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Abstract. This paper is expository in nature. It intuitively explains, using
a geometrical and measure theory perspective, why a random walker will only

pass through the origin infinitely many times in the first and second dimension

on Z. The paper also explores why in higher dimensions, the random walker
only passes through the origin finitely many times.
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1. Introduction

Suppose you play a game where at the flip of a coin you move forwards or
backwards one step, depending on whether the coin reads heads or tails. The
question then arises, if you were to play this little game, flipping your coin infinitely
many times, how many times would you return to the starting point, or the origin.

Intuitively, since you have equal probability of getting heads and tails, that
means it is as likely to move forwards as backwards, and in a large sample space
the amount of heads and tails should be the same, which means that overall you
should end back at your starting point or origin infinitely many times.

Now let’s say you were not only able to levitate, but also able to go through
the ground, or walk along any diagonal path originating from your starting point
(neglecting barriers such as the physical ground), in a way that your movement
could be represented by a 3-dimensional axis.

With the increase in dimensions, the movement becomes more complicated as
with each step you have a new option in each direction of the three dimensions.
This in turn raises the question if the walker can end up at the origin infinitely
many times. Since the options are numerous it would make sense that the number
of returns to the origin would be limited. The goal of this paper is to illustrate how
the multi-dimensional random walk varies from the simple case.

Since several natural phenomena, such as protein structures, can be modeled
as random walks, an understanding of random walks aides our understanding of
complex natural structures too.[5]
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2. Relevant Definitions

Definitions 2.1- 2.14 follow from Probability with Martingales [1], whereas Defi-
nitions 2.15-2.17 follow from Random Walk and the Discrete Heat Equation [2].

In this section we will discuss relevant definitions of measure theory and proba-
bility which will serve us later in our proofs.

These definitions below (2.1-2.13) will give us the groundwork to understand the
definition of a Random Variable and an Independent Random Variable, and how
we are able to assign values to the likelihood that a Head or Tail is to occur in a
coin toss. Definitions 2.15- 2.17 are terms that will be used in the formal proof of
the paper.

Definition 2.1 (σ-algebra). A σ-algebra is a collection called Σ which is composed
of subsets of a set S such that:

(1) if G ∈ Σ, then also Gc ∈ Σ, therefore Σ is closed under complement.
(2) S ∈ Σ, and also Sc = ∅ ∈ Σ
(3) if Gn ∈ Σ, then

⋃
n∈N

Gn ∈ Σ, therefore it is closed under countable unions.

Remark 2.2. Since Σ is closed under the complement and finite unions, if Gn ∈ Σ
then: ⋂

n∈N
Gn =

(⋃
n∈N

Gc
n

)c

∈ Σ.

Definition 2.3 (Borel σ-algebras). Let S be a topological space, the Borel σ-
algebra, B(S), is the smallest σ-algebra taken on the open subsets of S. Define
B = B(R).

Example 2.4. Take the topological space S = R, by Definition 2.1.2 R ∈ B(R).
The examples below are also in B(R).

(1) Singleton: {x}, x ∈ R. In the case where {x} = {1}, by definition the open
set (1− 1

n , 1+ 1
n ) is in the Borel σ-algebra. Therefore

⋂
n∈N

(1− 1
n , 1+ 1

n ) =
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{1} is also in the Borel σ-algebra. According to the same line of reasoning,⋂
n∈N

(x− 1
n , x+ 1

n ) = {x}, therefore {x} is in the Borel σ-algebra.

(2) Q: Since Q is countable, Q can be formed from a countable union of sin-
gletons. According to Definition 2.1.3, Q is in the Borel σ-algebra. [3]

(3) R \Q: Since Q is in the Borel σ-algebra, according to Definition 2.1.1, the
complement must also be in the Borel σ-algebra.

Definition 2.5 (Measurable space). A measurable space is a pair (S,Σ), where S
is a set, and Σ is a σ-algebra on S.

Definition 2.6 (Measure space). Let (S,Σ) be a measurable space. Let Gn be a
sequence of disjoint sets in Σ, therefore G1

⋂
G2...

⋂
Gn = ∅, and G is equal to the

countable union of Gn, where G ∈ Σ.
A map µ : Σ→ [0,∞] is called a measure on (S,Σ) if:

(1) µ(∅) = 0.
(2) µ(G) =

∑
n
µ(Gn), which means µ is countably additive.

If all of these conditions are met, then (S,Σ, µ) is called a measure space.

An intuitive example is suppose that each set represents a wall that we paint,
and since the set is disjoint, the walls are neither the same nor connected. When
we apply the function µ, we are figuring out the painted surface area. When we
have no walls, we have no surface to paint, but suppose we want to know the total
area painted, we would sum the painted area of each individual wall.

Definition 2.7 (σ-algebra measurable function, mΣ). Let (S,Σ) be a measurable
space.

A map h : S → R, where for A ⊆ R, h−1(A) is defined as {s ∈ S : h(s) ∈ A}, is
called a σ- algebra measurable function (mΣ) if:

h−1 : B→ Σ

This implies that h−1(A) ∈ Σ, for every A ∈ B.

Definition 2.8 (Probability measure). Our measure µ is called a probability mea-
sure if µ(S) = 1. We use P to express a probability measure.

Definition 2.9 (Sample Space and Point). In probability theory a sample space is
a topological space, defined as a set Ω, and a sample point is a point ω of Ω.

Definition 2.10 (Family of Events and Events). Define F to be the σ-algebra of
Ω (It follows the conditions of Definition 2.1). F is defined as the family of events,
and an event is an element of F. In other words an event is a F -measurable subset
of Ω.

In order to have an experiment we apply a probability measure to our event and
our family of events, therefore we use the probability triple (P, Ω, F).

Intuitively all of this means that Ω is all of the outcomes possible, ω is one
specific outcome that occurs, and when we apply P(F) we find out the probability
that an event occurs.

Example 2.11. Suppose we have the Experiment of flipping a coin twice, the family
of events is F, and an event is an F -measurable subset of Ω. In this experiment
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Ω = {HH,TT,HT, TH} and

F = {∅, {HH}, {TT}, {HT}, {TH}, {HH,HT}, {HH,TH}, {HH,HT, TT}, {HH,TH, TT}...}.
Then suppose we want the event of getting at least one head, therefore there exists
an f ∈ F , where f = {HT, TH,HH}. The probability that the event f occurs,
P(f) = 3/4.

Definition 2.12 (Random variable). If Ω is a sample space, F is a family of events,
and B represents a Borel σ-algebra. Then a random variable is an element of mF ,
where mF implies that X : Ω→ R, and X−1 : B→ F.

Definition 2.13 (Independent σ-algebras). Sub σ-algebras G1, G2, ... of F are
independent if whenever gi ∈ Gi with i ∈ N and i1, ...in are distinct, then:

P (gi1
⋂
gi2 ...

⋂
gin) =

n∏
k=1

P (gik).

Definition 2.14 (Independent Random Variables). A Random Variable is
independent if the σ-algebras of the Random Variable are independent also. So
σ(Xi) with i ∈ N are independent. Therefore Xi is not influenced by Xi−1.

Definition 2.15 (Sn). Sn is the distance from the origin composed of the sum of
random variables Xi, where each Xi is not influenced by Xi−1. The subscript n
denotes the number of steps taken by the random walker.

In this specific case of random walk P{Xi = ±1} = 1/2, as X : {H} → 1 and
X : {T} → −1. Intuitively this means when we flip a heads we move forward one
step and when we flip a tails we move back one step, and it is equally likely both
instances will happen.

Definition 2.16 (Expectation). The expected value can be expressed as an
average. Intuitively this means adding all the possible values and dividing it by the
total number of options. Lawler defines it to be:

E[X] =
∑
z

z ∗ P{X = z}.

Looking at examples will clarify as to why it is defined as such.

Example 2.17. (1) In the case of a coin where we are asking the expected
value after one toss, we would get:

E[S1] = E[0 +X1].

Remark 2.18. Lawler mentions that E[X+Y]= E[X] + E[Y].

In general when we take a look at the expected average distance, we get:

E[Sn] = E[0] + E[X1] + E[X2] + ...+ E[Xn],

Where:

E[X1] = 1 ∗ P{X = 1}+−1 ∗ P{X = −1} = 1/2− 1/2 = 0.

Since all Xi have the same probability of going forward and back, we can
replace E[X1] with E[Xi] for i=1,2,3...

Therefore:

E[Sn] =

n∑
i=1

E[Xi] = 0.
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(2) In the case with a fair dice, the average value or the expected value we
would get is:

1 ∗ 1/6 + 2 ∗ 1/6 + ...+ 6 ∗ 1/6 =

6∑
k=1

k/6 = 3.5.

(3) In the case where a die is not fair, but weighted such that:

P{X = 1 or 2} = 4/12 and P{X = 3, 4, 5 or 6} = 1/12,

where X is the value of the roll, then:

E[X] = 1 ∗ 4/12 + 2 ∗ 4/12 + 3 ∗ 1/12 + ...+ 6 ∗ 1/12 =

6∑
k=1

k ∗ P{X = k} = 2.5.

3. Random Walk

In this section we will discuss in detail the theorem of a Random Walk and the
proof behind that theorem in the 1st and higher dimensions. Most of Section 3
follows from Lawler’s Random Walk and the Discrete Heat Equation [2], with some
foundational work set out by Spivak [3] and Levin [4], and details worked out by
the author.

Theorem 3.1 (Random Walk in Z ). : A random walker, with equal probability
of moving ± one space, will pass through the origin infinitely many times with
probability one.

The distance, which is determined by the infinite amount of times our walker
flips the coin, is composed of independent random variables, which are not reliant
on the past according to Levin [4]. This process creates our random walk.

Our theorem says that after an infinite amount of coin tosses, our random walker
will always end up back where he started, or the average value after an infinite
amount of tosses will surely be zero, as long as the walker only moves in the 1st
dimension. We model this random walk mathematically by defining, as mentioned

in Definition 2.15, Sn =
∑n

i=1Xi, where Xi are independent random variables, with
{P = 1} = 1/2, and {P = −1} = 1/2.

We will show that P{Sn = 0 for infinitely many n} = 1.

Proof. [A random walker will pass through the origin infinitely many times]
Denote:

Jn =

{
1 Sn = 0

0 otherwise.

Define V to equal the number of visits to the origin:

V =

∞∑
n=0

J2n.

The reason the number of visits to the origin takes the form of J2n, is due to the
fact that our walker can only return to the origin in an even number of steps. This
is due to the fact that an odd number of steps will give us an odd integer that will
never equal zero: In the case of one flip, we either have the values -1 or 1, in two
flips we have the option of -2, 0, or 2 and in three flips, we have the options of -3,
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-1, 1, or 3. This shows that an odd number of integers will give us an odd integer,
and zero is not an odd integer.

Intuitively this is due to the fact that we can never go back to where we started
unless we’ve undone the steps we’ve taken, which naturally doubles the amount of
steps taken. Therefore in order to reach the origin, it necessitates that the total
number of steps being expressed are a multiple of 2n, which is in agreement with
Spivak’s definition of even numbers [3].

Since we want to confirm our average value is always zero, we need take the
expected value of the visits to the origin:

E[V ] = E[

∞∑
n=0

J2n].

Since J2n will never be less than zero, if Jn converges it’ll converge absolutely,
therefore [3]:

E[

∞∑
n=0

] =

∞∑
n=0

[E].

Which means:

E[V ] =

∞∑
n=0

E[J2n].

We want to take the expectation of J2n when it is equal to 1, as we know that
is the same as the expected number of visits when S2n is equal to 0, or in other
words how many times the random walker is expected to return to the origin. So
we plug X = J2n and z = 1 into the definition of expectation (2.16), and we get:

E[J2n] =
∑
1

P{J2n = 1} = P{S2n = 0}.

Therefore:

E[V ] =

∞∑
n=0

E[J2n] =

∞∑
n=0

P{S2n = 0}.

Now we want to look at lim
n→∞

P{S2n = 0}, to figure out the behavior of the

function near infinity.

First we need to determine what P{S2n = 0} equals to. A key component
to figuring out the probability of something is determining the total number of
outcomes. When we think of a fair die, there are 6 faces, which are equally as likely
to occur, so we divide 1 by 6 and we get the 1/6 to be the probability of getting
any face.

In the case of random walk there are two options, Heads or Tails, -1 or +1. We’ve
discussed earlier that 2n steps are needed to reach the origin, as it is necessary for
there to be an even number of steps in order to get 0. Therefore there are 22n total
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possible combinations of +1 and -1 to add up to 0. But it isn’t sufficient to just
have P{S2n = 0} = 1/22n.

The statement above assumes that each combination of ±1 would be unique.
That when we have the event of flipping two heads and tails (f = {H,H, T, T}), that
there would exist two unique events f1 = {H1, H2, T1, T2} and f2 = {H2, H1, T2, T1}.
But this notion is absurd, as there is no actual way to differentiate a head from a
head, or a tail from a tail.

Therefore we need a way to insure this double counting doesn’t occur, which is
why we introduce the binomial coefficient

(
2n
n

)
to our probability. After all, there are

2n! unique combinations of arranging heads and tails, such that the aforementioned
absurdity occurs. So to prevent this occurrence we divide 2n! by the n! ways to
arrange all the heads and the n! ways to arrange all the tails.

Since [3]: (
N

k

)
=

N !

(N − k)!k!
,

it makes sense that we have
(
2n
n

)
or 2n!

n!n! prevent our double counting from occurring.

Example 3.2. If you have the option of 2 heads and 2 tails you can arrange it in
6 unique ways: HHTT, TTHH, THTH,HTHT,HTTH,THHT. In this case n would
be 2, and we have 4!/2!2! = 4 ∗ 3 ∗ 2/4 = 6.

Therefore:

P{S2n = 0} =

(
2n

n

)
∗ 1

22n
.

Now we want to take:

lim
n→∞

(
2n

n

)
∗ 1

22n
= lim

n→∞

2n!

n!n!
∗ 1

22n
.

This limit is not obvious, so this is where Stirling’s formula will be needed [2].
Stirling’s formula shows that:

lim
n→∞

n!

n(n+
1
2 )e−n

= C.

Since the ratio equals some constant C, we can put C in the denominator of the
original fraction and then we can replace n! with (Cnn+

1
2 e−n). We will not solve

for C in this paper, but Lawler goes through the process to determine that C is
equal to

√
2π [2]. Which means n! is approximated by

√
2πnn+

1
2 e−n.

Stirling’s Formula. Define:

bn =
n!

nn+
1
2 e−n

.

Note that bn > 0 and bn−1 > 0, therefore bn
bn−1

> 0.

We first want to show that:

lim
n→∞

bn = C.

We can define:

bn = b1 ∗
b2
b1
∗ b3
b2
∗ ... ∗ bn−1

bn−2
∗ bn
bn−1

= b1 ∗
n∏

j=2

bj
bj−1

.
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Since we are taking lim
n→∞

bn, it’ll be easier if we take lim
n→∞

log(bn).

Note that [3]:

log(bn) = log(b1 ∗
n∏

j=2

bj
bj−1

) = log(b1)+log(
b2
b1

)+· · ·+log(
bn
bn−1

) = log(b1)+

n∑
j=2

log(
bj
bj−1

).

Therefore:

lim
n→∞

log(bn) = log(b1) + lim
n→∞

n∑
j=2

log(
bj
bj−1

) = log b1 +

∞∑
j=2

log(
bj
bj−1

).

Note: Since we’re splitting the limit across a finite sum: lim
∑

=
∑

lim, making
the previous step valid [3].

Now if
∑∞

j=2 log(
bj

bj−1
) converges, then lim

n→∞
log(bn) converges to some C, which

is what we want. We can ignore b1 since it is just e, some constant close to 3, so it
won’t impact our overall convergence.

In order to see if
∞∑
j=2

log(
bj

bj−1
) converges, it’ll be easier if we define:

δj = (
bj
bj−1

)− 1.

Therefore:
∞∑
j=2

log(
bj
bj−1

) =

∞∑
j=2

log(1 + δj).

So if lim
j→∞

δj goes to zero fast enough, then
∑∞

j=2 log(1 + δj) will converge.

Since the Taylor expansion of log(1 + δj) takes on the form similar to the alter-
nating harmonic series, the starting value δj will always be the largest value of the
expansion, multiplied by some constant (as each term added will never be larger
than the term subtracted away, making the expansion always decrease in value).

Therefore |log(1 + δj)| ≤ c∗δj , so if
∞∑
j=2

δj converges, then
∞∑
j=2

c∗δj also converges

(as we just multiply that which it converges to by the constant c), and by the

statement above
∞∑
j=2

log(1 + δj) is finite [2].

Since we defined δj =
bj

bj−1
− 1, in the case where j = 1, we get b1 = e, but our

expression for δj is only defined for j ≥ 2.

It’ll be easier to see if δj converges fast enough by looking at
bj

bj−1
. In that case:

bj
bj−1

=

j!

j(j+1/2) ∗ e−j
(j − 1)!

(j − 1)(j−1+1/2) ∗ e(−(j−1))

=
j! ∗ (j − 1)(j−1+1/2) ∗ e−(j−1)

(j − 1)! ∗ j(j+1/2) ∗ e−j

=
j ∗ (j − 1)! ∗ (j − 1)j−1/2 ∗ e−j ∗ e

(j − 1)! ∗ jj+1/2 ∗ e−j
=
j−(−1) ∗ (j − 1)j−1/2 ∗ e

jj+1/2
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= e ∗ (
j − 1

j
)j−1/2 = e ∗ (1− 1

j
)j(1− 1

j
)(−1/2).

Recall that by the Taylor expansion rules [3]:

1

1− x
= 1 + x+ x2 + x3.

The statement above means:

log(1− x) = (−1)

∫
1

1− x
= −x− 1

2
∗ x2 − 1

3
∗ x3.

As long as |x| < 1 then this Taylor expansion will converge, as it takes on the
form of the alternating harmonic. This is due to the fact that the amount summed
never exceeds the amount subtracted. Now we can arbitrarily choose |x| < 1/2, as
1/2 is larger than zero but smaller than one, and a nice number overall [2].

There is a remainder left over when we subtract the Taylor expansion from the
regular equation [3]:

F (x)− Pn,a(x) = Rn,a(x) =
fn+1(d)

n+ 1!
(x− a)n+1

Specifically we want, for some arbitrary constant K [2]:

| log(1− x)− Pn(x)| ≤ K ∗ xn+1.

This will be a favorable result as long as |x| ≤ 1/2.
In our case we’ll be looking at x = 1

j , therefore the remainder term will be

K∗( 1
j )k+1, where k+1 ≥ 2. This means that the error will be small, so Rk( 1

j ) < j−2.

Since the error is so small, no matter how far the equation deviates from the Taylor
Polynomial, by the comparison test we can still say that the whole sum converges.
This means we can ignore the remainder term.

By plugging in −x into the Taylor expansion of log(1-x), you get:

log(1 + x) = x− 1

2
∗ (x2) +

1

3
∗ (x3) + ...

So then plugging in −1j into the equation above you get:

log(1 +
−1

j
) =
−1

j
− 1

2j2
− 1

3j3
+ ...

Since we are looking at j large enough of
bj

bj−1
− 1, we can get a more favorable

answer by taking the log of
bj

bj−1
:

log(e∗(1−1

j
)j(1−1

j
)(−1/2)) = log(e)+log(1−1

j
)j+log(1−1

j
)1/2 = log(e)+j∗log(1−1

j
)+

1

2
∗log(1−1

j
).



10 ELIZABETH G. OMBRELLARO

With the Taylor expansion of log in mind, now we look at j large enough of

| log(
bj

bj−1
)|:

≤ 1 + j(−1

j
− 1

2j2
+
C ′

j3
) +−1

2
(−1

j
− 1

2j2
) =

1 + (−1) + (− 1

2j
) + C ′j−2 + (

1

2j
) +

1

4j2
=

1

4j2
+ C ′j−2 =

C ′

j2
.

Note that in a reasoning similar to ignoring the remainder term, we expand
the polynomial that approximates log(1 + 1

j ) only such that the final power will

have j raised to the negative 2nd degree. Expanding further would be unnecessary,
as j raised to a degree ≤ −2 will converge by the p-test in the final summation.
Therefore we just need to look at the larger powers of j to make sure they don’t
add up to be larger than j−2 in the final summation, or our final summation won’t
converge.

Since | log(
bj

bj−1
)| ≤ C′

j2 :

e
log(

bj
bj−1

) ≤ e(
C′
j2

)
.

Therefore:

|δj | = |
bj
bj−1

− 1| ≤ e
C′
j2 − 1.

Then according to the Taylor expansion of e:

e
C′
j2 = 1 +

C ′

j2
,

So:

|δj | ≤
C ′

j2
− 1 + 1 =

C ′

j2
.

So there is some C ′ such that |δj | ≤ C′

j2 . Therefore:

∞∑
j=2

|log(1 + δj)| ≤
∞∑
j=2

δj ≤
∞∑
j=2

|δj | ≤
∞∑
j=2

C ′

j2
.

Recall the p-test, which says that [3]:
∞∑

n=0

1

np

converges if p > 1.

Therefore the ratio converges to some unknown value C, which is different from
the C ′ mentioned above, according to the p-test and the comparison test. This
means we can replace n! with C ∗ nn+1/2e−n. �

Therefore:(
2n

n

)
∗ 1

22n
=

2n!

n!n!
∗ 1

22n
=

(C ∗ (2n)2n+1/2e−2n)

(C ∗ nn+1/2e−n)2
∗ 2−(2n) =

(
C ∗ (2n)2n+1/2e−2n

C2 ∗ n2n+1e−2n
) ∗ 2−(2n) = (C” ∗ 22n+1/2) ∗ (

n2n+1/2

n2n+1
) ∗ 2−(2n)
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=
C” ∗

√
2√

n
=

C0√
n
.

For some constant C0 [2]:

lim
n→∞

P{S2n = 0}
( C0√

n
)

= 1.

Which means whatever lim
n→∞

C0√
n

approaches, that is what lim
n→∞

P{S2n = 0}
approaches.

Since the values they have are the same near infinity, we can replace P{S2n = 0}
with C0√

n
and see if the answer has the ideal result of diverging.

Therefore, according to the p-test:
∞∑

n=0

C0√
n

=∞.

In this case p = 1/2, which is less than 1, which causes the sum to diverge by the
p-test. Since we can pull out the constant, C0 has no affect on the final summation.

Therefore E[V ] = ∞, which means the random walker is expected to return to
the origin infinitely many times. �

Proof. [The probability will be one]

Denote q to be the probability that the random walker passes through the origin
infinitely many times. We want to show that q = 1, so let us assume not. Suppose
q < 1 instead.

If q < 1, the probability that P{V = 1} = 1− q, because V = 1 ⇐⇒ q = 0, or
the random walker only starts at the origin and never returns afterwards.

Let us look at some examples to determine the general case. Suppose we have
a fair coin, with probability 1/2 that we will get heads or tails. Let us suppose we
have one flip to get heads, the probability that this will occur is 1/2. Suppose we
now want to get two heads, and we only have two flips to achieve this. We get 1/2
probability from the first flip, multiplied by 1/2 probability from the second flip.
For the third flip we multiply by another 1/2 and so on. In this case (1− q) is 1/2,
and then we multiply by q each time the amount of heads we want increases.

Now in the case with a six headed die, say we want to roll and get the number 3.
If we get a 3, our random walker will never return to the origin. But if we roll any
other number, our random walker will return to the origin. So suppose V = 1, that
means after our first roll we will never return to the origin. This result relies on the
probability we will get a 3 in one roll, which is 1/6. Now suppose we want V = 2,
which means we’ve visited the origin in two rolls: We’ve started at the origin, with
one roll we’ve got something that isn’t a 3, returning us to the origin, and the
second roll we get a 3. This relies on the probability we will get something that
isn’t 3 on our first roll, which is 5/6 and then the next roll you get the probability
of getting 3 which is 1/6. Therefore E[V = 2] = 1/6 ∗ 5/6 Now with the increase
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of number of visits, we multiply by the probability of not getting a 3, which is 5/6.
Therefore E[V = j] = 1/6 ∗ (5/6)j−1.

In general [2]:

P{V = j} = (1− q) ∗ qj−1 for j = 1, 2, 3...

Plugging the prior result into our definition of expectation, we find:

E[V ] =

∞∑
j=1

j ∗ P{V = j} =

∞∑
j=1

j ∗ (1− q) ∗ qj−1 =

∞∑
j=1

j ∗ qj−1 − j ∗ qj .

By expanding the result, we get:

1− q + 2(q)− 2(q2) + 3(q2)− 3(q3) + 4(q4)...,

which simplifies to the regular geometric series:

1 + q + q2 + q3 + ...,

Therefore:

E[V ] =

∞∑
j=1

qj = lim
n→∞

n∑
j=1

qj .

Let:
E[V ] = lim

n→∞
Sn,

where:

Sn =

n∑
j=1

qj .

Multiplying Sn by (q − 1), we get:

Sn(q − 1) =

n∑
j=1

qj(q − 1) = 1 + qn+1.

Then dividing the above by (q − 1), we get:

Sn =
1 + qn+1

q − 1
.

We’ve assumed q < 1, so when we take the limit:

lim
n→∞

Sn =
1

1− q
= E[V ].

In this case E[V ] = 1
1−q 6= ∞, which contradicts part one. Therefore q = 1.

�

Theorem 3.3 (Random Walk in Z in dimensions 3 or higher). : A random walker,
with equal probability moving ± one space throughout each dimension with dimen-
sion higher than 3, will pass through the origin finitely many times, or infinitely
many times with probability zero.
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Proof. In the multi-dimension case according to Lawler [2]:

lim
n→∞

P{S2n = 0}
C0/nd/2

= 1.

Therefore according to the p-rule mentioned above, if d > 2 then p > 1, which
means that P{S2n = 0} converges. Therefore the random walker passes through
the origin only finitely many times. �

These results imply that if the walker is in the 1st and 2nd dimension, the walker
will always return to where they started, but as soon as higher dimensions are in-
troduced, they will not. It may seems counter intuitive at first, as one could think
since each step forward and back has equal probability, that despite the change of
the number of dimensions, the walker would have as equal likely probability of end-
ing up where they started. It would seem that in all cases the walker either returns
to the origin finitely or infinitely many times. But with further investigation, the
addition of more axis means there are too many combinations of random variables.
There are too many options of back and forth with each step. This makes it im-
possible to always backtrack and end up back where one started, infinitely many
times. One may be lucky and end up back where they started, but only finitely
many times.

Since the flip of a coin only has two possibilities of equal probability, and after 2
dimensions it becomes impossible to visit the origin infinitely many times, it raises
questions of what would occur with deviation. What would occur if the Random
Walk was based on the probability of a die, or a die that was weighted, such that
the probabilities wouldn’t be the same? I presume the random walker would end
up back to the origin only finitely many times in lower dimensions, or even not
at all. Maybe if we changed the experiment such that the random walker would
return to the die’s respective average values, instead of the origin, it may occur an
infinite amount of times in the lower dimensions.
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