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Abstract. This expository paper discusses Dehn’s answer to Hilbert’s third

problem, and the stronger Dehn − Sydler Theorem. We start with the Wal-

lace − Bolyai − Gerwien Theorem to introduce Scissors Congruence and follow
Jessen’s proof of the Dehn − Sydler Theorem. We then present some general-

izations of this problem, including open questions.
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1. Introduction

In 1807, Wallace proved the Wallace − Bolyai − Gerwien theorem that stated
that if and only if two polygons had the same area, then either one could be cut into
finitely many pieces and rearranged through translations and rotations to form the
other [1]. These two polygons are then called Scissors Congruent. In 1900, Hilbert
extended this to three dimensions and raised the question of whether the same
volume was enough to determine that two polyhedra were Scissors Congruent [2].
In 1902, Hilbert’s student Dehn showed that this was not true; the two polyhedra
must also have the same Dehn Invariant [3]. Sydler proved that these two invariants
were in fact enough to determine Scissors Congruence in 1965 [4]. This expository
paper explains the Dehn − Sydler Theorem through a combination of Jessen’s proof
of Sydler’s Theorem [5], which uses algebra proven in [6], and Zylev’s Theorem [7].
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2. Scissors Congruence in the Plane

Definition 2.1. Two polygons P andQ are called Scissors Congruent in the plane if
there exist finite sets of polygons {P1, P2, . . . , Pm} and {Q1, Q2, . . . , Qm} such that
the polygons in each respective set intersect with each other only on the boundaries,
m⋃
i=1

Pi = P and

m⋃
i=1

Qi = Q and Pi is congruent to Qi for each i ∈ {1, 2, . . . ,m}.

Theorem 2.2 (Wallace-Bolyai-Gerwien Theorem, [1] ). Two polygons are Scissors
Congruent if and only if they have the same area.

It is easy to observe that if two polygons are Scissors Congruent then they have
the same area. The proof follows trivially since congruent polygons have equal area.
The harder part is to show that the converse is true.

Claim. If two polygons have the same area then they are Scissors Congruent.

Proof of this requires the following three lemmas.

Lemma 2.3. Given any polygon, it is possible to split it up into a finite number of
triangles.

Proof. This is done by choosing a vertex and drawing lines to all other vertices such
that these lines do not exit the polygon. If any non-triangle sub-polygons remain,
then apply the same procedure to that sub-polygon using a different vertex than
the original. Repeat this process until the initial polygon is entirely decomposed
into triangles as in Figure 1. Because every polygon has a finite number of edges,

Figure 1.

this takes a finite number of steps and produces a finite number of triangles. �

Lemma 2.4. A triangle T is Scissors Congruent to a rectangle with the same base.

Proof. Let b be the base of T and h be the height of T . Let A, B, and C be the
vertices of T , as shown in Figure 2. Construct a line l parallel to b at the midpoint
G of h, and label the intersections of l with T as D and E.
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Figure 2.

Construct a line n parallel to AE through C, and label the intersection of l and
n to be F , as in Figure 3.

Figure 3.

Since G bisects h, it follows from Thales Theorem that D bisects BC. Using
basic geometry, we see that ∠BDE is congruent to ∠FDC and ∠EAC is congruent
to both ∠BED and ∠DFC. Therefore 4BDE is congruent to 4CDF by AAS.
Then, because AEDC is congruent to AECD, it follows that 4ABC is Scissors
Congruent to AECF .

Finally, consider parallelogram AEFC. Construct perpendicular lines p and q to
the base through points A and C respectively, and label the intersections of p and
q with l as K and J respectively, as in Figure 4. Simple geometry shows that AK

Figure 4.

is congruent to CJ and ∠KAE is congruent to ∠JCF . Thus 4KAE is congruent
to 4JCF by SAS. Because AEFC is congruent to AEFC, it follows that AKJC
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is Scissors Congruent to AEFC. Therefore 4ABC is Scissors Congruent to the
rectangle AKJC with the same base. �

Lemma 2.5. A rectangle is Scissors Congruent to another rectangle with arbitrary
height x, if x is less than the height of the rectangle.

Proof. Let h be the height of the first rectangle. We will consider the case where
h−x < x. The case where h−x = x only requires dividing the rectangle in two and
stacking the pieces. The case where h − x > x is fairly similar to the case where
h− x < x, and the set up is demonstrated in Figure 5.

Given a rectangle ABDC, extend CD by h− x length, as in Figure 5 to a point
H. Mark E as the distance x from C on AC. Construct the rectangle with vertices
E, C, and H, and label the 4th point as G. Construct AH and label intersections
I, J , and F as seen in Figure 5.

Figure 5.

Simple geometry shows that ∠BJI is congruent to ∠GHA, ∠HJD, ∠FJI, and
∠IAE. Additionally, ∠GIH is congruent to ∠JHD, ∠BAI, and ∠AIE. By SAS,
4AIE is congruent to4JHD. Thus AI is congruent to JH. It follows that4ABJ
is congruent to 4IGH. Thus we have

ABCD = CEIJD + EIA+AJB

⇔ ABCD = CEIJD +DHJ + IHG.

Therefore ABCD is Scissors Congruent to CEGH which has base x. �

Thus we can see that given two polygons P and Q, we can decompose them into
rectangles of some same base x. We know x > 0, but x can be arbitrarily small to
accommodate arbitrarily small triangles. By stacking these rectangles as in Figure
6, we can see that because P and Q have the same area, the rectangles will reach
the same height. It is evident that additional divisions of the rectangles can be
made so the rectangles are clearly Scissors Congruent to each other. Thus we can
see that P and Q are Scissors Congruent because they can be decomposed into
exactly the same pieces.

3. Scissors Congruence in 3-Space

3.1. Some Definitions and Introduction to Group Theory.

Definition 3.1. Two polyhedra P and Q are Scissors Congruent in 3-space if there
exist finite sets of polyhedra {P1, P2, . . . , Pm} and {Q1, Q2, . . . , Qm} such that the
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Figure 6.

polyhedra in each respective set intersect with each other only on the edges or faces,
m⋃
i=1

Pi = P and

m⋃
i=1

Qi = Q and Pi is congruent to Qi for each i ∈ {1, 2, . . . ,m}.

We can easily observe that

Proposition 3.2. If two polyhedra are Scissors Congruent, then they have the
same volume.

In 2 dimensions, it was possible to tell if two polygons were Scissors Congruent by
determining if they had the same area. In 3 dimensions, it is not the case that two
polyhedra having the same volume implies Scissors Congruence, as will be shown
explicitly in a later example. There is another criterion that must be met; namely,
the Dehn Invariants of the two polyhedra must be the same. However, in order to
introduce the Dehn Invariant, we must first cover some basic group theory.

Definition 3.3. A group is a set of elements G with a binary operation · and an
identity element e such that the following statements hold true:

(1) For any g, h ∈ G, we have g · h ∈ G.
(2) For f, g, h ∈ G, we have f · (g · h) = (f · g) · h.
(3) For any g ∈ G, we have g · e = e · g = g.
(4) For any g ∈ G, there exists an element g−1 ∈ G such that

g · g−1 = g−1 · g = e.

Definition 3.4. A group G is abelian if the binary operation · is commutative, i.e.
for all f, g ∈ G, f · g = g · f .

Definition 3.5. Let G be a group with identity e and operation ·. Let H be a
group with identity e′ and operation ?. A homomorphism ψ : (G, ·, e) → (H, ?, e′)
is a function such that for all f, g ∈ G,

ψ(f · g) = ψ(f) ? ψ(g).
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Definition 3.6. A subset H of a group G is a subgroup of G if H is itself a group
under the same group operation restricted to H and with the same identity element
as G.

Definition 3.7. Let G be a group and H be a subgroup of G. Let x be an element
of G. A coset of H is a set of the form {xh | h ∈ H}, written xH, or of the form
{hx |∈ H}, written Hx. A coset of the form xH is a left coset of H, and a coset of
the form Hx is a right coset.

Definition 3.8. Let N be a subgroup of a group G. If xNx−1 = N for every
x ∈ G, then N is a normal subgroup of G.

Definition 3.9. Let G be a group, and N be a normal subgroup of G. The quotient
group G/N , or ”G modulo N ,” is the set of left cosets of N (which is the same as
the set of right cosets) in G.

Definition 3.10. Let G and H be abelian groups. We define the tensor product
of G and H, denoted G⊗H as

G⊗H :=

 ∑
finite

ai(gi ⊗ hi) | gi ∈ G, hi ∈ H, ai ∈ Z


modulo the following equivalence relations:

(1) a1(g ⊗ h) + a2(g ⊗ h) = (a1 + a2)(g ⊗ h).
(2) (g1 · g2)⊗ h = (g1 ⊗ h) + (g2 ⊗ h).
(3) g ⊗ (h1 · h2) = (g ⊗ h1) + (g ⊗ h2).

Consider the group R/πQ with operation + and identity 0. We want to focus
on V = R⊗ R/πQ. The Dehn invariant of a polyhedron P is defined as

D(P ) =
∑

length(e)⊗ [θ(e)] ∈ V

where θ(e) is the interior dihedral angle (the angle formed by two faces of a poly-
hedron that is ”inside” the polyhedron) at the edge e and the sum is over all edges
e of P .

Observe that

Theorem 3.11. If P and Q are scissors congruent, then vol(P ) = vol(Q) and
D(P ) = D(Q).

Proof. It is easy to observe that if two polyhedra are Scissors Congruent, then they
have the same volume.

Because P and Q are Scissors Congruent, there exist decompositions of P and
Q into {P1, P2, . . . , Pn} and {Q1, A2, . . . , Qn} respectively such that for each i ∈
{1, 2, . . . , n}, Pi is congruent to Qi. Consider the cuts made in P and Q to get to
these decompositions, and their effect on the Dehn Invariant. We want to show that
if a polyhedron A is cut into two polyhedra A1 and A2, thenD(A) = D(A1)+D(A2).

A cut made transverse to an edge is one that goes through that edge by crossing
it at one point on the edge. If a cut is made transverse to an edge E, then the
dihedral angle at the two new edges E1 and E2 remains the same, and length(E) =
length(E1) + length(E2). Using the equivalence relations of the tensor product, we
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can see that

length(E)⊗ [θ(E)] = [length(E1) + length(E2)]⊗ [θ(E)]

⇒ length(E)⊗ [θ(E)] = length(E1)⊗ [θ(E)] + length(E2)⊗ [θ(E)]

and we can see that this does not affect the Dehn Invariant.
If a cut is made through an edge E, then the combined length of the edges

formed, E1 and E2, remains the same, and the dihedral angle θ(E) is split up into
two angles such that θ(E1) + θ(E2) = θ(E). By the same properties of tensors as
before, this does not affect the Dehn Invariant.

A cut made transverse to a face is one that makes a line through the middle of
a face. If a cut is made transverse to a face, then two new edges E1 and E2 are
created. E1 and E2 have the same length, and θ(E1) + θ(E2) = π. Thus we can
see that

length(E1)⊗ [θ(E1)] + length(E2)⊗ [θ(E2)]

=length(E1)⊗ [θ(E1) + θ(E2)]

=length(E1)⊗ [π]

=length(E1)⊗ [0]

=0

i.e. the total Dehn invariant doesn’t change.
Thus we can see that when we decompose P and Q, we have that

D(P ) = D(P1) +D(P2) + · · ·+D(Pn)

= D(Q1) +D(Q2) + · · ·+D(Qn)

= D(Q).

�

This theorem allows us to answer Hilbert’s 3rd problem in the negative as is
apparent from the following example, which was originally proven by Dehn [3],
although we follow the proof of Conant [11].

Example 3.12. A cube C and a tetrahedron T of unit volume are not Scissors
Congruent.

Proof. Every interior dihedral angle of the cube is equal to π/2, Therefore

D(C) =

12∑
i=1

|Ei| ⊗ [π/2]

=

12∑
i=1

|Ei| ⊗ [0]

=0.

Now consider the tetrahedron. Geometry shows that for a tetrahedron of volume
1, the length of each edge is |721/3|, and the measure of each angle is arccos(1/3).
Thus

D(T ) =

6∑
i=1

|721/3| ⊗ [arccos(1/3)].
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We now want to show that arccos(1/3) 6∈ πQ. Suppose for contradiction that
a rational p/q exists such that arccos(1/3) = pπ/q. Thus because eiθ = cos(θ) +
i sin(θ), we have that

e(p/q)πi =
1

2
+ (
√

8/3)i

⇒ 1 = (1/3 + (
√

8/3)i)2q

Claim. (1/3 + (
√

8/3)i)n = (an/3
n+1 + i

√
2bn/3

n+1).

This holds for n = 1, with a1 = 3 and b1 = 6. Consider, then, if it holds for
n− 1. We want to use induction to show that it must hold for n. Thus we have

(1/3 +
√

8/3)i)n = (1/3 + (
√

8/3)i)(an−1/3
n + i

√
2bn−1/3

n).

By multiplying the right hand side, we have that an = an−1 − 4bn−1, and that
bn = bn−1 + 2an−1. This means that an and bn are integers.
We now want to show that bn can never be equal to 0. Thus (1/3 + (

√
8/3)i)n will

always have some imaginary component and cannot equal 1. Using mod3 and our
a1, b1, we realize that we have the following:

a1 = 1, b1 = 0

a2 = 1, b2 = 2

a3 = 2, b3 = 1

a4 = 1, b4 = 2.

Thus we can see that this cycles, because a2 = a4, b2 = b4. Thus bn 6= 0 (mod 3)
for all n > 1, and we know that for n = 1, b = 6. Thus [arccos(1/3)] 6= 0. This
implies D(T ) 6= 0, so D(T ) 6= D(P ), and hence by theorem 3.11, T and P are not
Scissors Congruent. �

Of course, this answer to Hilbert’s problem is really just a start as it immediately
raises other questions:

• Are volume and Dehn invariant sufficient to classify polytopes up to scissors
congruence?
• What about other dimensions?
• What about other geometries, H3, S3 etc.?

We show in the rest of this section that the answer to the first question is ‘Yes’, as
was shown by Sydler in 1965.

3.2. The Scissors Congruence Group and Zylev’s theorem. Let P be the
set of formal sums of all polyhedra. We can give P a group structure, with the
empty polyhedron as the identity and the operation as formal sum modulo the
following equivalence relations:

• nP +mP = (n+m)P
• P = P1 +P2 if P1 and P2 intersect only on edges or faces, and P = P1∪P2.
• P = Q if P is congruent to Q.

The group defined as above is called the scissors congruence group of E3. Note
that in the previous section, we have shown that the corresponding group in E2 is
isomorphic to R.
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If we have two polyhedra P and Q that are Scissors Congruent, we have that
[P ] ∈P is equal to [P1] + [P2] + · · ·+ [Pn] = [Q1] + [Q2] + · · ·+ [Qn] = [Q]. Thus if
two polyhedra are Scissors Congruent, then they are in the same equivalence class
in P. This, along with above theorem, enables us to define a map

(vol, D) : P → R⊕ (R⊗ R/πQ)

The main theorem of this paper, theorem 3.22 shows that this map is injective.
Note that from definitions, having [P ] = [Q] in P means that there exists

a polyhedron A such that P ∪ A is scissors congruent to Q ∪ A and P and A
(resp. Q and A) only intersect on their faces. Two such polyhedra are said to be
stably scissors congruent which doesn’t immediately imply that they are scissors
congruent. However the following theorems states that in E2 and E3, these are
equivalent ideas.

Theorem 3.13. Two polygons P and Q in the Euclidean Plane are Scissors Con-
gruent if and only if they are Stably Scissors Congruent.

Proof.

Claim. If P and Q are Scissors Congruent, then they are Stably Scissors Congru-
ent.

By theorem 2.2, P and Q have the same area. Let A be some polygon such that
P and A intersect only on their boundaries, and Q and A intersect only on their
boundaries. Because A is congruent to A, it follows that P ∪ A has the same area
as Q ∪A. Therefore P and Q are Stably Scissors Congruent.

Claim. If P and Q are Stably Scissors Congruent, then they are Scissors Congru-
ent.

Because P and Q are Stably Scissors Congruent, there exists some polygon A
such that A intersects P and Q only on their edges, and P ∪A is Scissors Congruent
to Q∪A. By theorem 2.2, P ∪A and Q∪A have the same area. Therefore, P and
Q must have the same area. Thus by theorem 2.2, P and Q are Scissors Congruent.

Thus we can see that in the Euclidean Plane, Scissors Congruence is equivalent
to Stable Scissors Congruence. �

Theorem 3.14 (Zylev, [7]). For two polyhedra P and Q in E3, P is Scissors
Congruent to Q if and only if P is stably Scissors Congruent to Q.

Sketch of proof. We will follow the proof by Calegari [12]. If P is Scissors Congruent
to Q, then clearly so are P ∪A and Q∪A. Conversely, if P ∪A is Scissors Congruent
to Q∪A, then there is some division of A into pieces. We can further subdivide A
into sufficiently small pieces Ai, i ∈ {1, 2, . . . , n}. Let us define f : P ∪A→ Q ∪A
to be the function that maps a polyhedron in the decomposition of P ∪ A to the
polyhedron it is congruent to in the decomposition of Q ∪A. In the same manner,
let any subdivisions of polyhedra map to the corresponding subdivisions of the
polyhedra that they map to. So, if some polyhedron X maps to some polyhedron
Y , then X1 ⊂ X maps to Y1 ⊂ Y where Y1 is congruent to X1. Consider the image
f(A1) in Q ∪ A. If A1 is small enough, then it must be equidecomposable with
some subset B1 ∈ Q/f(A1). We can then exchange B1 with f(A1), decomposing
any pieces that intersect B1, and then we exchange A1 with B1, decomposing any
pieces that intersect A1. Therefore, A1 is now in the correct place and we have
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further decomposed pieces that intersect A1 ⊂ Q ∪A and B1 ⊂ Q ∪A.
Now consider the image of A2. We can do the same thing with A2, although A2

may have been further subdivided at this point, and f may be slightly different
because of these further subdivisions.f ′(A2) ⊂ Q ∪ A is equidecomposable with
A2, which is equidecomposable with some B2 ⊂ Q \ f ′(A2), so we may exchange
them as before, decomposing first pieces which intersect B2 and then pieces which
intersect A2. This process repeats inductively with Ai, Bi, and f ′(Ai), and at the
ith stage, we have that A1∪A2∪· · ·∪Ai do not move. Thus after n steps, we come
to a decomposition of P ∪A and Q ∪A such that the pieces in A1 ∪A2 ∪ · · · ∪An
do not move with f . Thus P and Q are Scissors Congruent.

�

3.3. Prisms and Jessen’s proof of Sydler’s Theorem.

Definition 3.15. A prism is a polyhedron with two identical, parallel polygonal
faces for ends and flat parallelogram sides that connect corresponding edges of the
polygonal faces. An orthogonal prism is one where the sides are all rectangles.

Lemma 3.16. Two prisms P and Q are Scissors Congruent if and only if they
have the same volume.

Proof. Let P and Q be two prisms with the same volume. Because the end faces of
prisms are parallel, we can slice them with planes and rearrange the pieces to make
orthogonal prisms, as shown in Figure 7. Now, consider P and Q from above, so
they look like 2 dimensional polygons. We can use the same techniques that we did
for polygons in Theorem 2.2 and turn the faces of the prisms into rectangles with
length 1, by making scissor cuts through the top faces that are perpendicular to
these faces. We can pick 1 as our length because we can pick any arbitrary height.
Turn the prisms on their sides, so now the height of both prisms is 1. Because the
prisms have the same volume, the faces that are now on top of the prisms must
have the same area. We can use the methods of Theorem 2.2 again, to turn these
faces of P and Q into congruent rectangles. Thus we can see that P and Q are
Scissors Congruent. �

Figure 7.
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Theorem 3.17. All prisms have zero Dehn Invariant.

Proof. Let P be an orthogonal prism. We can assume it is orthogonal by the same
logic as lemma 3.16. Using the same techniques as in lemma 3.16, we can create
a rectangular prism P ′ with edges e1, e2, . . . , e12 that is Scissors Congruent to
P . Therefore, we can see that all dihedral angles are π/2. Because D maps to
R⊗ R/πQ, we have the following:

D(P ′) =

12∑
i=1

length(ei)⊗ [π/2]

=

12∑
i=1

length(ei)⊗ [0]

= 0.

Recall that Scissors Congruence implies the same Dehn Invariant. Therefore, be-
cause D(P ′) = 0, it follows that D(P ) = 0. �

Now we consider another group. Let P/C be the group of formal sums of all
polyhedra modulo formal sums of prisms. This means that if you have a polyhedron
P and a formal sum of prisms Q, such that P and Q do not intersect except on
edges or faces, then P is equivalent to P ∪Q in P/C . Let j : P → P/C be the
function that maps polyhedra to their equivalence class in P/C . Since the Dehn
invariant of Prisms are zero, the map D : P → V factors through P/C and the
following proposition holds.

Proposition 3.18. There exists a function δ : P/C → R ⊗ R/πQ such that
δ ◦ j(P ) = D(P ). That is, the following diagram commutes.

P R⊗ R/πQ

P/C

D

j δ

We will next prove Sydler’s Theorem which shows that volume and the Dehn
Invariant are the only two invariants necessary to show Scissors Congruence. How-
ever, in order to do so, we must first show that δ is injective.

Definition 3.19. An orthoscheme is a tetrahedron isometric to the convex hull of
the points

(0, 0, 0); (x, 0, 0); (x, y, 0); (x, y, z)

Note that an orthoscheme has right triangles for faces, and 3 of the 6 dihedral
angles are π/2.

We cite the existence of the following function, as it is beyond the scope of this
paper.

Theorem 3.20. We want to create a homomorphism φ : R→P/C such that

(1) φ(a+ b) = φ(a) + φ(b)
(2) φ(na) = nφ(a) for n ∈ Z
(3) φ(π) = 0
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(4) [T ] =

6∑
i=1

length(ei)φ(θi) ∈P/C

We follow the construction of Zakharevich [13] for φ. Suppose there exists a
function h : (0, 1)→P/C such that [T (a, b)h̄(a)+h(b)−h(a, b) and ah(a)+bh(b) =
0 if a+ b = 1. We can then define φ(α) = tan(α) · h(sin2(α)) where (nπ/2) = 0. φ
is then our good function. By [6], such a function exists.

Proposition 3.21. If such a function φ exists, then δ is injective.

Proof. φ is an abelian homomorphism, and is Q -linear. It follows that φ(α) = 0
for all α ∈ πQ. Hence, φ induces a well-defined Q-linear map from R/πQ→P/C .
Let us define a function Φ : R ⊗ R/πQ → P/E such that Φ(x ⊗ y) = xφ(y). We
want to prove that Φ ◦ δ = identity, to show that δ is injective.

We can see that

Φ ◦ δ([T ]) = Φ ◦D(T ) = [T ]

for any orthoscheme T . Any tetrahedron can be split up into finitely many
orthoschemes, and every polyhedron can be split up into finitely many tetrahedrons,
so we can see that P/C is generated by orthoschemes. From this, we can realize
that Φ ◦ δ is the identity, so δ must be injective. Because δ is injective, Sydler’s
Theorem can be proven. �

Theorem 3.22 (Sydler, [4]). If two polyhedra P and Q have the same volume and
the same Dehn Invariant, then P and Q are scissors congruent.

Proof. We have shown that δ is injective. Now suppose we have two polyhedra
P and Q with vol(P ) = vol(Q) and D(P ) = D(Q). Because δ is injective, [P ] =
[Q] ∈ P/C . Then there exist prisms R and S such that R only intersects P on
faces, S only intersects Q on faces, and [P ∪ R] = [Q ∪ S] ∈ P. By Theorem
3.11, P ∪ R and Q ∪ S have the same volume. Because vol(P ) = vol(Q), and the
respective intersections of P and R, and of Q and S have volume 0, it follows that
vol(R) = vol(S). Because R and S are prisms, this means that they are scissors
Congruent. Thus [R] = [S] and consequently [P ] = [Q] ∈P. Finally, therefore by
Zylev’s theorem 3.14, P is Scissors Congruent to Q. �

4. Generalizations and other Open Questions

We have discussed Scissors Congruence in two and three dimensional Euclidean
Space, but there is no reason to limit study to these areas.

4.1. Scissors Congruence in Higher Dimensions. In [10], Zakharevich dis-
cusses how Jessen showed that Sydler’s Theorem can be extended directly to four
dimensions in [5]. However, it is an open question as to whether the Dehn Invariatnt
can be generalized to higher dimensions than four.

4.2. Scissors Congruence in Mixed Dimensions. Scissors congruence also
need not be limited to single dimensions. In [10], Zakharevich showed that when we
keep track of the effects of cuts on multiple dimensions instead of treating polytopes
like physical objects where lesser-dimensional errors can be ignored, we obtain a
new notion of scissors congruence: mixed-dimensional scissors congruence. Here,
length and the Euler characteristic are invariants for P(E1). We can also construct
Goodwillie’s bending invariant as an invariant for higher dimensions, although it
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is an open question as to whether volume and Goodwillie’s bending invariant are
enough to determine equivalence classes in P(E3).
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