G) is not connected, then rp(G) = 1.

Proof. If Q is a p-Sylow subgroup of K, then K = QH since H is a p′-
group and K/H is a p-group. This implies that H acts transitively on π0(Sp(K))
since it implies that any two p-Sylow subgroups are conjugate by the action of
some h ∈ H. The intersection with K of a p-Sylow subgroup P of G is a p-Sylow
subgroup of K. A p-subgroup of K is a p-subgroup of G, and the induced map
π0(Sp(K)) −→ π0(Sp(G)) is surjective since P ∩ K ⊂ P implies that [P ] is the
image of [P ∩ K]. Therefore H also acts transitively on π0(Sp(G)). Let A be a
maximal p-torus of G. The map π0(Sp(AH)) −→ π0(Sp(G)) is also surjective
since H acts transitively on the target and the map is H-equivariant. Therefore
Sp(AH) is not connected. The component [A] is fixed by the centralizers CH(B)
for all non-trivial subgroups B of A since Bh = B ⊂ A for h ∈ CH(B). By [15,
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6.2.4], if A is not cyclic (= rank one), then H is generated by these centralizers,
which contradicts the fact that Sp(AH) is not connected. Therefore A is cyclic. �
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CHAPTER 8

A concise introduction to categories

To be written
Small versus large dichotomy
Monoids, Groups, Groupoids, Posets, Simplicial complexes, Ordered simplicial

complexes, spaces, finite spaces, F-spaces, Alexandroff spaces, A-spaces
Define functor
Define Natural transformation
Define product with I and homotopical version of natural transformation
Define isomorphism of categories, F-space and A-space examples
Define and characterize equivalence of categories
Poset and ordered simplicial complex examples
Full and faithful functors, full embedding, essential image
Yoneda lemma
Adjoint functors
Yoneda embedding: essential image is represented functors

8.1. The adjoint relationship between S and T
now out of order due
to last year reorgani-
zation

It has long been known that we can use simplicial sets pretty much interchange-
ably with topological spaces when studying homotopy theory. We sketch how this
is seen through the categorical eyes of an adjunction. For a simplicial set K, we
have defined a space |K| = TK, called the geometric realization of K. We write
|k, u| for the image of (k, u) in TK, where k ∈ Kn and u ∈ ∆[n]. For a space X,
we have defined a simplicial set SX, called the total singular complex of X, whose
n-simplices are the continuous maps f : ∆[n]t −→ X. The homotopical behavior
is studied through an adjunction: T and S are left and right adjoint functors in
the sense that we have just defined. That is, there is a bijection, natural in both
variables, between morphism sets

U (TK,X) ∼= sSet(K,SX).

It is specified by letting f : TK −→ X correspond to g : K −→ SX if

f(|k, u|) = g(k)(u).

There is an equivalent way of saying this. Define γ : TSX −→ X by

γ|f, u| = f(u) for f : ∆n −→ X and u ∈ ∆n.

It is a fact that γ is a weak homotopy equivalence for every space X, although we
shall not prove that here. There is also a map ι : K −→ STK of simplicial sets
specified by ι(k)(u) = |k, u| for k ∈ Kn and u ∈ ∆n. Again, as we also shall not
prove, |ι| : |K| −→ |STK| is a homotopy equivalence. These facts are proven, for
example, in [27]. The natural composite

SX
ιS //STSX

Sγ //SX

63
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is the identity map of SX. The natural composite

TK
Tι //TSTK

γT //TK

is the identity map of TK. Here ιS means first apply the functor S and then the
natural map γ, and similarly for γT . The natural maps ι and γ are the unit and the
counit of the adjunction. This means that, in the correspondence above, f = γ ◦Tg
and g = Sf ◦ ι.

8.2. The fundamental category functor Π

It is also known, although this is more recent, that we can use categories pretty
much interchangeably with topological spaces when studying homotopy theory. We
are going to say quite a lot about this later. This comparison again starts with an
adjunction. We have constructed a simplicial set NC called the nerve of C . We
define BC = TNC . This is called the classifying space of the category C . When G
is a group regarded as a category with a single object, BG is called the classsifying
space of the group G. The space BG is often written as K(G, 1). It is called an
Eilenberg-Mac Lane space. It is characterized (up to homotopy type) as a connected
space with π1(K(G, 1)) = G and with all higher homotopy groups πq(K(G, 1)) = 0.
A concise summary of how that works is in [30, §16.5]. More generally, a detailed
study of the classifying spaces of topological groups and what they classify is in [28].
These are fundamentally important constructions in topology and its applications.

The nerve functor N is accompanied by a functor Π: sSet −→ Cat, called the
“fundamental category” functor.1 It is left adjoint to N , meaning that

Cat(ΠK,C ) ∼= sSet(K,NC ).

This means that it is conceptually sensible, but, in contrast to such functors as S
and T , it does not have good homotopical properties, as we shall see.

For a simplicial set K, the objects of the category ΠK are the vertices (that is,
the 0-simplices) of K. To construct the morphisms, one starts by thinking of the
1-simplices y as maps d1y −→ d0y. One forms all words (formal composites) that
make sense, that is, whose targets and sources match up. One then imposes the
relations on morphisms determined by

s0x = idx for x ∈ K0 and d1z = d0z ◦ d2z for z ∈ K2.

We use the relations didj = dj−1di for i < j when (i, j) is (0, 1), (1, 2), and (0, 2) to
see that sources and targets match up. This makes good sense since if K = NC ,
then a 0-simplex is an object x of C , a 1-simplex y is a map d1y −→ d0y, the
1-simplex s0x is idx, and a 2-simplex z is given by a pair of composable morphisms
d2z and d0z together with their composite d1z.

Therefore there is a natural map ε : ΠNC −→ C that is the identity on objects
(the zero simplices of NC ) and is induced by the identity map from the generating
morphisms of ΠN C (the 1-simplices on NC ) to the morphisms of C . In fact,
ε is an isomorphism of categories: it is the identity on objects, and it presents
the category in terms of generators given by the morphism sets modulo relations
determined by the category axioms.

For the adjunction, a functor F : ΠK −→ C is constructed from a map of sim-
plicial sets g : K −→ NC by letting F be the unique functor that agrees with g

1There is no fully standard notation for this category. I’ve seen it denoted τ1, π1, π, and C.
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on objects (= 0-simplices) and equivalence classes of morphisms (= 1-simplices).
Applying the adjunction to the identity map of ΠK, we obtain a natural map
η : K −→ NΠK, which is the unit of the adjunction, and the counit is the isomor-
phism ε.

8.3. The Yoneda lemma and the structure of simplicial sets

We give a construction that is a precise categorical analogue of the geometric
realization of a simplicial set, and we use the Yoneda lemma to prove that it gives
an amusing way of reconstructing K categorically. This kind of result is actually
very useful in algebraic geometry, but we use it both to illustrate categorical ideas
and to prepare for a later conceptual construction of the subdivision functor on
simplicial sets.

Recall that we defined the standard simplicial n-simplex ∆[n]s to be the simpli-
cial set whose q-simplices are the monotonic functions σ : [q] −→ [n]; precomposition
with monotonic functions ξ : [p] −→ [q] gives the required contravariant functori-
ality on ∆. The nondegenerate q-simplices in ∆[n]s are the monomorphisms (=
strictly monotonic functions) [q] −→ [n], and there is one for each subset of [n]
of cardinality q + 1. We may identify the set of all non-degenerate simplices with
the poset of non-empty subsets of the set [n] of n + 1 elements, ordered by inclu-
sion. In other words, ∆[n]s = (K ([n])s is the ordered simplicial set determined
by the simplicial complex K ([n]). A monotonic function α : [m] −→ [n] gives a earlier
map α : ∆[m]s −→ ∆[n]s of simplicial sets that sends σ : [q] −→ [m] to α ◦ σ. Thus
∆[−]s is a covariant functor from ∆ to simplicial sets.

For a set C and a simplicial set L, one can form a new simplicial set C × L
by letting (C × L)q = C × Lq, and similarly letting the faces and degeneracies be
induced by those of L. A simplicial set K can be reconstructed from the disjoint
union over n of the simplicial sets Kn×∆[n] for n ≥ 0 by taking equivalence classes
under the equivalence relation generated by

(8.3.1) (α∗(k), σ) ' (k, α∗(σ))

for k ∈ Kn, σ ∈ ∆[m]sq, and α : [m] −→ [n] in ∆. Here α∗(k) ∈ Km is given by the
fact that K is a contravariant functor from ∆ to sets and α∗(σ) ∈ ∆[n]q is given by
the fact that ∆[−] is a covariant functor from ∆ to simplicial sets. The simplicial
structure is induced from the simplicial structure on the ∆[n]. The point is that an
arbitrary pair (k, τ) in Kn×∆[n]q is equivalent to the pair (τ(k), ιq) in Kq×∆[q]q,
where ιq : [q] −→ [q] is the identity map viewed as a canonical q-simplex in ∆[q],
and τ : [q] −→ [n] is viewed as a morphism of ∆, so that τ = τ∗(ιq). Identifying
equivalence classes of q-simplices with elements of Kq in this faction, we find that
the faces and degeneracies agree. Indeed, for ξ : [p] −→ [q], ξ ◦ ιp = ιq ◦ ξ and

(k, ξ∗(ιq)) = (k, ξ∗(ιp)) ' (ξ∗(k), ιp).
MORE TO COME:
K ∼= K ⊗∆ ∆s

QUESTION: Does
the canonical map
∆′ −→ ∆ define a
map of cosimplicial
simplicial sets. For
each n, it is a map
of simplicial sets,
and it is natural,
so surely yes! See
Definition 4.3.8,
Proposition 4.3.10,
Remark 4.3.11.

8.4. Tensor products of functors?

Add in: see §9 exam-
ples

Give the idea, relate to geometric realization of simplicial spaces and K ∼=
K ⊗∆ ∆s. Motivate by coming analogy with subdivision.
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CHAPTER 9

Simplicial sets

9.1. Motivation for the introduction of simplicial sets

Simplicial sets, and more generally simplicial objects in a given category, are
central to modern mathematics. While I am not a mathematical historian, I thought
I would describe in conceptual outline how naturally simplicial sets arise from the
classical study of simplicial complexes. I suspect that something like this recapitu-
lates the historical development.

We have described simplicial complexes in several different forms: abstract
simplicial complexes, ordered simplicial complexes, geometric simplicial complexes,
ordered geometric simplicial complexes and realizations of geometric simplicial com-
plexes. It is possible to go directly from abstract simplicial complexes to realiza-
tions without passing through geometric simplicial complexes, but the construction
is perhaps not as intuitive and will not be included.

An abstract simplicial complex is equivalent to a geometric simplicial complex,
and neither of these notions involves anything about ordering the vertices. If one
has a simplicial complex of either type, one can choose a partial ordering of the
vertices that restricts to a linear ordering of the vertices of each simplex, and this
gives the notion of an ordered simplicial complex. This can be done most simply,
but not most generally, just by choosing a total ordering of the set of all vertices
and restricting that ordering to simplices. However, there is no canonical choice.

We have seen in studying products of simplicial complexes that geometric re-
alization behaves especially nicely only in the ordered setting. Both the category
S C of simplicial complexes and the category OS C of ordered simplicial complexes
have categorical products. Geometric realization preserves products when defined
on OS C , but it does not preserve products when defined on S C . The functor
K is best viewed as a functor from the category P of partially ordered sets to the
category OS C rather than just to the category S C . Observe that there are gen-
erally many different ordered simplicial complexes with the same poset of vertices.
The functor K picks out the largest choice, the one in which every finite totally
ordered subset of the set of vertices is a simplex.

The functor X , on the other hand, starts in S C and lands in P, which can
be identified with the category of A-spaces. The composite K X is the barycentric
subdivision functor Sd : S C −→ OS C . It can be viewed as the construction
of a canonical ordered simplicial complex SdK starting from a given unordered
simplicial complex K, at the price of subdividing. Since the geometric realization
functor gives a space |SdK| that can be identified with |K| there is no loss of
topological generality working in OS C instead of S C .

The most important motivation for working with ordered rather than unordered
simplicial complexes is that the ordering leads to the definition of an associated
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chain complex and thus to a quick definition of homology. I’ll explain that in the
talks and add it to the notes if I have time.promise

As noted earlier, a topological space X is called a polytope if it is homeomorphic
to |K| for a (given) simplicial complex K. Such a homeomorphism |K| −→ X
is called a triangulation of X, and X is said to be triangulable if it admits a
triangulation. Then we can define the homology ofX to be the homology ofK. This
is a quick definition, and useful where it applies, but it raises many questions and is
quite unsatisfactory conceptually. Not every space is triangulable, and triangulable
spaces can admit many different triangulations. It is far from obvious that the
homology is independent of the choice of triangulation.

Simplicial sets abstract the notion of ordered simplicial complexes, retaining
enough of the combinatorial structure that homology can be defined with equal
ease. The generalization allow myriads of examples that do not come from simplicial
complexes. The original motivating example gives a functor from topological spaces
to simplicial sets. Composing with the functor from simplicial sets to homology
groups gives the quickest way of defining the homology groups of a space and leads
to the proof that these groups depend only on the weak homotopy type of the space,
not on any triangulation, and to the proofs that different triangulations, when they
exist, give canonically isomorphic homology groups.

Perhaps the quickest and most intuitive way to motivate the definition of sim-
plicial sets is to start from structure clearly visible in the case of ordered simplicial
complexes. Let X denote the partially ordered set V (K) of vertices of an ordered
simplicial complex K. The reader might prefer to start with an ordered simplicial
complex of the form K (X), where X is a poset. The reader may also want to insist
that X is finite, but that is not necessary to the construction, and we later want to
allow infinite sets.

Then an n-simplex σ of K is a totally ordered n + 1-tuple of elements of X.
Write such a tuple as (x0, · · · , xn). When studying products, we saw that it can
become essential to consider tuples (x0, · · · , xn), where x0 ≤ x1 ≤ · · · ≤ xn. Of
course, (x0, · · · , xn) is no longer a simplex, but one can obtain a simplex from it by
deleting repeated entries. When there are repeated entries, we think of (x0, · · · , xn)
as a “degenerate” n-simplex. Let Kn denote the set of such generalized n-simplices,
degenerate or not. For 0 ≤ i ≤ n, define functions

di : Kn −→ Kn−1 and si : Kn −→ Kn+1,

called face and degeneracy operators, by

di(x0, · · · , xn) = (x0, · · ·xi−1, xi+1, · · · , xn)

and

si(x0, · · · , xn) = (x0, · · ·xi, xi, · · · , xn).

Of course, the di and si just defined also depend on n, but it is standard not to
indicate that in the notation. In words, di deletes the ith entry and si repeats the
ith entry. If i < j and we first delete the jth entry and then the ith entry, we get
the same thing as if we first delete the ith entry and then delete the (new) (j− 1)st

entry. Similarly, elementary inspections give commutation relations between the di
and sj and between the si. Here is a list of all such relations:

di ◦ dj = dj−1 ◦ di if i < j
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di ◦ sj =


sj−1 ◦ di if i < j

id if i = j or i = j + 1

sj ◦ di−1 if i > j + 1

si ◦ sj = sj+1 ◦ si if i ≤ j
The reader can easily check that these identities really do follow immediately

from the definition of the Kn, di, and si above.
The Kn are defined in terms of the partially ordered vertex set V (K) of K, but

there are many examples of precisely similar structure that arise differently.

9.2. The definition of simplicial sets

We obtain our first definition of simplicial sets by formalizing structure that,
as we have just seen, is implicit in the definition of an ordered simplicial complex.

Definition 9.2.1. A simplicial set K is a sequence of sets Kn, n ≥ 0, and
functions di : Kn −→ Kn−1 and si : Kn −→ Kn+1 for 0 ≤ i ≤ n that satisfy
the identities just displayed. The elements of the set Kn are called n-simplices,
following the historic precedent of simplicial complexes. Just as if K were a sim-
plicial complex, a map f : K −→ L of simplicial sets is a sequence of functions
fn : Kn −→ Ln such that fn−1 ◦ di = di ◦ fn and fn+1 ◦ si = si ◦ fn. With these
objects and morphisms, we have the category sSet of simplicial sets.

Now our motivating example can be recapitulated in the following statement.

Proposition 9.2.2. There is a canonical functor i : OS C −→ sSet from the
category of ordered simplicial complexes to the category of simplicial sets. It assigns
to an ordered simplicial complex K the simplicial set Ks given by the sequence of
sets Ks

n and the functions di and si defined above. It assigns to a map f : K −→ L
of ordered simplicial complexes the map fs : Ks −→ Ls induced by its map of vertex
sets:

fsn(x0, · · · , xn) = (f(x0), · · · , f(xn)).

It is a full embedding, meaning that the maps K −→ L of ordered simplicial com-
plexes map bijectively to the maps Ks −→ Ls of simplicial sets.

The identities listed above are hard to remember and do not appear to be very
conceptual. The definition admits a conceptual reformulation that may or may
not make things clearer, depending on personal taste, but definitely allows many
arguments and constructions to be described more clearly and conceptually than
would be possible without it. We define the category ∆ of finite ordered sets.

Definition 9.2.3. The objects of ∆ are the finite ordered sets [n] with n + 1
elements 0 < 1 < · · · < n. Its morphisms are the monotonic functions µ : [m] ≤ [n].
This means that i < j implies µ(i) ≤ µ(j). Define particular monotonic functions

δi : [n− 1] −→ [n] and σi : [n+ 1] −→ [n]

for 0 ≤ i ≤ n by

δi(j) = j if j < i and δi(j) = j + 1 if j ≥ i
and

σi(j) = j if j ≤ i and σi(j) = j − 1 if j > i.

In words, δi skips i and σi repeats i.
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There are identities for composing the δi and σi that are “dual” to those for
composing the di and si that appear in the definition of a simplicial set. Precisely,
the duality amounts to reversing the direction of arrows. The following pair of
commutative diagrams should make clear how to interpret this, where i < j.

Kn

dj //

di

��

Kn−1

di

��
Kn−1

dj−1

// Kn−2

and [n] [n− 1]
δjoo

[n− 1]

δi

OO

[n− 2]
δj−1

oo

δi

OO

A moment’s reflection should convince the reader that every monotonic function
µ : [m] −→ [n] can be written as a composite of monotonic functions δi and σj for
varying i and j. That is, µ can be obtained by omitting some of the i’s and
repeating some of the j’s. Just as a group can be defined by specifying a set of
generators and relations, so a category can often be specified by a set of generating
morphisms and relations between their composites. The category ∆ is generated
by the δi and σi subject to our “dual” relations. This leads to the proof of the
following reformulation of the notion of a simplicial set. Recall that a contravariant
functor F assigns a morphism FY −→ FX of the target category to each morphism
X −→ Y of the source category.

Proposition 9.2.4. The category of simplicial sets can be identified with the
category of contravariant functors K : ∆ −→ Set and natural transformations be-
tween them.

Proof. The correspondence is given by viewing the functions di and si that
define a simplicial set as the morphisms of sets induced by the morphisms δi and σi
of the corresponding functor ∆ −→ Set. It is convenient to write µ∗ : Kn −→ Km

for the function induced by contravariance from a morphism µ : [m] −→ [n], and
then di = δ∗i and si = σ∗i . For a map f , the corresponding natural transformation
is given on the object [n] by the function fn. �

While we do not want to emphasize abstraction in the first instance, we never-
theless cannot resist the temptation to generalize the definition of simplicial sets to
simplicial objects in a perfectly arbitrary category. The generalization has a huge
number of applications throughout mathematics, and we shall use it when defining
homology.

Definition 9.2.5. A simplicial object in a category C is a contravariant func-
tor K : ∆ −→ C . A map f : K −→ L of simplicial objects in C is a natural
tranformation K −→ L; it is given by morphisms fn : Kn −→ Ln in C . We have
the category sC of simplicial objects in C . By composition of functors and natural
transformations, any functor F : C −→ D induces a functor sF : sC −→ sD . By
duality, a covariant functor ∆ −→ C is called a cosimplicial object in C .

9.3. Standard simplices and their role

We explain a general conceptual way to relate simplicial sets to “standard sim-
plices”. Standard simplices exist in many categories. We have standard simplices
in topological spaces, simplicial sets, and even posets and categories. In general,
fixing a category V , we often have a standard cosimplicial object in V , that is a



9.3. STANDARD SIMPLICES AND THEIR ROLE 73

certain covariant functor ∆[•]v : ∆ −→ V . The superscript v is meant as a reminder
that the functor is assigning objects in V to objects in ∆; it should also help to
distinguish the functor ∆[•]v from the category ∆. On objects, we write the func-
tor ∆[•]v as [n] 7→ ∆[n]v, but we agree to write µ∗ rather than ∆[µ]v for the map
∆[m]v −→ ∆[n]v in V obtained by applying our functor to a morphism µ in ∆. For
each object V of V we obtain a contravariant functor, denoted SV : ∆ −→ Set, by
letting the set SnV of n-simplices be the set V (∆[n]v, V ) of morphisms ∆[n]v −→ V
in the category V . The faces and degeneracies are induced by precomposition with
the maps

δi : ∆[n− 1]v −→ ∆[n]v and σi : ∆[n+ 1]v −→ ∆[n]v

obtained by applying the functor ∆[•]v to the generating morphisms δi and σi of
∆. That is, for a morphism ν : ∆[n]v −→ V in V ,

di(ν) = ν ◦ δi and si(ν) = ν ◦ σi.

Before turning to the motivating examples, in which V is the category U of
topological spaces or the category Cat of small categories, we apply this construction
to the case V = sSet.

Definition 9.3.1. Define the standard simplicial n-simplex ∆[n]s to be the
contravariant functor ∆ −→ sSet represented by [n]. This means that the set
∆[n]sq of q-simplices is the set of all morphisms φ : [q] −→ [n] in ∆. For a morphism
ν : [p] −→ [q] in ∆, the function ν∗ : ∆[n]sq −→ ∆[n]sp is given by composition,
ν∗(φ) = φ ◦ ν : [p] −→ [q].

Definition 9.3.2. We define a covariant functor ∆[•]s from ∆ to the category
sSet of simplicial sets. On objects, the functor sends [n] to the standard simplicial
n-simplex ∆[n]s. On morphisms µ : [m] −→ [n] in ∆, define µ∗ : ∆[m]sq −→ ∆[n]sq
by µ∗(ψ) = µ ◦ ψ : [q] −→ [m] −→ [n]. Thus the simplicial set ∆[n]s is defined
using pre-composition with morphisms of ∆, and then the covariant functoriality
of ∆[•]s is defined using post-composition with morphisms of ∆. The object ∆[•]v
is a cosimplicial simplicial set, that is, a cosimplicial object in the category of
simplicial sets.

We may identify the set of all non-degenerate simplices of ∆[n]s with the poset
of non-empty subsets of the set [n] of n+1 elements, ordered by inclusion. In other
words, ∆[n]s = (K ([n])s is the ordered simplicial set determined by the simplicial
complex K ([n]).

Although we shall give a direct proof, the following result is an application of
the Yoneda lemma. Let ιn ∈ ∆[n]sn be the identity map id: [n] −→ [n].

Proposition 9.3.3. Let K be a simplicial set. For x ∈ Kn, there is a unique
map of simplicial sets Y (x) : ∆[n]s −→ K such that Y (x)(ιn) = x. Therefore
K is naturally isomorphic to the simplicial set whose n-simplices are the maps of
simplicial sets ∆[n]s −→ K.

Proof. The map Y (x) is a natural transformation from the contravariant
functor ∆[n]s to the contravariant functor K from ∆ to Set. Since a q-simplex
φ : [q] −→ [n] is φ∗(ιn), we can and must specify Y (x) at the object [q] ∈ ∆ by the
function ∆[n]sq −→ Kq that sends φ to the q-simplex φ∗(x). �
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We can vary the construction in a way that may look unnatural but that will
lend itself to generalization to other examples. We show how to reconstruct K
directly from the ∆[n]s.

Construction 9.3.4. For a set J and a simplicial set L, one can form a
new simplicial set J × L by setting (J × L)q = J × Lq and letting the faces and
degeneracies be induced by those of L. Said another way, we think of J as a
“discrete” simplicial set with each Jq = J and all faces and degeneracies the identity
map of J , and we then take the product J × L of simplicial sets. We apply this
with J = Kn and L = ∆[n]s as n varies to obtain a simplicial set

K =
∐
n≥0

Kn ×∆[n]s.

We define an equivalence relation ' on K by requiring

(9.3.5) (α∗(k), σ) ' (k, α∗(σ))

for k ∈ Kn, σ ∈ ∆[m]sq, and α : [m] −→ [n] in ∆. Here α∗(k) ∈ Km is given by the
fact that K is a contravariant functor from ∆ to sets and α∗(σ) ∈ ∆[n]sq is given
by the fact that ∆[−]s is a covariant functor from ∆ to simplicial sets. With the
simplicial structure induced from the simplicial structure on the ∆[n]s, passage to
equivalence classes gives us a new simplicial set that we shall denote by T sK for
the moment. Then T s is a functor from simplicial sets to simplicial sets.

Proposition 9.3.6. The simplicial set T sK is naturally isomorphic to K.

Proof. We claim that an arbitrary pair (k, τ) in Kn ×∆[n]sq is equivalent to
the pair (τ(k), ιq) in Kq ×∆[q]sq where, as above, ιq : [q] −→ [q] is the identity map
viewed as a canonical q-simplex in ∆[q]s. Viewing τ : [q] −→ [n] as a morphism of
∆, we have τ = τ∗(ιq), and the claim follows. Identifying equivalence classes of q-
simplices with elements of Kq in this fashion, we find that the faces and degeneracies
agree. Indeed, for ξ : [p] −→ [q], ξ ◦ ιp = ιq ◦ ξ and

(k, ξ∗(ιq)) = (k, ξ∗(ιp)) ' (ξ∗(k), ιp). �

9.4. The total singular complex SX and the nerve NC

We turn to the historical motivating example V = U by constructing the
total singular complex SX of a topological space X. We need a covariant functor
∆[•]t : ∆ −→ U , and that is given by the standard topological simplices ∆[n]t.

Definition 9.4.1. Recall that the standard topological n-simplex ∆[n]t is the
subspace

{(t0, · · · , tn) | 0 ≤ ti ≤ 1 and Σiti = 1}
of Rn+1. Define

δi : ∆[n− 1]t −→ ∆[n]t and σi : ∆[n+ 1]t −→ ∆[n]t

by
δi(t0, · · · , tn−1) = (t0, · · · , ti−1, 0, ti, · · · , tn)

and
σi(t0, · · · , tn+1) = (t0, · · · , ti−1, ti + ti+1, ti+2, · · · , tn+1).

Then the δi and σi satisfy the commutation relations required to specify a covariant
functor ∆[•]t from ∆ to the category U of topological spaces, that is, a cosimplicial
object in the category of topological spaces.
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Definition 9.4.2. The total singular complex SX of a space X is the simpli-
cial set whose set SnX of n-simplices is the set of continuous maps ∆[n]t −→ X
and whose faces di and degeneracies si induced by precomposition with δi and
σi. By composition of continuous maps, a map f : X −→ Y induces the map
f∗ = Sf : SX −→ SY of simplicial sets that sends an n-simplex s : ∆[n]t −→ X
to the n-simplex f ◦ s. This defines the total singular complex functor S from
topological spaces to simplicial sets.

We shall return to this example after giving an analogue that may seem as-
tonishing at first sight. Although it has become a standard and commonplace
construction, its importance and utility were only gradually recognized. Recall
that a poset can be viewed as a category with at most one arrow between any pair
of objects: either x ≤ y, and then there is a unique arrow x −→ y, or x � y, and
then there is no arrow x −→ y. Composition is defined in the only possible way.
By definition [n] is a totally ordered set, hence of course it is a partially ordered
set. We can view it as a category and then the monotonic functions µ : [m] −→ [n]
are precisely the functors [m] −→ [n]: monotonicity says that if there is an arrow
i → j, then there is an arrow i ≤ j, which must be the value of the functor µ on
that arrow.

Definition 9.4.3. Let Cat denote the category whose objects are small cat-
egories and whose morphisms are the functors between them. Define a covariant
functor ∆[•]c : ∆ −→ Cat by sending the ordered set [n] to the corresponding cat-
egory [n] and sending a morphism µ : [m] −→ [n] to the corresponding functor
µ∗ : [m] −→ [n]. Thus ∆[•]c is a cosimplicial category. When necessary for clarity,
we write [n]c for the ordered set [n] regarded as a category.

It is consistent with our previous notations to write ∆[n]c for the poset [n]
regarded as a category. With that notation, the analogy with the definition of the
total singular complex becomes especially obvious.

Definition 9.4.4. Let C be a small category. We define a simplicial set NC ,
called the nerve of C . Its set NnC of n-simplices is the set of covariant functors
φ : [n]c −→ C . The function µ∗ : NnC −→ NmC induced by µ : [m] −→ [n] is
given by µ∗(φ) = φ ◦ µ, where µ is viewed as a functor [m]c −→ [n]c. A functor
F : C −→ D induces a function Fn = NnF : Nn −→ NnD by composition of
functors, Fn(φ) = F ◦φ. These functions specify a map F∗ = NF : NC −→ ND of
simplicial sets. Thus we the nerve functor N from Cat to the category of simplicial
sets.

The definition can easily be unravelled. The category [0]c has one object and
its identity morphism, hence a functor φ : [0]c −→ C is just a choice of an object
of C . That is, if we write OC for the set of objects of C , then N0C = OC . For
n ≥ 1, a functor φ : [n]c −→ C is a choice of n composable morphisms

c0
f1 //c1 // · · · //cn−1

fn //cn.

Denoting such a string by (f1, · · · , fn), the faces and degeneracies are given by

(9.4.5) di(f1, · · · , fn) =


(f2, · · · , fn) if i = 0

(f1, · · · , fi−1, fi+1 ◦ fi, fi+2, · · · , fn) if 0 < i < n

(f1, · · · , fn−1) if i = n



76 9. SIMPLICIAL SETS

si(f1, · · · , fn) = (f1, · · · , fi−1, id, fi, · · · , fn)

In words, the 0th and nth faces send (f1, · · · , fn) to the (n−1)-simplex obtained
by deleting f1 or fn; when n = 1 this is to be interpreted as giving the object c1
or c0. For 0 < i < n, the ith face composes fi+1 with fi. The ith degeneracy
operation inserts the identity morphism of ci. The ordering may look unnatural,
since fi+1 ◦ fi means first fi and then fi+1, and many authors prefer to reverse the
ordering in a composable sequence so that for n ≥ 1, a functor φ : [n]c −→ C is a
choice of n composable morphisms

c0 c1
f1oo oo · · · cn−1

oo cn.
fnoo

This amounts to replacing the categories ∆[n]c by their opposite categories. It is
the choice taken in the following hugely important example.

Example 9.4.6. Let G be a group regarded as a category with a single object ∗;
the elements of the group are the morphisms ∗ −→ ∗, and every pair of morphisms
is composable. The nerve NG is often written B∗G and called the bar construction.
It is the simplicial set with BnG = Gn, with n-tuples of elements written [g1| · · · |gn]
(hence the name “bar”) and with faces and degeneracies specified for 0 ≤ i ≤ n by

di[g1| · · · |gn] =

 [g2| · · · |gn] if i = 0
[g1| · · · |gi−1|gigi+1|gi+2| · · · |gn] if 0 < i < q
[g1| · · · |gn−1] if i = q.

si[g1| · · · |gn] = [g1| · · · |gi−1|e|gi| · · · |gn]

However NA is written, in general it looks nothing like our original example
of the simplicial set associated to an ordered simplicial complex! In one important
case, which we will find is far more common than one might reasonably expect, it
does look like that.

Example 9.4.7. Let X be a poset. We can obtain a simplicial set by regarding
X as a category and taking its nerve. Alternatively, we can take the ordered
simplicial complex K X and then take the simplicial set associated to that. It is
an instructive exercise to check that we get the same simplicial set via either route.
That is, NX is naturally isomorphic to (K X)s.

9.5. The geometric realization of simplicial sets

We have observed that the category ∆ is generated by the injections δi and
surjections σi. Decomposing a morphism µ : [m] −→ [n] as a composite of δi’s
and σj ’s records which elements of the target [n] are not in the image of µ and
which elements of the source [m] have the same image under µ. It is helpful to
be more precise about this. Let i1, · · · , iq in reverse order 0 ≤ iq < · · · < i1 ≤ n
be the elements of [n] that are not in the image µ([m]). Let j1, . . . , jp in order
0 ≤ j1 < · · · < jp < m be the elements j ∈ [m] such that µ(j) = µ(j + 1). With
these notations, m− p+ q = n and

(9.5.1) µ = δi1 · · · δiqσj1 · · ·σjp .

That is, we record duplications in such a manner that the indices record the repeated
and skipped elements in a sensible canonical order. The sequences of i’s and j’s in
this description of µ are uniquely determined.
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Using this canonical decomposition implicitly, we can be precise about the
definition and description of the geometric realization of a simplicial set K. The
construction is precisely analogous to Construction 9.3.4 and might well be denoted
by T tK.

Construction 9.5.2. For a set J and a space L, we regard J as a discrete
topological space and obtain the space J × L. Applying this with J = Kn and
L = ∆[n]t for n ≥ 0, we obtain the space

K̄ =
∐
n≥0

Kn ×∆[n]t

with the topology of the union. That is, we take the union of one topological
simplex for each n-simplex k ∈ Kn. Say that an n-simplex k is degenerate if
k = si` for some (n − 1)-simplex ` and some i and nondegenerate otherwise. We
shall glue the simplices together in such a way that we obtain a space with one
“n-cell” for each nondegenerate n-simplex of K. That means in particular that in
the resulting space every point will be the interior point of the image of exactly
one simplex {k} ×∆[n]t, where k is nondegenerate. Note that the unique point of
∆[0] is an interior point. We say that a point (k, u) of K̄ is nondegenerate if k is
nondegenerate and u is interior.

Define an equivalence relation ≈ on K̄ by letting

(µ∗k, u) ≈ (k, µ∗u)

for each k ∈ Kn, u ∈ ∆[m], and µ : [m] −→ [n]. This equivalence relation is
generated by the relations obtained by specializing to µ = δi or µ = σi. These can
be rewritten as

(dik, u) ≈ (k, δiu) and (sik, u) ≈ (k, σiu).

Each n-simplex kn can be written uniquely in the form kn = sjp · · · sj1kn−p, where

kn−p is nondegenerate and 0 ≤ j1 < · · · < jp < n. Define a function λ : K̄ −→ K̄
by

λ(kn, un) = (kn−p, σj1 · · ·σjpun)

where un ∈ ∆[n]t. Similarly, every un ∈ ∆[n]t can be written uniquely in the form
un = δiq · · · δi1un−q, where un−q is interior and 0 ≤ iq < · · · < i1 ≤ n. Define a

function ρ : K̄ −→ K̄ by

ρ(kn, un) = (diq · · · di1kn, un−q).

Lemma 9.5.3. The composite λ ◦ ρ carries each point of K̄ into the unique
nondegenerate point that is equivalent to it.

Define the geometric realization of K, which is usually denoted |K| but which
we shall usually denote by TK, to be the set of equivalence classes K̄/(≈). Define
FpTK to be the image of

∐
0≤n≤pKn ×∆[n] in TK and give it the quotient space

topology. Then topologize TK by giving it the topology of the union of the FpTK.
This means that a subset C is closed if and only if it intersects each FpTK in a
closed subset. We shall shortly give an equivalent description of this topology.
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9.6. CW complexes

We explain the nature of the space TK by introducing two equivalent definitions
of a CW complex. We start with the original 1949 definition of J.H.C. Whitehead
[42], which explains the name. We then observe that TK satisfies the specifications
of that definition. Finally, we give the more modern and now standard definition
of a CW complex. Let Dn be the disc {x||x| ≤ 1} ⊂ Rn.

Definition 9.6.1. A cell complex is a Hausdorff space X such that X is a
disjoint union of subspaces en, called “open cells”, each of which is homeomorphic
to an open disc D̊n. The closure of en in X is denoted ēn, and it is not required to
be homeomorphic to the closed disc Dn. Rather, for each open cell en, there must
be a map j̄ : ∆[n] −→ ēn such that

(i) The restriction of j̄ maps ∆̊[n] homeomorphically onto en.
(ii) The restriction of j̄ maps the boundary ∂∆[n] into the union of the cells of

dimension less than n.

A subcomplex A of X is a union of some of the cells of X such that if en ⊂ A, then
ēn ⊂ A. A cell complex is a CW complex if

(i) X is Closure finite, meaning that each ēn is contained in a finite subcomplex.
(ii) X has the Weak topology, meaning that a subset is closed if and only if its

intersection with each ēn is a closed subspace.

The capitalized C and W are the source of the name “CW complex”, but this
form of the definition is so rarely used nowadays that younger experts often have
no idea where the name came from. However, it is convenient for describing TK.

Theorem 9.6.2. The space TK is a CW complex with one n-cell for each
nondegenerate n-simplex kn ∈ Kn.

Proof. The n-cells en of TK are the images of the subspaces {kn}×∆̊[n], and

the map j : ∆[n] −→ ēn is the restriction of the map K̄ −→ TK to {kn} × ∆̊[n].
The topology of the union we prescribed before is in fact the “weak topology”. It
is “weak” in the sense that in general it has more open sets than the quotient space
topology, but the novice may not want to worry about the verification, preferring
to simply accept that our original definition of the topology gives what once upon
a time was called the weak topology. �

Here is the modern redefinition of a CW complex.

Definition 9.6.3. A CW complex is a space X that is the union of an ex-
panding sequence of subspaces Xn, where Xn is called the n-skeleton of X. It is
required inductively that

(1) X0 is a set with the discrete topology.
(2) Xn+1 is constructed from Xn as a “pushout”∐

Sn
j //

∩
��

Xn

��∐
Dn+1

j̄
// Xn+1.
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This means that Xn+1 is the quotient space

Xn ∪qSn (qDn+1) ≡ Xn q (qDn+1)/(≈)

specified by the equivalence relation s ≈ j(x) for s ∈ Sn ⊂ Dn+1.

The space X is given the topology of the union; equivalently, a subset is closed if
its intersection with each closed cell j̄(Dn) is closed.

We leave it as an exercise for the reader to see that the two definitions of a CW
complex give exactly the same spaces. The compactness of the spheres that are the
domains of attaching maps ensures that a CW complex with the second definition
is closure finite, as required in the first definition.

The intuition is that we glue discs Dn+1 to Xn as dictated by attaching maps
defined on their boundaries Sn. The attaching maps can be quite badly behaved.
For an ordered simplicial complex K, the classical geometric realization |K| is
homeomorphic to the geometric realization T (Ks) of its associated simplicial set
Ks. This is visually apparent since each has an n-cell for each n-simplex of K.
Remember that the n-simplices of K itself are of the form {x0 < · · · < xn} whereas
the elements of Kn are of the form {x0 ≤ · · · ≤ xn}. The degeneracy identifications
in the construction of TKs serve to eliminate the degenerate elements in which
some of the vertices are repeated.

In T (Ks) the closed cells are homeomorphic to ∆[n] and the attaching maps are
homeomorphisms on boundaries. Spaces can be “triangulated” as CW complexes
using many fewer cells than are required for polyhedral triangulations. For example,
we can triangulate the n-sphere Sn as a CW complex with just two cells. Clearly
S0 is a CW complex with two 0-cells, or vertices. For n > 0, we start with a single
0-cell ∗, take (Sn)n−1 = ∗ and attach a single n-cell with attaching map the trivial
map Sn−1 −→ ∗. Then the n-skeleton is ∗ ∪Sn−1 Dn = Dn/Sn−1, which is already
homeomorphic to Sn.

There is a natural half-way house between simplicial complexes and CW com-
plexes that will later play a role in our study.

Definition 9.6.4. A CW complex is regular if each of its attaching maps
Sn −→ Xn is a homeomorphism onto its image.

Remark 9.6.5. Earlier we neglected to give a precise definition of |K| for a
geometric simplicial complex with a possibly infinite number of vertices and thus
with possibly infinite dimension: while every simplex has a finite dimension, sim-
plices of all finite dimensions can occur. When K is ordered, we now have such a
definition. We just take the geometric realization of the associated simplicial set;
the result is a functor from the category of ordered simplicial sets to the category of
spaces. When K is finite, TKs is homeomorphic to |K| as we defined it originally.
We can also start with A-spaces, alias posets X. Then TK (X)s gives a composite
functor from the category of posets to the category of spaces.

Remember that the product K×L of ordered simplicial complexes K and L has
simplices all subsets of products σ × τ of simplices, where the ordering on vertices
is given by (x, y) ≤ (x′, y′) if x ≤ x′ and y ≤ y′.

Definition 9.6.6. Define the product K × L of simplicial sets K and L by
letting (K ×L)n = Kn×Ln, with di = (di, di) and si = (si, si), which implies that
µ∗ = (µ∗, µ∗) for all morphisms µ in ∆.
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This definition is forced by two considerations. First, it ensures the consistency
statement (K×L)s ∼= Ks×Ls. That is, if we start with ordered simplicial complexes
K and L, then the simplicial set (K × L)s is naturally isomorphic to the product
simplicial set Ks ×Ls. Second, the definition is dictated by the universal property
that we require of products in any category. Recall that the n-simplices of K × L
involve repeated vertices of K and L. These correspond to the use of degeneracy
operators in the factors Ks and Ls of the associated simplicial set. It clarifies
matters to be precise about this. We state the following lemma for general simplicial
sets K and L, but the reader should think about what it is saying when we apply
it to Ks and Ls for ordered simplicial complexes K and L.

Lemma 9.6.7. Let K and L be simplicial sets. The nondegenerate n-simplices
of K × L can be written uniquely in the form

(sip · · · si1k, sjq · · · sj1`),
where k is a nondegenerate (n−p)-simplex of K, ` is a nondegenerate (n−q)-simplex
of L, i1 < · · · < ip, j1 < · · · < jq, and the sets {ia} and {jb} are disjoint.

The set {ia} ∪ {jb} has p+ q elements and corresponds to a (p, q) shuffle per-
mutation of a set with p+ q elements. The term “shuffle” comes from thinking of a
permutation of a deck of p+ q cards that starts with a cut into p cards and q cards,
which are kept in order by the permutation. The reader will easily see that when
we started with posets X and Y and showed that K (X × Y ) is a subdivision of
K (X) ×K (L), we were actually verifying an instance of essentially this lemma.
From here, the reader will have no trouble believing the following result, the proof
of which amounts to appropriately subdividing topological simplices ∆[n]t.

Theorem 9.6.8. For simplicial sets K and L, the map

T (K × L) −→ TK × TL
whose coordinates are the maps Tπ1 and Tπ2 induced by the projections of K × L
on K and L is a homeomorphism.

We shall not repeat the proof, which adds precision and decreases intuition,
referring the reader, for example, to [27, 14.3] or [14, 4.3.15] for details. The latter
book is especially recommended as a very good and relatively recent treatment of
CW complexes, simplicial complexes, and simplicial sets.



CHAPTER 10

The big picture: a schematic diagram and the role
of subdivision

The n-skeleton Kn of a simplicial set K is the subsimplicial set generated by the
q-simplices for all q ≤ n. Visibly, ΠK depends only on the 2-skeleton K2. Therefore
the inclusion K2 −→ K of simplicial sets induces an isomorphism of categories
ΠK2 −→ ΠK for any K. In particular, Π takes the inclusion ι : ∂∆[n]s −→ ∆[n]s

of the boundary of the n-simplex to the identity functor when n > 2. Thus Π
loses homotopical information: upon realization, |ι| is equivalent to the inclusion
Sn−1 −→ Dn. What is amazing is that this extreme loss of information disappears
after subdividing twice. This is something I have been trying to better understand
for quite some time.

The reader will find it easy to believe that there is a subdivision functor on
simplicial sets that generalizes the subdivision functor Sd on simplicial complexes
in the sense that (SdK)s ∼= Sd(Ks) for a simplicial complex K. This allows one
to define a subdivision functor on categories by setting SdC = ΠSdNC . One can
iterate subdivision, forming functors Sd2 on both simplicial sets and categories.
What is mind blowing at first is that the iterated subdivision Sd2C is actually a
poset whose classifying space BSd2C is homotopy equivalent to BC . I will start
from a more combinatorial definition of SdC , and I will use it to give what I hope
the reader will find an easy combinatorial proof that Sd2C is indeed a poset.

However, before heading for that, let us summarize a schematic and technically
oversimplified global picture of all of the big categories that we are constructing
and comparing by functors. This is the same diagram as in the introduction, and
it gives an interesting picture of lots of kinds of mathematics that come together
with a focus on simplicial sets. Add left adjoint to i,

from Cat to Poset?

Grp
K(−,1) //

i

��

U

S

��

π1

oo

Cat

Sd2

��

N //

B

;;

sSet

T

OO

Sd2 //
Π

oo OS C
i

oo

U

��
Poset

i

OO

∼= // A-Space

K

;;

∼=
oo S C

X
oo
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Our earlier work focused on finite spaces, but the basic theory generalizes with
the finiteness removed, provided we understand simplicial complexes to mean ab-
stract simplicial complexes. As noted above, we didn’t define geometric realization
in general earlier, but we have done so now. The equivalence of posets with A-
spaces and the constructions K and X that we worked out in detail for finite
spaces work in exactly the same way when we no longer restrict ourselves to the
finite case. The functors i in the diagram are thought of as inclusions of categories.
Remember that we write i(K) = Ks for the simplicial set associated to an ordered
simplicial complex. We have defined all of the categories and functors exhibited in
the diagram except for Sd2, which is second subdivision.

Describe features of the diagram: posets vs ordered simplicial complexes (latter:
some but not all totally ordered subsets of the poset of vertices. [Said earlier])
Remember no canonical ordering, u cannot be a right adjoint, etc.



CHAPTER 11

Subdivision and Properties A, B, and C in sSet

We shall define three properties of a simplicial set, called Properties A, B,
and C. We say that a category satisfies property A, B, or C if its nerve satisfies
that property. Remember that the nerve functor N is a right adjoint whose left
adjoint is the fundamental category functor Π. We shall define the subdivision of a
simplicial set in such a way as to generalize the subdivision of simplicial complexes
that plays such a fundamental role in our study of finite spaces. We shall define
the companion notion of the subdivision of a category in the next chapter. We
write Sds for the subdivision functor on simplicial sets and Sdc for the subdivision
functor on categories when necessary for clarity. These are the main characters in
our story. We want to understand the relationships between these functors and
the rest of the categories and functors in our big picture. There are a number of
surprising and interesting implications.

11.1. Properties A, B, and C of simplicial sets

Definition 11.1.1. We define and name three properties that a simplicial set
might have.

(A) Property A, the nondegenerate simplex property: K has property A if every
face of a nondegenerate simplex x of K is nondegenerate.

(B) Property B, the distinct vertex property: K has property B if the n+1 vertices
of any nondegenerate n-simplex x of K are distinct.

(C) Property C, the unique simplex property: K has property C if for any set of
n + 1 distinct vertices of K, there is at most one nondegenerate n-simplex of
K whose vertices are the elements of that set.

Remark 11.1.2. In Property A, we mean that all faces dix are nondegenerate.
But then all faces of all dix are also nondegenerate. Iterating, all of the face q-
simplices of x for q < n are nondegenerate.

In line with this remark, there is a less succinct but useful characterization of
Property B. We express it with a notation that we shall use frequently later.

Notation 11.1.3. For a simplex x ∈ Kn and a (nonempty) subset S of the set
[n] = {0, 1, · · · , n}, let S∗x denote the simplex µ∗x ∈ Km, where µ : [m] −→ [n] is
the unique injection in ∆ with image S. Then the cardinality of S, which we write
as |S|, is m+ 1.

Proposition 11.1.4. A simplicial set K has Property B if and only if for every
n and every nondegenerate simplex x ∈ Kn, µ∗x and ν∗x are distinct simplices of
K for every pair µ and ν of distinct injections with target [n] in ∆; equivalently,
S∗x 6= T ∗x for every pair of distinct subsets S and T of [n].

83
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Proof. Property B is the case when µ and ν have source [0], so it is clear
that the new property implies Property B. For the converse, suppose that K
satisfies Property B and that S∗x = T ∗x for a nondegenerate simplex x ∈ Kn and
nonempty subsets S and T of [n]. This clearly implies that |S| = |T | = m + 1,
say, where 0 ≤ m ≤ n. Write S = {s0, · · · , sm} and T = {t0, · · · , tm}, each in
strictly increasing order. Consider the singleton subsets {i} ⊂ [m], {si} ⊂ [n], and
{ti} ⊂ [n], where 0 ≤ i ≤ m. Using the language of Notation 11.1.3, we have

{si}∗x = {i}∗S∗x = {i}∗T ∗x = {ti}∗x.
Since these are vertices of x, they are equal by Property B. This implies that si = ti
and thus S = T . �

It is natural to ask if there are implications among Properties A, B, and C.

Theorem 11.1.5. Property B implies Property A, but there are no other im-
plications between these properties.

Proof. Suppose that K does not have Property A. There is an n ≥ 1 and a
nondegenerate n-simplex with a degenerate face. Using the commutation relations
between faces and degeneracies, we see that any degenerate simplex has a degen-
erate 1-simplex as one of its 1-faces. Since both vertices of a degenerate 1-simplex
s0x are x, our original nondegenerate n-simplex cannot have distinct vertices. The
non-implications are proven by exhibiting counterexamples. We choose nerves of
categories, so that these non-implications will also be clear for categories. �

Example 11.1.6. Here are some examples which exhibit various non-implications.
(i) Let K = NC where C is the category with one object x and one non-identity
morphism p, with p ◦ p = p. Then K satisfies Property A but not Property B.
(ii) Let K = NC , where C is the category with two vertices x and y, two non-
identity morphisms x −→ y, and no morphisms y −→ x. Then K satisfies Proper-
ties A and B but not Property C.
(iii) Let K = NC2, where C2 is the cyclic group of order 2 regarded as a category
with one object. Then K satisfies Property C but not Properties A or B. For each
q, K has a unique nondegenerate q-simplex (g, · · · , g), where g is the generator of
C2. Since g2 = e, that simplex has a degenerate face when q ≥ 2.
(iv) More generally, if K = NCn, where Cn is the cyclic group of order n > 2 with
generator g, the simplices x = (g, · · · , g) ∈ Kq have all faces dix nondegenerate,
but iterated face operations reach degenerate simplices when q ≥ n.

Here is a thought exercise. Consider the simplicial set Ks associated to an
ordered simplicial complex K. Clearly it has all three properties. What about a
converse? Recall that there is a natural order on the set of vertices of the standard
n-simplex ∆[n]s. After all, they are the i with 0 ≤ i ≤ n. Since the set Kn can
be identified with the set of simplicial maps ∆[n]s −→ Kn, each simplex has an
induced ordering of its vertices. It need not be consistent as the simplices vary. We
can try to give the set of vertices a partial order that restricts to a total order on
each simplex by setting v ≤ w if and only if v and w are vertices of some simplex
x in some Kn and v ≤ w in the ordering of the vertices of that simplex.

Exercise 11.1.7. Suppose that a simplicial set K satisfies Properties B and
C. Then ≤ is a well-defined partial order on the set V = K0 that restricts to a
total order on the vertices of each non-degenerate simplex of K. With simplices
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those finite sets of vertices that are the vertices of some nondegenerate x ∈ Kn, we
obtain a simplicial complex L, and K is isomorphic to Ls. Conversely, if K does
not satisfy either Property B or Property C, then it cannot be isomorphic to Ls

for any simplicial complex L.

By abuse of language, we say that a simplicial set is a simplicial complex if it
is isomorphic to Ls for some ordered simplicial complex L. In fact, L is canonically
determined by K in the manner that we have described. The exercise proves the
following result.

Theorem 11.1.8. A simplicial set is a simplicial complex if and only if it
satisfies Properties B and C.

11.2. The definition of the subdivision of a simplicial set

For both simplicial sets and categories, there is both a conceptual definition
and an equivalent combinatorial definition. For simplicial sets, we begin with the
perhaps ugly looking and hard to grasp combinatorial definition and then show that
it is equivalent to a conceptual definition that is closely analogous to the definition
of geometric realization.

Definition 11.2.1. We define the subdivision SdK = SdsK of a simplicial set
K. The q-simplices of SdKq are the equivalence classes of tuples

(x;S0, · · · , Sq),
where, for some n ≥ 0, x ∈ Kn, each Si is a subset of [n], and Si ⊂ Si+1 for
0 ≤ i < q. The equivalence relation is specified by

(µ∗x;S0, · · · , Sq) ∼ (x;µ∗(S0, · · · , Sq))
for a morphism µ : [m] −→ [n] in ∆, where x ∈ Kn, hence µ∗x ∈ Km; here {Si} is
an increasing sequence of subsets of [m] and

µ∗(S0, · · · , Sq) = (µ(S0), · · · , µ(Sq)).

The simplicial operations are induced by

ν∗(x;S0, · · · , Sq) = (x;Sν(0), · · · , Sν(p))

for a map ν : [p] −→ [q] in ∆, where x ∈ Kn and {Si} is an increasing sequence
of subsets of [n] for some n. Subdivision is functorial. For a map f : K −→ L of
simplicial sets, f∗ = Sdf : SdK −→ SdL is induced by

f∗(x;S0, · · · , Sq) = (f(x);S0, · · · , Sq).

This definition is convenient for doing combinatorics and is directly motivated
by the following comparison, which we will prove in §11.3.

Theorem 11.2.2. If K is an ordered simplicial complex, then the simplicial
sets Sd(Ks) and (SdK)s are naturally isomorphic.

However, it obscures the idea behind the definition, which we now elucidate.
The conceptual definition parallels Constructions 9.3.4 and 9.5.2. The parallel
with the geometric realization functor is particularly useful, but the parallel with
the reconstruction functor T sK is especially illuminating.

Recall that ∆[n]s is the represented simplicial set with q-simplices the maps
α : [q] −→ [n] in ∆. Its nondegenerate simplices are the injections. It is a simplicial
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complex. That is, it can be viewed as (K [n])s. As a simplicial complex it has the
subdivision studied earlier, which we now regard as a simplicial set and denote by
Sd∆[n]s. Then the nondegenerate q-simplices of Sd∆[n]s are the ordered q-tuples
α = {α0, · · · , αq} of ∆[n]s, where αi is a face of αi+1, so that αi is obtained from
αi+1 by precomposition with an injection in ∆. For a map ν : [p] −→ [q] in ∆, the
simplicial operation ν∗ on Sd∆[n] is given by

ν∗(α) = (αν(0), · · · , αν(p)).

As n varies, the subdivisions Sd∆[n] define a covariant functor

Sd∆[•]s : ∆ −→ sSet,

that is, a cosimplicial simplicial set. For µ : [m] −→ [n], µ∗ : Sd∆[m]s −→ Sd∆[n]s

is given by

µ∗α = (µ ◦ α0, · · · , µ ◦ αq).
Strictly speaking, to write simplices in terms of injections only, we must interpret
µ◦αi as the injective part δ of the canonical decomposition of µ◦αi as the composite
δσ of a surjection σ and an injection δ. Here is the conceptual definition of SdK.

Construction 11.2.3. As in the construction of T sK given in Construc-
tion 9.3.4, regard each set Kn as just a set, or as a discrete simplicial set with
each (Kn)q = K and all faces and degeneracies the identity map. Then form the
product simplicial sets Kn × Sd∆[n]s and take their disjoint union to obtain the
simplicial set

SdK =
∐
n≥0

Kn × Sd∆[n].

Again as in the construction of T sK, define an equivalence relation on SdK. For
µ : [m] −→ [n] in ∆, we let

(µ∗x, α) ∼ (x, µ∗α).

where x ∈ Kn and α ∈ Sd∆[m]s. We suppress from the notation that this defines an
equivalence relation on q-simplices for each q. Now (SdK)q is the set of equivalence
classses of q-simplices. The simplicial operations on the simplicial sets Kn×Sd∆[n]s

are of the form id×ν∗. They induce the simplicial operations on SdK.

Remark 11.2.4 (Categorical remark). The definitions of T sK, SdK and TK
are all examples of “tensor products of functors”, often written K ⊗∆ L for a
contravariant functor K and a covariant functor L defined on ∆ (which could be
replaced by any other small category) but we shall not go into the general categorical
framework. However, as a specialization of a general categorical result about such
categorical tensor products, there is an associativity isomorphism of simplicial sets

(K ⊗∆ L)⊗∆ M ∼= K ⊗∆ (L⊗∆ M)

where K is a simplicial set and L and M are cosimplicial simplicial sets. Inductively,
this implies that

SdnK ∼= K ⊗∆ Sdn∆[−] =
∐
n

Kn × Sdn∆[n]/(∼),

where the equivalence relation is defined exactly as in Construction 11.2.3. This
gives a good hold on these functors, since Sdn∆[−] = (K (n)∆[−])s is just the
classical iterated barycentric subdivision, regarded as a simplicial set.
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To reconcile the combinatorial and conceptual definitions of SdK, observe
that injective maps α in ∆ are uniquely determined by their images. The q-
tuples (α0, · · · , αq) of injections above can just as well be viewed as the q-tuples
(S0, · · · , Sq) of the images of the αi, which are increasing sequences of subsets of
[n] for some n. After this replacement, the two definitions coincide. Observe that
the degenerate simplices of Sd∆[n]s are those for which Si = Si+1 for some i.

The conceptual definition is the one best suited for the proof of the following
basic result.

Theorem 11.2.5. The geometric realization of a simplicial set K is home-
omorphic to the geometric realization of SdK, but there is no natural simplicial
map between the two that realizes the homeomorphism. There is a natural map of
simplicial sets SdK −→ K that induces a homotopy equivalence TSdK −→ TK.

Proof. We compare SdK with the simplicial set isomorphic to K given by
Proposition 9.3.6. That simplicial set is constructed from K and the ∆[n] rather
than from K and the Sd∆[n]. The standard homeomorphisms between the |∆[n]|
and the |Sd∆[n]| induce the claimed homeomorphism between |K| and |SdK|.

The standard maps of simplicial sets ξ : Sd∆[n]s −→ ∆[n]s given by Defini-
tion 4.3.8 together specify a map ξ : Sd∆[•]s −→ ∆[•]s of cosimplicial simplicial
sets since they are natural, as observed in Remark 4.3.11. Using the conceptual
definition of SdK and the description of K as T sK in Proposition 9.3.6, we see
that ξ induces a natural map of simplicial sets ξ : SdK −→ K. The geometric
realization of the maps ξ : Sd∆[n]s −→ ∆[n]s are homotopy equivalences by Propo-
sition 4.3.7. It follows that the induced map Tξ : TSdK −→ TK is a homotopy
equivalence. The proof of the implication is just a bit beyond the scope of this
book; an old reference is [?, A.4(ii)]. The idea is that application of the maps ξ
gives a map that by inspection of the filtrations of TSdK and TK can be proven
to be a local weak homotopy equivalence, so that Theorem 3.3.1 gives that Tξ is
a weak homotopy equivalence. Since it is a map between CW complexes, it is a
homotopy equivalence. �

11.3. Combinatorial properties of subdivision

We use the combinatorial definition to derive some basic combinatorial prop-
erties of subdivision.

Definition 11.3.1. A q-simplex (x;S0, · · · , Sq) of SdK is in minimal form if
x ∈ Kn is nondegenerate and Sq = [n].

Proposition 11.3.2. Every simplex of SdK is equivalent to a unique simplex
in minimal form. When so written, a simplex is degenerate if and only if Si = Si+1

for some i.

Proof. Conceptually, this is analogous to the description of the points of
the geometric realization TK in nondegenerate form. We think of q-simplices of
Sd∆[n]s as “interior” if Sq = [n], and we then use the same canonical form for
morphisms of ∆ as composites of σ’s and δ’s that we used to prove the analogue for
realization. If we start with an element (y;T1, · · · , Tq) with y ∈ Kp, Ti ⊂ [p] and
|Tq| = m+1, we have a unique injection δ : [m] −→ [p] such that δ([m]) = Tq. There
are unique subsets Ri of [m] such that δ(Ri) = Ti, and (y;T1, · · · , Tq) is equivalent
to (δ∗y;R1, · · · , Rq), where Rq = [m]. Now there is a surjection σ : [m] −→ [n] and
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a nondegenerate simplex x of Kn such that σ∗x = δ∗y. Then (δ∗y;R1, · · · , Rq) is
equivalent to (x;S1, · · · , Sq) where Si = σ∗(Ri). By the surjectivity of σ, Sq = [n].
It is left as a thought exercise to see that this process reaches the unique minimal
element equivalent to the element we started with.

Now suppose that z = (x;S1, · · · , Sq) is in minimal form. If Si = Si+1, then z
is certainly degenerate. We must show that if z is degenerate, then some Si = Si+1.
The assumption means that z is equivalent to z′ = (y;T0, · · · , Tq), where Tj = Tj+1

for some j. However, unlike z, z′ might not be in minimal form. Just as above, let
y ∈ Kp, so that the Ti are contained in [p]. Let |Tq| = m+1 and choose an injection
δ : [m] −→ [p] such that δ([m]) = Tq. Define Ri = δ−1(Ti) for all i and note that
Rq = [m]. Then z′ is equivalent to z′′ = (δ∗y;R0, · · · , Rq). Now let δ∗y = σ∗w
where σ is a surjection and w ∈ Kn is nondegenerate. Then z′′ is equivalent to
(w;σ(R0), · · · , σ(Rq)). This simplex is in minimal form since σ([m]) = [n], so it
must be z. Thus x = w and Si = σ(Ri) = σiδ

−1(Ti). Since Tj = Tj+1, Sj = Sj+1.
This proves the result. �

Corollary 11.3.3. Let x ∈ Kn be nondegenerate. Then there is a nondegen-
erate q-simplex yq in SdK with qth vertex (x; [n]) if and only if q ≤ n.

Proof. If q ≤ n, set yq = (x; [n − q], [n − q + 1], · · · , [n]). Then yq is in
minimal form and nondegenerate, and its qth vertex is (x; [n]). Conversely, if we
have a nondegenerate yq with qth vertex (x; [n]), then, in minimal form, we must
have yq = (x;S0, · · · , Sq−1, Sq) with Si strictly contained in Si+1 for 0 ≤ i < n and
Sq = [n]. Clearly that implies q ≤ n. �

Proof of Theorem 11.2.2. The nondegenerate q simplices of the barycen-
tric subdivision SdK are the strictly increasing chains σ0 ⊂ · · · ⊂ σq of faces of a
simplex. If σq has cardinality n+ 1, its elements specify a nondegenerate n-simplex
x of Ks. Viewing x as a map ∆[n] −→ Ks via Proposition 9.3.3, the inverse images
of the σi specify an increasing sequence of subsets Si of [n] with Sq = [n]. The rest
is left as a thought exercise about elements of Sds(Ks) of minimal form. �

11.4. Subdivision and Properties A, B, and C of simplicial sets

Here is how subdivision relates to Properties A, B, and C.

Theorem 11.4.1. Subdivision of simplicial sets has the following properties.

(i) K has Property A if and only if SdK has Property A.
(ii) K has Property A if and only if SdK has Property B.

(iii) K has Property B if and only if SdK has Property C.

The following two corollaries are immediate.

Corollary 11.4.2. If K does not have Property A, then SdnK does not have
any of the three properties for any n ≥ 1. If K does have property A, then SdnK
has all three properties for all n ≥ 2.

Corollary 11.4.3. K has Property A if and only if Sd2K has Property C,
and then Sd2K also has Property B.

Now the following very satisfactory theorem follows directly from Theorem 11.1.8.

Theorem 11.4.4. A simplicial set K satisfies Property A if and only Sd2K is
a simplicial complex.
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We might also ask whether our properties shed light on the question of whether
or not a simplicial complex is the nerve of a category. We have the following
complement to the previous result. It is an analogue of the fact that the subdivision
of a simplicial complex is a poset. We will prove it later, in §12.6.

Theorem 11.4.5. A simplicial set satisfies Property A if and only if SdK is
the nerve of a category, namely the category ΠSdK.

The last clause is a consequence of the following general observation.

Proposition 11.4.6. If a simplicial set K is isomorphic to NC for some cat-
egory C , then the category C is isomorphic to ΠK.

Proof. If K ∼= NC , then ΠK ∼= ΠNC ∼= C . �

Since ordered simplicial complexes satisfy Property A when regarded as sim-
plicial sets, Theorem 11.4.5 has the following result as a special case. It says that
the subdivision of a simplicial complex is the nerve of a category. Remarkably, this
appears to be a new result.

Theorem 11.4.7. If K is an ordered simplicial complex, then Sd(Ks) is iso-
morphic to NΠSd(Ks).

11.5. The proof of Theorem 11.4.1

Since Property B implies Property A, by Theorem 11.1.5, the following two
implications prove both (i) and (ii) of Theorem 11.4.1.

Proof that if SdK has Property A, then so does K. Suppose for a con-
tradiction that we have a nondegenerate x ∈ Kn with a degenerate face dix = sjz,
where z ∈ Kn−2. Recall that djsj = id. In SdK, we have the 2-simplex1

(x; δiδj [n− 2], δi[n− 1], [n]).

It is written in minimal form and is nondegenerate. Its last face is the 1-simplex

(x; δiδj [n−2], δi[n−1]) ∼ (dix; δj [n−2], [n−1]) = (sjz; δj [n−2], [n−1]) ∼ (z; [n−2], [n−2])

since σjδj = id and σj : [n − 2] −→ [n − 2] is a surjection. This simplex is in
minimal form and degenerate, which contradicts the assumption that SdK has
Property A. �

Proof that if K has Property A, then SdK has Property B. Consi-
der a nondegenerate q-simplex y = (x;S0, · · · , Sq) written in minimal form. For
some n, x ∈ Kn is nondegenerate and the Si give a strictly increasing sequence
of subsets of [n], with Sq = [n]. The vertices of y are the (x;Si). Suppose that
(x;Si) ∼ (x;Sj) where 0 ≤ i < j ≤ q. Let µ : [mi] −→ [n] and ν : [mj ] −→ [n] be
injective maps in ∆ with images Si and Sj , respectively. Then

(µ∗x; [mi]) ∼ (x;Si) ∼ (x;Sj) ∼ (ν∗x; [mj ]).

Since K has Property A, the faces µ∗x and ν∗x are nondegenerate. Therefore, by
the uniqueness of the minimal form, we must have mi = mj . Since Si ⊂ Sj , this
implies that Si = Sj . The contradiction proves that SdK has Property B. �

1Here and below, we write α[n] to denote the set α([n]).
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Finally, the following two implications prove (iii) of Theorem 11.4.1.

Proof that if K has Property B, then SdK has Property C. Let

z1 = (x;S0, · · · , Sq) and z2 = (y;T0, · · · , Tq)
be nondegenerate q-simplices of SdK that have the same set of q+1 distinct vertices.
We must show that z1 = z2. We may assume without loss of generality that z1 and
z2 are in minimal form, with x ∈ Km, Sq = [m], y ∈ Kn, and Tq = [n] for some m
and n. Let mi + 1 = |Si| and ni + 1 = |Ti| and note that m0 < · · · < mq = m and
n0 < · · · < nq = n. Using Proposition 11.1.4, we see that the vertices of z1 and z2,
in minimal form, are the (S∗i x; [mi]) and the (T ∗i x; [ni]), respectively.

We are assuming that these two sets of vertices are the same. We claim that
they are the same as ordered sets. That is, (S∗i x; [mi]) = (T ∗i y; [ni]) for 0 ≤ i ≤ q.
Suppose not. Then (S∗i x; [mi]) = (T ∗j y; [nj ]) for some i 6= j, and we may assume
i < j. Since these are both in minimal form, mi = nj . By the pigeonhole principle,
we must have some j′ < j and i′ > i such that mi′ = nj′ . But then we have
mi < mi′ = nj′ < nj = mi, which is a contradiction.

Thus mi = ni and S∗i x = T ∗i y for all i. Since Sq = [m] = [n] = Tq, we have
x = S∗qx = T ∗q y = y. Then, by Proposition 11.1.4 again, Si and Ti must be defined
by the same injection and so must be equal. Therefore z1 = z2 and SdK has
Property C. �

Proof that if SdK has Property C, then K has Property B. Suppose
that K does not have Property B. Let x ∈ Kn, n > 0, be nondegenerate with re-
peated vertices α∗x and β∗x for injections α, β : [0] −→ [n]. By the uniqueness
of the minimal form, (x;α[0], [n]) and (x;β[0], [n]) are distinct 1-simplices of SdK.
However, these 1-simplices have the same vertex sets since one of the vertices of
each is (x; [n]) and the other is

(x;α[0]) ∼ (α∗x; [0]) = (β∗x; [0]) ∼ (x;β[0]).

Thus SdK does not have Property C. �

11.6. Isomorphisms of subdivisions
Not worth a section?

We saw in ?? that if X and Y are posets, then the subdivisions of X ∗ Y and
(X ∗ Y )− are isomorphic, hence so are their associated simplicial sets. However,
the posets X ∗Y and (X ∗Y )− are not isomorphic, and neither are their associated
simplicial sets. We round out the picture with the following rather strange looking
result, which puts this example in a more general context.

Proposition 11.6.1. If K and L are simplicial sets such that SdK and SdL
are isomorphic, then although K and L need not be isomorphic, for each n there is
a bijection of sets fn : Kn

∼= Ln such that the faces of a simplex x ∈ Kn correspond
bijectively under fn−1 to the faces of f(x).

Proof. Let g : SdK −→ SdL be an isomorphism of simplicial sets. For a
nondegenerate n-simplex x ∈ Kn, we have the vertex (x; [n]) in SdK. Write
g(x; [n]) = (y; [m]) in minimal form. Using Corollary 11.3.3, we see that m = n,
and we define fn(x) = y. If x ∈ Kn is degenerate, there is a unique surjection σ
and nondegenerate simplex z such that x = σ∗z. Define fn(x) = σ∗f(z). If we
apply the same construction starting from g−1 : SdL −→ SdK, we obtain an inverse
function f−1

n to fn. The (n + 1) faces dix of a nondegenerate x ∈ Kn correspond
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to the (n+ 1) 1-simplices yi = (x; δi[n− 1], [n]) of SdK, counted with multiplicities
in case of repetitions. The vertices of yi are d0yi = (x; δi[n − 1]) ∼ (dix; [n − 1])
and d1yi = (x; [n]) in minimal form. Since the nondegenerate faces of L admit a
similar description, we see that these faces correspond under fn−1 to the faces of
fn(x). The following example shows that K and L need not be isomorphic. �

11.7. Regular simplicial sets and regular CW complexes

Property A of a simplicial set is an analogue of the classical notion of regularity
for a CW complex X. The results of this section are peripheral to our main interests
here, but they help contrast simplicial sets with CW complexes. Incomplete section,

see Piccinini?
Or expository REU
paper project

Definition 11.7.1. A CW complex X is regular if its closed cells are homeo-
morphisms onto their images so that each cell map (Dn, Sn−1) −→ (en, ∂en) is a
homeomorphism.

Definition 11.7.2. A nondegenerate simplex x ∈ Kn is regular if the following
diagram is a pushout, where [x] denotes the subsimplicial set generated by x.

∆[n− 1]

δn

��

dnx // [dnx]

��
∆[n]

x
// [x];

K is regular if all of its nondegenerate simplices are regular.

Theorem 11.7.3. For any K, SdK is regular.

Theorem 11.7.4. If K is a regular simplicial set, then |K| is a regular CW
complex.

Theorem 11.7.5. If X is a regular CW complex, then X is triangulable; that
is X is homeomorphic to |Ks| for some simplicial complex K.





CHAPTER 12

Subdivision and Properties A, B, and C in Cat

12.1. Properties A, B, and C of categories

Categories are implicitly small unless they are obviously large, like the cate-
gories of spaces, simplicial sets, or (small) categories. We may interpret properties
A, B, and C of the simplicial set NC as properties of a category C .

Definition 12.1.1. A (small) category C has Property A, B, or C if the
simplicial set NC has Property A, B, or C.

Theorem 12.1.2. Let C be a category. The following statements hold.

(i) NC has property A if and only if C has the no retracts property, meaning that
retractions are identity maps: if we have morphisms i : a −→ b and r : b −→ a
in C such that r ◦ i = ida, then a = b and i = r = id.

(ii) NC has property B if and only if C has the no loops property, meaning that
loops are identity maps: if we have morphisms f : a −→ b and g : b −→ a in
C , then a = b and f = g = id.

(iii) NC has property C if and only if C has the one way property: there is at
most one sequence of nonidentity morphisms fi : Ci −→ Ci+1 connecting any
finite ordered set of objects {Ci}.

(iv) C is a poset if and only if NC has properties B and C.

Proof. A nondegenerate n-simplex of NC is a composable sequence

c0
f1 //c1 // · · · //cn−1

fn //cn

of nonidentity morphisms. It has a degenerate face if and only if one of the com-
posites fi+1 ◦ fi is an identity map. This proves (i).

For (ii), Property B says that the objects ci of a nondegenerate n-simplex are
distinct, which clearly implies the no loops property. Conversely, if ci = cj for some
i < j, the composite of f ’s from ci to cj is a loop ci −→ ci. We can write the
composite as g ◦ fi, The no loops property implies that fi and g are identity maps,
so that our simplex is degenerate. This proves (ii)

Statement (iii) is immediate from the definition of Property C.
For (iv), it is immediate from (ii) and (iii) that C satisfies Properties A and

B if and only if there is at most one morphism between any pair of objects of C .
That is precisely the characterization of posets regarded as categories. �

12.2. The definition of the subdivision of a category

Let C be a category. We start with a combinatorical definition of SdC = SdcC .
It may be hard to assimilate, but it is the right definition to start with. We will
eventually see that Sd is actually nothing but the composite functor ΠSdsN , but
that will require a fair amount of proof.

93
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The intuition is that SdC has objects all chains of non-identity maps, and
the set of morphisms from (fi, n) to (gi,m) is the set of all ways that (fi, n) can
be mapped injectively to a subchain of (gi,m). These ways are to be distinct
after accounting for degeneracies, which motivates the definition of the equivalence
relation in the following definition.

To define SdC rigorously, we first define a category DC . The objects of DC
are the chains of composable arrows in C . To abbreviate notation, we sometimes
write A = (fi,m) as shorthand for a chain

a0
f1 //a1

// · · · //am−1
fm //am.

We may think of such a chain as an m-simplex of NC .
The morphisms from (fi,m) to (gi, n) are the equivalence classes of maps

µ : [m] −→ [n] in ∆ such that µ∗(gi, n) = (fi,m) in NC . The equivalence re-
lation is generated under composition by the following basic equivalences. For a
surjective map σ : [q] −→ [p] in ∆ and for right inverses α, β : [p] −→ [q] to σ, so that
σα and σβ are both the identity morphism of [p], set α ∼ β : (hi, p) −→ σ∗(hi, p)
for any object (hi, p). Thisz makes sense since α∗σ∗ = id = β∗σ∗. Composition in
DC is induced by composition in ∆. Then define SdC to be the full subcategory of
DC whose objects are the non-degenerate chains. A functor F : C −→ C ′ induces
a functor NF : NC −→ NC ′, which in turn induces a functor SdF : SdC −→ SdC ′.
With these definitions, Sd is a functor Cat −→ Cat.

There is another way to view the definition, which may be easier to grasp.
The letter D above is meant to indicate that we allow degenerate chains as objects
of the category DC . We can instead start with the smaller category C C whose
objects (fi,m) are the nondegenerate chains, so that no fi is an identity map. The
maps from (fi,m) to (gi, n) in C C are the maps ν : [m] −→ [n] in ∆ such that
ν∗(gi, n) = (fi,m). Notice that such a map ν must be an injection since (fi,m) is
nondegenerate. Now define SdC to be the quotient category of C C with the same
objects but with equivalence classes of morphisms under the equivalence relation
generated by setting να ∼ νβ when

ν∗(gi, n) = (fi,m) = σ∗(hi, q)

for some surjection σ : [m] −→ [q] with right inverses α, β : [q] −→ [m].
The difference is whether we choose to first restrict to nondegenerate simplices

and then impose an equivalence relation or to first impose an equivalence relation
and then restrict to nondegenerate simplices. We get the same category either way.

Remark 12.2.1. It is useful to observe that if C has Property A, then no
ν∗(gi, n) can be degenerate and therefore C C = SdC .

12.3. Subdivision and Properties A, B, and C of categories

Despite the analogy with simplicial sets, the conclusions here read rather dif-
ferently.

Theorem 12.3.1. Subdivision of categories has the following properties.

(i) For any category C , SdC has Property B.
(ii) A category C has Property B if and only if SdC is a poset.

Again, the following remarkable theorem follows directly. Since this result
applies to any category C , it does not make sense to ask for a converse.
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Theorem 12.3.2. For any category C , Sd2C is a poset.

Example 12.3.3. The nerve of a poset need not be the subdivision of a simpli-
cial set. The poset Z of integers with its usual ordering provides a counterexample.
If NZ ∼= SdK and 0 corresponds to (x; [n]) in minimal form, then for any nonde-
generate q-simplex (y;S0, · · · , Sq) in minimal form that has qth vertex (x; [n]), we
have Sq = [n] and thus q ≤ n. However, in NC there are nondegenerate simplices
(−r,−r + 1, · · · , 0) for arbitrarily large r.

Since we have subdivision functors on both categories and simplicial sets, it is
natural to ask how these functors relate to the adjoint pair (Π, N). The following
result is either a theorem or a definition, depending on whether one chooses to start
with the combinatorial or the conceptual definition of the subdivision of a category.
We shall take it as a theorem and prove it in §12.5.

Theorem 12.3.4. For any category C , SdcC is isomorphic to ΠSdsNC .

This implies another characterization of categories having Property A.

Corollary 12.3.5. A category C has Property A if and only if SdsNC is
isomorphic to NSdcC .

Proof. If C has Property A, then Theorem 11.4.5 implies that SdsNC is
isomorphic to NΠSdsNC . By Theorem 12.3.4, the latter is isomorphic to NSdcC .
For the converse, NSdcC has Property B and therefore Property A by Theorems
12.3.1(i) and 11.4.1(ii). If SdsNC ∼= NSdcC , then C has Property A by Theo-
rem 11.4.1(i). �

Remark 12.3.6. For posets X, we obtain naturally isomorphic simplicial sets
if we regard X as a category and take its nerve or if we regard X as the simplicial
complex K X and take the associated simplicial set (K X)s. It is natural to ask
whether NSdcX is isomorphic to Sds(K X)s. Since X satisfies Property A (and
B and C), the previous result gives that

NSdcX ∼= SdsNX ∼= Sds(K X)s.

Remarkably, Theorem 12.3.4 also implies that the categorical analogue of The-
orem 11.2.5 is a direct implication of that result.

Theorem 12.3.7. There is a natural functor SdcC −→ C that induces a ho-
motopy equivalence on passage to classifying spaces.

Proof. We apply the natural map of simplicial sets of Theorem 11.2.5 and
the fact that the composite ΠN is isomorphic to the identity functor to obtain ξ as
the composite

SdcC ∼= ΠSdsNC −→ ΠNC ∼= C .

�

12.4. The proof of Theorem 12.3.1

We have three implications to prove.

Proof that SdC has Property B. We first prove that C C has Property
B. Let A = (fi,m) and B = (gi, n) be objects of C C and suppose that we have
morphisms µ : A −→ B and ν : B −→ A. Since these morphisms are given by
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injections in ∆, m = n. Since the only injection [n] −→ [n] is the identity map,
we have A = B and µ = id = ν. Thus C C has the no loops property, which is
equivalent to Property B. This property is inherited by the quotient category SdC .
If we have maps µ : A −→ B and ν : B −→ A in SdC , they must be represented
by maps µ and ν in C C , but these maps are identity maps by what we have just
shown, hence µ and ν are identity maps. �

Proof that if C has Property B, then SdC is a poset. Since Property
B implies Property A, C C = SdC by Remark 12.2.1. We must show that C C is
a poset. Let A and B be objects of C C . We must show that there is at most one
morphism between A and B. Suppose there is a morphism µ : A and B. Since we
have just shown that C C has the no loops property, there is no morphism B −→ A
unless A = B and µ = id. Suppose there is another morphism ν : A and B. We
must show that µ = ν. Since A = µ∗B = ν∗B, we have ai = bµ(i) = bν(i) for all i,
where the ai and bj are the objects appearing in the chains A and B. Since B must
be nondegenerate when thought of as an element of NC and C has the no loops
property, we have bi 6= bj for i 6= j. Therefore µ(i) = ν(i) for all i and µ = ν. �

Proof that if SdC is a poset, then C has Property B. Suppose that
C does not have Property B. Then there are objects A and B (possibly the
same) and non-identity maps f : A −→ B and g : B −→ A. Consider the ob-

jects A
f−→ B

g−→ A and A in SdC . Let α, γ : [0] −→ [2] be the maps with images
{0} and {2}, respectively. Then

α∗(A
f−→ B

g−→ A) = A = γ∗(A
f−→ B

g−→ A).

Since no degeneracy operator on A is a face of A
f−→ B

g−→ A, we cannot have
α ∼ γ; that is, they represent distinct morphisms of SdC . But that contradicts the
assumption that SdC is a poset. �

12.5. Relations among Sds, Sdc, N , and Π

We are heading towards the proof of Theorem 12.3.4. We recall that ΠK has
objects the vertices x ∈ K, morphisms generated by the 1-simplices y ∈ K, and
relations dictated by the 2-simplices z. For a vertex x, s0x is the identity map
of x. For a 1-simplex y, d1y is the source of y and d0y is the target of y. For a
2-simplex z, d1z = d0z ◦ d2z. The functor Π is left adjoint to N , and the counit
of the adjunction is a natural isomorphism ΠNC ∼= C . We start work with the
following understanding of the category ΠSdsK for simplicial sets K.

Proposition 12.5.1. Every morphism of the category ΠSdsK can be repre-
sented by a 1-simplex in SdsK, and the category ΠSdsK has Property B.

Proof. By definition, every morphism is a formal composite of 1-simplices,
say yq ◦ · · · ◦ y1. Since yi+1 ◦ yi is defined, the target d0yi is equal to the source
d1yi+1. We will show that such a formal composite of length q is equivalent to a
formal composite of length q − 1. By induction, it must be equivalent to a formal
composite of length 1, which is just a 1-simplex.

Write yi in minimal form (xi;Si, [ni]), where xi ∈ Kni is nondegenerate. Let
|Si| = mi ≤ ni and let αi : [mi] −→ [ni] be the injection with image Si. Since

(xq;Sq) = d1(xq;Sq, [nq]) = d0(xq−1;Sq−1, [nq−1]) = (xq−1; [nq−1]),
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there must be some surjection σ : [mq] −→ [nq−1] in ∆ such that α∗qxq = σ∗[xq−1].
Let β : [nq−1] −→ [mq] be a right inverse to σ. Then

(xq;αqβ[nq−1], Sq) ∼ (σ∗xq−1;β[nq−1], [mq]) ∼ (xq−1; [nq−1], [nq−1]),

which is degenerate and thus an identity morphism in ΠSdK. Consider the 2-
simplex z = (xq;αqβ[nq−1], Sq, [nq]). The relation d1z = d0z ◦ d2z gives that

(xq;αqβ[nq−1], [nq]) = (xq;Sq, [nq]) = yq

as morphisms in ΠSdK. Now use that β∗σ∗ = id on [nq−1] to see that

yq−1 = (xq−1;Sq−1, [nq−1]) ∼ (xq;αqβSq−1, αqβ[nq−1]).

Finally, consider the 2-simplex w = (xq;αqβSq−1, αqβ[nq−1], [nq]). The relation
d1w = d0w ◦ d2w gives that (xq;αqβSq−1, [nq]) = yq ◦ yq−1 in ΠSdK. This gives
the claimed reduction from word length q to word length q − 1.

To prove that ΠSdsK has Property B, we must verify the no loop condition.
Thus suppose that f : (x; [m]) −→ (y; [n]) and g : (y; [n]) −→ (x; [m]) are morphisms
in ΠSdsK, where x ∈ Km and y ∈ Kn are nondegenerate simplexes. We have just
shown that f and g can be represented by 1-simplices. It suffices to show that both
are degenerate, so that they are identity morphisms in ΠSdsK. We have

d0f = d1g = (y; [n]) and d0g = d1f = (x; [m]).

By the conditions on d0, we can write f = (y;T, [n]) and g = (x;S, [m]) in minimal
form. By the conditions on d1, we then have (y;T ) ∼ (x; [m]) and (x;S) ∼ (y; [n]).
Choose injections α : [p] −→ [m] and β : [q] −→ [n] with images S and T . We then
have

(x; [m]) ∼ (y;T ) ∼ (β∗y; [p]) and (y; [n]) ∼ (x;S) ∼ (α∗x; [q]).

Write α∗x = σ∗u where u ∈ Kj is nondegenerate and σ : [q] −→ [j] is a surjection.
Then

(y; [n]) ∼ (α∗x; [q]) = (σ∗u; [q]) ∼ (u; [j]).

Since these are both in minimal form, n = j ≤ q. Similarly m ≤ p. Since α and β
are injections, n = q, m = p, and α and β are identity maps. Thus S = [m] and
T = [n], showing that f and g are degenerate. �

Proof of Theorem 12.3.4. We shall prove that the categories SdcC and
ΠSdsNC are isomorphic by exhibiting inverse functors between these categories.
Moreover, these inverse isomorphisms of categories will be natural in C .

We first define F : SdC −→ ΠSdsNC and its inverse G on objects. The ob-
jects A = (fi,m) of SdC are the nondegenerate simplices of NC . The objects
of ΠSdsNC are the vertices of SdsNC . We may write these in minimal form as
(A; [m]), where A is an object of SdcC . We define F and G on objects by

F (A) = (A; [m]) and G(A; [m]) = A.

Visibly, FG = Id and GF = Id on objects.
We next define F on morphisms and we first define it on the morphisms of C C ,

which has the same objects as SdC . For objects A = (fi,m) and B = (gi, n), a
morphism ν : A −→ B is an injection ν : [m] −→ [n] such that ν∗B = A. We let
F (ν) be the morphism of ΠSdsNC represented by the 1-simplex ν = (B; ν[m], [n])
of SdsNC . It is straightforward and left to the reader to check that F is indeed a
functor, respecting composition and identities.
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To see that F induces a functor SdcC −→ ΠSdsNC , we must show that F
respects the equivalence relation used to define morphisms in SdcC from morphisms
in C C . Thus suppose that we have an injection ν : [m] −→ [n] and a surjection
σ : [m] −→ [q] such that ν∗B = A = σ∗C for some object C. Let α, β : [q] −→ [m]
be right inverses to σ. Then να ∼ νβ and we must show that να = νβ in ΠSdsNC .
Observe first that

(B; να[q], ν[q]) ∼ (σ∗A;α[q], [m]) ∼ (A; [q], [q]) ∼ (σ∗A;β[q], [m]) ∼ (B; νβ[q], ν[q])

are degenerate 1-simplices of SdNC . Therefore they are identity morphisms of
ΠSdNC . We now use the definition of Π to see that

να = (B; να[q], [n]) = (B; νβ[q], [n]) = νβ

ΠSdsNC . In fact, both are equivalent to (B; ν[m], [n]), as we see by considering
the relations of the form d1z = d0zd2z induced by the 2-simplices

(B; να[q], ν[m], [n]) and (B; νβ[q], ν[m], [n])

of NSdsC . Therefore F induces a well-defined functor SdcC −→ ΠSdsNC .
We next define G : ΠSdsNC −→ SdcC on morphisms. We claim that every

morphism (A; [m]) −→ (B; [n] in ΠSdsNC is of the form ν, and we define G(ν) = ν.
Visibly this will ensure that FG = Id and GF = Id on morphisms. By Proposi-
tion 12.5.1, a morphism (A; [m]) −→ (B; [n]) in ΠSdsNC can be represented by
some 1-simplex (D;S, [r]) in SdsNC . Inspection of source and target shows that
we must have

d1(D;S, [r]) = (D;S) ∼ (A; [m]) and d0(D;S, [r]) = (D; [r]) ∼ (B; [n]).

By the uniqueness in minimal form r = n and D = B. Then (B;S) ∼ (A; [m]).
Let S be the image of an injection ν : [p] −→ [n], and note that ν is uniquely
determined by S. Then (B;S) ∼ (ν∗B; [p]). By the uniqueness in minimal form,
[p] = [m] and ν∗B = A. Thus our morphism is given in minimal form by the
1-simplex ν = (B; ν[m], [n]), where ν∗B = A. We have effectively used the defining
relations for ΠSdsNC in the reduction to 1-simplices of Proposition 12.5.1, and G
is well-defined.

We have not checked that G is actually a functor, but fortunately we don’t have
to. It is a familiar observation that a homomorphism of groups that is a bijection
of sets is an isomorphism of groups. In our situation, the same argument works to
prove that G preserves identity morphisms and respects composition. Indeed

G(id(A;[m])) = GF (idA) = idA

and, for composable morphisms µ and ν of ΠSdsNC ,

G(ν ◦ µ) = G(F (ν) ◦ F (µ)) = GF (ν ◦ µ) = ν ◦ µ
and

G(ν) ◦G(µ) = GF (ν) ◦GF (µ) = ν ◦ µ. �

12.6. Horn-filling conditions and nerves of categories

There are special kinds of simplicial sets that appear ubiquitously and are
central to the applications of simplicial sets to other areas of mathematics. They
are closely related to our focus on the relationship between simplicial sets and
categories, and understanding them leads to several equivalent characterizations of
those simplicial sets which are the nerves of categories.



12.6. HORN-FILLING CONDITIONS AND NERVES OF CATEGORIES 99

Define Λkn to be the subsimplicial set of ∆[n]s generated by the faces diιn for
all i 6= k. The name horn comes from the picture that one sees after passage to
geometric realization. The realization of ∆[n]s is ∆[n]t, and the realization of Λkn
is the “horn” that one sees after removing one of the faces of the boundary ∂∆[n]t.
If one has a map f from the realization TΛkn to a space X, then one can extend
the map to T∆[n]s = ∆[n]t. In fact, the topological n-simplex retracts onto any of
its horns, as one sees by pushing in along the missing face. Composing f with such
a retraction extends f over the simplex. This leads to the following definition and
example.1

Definition 12.6.1. A simplicial set K is a Kan complex if every map of simpli-
cial sets Λkn −→ K extends to a map ∆[n]s −→ K. There is a concrete combinatorial
way to rephrase the condition. For every set of n-simplices xi ∈ Kn−1, 0 ≤ i ≤ n
and i 6= k that satisfy the necessary compatibility condition dixj = dj−1xi for i < j
with neither i = k nor j = k, there must exist an n-simplex x ∈ Kn such that
dix = xi for i 6= k.

The equivalence of the two formulations is immediate from Proposition 9.3.3.

Proposition 12.6.2. For every space X, the simplicial set SX is a Kan com-
plex.

One might ask whether the extensions in Definition 12.6.1 are unique. If they
are, we say that K has the unique horn filling property. Looking at the definition
of the faces of the nerve of a category, (9.4.5), we see that not all horns are created
equal. We say that Λkn is an inner horn if 0 < k < n; the outer horns are those
with k = 0 or k = n.

Looking at NC or at ΠK, one sees that the inner horns play a special role. If
we have faces d0z and d2z, their composite is d1z. In a category, if we are given
morphisms f0 and f2 such that the source of f2 is the target of f0, they define a
map Λ1

2 −→ NC , and the composable pair (f0, f2) gives a 2-simplex that extends
the horn. This doesn’t work if we are given f0 and f1 or f1 and f2, since we cannot
compose those. We can use inverses to fill these outer horns when C is a groupoid.
This leads to the following result whose meaning should I hope be clear. We leave
some details of proof to the reader. For 1 ≤ i ≤ n, let νi : [1] −→ [n] denote the
injection with image {i− 1, i}.

Theorem 12.6.3. Let K be a simplicial set. The following conditions are equiv-
alent.

(i) K is isomorphic to the nerve of a category.
(ii) Every inner horn of K has a unique filler.

(iii) For any n ≥ 2 and any n-tuple of simplices xi ∈ K1, 1 ≤ i ≤ n, such that
d0xi−1 = d1xi for 2 ≤ i ≤ n, there is a unique y ∈ Kn such that ν∗i y = xi.

K is isomorphic to the nerve of a groupoid if and only if every horn of K, inner
or outer, has a unique filler.

Sketch Proof. First suppose that K ∼= NC . We deduce (ii) and (iii). It
helps to recall the formulas for the faces and degeneracies of NC as given in (9.4.5).

If we have an inner horn Λkn −→ K given by compatible (n − 1)-simplices xi
for i 6= k, then we can reconstruct from these simplices a unique string (f1, · · · , fn)

1These are so basic that they appear on pages 2 and 3 of my book [27].
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of composable arrows, and they give a filler for the given inner horn. One way of
seeing this is to look at the ordered string of n−1 1-simplices obtained from x0 and
xn by applying all iterated face operations. Applied to x0, we obtain 1-simplices in
order that we denote by fi, 2 ≤ i ≤ n. Applied to xn, we obtain 1-simplices that we
also denote by fi, but now for 1 ≤ i ≤ n− 1. The duplicate fi for 2 ≤ i ≤ n− 1 are
equal by the assumed compatibility condition, and the required y is the n-simplex
(f1, · · · , fn). If we have simplices xi ∈ K1 as in (iii), they are a string of composable
morphisms (f1, · · · , fn), and that string is the required simplex y.

If C is a groupoid, we can use inverses to modify the proof of (ii) so that it
applies to outer as well as inner horns.

Conversely, assume (ii) or (iii). We claim that either suffices to prove that the
unit η : K −→ NΠK of the (N,Π)-adjunction is an isomorphism. The meaning is
that the formal words of length n in the 1-simplices that appear in the definition of
ΠK are all realized uniquely by simplices in Kn. We show that η is an isomorphism
on n-simplices for all n by induction on n. The induction starts with n = 0 and
n = 1, where there is nothing to prove. Assume that η is an isomorphism on
(n − 1)-simplices. Let y be an n-simplex of NΠK. Its faces give inner horns Λkn
in K, and they also give the data of (iii). With either hypothesis, a filler gives an
n-simplex x of K such that y and η(x) have the same faces. This means η(x) is the
same composite of 1-simplices as y, so that η(x) = y. If also η(x′) = y, then x and
x′ have the same faces and so are equal by the uniqueness assumed in (ii) or (iii).

If we have fillers for all horns, then K ∼= NΠK and the fillers for the outer
horns defined on Λ0

2 and Λ2
2 give left and right inverses for all morphisms. Just

as for groups, the left and right inverses must be equal, and NΠK must be a
groupoid. �

We use this characterization to prove Theorem 11.4.5.

Proof of Theorem 11.4.5. Suppose that K has Property A. We show that
SdK satisfies condition (iii) of Theorem 12.6.3. Thus let (xi;Si, [qi]), 1 ≤ i ≤ n, be
1-simplices of SdK in minimal form such that

d0(xi−1;Si−1, [qi−1]) = d1(xi;Si, [qi])

for 2 ≤ i ≤ n. Choose an injection αi : [pi] −→ [qi] with image Si for 0 ≤ i ≤ n.
Note that p1 = q0, where q0 = |S0|. The compatibility condition is equivalent to

(xi−1, [qi−1]) ∼ (xi;Si) ∼ (α∗i xi; [pi])

for 2 ≤ i ≤ n. Since K has Property A, the faces α∗i xi are nondegenerate. By the
uniqueness in minimal form, qi−1 = pi and xi−1 = α∗i xi for 2 ≤ i ≤ n. Letting
x0 = α∗1x1, this still holds for i = 1. The composite αn · · ·α1 : [p1] −→ [qn] is
defined. Let

y = (xn;αn · · ·α1[p1], αn · · ·α2[p2], · · · , αn[pn], [qn]).

Then νny = (xn;Sn, [qn]) and, for 1 ≤ i < n,

ν∗i y = (xn;αn · · ·αi[pi], αn · · ·αi[pi+1]) ∼ (xi;Si, [qi])

For the uniqueness, suppose that we have another extension z = (w;T0, · · · , Tn)
in minimal form such that νiz = (xi;Si, [qi]) for 1 ≤ i ≤ n. The nth vertex (w;Tn)
of z must be (xn; [qn]), so that (w;Tn) ∼ (xn; [qn]). Since K satisfies Property
A and w is nondegenerate, it follows from the uniqueness in minimal form that
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w = xn and Tn = [qn]. Similarly, for 0 ≤ i < n, the ith vertex of z must be the ith
vertex of y, hence

(xn;Ti) ∼ (xn;αn · · ·αi+1[pi+1]).

Therefore Ti must be αn · · ·αi+1[pi+1] and z = y.
We shall prove a strengthened form of the converse statement in Proposi-

tion 12.7.3 below. �

Remark 12.6.4 (Categorical remark). The functor Sd is a left adjoint. Its
right adjoint is denoted Ex. Iterating it leads to an endofunctor Ex∞ on sSet
that assigns a Kan complex Ex∞K to a simplicial set K. The composite ST is
another such functor. They fit into a more sophisticated context of Quillen model
category theory. One recent reference is [31, 17.5].

12.7. Quasicategories, subdivision, and posets

Looking at the definition of Kan complexes and the characterization of nerves
of categories, one sees that they have a natural common generalization.

Definition 12.7.1. A simplicial set is a quasicategory if and only if every inner
horn has a filler, not necessarily unique.

The idea is that compositions are defined, but they need not be unique. This is
a very fashionable notion, and in much current literature the rather grandiose terms
“∞-category” or “(∞, 1)-category” are used for quasicategories. To go with this,
the term “∞-groupoid” is then often used for Kan complexes. There is even some
motivation for the terminology. In view of their importance, it seems reasonable to
ask how these concepts behave with respect to subdivision and our Properties A,
B, and C.

Proposition 12.7.2. If SdK is a Kan complex, then K is discrete, meaning
that it has no nondegenerate simplices other than vertices.

Proof. Suppose that K has a nondegenerate n-simplex, where n > 0. Let v
be a vertex of x and let α : [0] −→ [n] be an injection such that α∗x = v. Define
an outer horn Λ2

2 −→ SdK by sending the vertices 0, 1, 2 to the vertices (x; [n]),
(v; [0]), (x; [n]) of SdK and sending the 1-simplices (1, 2) and (0, 2) to (x;α[0], [n])
and (x; [n], [n]). Since v ∈ K0, there is clearly no 1-simplex (y;S, [m]) with vertices
(x; [n]) and (v; [0]), so SdK cannot be a Kan complex. �

Proposition 12.7.3. If SdK is a quasicategory, then K satisfies Property A.

Proof. Assume that K does not satisfy Property A. We construct an inner
horn f : Λ2

3 −→ SdK that cannot be extended to a map ∆[3] −→ K, thus showing
that SdK cannot be a quasicategory. Since Property A fails for K, we can choose
a nondegenerate simplex x ∈ Kn, an injection α : [m] −→ [n], and a surjection
σ : [m] −→ [p], m > p, such that α∗x = σ∗y in Km for some nondegenerate simplex
y ∈ Kp. Choose a right inverse β : [p] −→ [m] to σ. The three 2-faces of Λ2

3 ⊂ ∆[3]
are d0ι3, d1ι3, d3ι3, where ι3 is the identity simplex that generates ∆[3]. We specify
f on these three 2-simplices by sending them to

(x;αβ[k], α[m], [n]), (x;α[m], α[m], [n]), (y; [p], [p], [p])

respectively. It is a straightforward to check that they satisfy the required consis-
tency on 1-faces of the horn. However, f cannot be extended to the last 2-face d2ι3.
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Any possible image would have a minimal form (x;S, T, [n]). For consistency with
the prescribed faces, we would have

(x;S, [n]) ∼ (x;α[m], [n]) and (x;T, [n]) ∼ (x;αβ[p], [n]).

By the uniqueness of the minimal form, S = α[m] and T = αβ[p]. Thus, since
p < m, T is a proper subset of S. Since S ⊂ T by definition, S = T . This
contradicts the choice of β as a non-identity injection. �

Remark 12.7.4. There is a curious analogue for quasicategories of the result
that a simplicial set is a simplicial complex if and only it satisfies Properties B
and C. If K is the nerve of a poset, then it satisfies Properties B and C by
Theorem 12.3.1, and of course it is a category and thus a quasicategory. It is
reasonable to ask whether a quasicategory K that satisfies Properties B and C
is a poset. By Theorem 11.1.8, K is the simplicial set associated to a simplicial
complex, and we now write K for the latter. The set of vertices of K is a poset, and
its order restricts to a total order on each simplex, so that we can write simplices
in the form {x0 < · · · < xn} for vertices xi. Then K is isomorphic to the nerve
of the poset K0 if and only if every finite totally ordered set {x0 < · · · < xn} is a
simplex.

The example of ∂∆[1]s shows that for two vertices x0 < x1, {x0 < x1} need not
be a simplex of K. However, suppose that all such sets {x0 < x1} are 1-simplices.
Then K is a poset. To see this assume by induction that all totally ordered subsets
of K0 with at most n elements are simplices. Suppose for a contradiction that
{x0 < · · · < xn} is totally ordered but not a simplex. Since all faces of this missing
simplex are simplices, it is easy to construct an inner horn f : Λkn −→ K, in fact
one for each 0 < k < n, from all but one of the faces. A filler is an n-simplex of K,
hence a totally ordered set {y0, . . . , yn}; it must be totally ordered since otherwise
it would have degenerate faces, which it clearly does not have; that its vertices must
be the xi follows from the fact that the map ∆[n] −→ K determined by {y0, . . . , yn}
extends f , and f maps onto the vertices.

We also remark that Properties B and C clearly fail to imply that K is a
quasicategory. The inner horn Λ1

2 is a simplicial complex, and its identity map
does not extend to a simplex ∆[2] −→ Λ1

2.



CHAPTER 13

An outline summary of point set topology

We have implicitly given a quick outline of a bare bones introduction to point
set topology in Chapter 1. The focus was on basic concepts and definitions rather
than on the usual examples that give substance to the subject. We thought the
reader might like to see a brief summary of some of the most basic parts of point-set
topology that were not discussed in Chapter I, including but not limited to those
results we that we have used in our exposition.

13.1. Metric spaces

The intuition for and the most important examples in point-set topology come
from metric spaces, where the topology is defined in terms of a distance function.

Definition 13.1.1. A metric d on a set X is a function d : X ×X −→ R such
that

(i) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y.
(ii) d(x, y) = d(y, x).
(iii) d(x, y) + d(y, z) ≥ d(x, z).

The basis B determined by a metric d consists of the sets B(x, r) = {y|d(x, y) < r}.
The topology generated by B is called the metric topology on X determined by d.
A topological space X is metrizable if its topology is determined by a metric.

A subset A of a metric space X has an induced metric, and the metric and
subspace topologies coincide. Any metric space is Hausdorff.

Of course, Rn has the standard metric

d(x, y) = (
∑

(yi − xi)2)1/2.

The metric topology that it determines coincides with the product topology. The
product of countably many copies of R is metrizable, but the product of uncountably
many copies of R is not. There is a metric topology on any product of copies of
R, called the uniform topology, but it is finer than yjr product topology when the
product is infinite.

For metric spaces, Lemma 1.5.8 leads to the familiar ε, δ formulation of conti-
nuity.

Lemma 13.1.2. A function f : X −→ Y between metric spaces is continuous if
and only if for each x ∈ X and each ε > 0, there exists δ > 0 such that

f(B(x, δ)) ⊂ B(f(x), ε);

that is, if the distance from x to y is less than δ, then the distance from f(x) to
f(y) is less than ε.

Moreover, we can characterize continuity in terms of convergent sequences.

103
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Definition 13.1.3. A sequence {xn} of points in a space X converges to a
point x if every neighborhood of x contains all but finitely many of the xn. We
then write {xn} → x. If X is Hausdorff, then the limit of {xn} is unique if it exists.

Observe that if {xn} ⊂ A and {xn} → x, then x ∈ Ā. The converse does not
hold for general topological spaces, but it does hold for metric spaces. Actually,
what is relevant is not the metric but something it implies.

Definition 13.1.4. A space X is first countable if for each x ∈ X, there is adefined and used
earlier countable set of neighborhoods Un of x such that any neighborhood of x contains

at least one of the Un; X is second countable if its topology has a countable basis.

Using the neighborhoods B(x, 1/n), we see that a metric space is first countable.

Lemma 13.1.5. Let X be first countable. Then x ∈ Ā if and only if there is a
sequence {xn} ⊂ A such that {xn} → x.

Using Lemma 1.5.2 this leads to the promised characterization of continuity.

Proposition 13.1.6. Let f : X −→ Y be a function, where X is first countable
and Y is any space. Then f is continuous if and only for every convergent sequence
{xn} → x in X, {f(xn)} → f(x) in Y .

13.2. Compact and locally compact spaces

Definition 13.2.1. A space X is compact if every open cover contains a finite
subcover. That is, if X is the union of open sets Ui, then there are finitely many
indices ij , such that X is the union of the Uij .

Using standard facts about complements, one can reformulate the notion of
compactness as follows. Say that a set of subsets of X has the finite intersection
property if any finite subset has nonempty intersection.

Proposition 13.2.2. A space X is compact if and only if any set of closeddefined and used
earlier subsets of X with the finite intersection property has nonempty intersection. In

particular, if X is compact and if {Cn} is a nested sequence of closed subsets of X,
Cn ⊃ Cn+1, then ∩Cn is nonempty.

A metric space X is bounded if d(x, y) ≤ D for some fixed D and all x, y ∈ X;
the least such D is called the diameter of X. Boundedness is not a “topological”
property, since it depends on the choice of metric: different metrics can define
the same topology but have very different bounded subsets. With the standard
Euclidean metric, we have the following result.

Theorem 13.2.3 (Heine-Borel). A subspace of Rn is compact if and only if it
is closed and bounded.

In general, we have the following observations about the compactness of sub-
spaces. For a subset A of a space X, a cover of A in X is a set of subsets of X
whose union contains A.

Proposition 13.2.4. Let A be a subspace of a space X. Then A is compact
if and only if every cover of A in X has a finite subcover. If X is compact, then
every closed subspace of X is compact.

For compact Hausdorff spaces, the second statement has a converse.
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Proposition 13.2.5. Every compact subspace of a compact Hausdorff space is
closed.

Proposition 13.2.6. If f : X −→ Y is a continuous function and X is com-
pact, then the image of f is a compact subspace of Y . In particular, any quotient
space of a compact space is compact.

Theorem 13.2.7. Let X be compact and Y be Hausdorff. Then a continu-
ous bijection f : X −→ Y is a homeomorphism (hence X is Hausdorff and Y is
compact).

Proof. If C is closed in X, then C is compact, hence f(C) is compact, hence
f(C) is closed in Y . This proves that f−1 is continuous. �

The results above give the behavior of compactness with respect to subspaces
and quotient spaces. The behavior with respect to products is deeper than anything
that we have stated so far.

Theorem 13.2.8 (Tychonoff). Any product of compact spaces is compact.

The case of finite products is not difficult, but the general case is.
For metric spaces, compactness can be characterized in terms of limit points

and convergent sequences.

Theorem 13.2.9. Consider the following conditions on a space X.

(i) X is compact.
(ii) Every infinite subset of X has a limit point.

(iii) Every sequence in X has a convergent subsequence.

In general, (i) ⇒ (ii) ⇒ (iii). If X is a metric space, the three conditions are
equivalent.

We say that X is sequentially compact if it satisfies (iii). The following impor-
tant fact is used in proving that (iii)⇒ (i) when X is a metric space.

Lemma 13.2.10 (Lebesque Lemma). Let O be an open cover of a sequentially
compact metric space X. Then there is a δ > 0 such that if A ⊂ X is bounded with
diameter less than δ, then A is contained in some U ∈ O.

Proof. If not, then for each n we can choose a subset An of diameter less
than 1/n which is not contained in any U ∈ O. Choose a point xn ∈ An for
each n. Suppose that {xn} has a subsequence {xni} that converges to some x.
Certainly x ∈ O for some U ∈ O. For small enough ε and large enough ni,
B(x, 2ε) ⊂ U , d(x, xni) < ε and 1/ni < ε. It follows easily that Ani ⊂ U , which is
a contradiction. �

Definition 13.2.11. A space X is locally compact if each point of X has a
neighborhood that is contained in a compact subspace of X.

Clearly Rn is locally compact but not compact.

Lemma 13.2.12. Let X be a Hausdorff space. Then X is locally compact if and
only if for any point x and any neighborhood U of x, there is a smaller neighborhood
V of x such that V̄ is compact and V̄ ⊂ U .

This criterion is needed to prove the second part of the following result.
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Lemma 13.2.13. Let A be a subspace of a locally compact subspace X. If A is
closed or if A is open and X is Hausdorff, then A is locally compact.

Locally compact Hausdorff spaces admit a canonical compactification, as we
now make precise.

Definition 13.2.14. A compactification of a space X is an inclusion of X as a
dense subspace in a compact Hausdorff space Y . Observe that a compactification
of a compact Hausdorff space must be a homeomorphism. Two compactifications
Y and Y ′ are equivalent if there is a homeomorphism Y −→ Y ′ which restricts to
the identity map on X.

Compactifications are of fundamental importance in topology and algebraic
geometry. The most naive example is the one-point compactification. The con-
struction applies to any Hausdorff space, but it only gives a Hausdorff space when
X is locally compact.

Construction 13.2.15. Let X be a Hausdorff space and let Y be the union
of X and a disjoint point denoted ∞. Then Y is a topological space whose open
sets are the open sets in X together with the complements of the compact sets in
X. The space Y is called the one point compactification of X.

If X is itself compact, then {∞} is open and closed in Y and Y is the union of
its components X and {∞}.

Proposition 13.2.16. If X is a locally compact Hausdorff space that is not
compact, then the one point compactification Y of X is in fact a compactification:
Y is compact Hausdorff and X is a dense subspace.

Since X is itself one of the open sets in Y , Lemma 13.2.13 gives the following
implication.

Corollary 13.2.17. A space X is locally compact and Hausdorff if and only
if it is homeomorphic to an open subset of a compact Hausdorff space.

13.3. Further separation properties

We have defined T0, T1 spaces and T2, or Hausdorff spaces. We give three
analogous definitions, and we describe various implications relating these separation
properties to each other and to local compactness.

Definition 13.3.1. Let X be a T1 space (points are closed), let x ∈ X, and
let A and B be closed subsets of X.

(i) X is regular if whenever x /∈ A, there are open subsets U and V such that
x ∈ U and A ⊂ V .

(ii) X is completely regular if whenever x /∈ A, there is a continuous function
f : X −→ [0, 1] such that f(x) = 0 and f(a) = 1 for a ∈ A.

(iii) X is normal if whenever A∩B = ∅, there are open subsets U and V such
that A ⊂ U and B ⊂ V .

Together with Lemma 13.2.12, the following result makes clear that these sep-
aration properties are closely related to local compactness.

Lemma 13.3.2. Let X be a T1 space.
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(i) X is regular if and only if for any point x and any neighborhood U of x,
there is a smaller neighborhood V of x such that V̄ ⊂ U .

(ii) X is normal if and only if for any closed set A contained in an open set
U , there is an open set V such that A ⊂ V and V̄ ⊂ U .

Language varies. The terms regular, completely regular, and normal are often
defined without assuming that X is T1. Then what we call regular and normal
spaces are called T3 and T4 spaces and what we call completely regular spaces are
called Tychonoff spaces. (As already noted, the Ti notation goes back to a 1935
paper of Alexandroff and Hopf [2], but some later references confuse things further
by forgetting history and using Ti differently).

Lemma 13.3.3. The following implications hold: A normal space is completely
regular. A completely regular space is regular. A regular space is Hausdorff.

normal ⇒ completely regular ⇒ regular ⇒ Hausdorff

The implications normal ⇒ regular ⇒ Hausdorff are obvious. The implication
normal ⇒ completely regular is a consequence of the following important result.

Theorem 13.3.4 (Uryssohn’s lemma). If X is normal and A and B are disjoint
closed subsets of X, then there is a continuous function f : X −→ I such that
f(a) = 0 if a ∈ A and f(b) = 1 if b ∈ B.

The proof is non-trivial, and the closely analogous assertion that regular implies
completely regular is false. Uryssohn’s lemma can be used to prove the following
equally important result.

Theorem 13.3.5 (Tietze extension theorem). If A is a closed subspace of a
normal space X and f : A −→ I is a continuous function, then f can be extended
to a continuous function X −→ I.

Normality is the most desirable separation property, but it is much less nicely
behaved than our other separation properties.

Proposition 13.3.6. A subspace of a Hausdorff, regular, or completely regular
space is again Hausdorff, regular, or completely regular. A product of Hausdorff,
regular, or completely regular spaces is again Hausdorff, regular, or completely reg-
ular. Neither of these assertions is true in general for normal spaces.

For example, the product of uncountably many copies of R is not normal. Since
R is homeomorphic to the open interval (0, 1) and Tychonoff’s theorem implies that
the product of uncountably many copies of I is compact Hausdorff, this example
also shows that a subspace of a normal space need not be normal. Nevertheless,
most spaces of interest are normal.

Theorem 13.3.7. If X is metrizable or compact Hausdorff, then X is normal.

Some indication of the importance of complete regularity is given by the fol-
lowing sequence of results, the second of which should be compared with Corollary
13.2.17.

Theorem 13.3.8. If X is completely regular, then it can be embedded as a
subspace of a product of copies of the unit interval.

Corollary 13.3.9. The following conditions on a space X are equivalent.
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(i) X is completely regular.
(ii) X is homeomorphic to a subspace of a compact Hausdorff space.

(iii) X is homeomorphic to a subspace of a normal space.

Corollary 13.3.10. A space X admits a compactification if and only if it is
completely regular.

Proof. If Y is a compactification of X, then X is a subspace of the compact
Hausdorff space Y and is thus completely regular. Conversely, if X is completely
regular and thus homeomorphic to a subspace of some compact Hausdorff space
Z, then the closure of the image of X in Z is a compactification of X, called the
compactification induced by the inclusion of X in Z. �

The very definition of complete regularity leads to a canonical compactification.

Construction 13.3.11. Let X be completely regular. Let F = F (X) be the
set of all continuous functions f : X −→ I, let Z = Z(X) be the product of copies
of I indexed on the set F , and let i : X −→ Z be the map whose fth coordinate
is the map f . Then i is an inclusion. The induced compactification is denoted βX
and called the Stone-Čech compactification of X.

The Stone-Čech compactification is characterized as the unique compactifica-
tion (up to equivalence) that satisfies the following “universal property”.

Proposition 13.3.12. Let X be a completely regular space. A map f : X −→
Y , where Y is a compact Hausdorff space, extends uniquely to a map f̃ : βX −→ Y .

Proof. Uniqueness holds by Lemma 1.5.3. When Y = I, the existence is im-
mediate from the construction: f is one of the coordinate maps, and the projection
from Z(X) to this coordinate restricts to f̃ : βX −→ I. In general, Y is homeo-

morphic to βY ⊂ Z(Y ). The map fg : X
f−→ Y ∼= βY ⊂ Z(Y )

πg−→ I obtained from

the gth coordinate projection πg, g ∈ Z(Y ), extends to a map f̃g : βX −→ I, and

f̃g is the gth coordinate of a map βX −→ Z(Y ). This map sends X into the closed

set βY , hence it sends the closure βX into βY ∼= Y , giving f̃ . �

13.4. Metrization theorems and paracompactness

Since we are much more comfortable with metric spaces than with general
spaces, it is important to be able to recognize when the topology on a given space
is that induced by some metric. The simplest criterion is the following. Metrization
theorems are proven by embedding a given space as a subspace of a space that is
known to be metrizable. Let Iω denote the product of countably many copies of I.
It is a metric space, which would be false for an uncountable product.

Theorem 13.4.1 (Uryssohn metrization theorem). The following conditions
on a T1 space X are equivalent.

(1) X is regular and second countable.
(2) X is homeomorphic to a subspace of Iω.
(3) X is metrizable and has a countable dense subset.

Remember that second countable means that there is a countable basis for the
topology. This ensures the following analogue of compactness.
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Lemma 13.4.2. If X is second countable, then any open cover of X has a
countable subcover and X has a countable dense subset.

Second countability is a strong condition, and a weaker countability condition,
plus regularity, is necessary and sufficient for metrizability.

Definition 13.4.3. A set V of subsets of X is locally finite if each x ∈ X has
a neighborhood that intersects at most finitely many subsets of V . A cover O of
X is σ-locally finite if it is the union of countably many locally finite subsets.

Theorem 13.4.4 (Nagata-Smirnov metrization theorem). A space is metrizable
if and only if it is regular and has a σ-locally finite basis.

The “σ” here is essential: if a Hausdorff space has a locally finite cover, then
it is discrete.

There is another characterization of metrizability that is perhaps more intuitive.

Definition 13.4.5. A space X is locally metrizable if every point x ∈ X has
a neighborhood U such that U (with its subspace topology) is metrizable.

Clearly any metric space is locally metrizable. There is a property, called
paracompactness, that is very often used to patch local conditions to obtain a
global condition, and Stone proved that any metric space is paracompact.

Theorem 13.4.6 (Smirnov metrization theorem). A space is metrizable if and
only if it is paracompact and locally metrizable.

We explain paracompactness. A refinement of a cover O of X is a collection of
subspaces each of which is contained in at least one of the spaces in O.

Definition 13.4.7. A space X is paracompact if every open cover of X has a
locally finite refinement that is again an open cover of X.

Clearly a compact Hausdorff space is paracompact. The following sharpening
of part of Theorem 13.3.7 holds.

Theorem 13.4.8. A paracompact space X is normal.

Like normality, paracompactness is not preserved by standard constructions.
For this reason, Stone’s theorem that metrizable⇒ paracompact seems more useful
than the converse implication of Smirnov’s metrization theorem.

Proposition 13.4.9. A closed subspace of a paracompact space is paracompact.
In general, subspaces of paracompact spaces and products of paracompact spaces need
not be paracompact.

The point of paracompactness is that it ensures the existence of particularly
convenient open covers. This is very important in the theory of fiber bundles in
algebraic topology.

Definition 13.4.10. An open cover O of X is numerable if it is locally finite
and for each U ∈ O there is a continuous function φU : X −→ I such that φU (x) > 0
only if x ∈ U . A numerable cover U is a partition of unity if

∑
U φU (x) = 1 for

each x ∈ X.

Given a numerable cover O, we can define φ(x) =
∑
U φU (x) and ψU (x) =

φU (x)/φ(x), thereby obtaining a partition of unity.



110 13. AN OUTLINE SUMMARY OF POINT SET TOPOLOGY

Proposition 13.4.11. If X is paracompact, then any open cover of X has a
numerable refinement.

Definition 13.4.12. An n-manifold M is a second countable Hausdorff space
each point of which has a neighborhood homeomorphic to Rn.

By the Uryssohn metrization theorem, an n-manifold is metrizable. By Stone’s
theorem, it is therefore paracompact. The following theorem can be proven by use
of a numerable cover of M .

Theorem 13.4.13. Any n-manifold M can be embedded as a subspace of RN
for a sufficiently large N .
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