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Abstract. We introduce the underlying principles of topological data analysis via
persistent homology. We then preview how these can be applied to analyze the
activity-based topologies of various neuronal classes in the motor cortex, along
with their evolution as induced by engagement in a physical task.

Contents

1. Introduction 1
1.1. Topological data analysis 1
1.2. Motor cortical activity 3

2. Mathematical background 4
2.1. Simplicial complexes 4
2.2. Homology groups 6
2.3. Persistent homology 10
2.4. Witness complexes 12

3. Data collection and classification 13
3.1. Experimental setup 13
3.2. Neuronal classifications 14

4. Topological analysis 16
4.1. Prior work 16
4.2. Activity and witness spaces 16
4.3. Persistence barcodes 17

5. Conclusions 18
Acknowledgements 20
References 20

1. Introduction

1.1. Topological data analysis

Topology is the branch of mathematics which studies the qualitative geometry
of a space. This includes information about connectivity and higher-dimensional
structures such as holes and voids, attributes that are preserved under homeo-
morphisms like continuous deformation. In recent years, the field of topological
data analysis (TDA) has emerged as a way to employ topological tools such as
homology to point clouds of discrete data. This technique is particularly useful in
recovering qualitative information about a data set that might not be recognized
using conventional analytic methods, as these methods often make assumptions of
distance-dependence and linear separability. TDA generally returns a summary of
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the overall data structure that is insensitive to coordinates and metric, via exam-
ination of the relationships between functorial geometric constructions that arise
from the data [Car09]. For example, TDA shines when describing data that has
non-trivial underlying topology (Figure 1). One might imagine that the data is
sampled from a manifold embedded in R

N , up to the presence of some noise.

Figure 1. A data set in R
2 with the underlying topology of a cir-

cle. TDA would aim to detect a single connected component with
a 1-dimensional hole, independent of continuous deformation.

One of the primary methods of TDA is persistent homology (Section 2.3),
which seeks to understand the topology underlying a point cloud data set at var-
ious resolutions. We can apply this method by building an intermediate space,
the Vietoris-Rips complex (Definition 2.23), which depends on a parameter ε > 0
and on the notion of “distance” between any two data points. This is given by the
choice of metric on the space, such as the one given by embedding into an ambient
space like R

N and using Euclidean distance.
The Rips complex is built by connecting all pairs of points x and y such that

d(x,y) < ε via an edge, all triplets x,y,z such that

d(x,y) < ε, d(x,z) < ε, d(y,z) < ε

via filled triangles, all quadruplets with pairwise distances less than ε via filled
tetrahedra, and so forth. Changing the value of ε gives different Rips complexes
for which invariants known as Betti numbers (Definition 2.20) can be computed.
Rather than restricting to a single spatial scale and risking the loss of valuable in-
formation, persistent homology refers to the properties which persist as the topol-
ogy evolves along different spatial scales (parameterized by ε). If the underlying
manifold of data has multidimensional “holes”, we expect to detect them over
some interval of spatial scale, that is, for some interval of ε within 0 to ∞. The
holes that persist through relatively long ranges of scales are thought to represent
important features of the data [Wol16].

The robust nature of TDA is appealing for the analysis of biological data due
to the intrinsic variability and stochastic nature of biological processes, and the
fluid definitions of biological similarity. In 2011, a group of scientists and math-
ematicians demonstrated how TDA can be useful in transcriptional data analysis
by using this method to classify a new kind of breast cancer based on a distinct
and statistically significant molecular signature [NLC11].

Another remarkable application of TDA was carried out in 1979 by Miller
and Reaven on data from 145 diabetic patients [RM79]. Analyzing both diabetics
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Figure 2. This figure, taken from [RM79] is an artist’s depiction
of the data in three dimensions. The central region represents
non-diabetic patients, the left cluster Type I diabetes, and the
right cluster Type II.

and non-diabetics, four metabolic variables pertinent to glucose tolerance and in-
sulin response were recorded, as well as patient weight. This constructed 145 data
points in R

5 - a significantly large data set with no conventional or existing method
of analysis. Using the Prim 9 program to project this data into 3-dimensional
space (see Figure 2), it became apparent that the subjects with diabetes likely be-
longed to different populations and ultimately, this elucidated the classification of
diabetes into Type I (left region) and Type II (right region).

1.2. Motor cortical activity

In this study, we have chosen to apply topological data analysis to under-
stand motor cortical activity. Thanks to the work of Kazutaka Takahashi and the
Hastopoulos lab at the University of Chicago, aggregate signals in the motor cortex
have been understood as propagating waves across the cortical surface [TKC+15],
but far less is understood about the spatial arrangement and coordination of indi-
vidual neurons and about how the signaling of individual neurons contributes to
the aggregate signals. This group has shown that a large network of neurons dis-
play coordinated activation at movement onset, based on statistical classification
of these neurons, and they claim that this suggests the necessity for a unique pat-
tern of spatial activation for movement onset to occur [TKC+16]. The study also
suggested that during movement onset, there appeared to be an increase in the
number of statistically significant connections between the subclass of neurons
with firing activity correlated to the aggregate signal, but no significant increase
in the connectivity between the other class of neurons.

However, their analysis thus far is relatively constrained to observations like
how the flow of information via the connections of individual neurons is directed
in a similar way to the aggregate wave direction. While this is interesting, our
hope is that finer spatial properties can be teased out as well, given the highly
non-trivial structure of neural connectivity.
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We turn to TDA since, as stated before, it represents a fundamentally differ-
ent approach that can qualify intrinsic properties of an underlying space that are
invariant under choice of metric and/or continuous deformation. This is desirable
in the context of neurons and their activity (intuitively, we think of differences in
functional and physical structure between brains as the types of “noisy” deforma-
tion we wish to ignore). By constructing a mathematical space from the activity
of motor cortical neurons (Section 4.2) we can look at the same neuronal data in a
new light, with the hope of understanding the topological signatures or differences
that arise from a set of neurons and how that topology changes in time relative to
movement onset.

Our precedent is a 2010 study where mathematicians applied persistent ho-
mology to data derived from an electrode array in the primary visual cortex of
macaque monkeys [SMI+08]. They constructed data sets from the simultaneous
activity of a number of neurons to get a qualitative understanding of their popu-
lation’s interaction during visual stimulation. In particular, they sought to “offer
an estimate of the underlying topological structure of V1 activity.” Their method
of analysis, as well as our own, will be discussed in Section 4.

2. Mathematical background

To apply the technique of persistent homology, one first needs to convert point
cloud data into a filtration of spaces that can be meaningfully analyzed using al-
gebraic topology. The standard technique involves turning point-cloud data into
simplicial complexes known as Vietoris-Rips complexes, and subsequently com-
puting their respective simplicial homologies. Here, we develop the necessary
mathematical objects and describe the relevant results needed for our later topo-
logical analysis. This section synthesizes information from [Hat02] (a standard
text in algebraic topology), along with a guide to computing persistent homology
released by two pioneers in the field [ZC05].

2.1. Simplicial complexes

Definition 2.1. Let v0, . . . , vn be points in R
m. Then:

• A point x =
∑n
i=0λivi with λi ∈R is an affine combination of the vi if

∑n
i=0λi =

1. It is a convex combination if all λi ≥ 0.
• A set of points is affinely independent when any two affine combinations are

the same if and only if their corresponding coefficients in R are identical. This
is equivalent to the difference vectors

v1 − v0, . . . , vn − v0

being linearly independent.
• The convex hull of v0, . . . , vn is the set of their convex combinations:

x =
∑

λivi where λi ≥ 0 for all i and
∑

λi = 1

All together, these let us define the central object of (geometric) simplicial
homology:

Definition 2.2. An n-simplex is the convex hull of n + 1 affinely independent
points. The points vi are the vertices of the simplex and the simplex is denoted by
[v0, . . . , vn]. We say n is the dimension of the simplex.
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Example 2.3. The standard n-simplex ∆n is that whose vertices are the unit vec-
tors along the coordinate axes:

∆n =
{

(t0, . . . , tn) ∈Rn+1
∣∣∣∣∣ n∑
i=0

ti = 1 and ti ≥ 0 for all i
}

For the purpose of developing simplicial chain complexes, we will require the
following notion:

Definition 2.4. An ordered n-simplex is an n-simplex with a total order on its
vertices. We write [v0, . . . ,vn] if the ordering is

v0 < v1 < . . . < vn−1 < vn.

The ordering of the vertices will impose orientations on each edge, orienting
[vi ,vj ] in the direction of increasing subscripts.

Note that the linear independence of the n vectors v1 − v0, . . ., vn − v0 implies
that an n-simplex is indeed homeomorphic to a closed n-ball. Intuitively, an n-
simplex is the filled n-dimensional analog of a triangle. The first few dimensions
are visualizable: a 0-simplex is simply a point, a 1-simplex is an edge, a 2-simplex
is a filled triangle, and a 3-simplex is a filled tetrahedron (see Figure 3 for oriented
examples).

v0
v0 v1 v0 v1

v2

Figure 3. Examples of oriented 0, 1, and 2-simplices, respectively

Definition 2.5. Eliminating one of the n + 1 vertices of an n-simplex results in n
vertices that span an (n− 1)-simplex, called a face.

Note that if the larger simplex is ordered, the vertices of a face receive an
induced order which also make it an ordered simplex. We see this occur for the
2-simplex in Figure 3: [v0,v1,v2] gives faces [v0,v1], [v0,v2], and [v1,v2].

Definition 2.6. The boundary of an n-simplex σ , denoted ∂σ , is the union of all
of σ ’s faces. The remaining portion of the simplex, which is the interior of σ is
called the open simplex. It is given by the set difference σ −∂σ .

We form simplicial complexes by identifying simplices together along their
faces, as formalized in the following definition:

Definition 2.7. A finite set of simplices K is a simplicial complex if the following
properties hold:
a) For all simplices σ ∈ K , if τ is a face of σ , then τ ∈ K as well.
b) σ,τ ∈ K =⇒ σ ∩ τ is empty or a simplex itself.
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The dimension of K is the maximum dimension across all its simplices.

Given a simplicial complex K , we can throw away the geometric interpreta-
tion of the simplices by retaining only the set of vertices of each simplex, along
with the implicit combinatorial structure given by the relationship between ver-
tex sets. This gives an example of an abstract simplicial complex A, which we call
the vertex scheme of K . Formally:

Definition 2.8. An abstract simplicial complex is a finite collection A of finite
subsets of a vertex set V , such that each element of V is a simplex and α ∈ A and
β ⊆ α implies that β ∈ A.

We then call sets in A our simplices, where the dimension of a simplex is
dim(α) = card(α)− 1. The dimension of the complex is still the maximum dimen-
sion over its simplices, and the vertex set of A is the union of all 0-simplices in
A.

Abstract simplicial complexes can be thought of as an abstract version of a
geometric simplicial complex. We say that K is a geometric realization of A if its
vertex scheme is isomorphic to A. The other direction of generating a geometric
realization from an abstract simplicial complex is slightly more difficult, but it
can be done in a sufficiently high-dimensional Euclidean space by the following
theorem, with proof adapted from [Ede06]:

Theorem 2.9 (Geometric realization theorem). An abstract simplicial complex A of
dimension d has a geometric realization in R

2d+1.

Proof. Let f : Vert A → R
2d+1 be an injection whose image is a set of points in

general position (i.e., any 2d + 2 or fewer of the points are affinely independent).
Take α,α0 to be simplices in Awith k = dim(α) and k0 = dim(α0). The union of the
two simplices has size:

card(α ∪α0) = card(α) + card(α0)− card(α ∩α0) ≤ k + k0 + 2 ≤ 2d + 2

Therefore, the points in α ∪α0 are affinely independent, implying that every
convex combination x of points in this space is unique. Thus, x is in σ = conv(f (α))
and x is in σ0 = conv(f (α0)) if and only if x is a convex combination of α∩α0. But
this indicates that σ ∩ σ0 = ∅ or conv(f (α ∩α0)), completing the proof. �

2.2. Homology groups

We now work towards defining the simplicial homology groups of a simplicial
complex K . Let Cp(K) denote the free abelian group over the oriented p-simplices
{σpj } of K .

Definition 2.10. An element X ∈ Cp(K) is called a p-chain. It is a formal sum of
p-simplices in K with coefficients in Z. That is, X is of the form

X = α1σ
p
1 + . . .+αkσ

p
k ,

where {αj | j = 1, . . . , k} ∈ Z. It follows that Cp(K) is an abelian group under addi-
tion.

The boundary of an n-simplex [v0, . . . , vn] is constituted by the (n−1)-simplices
[v0, . . . , v̂i , . . . , vn], i.e., the simplices resulting from removing the i-th vertex for
each i. In the language of chains, the boundary is the (n − 1)-chain given by an
“oriented” sum of the faces [v0, . . . , v̂i , . . . , vn]. This can be formalized as follows:
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Definition 2.11. Given a simplicial complex K , we define a boundary homomor-
phism ∂p. We specify this map for all values of Cp(K) by specifying its value on
basis elements. Let p > 0 and σ = [v0, . . . , vp] be an oriented p-simplex. Then:

∂p : Cp(K)→ Cp−1(K), ∂pσ =
p∑
i=1

(−1)i[v0, . . . v̂i . . . ,vp]

where v̂i means the vertex has been omitted. The image of a p-chain under ∂p is
the p-chain’s boundary.

Example 2.12. Consider once more the example of oriented simplices in Fig-
ure 3. Using the definition of the boundary homomorphism above, we compute
the boundaries for the 1 and 2-simplices:

∂[v0,v1] = [v1]− [v0]

∂[v0,v1,v2] = [v1,v2]− [v0,v2] + [v0,v1],

where we can think of −[v0,v2] as preserving the orientation of the edge from v2
to v0.

Lemma 2.13. For any p-simplex σ , (∂p−1 ◦∂p)σ = 0.

Proof. Take σ = [v0, . . . , vp]. Then:

(∂p−1 ◦∂p)σ = ∂p−1

( p∑
i=0

(−1)i[v0, . . . , v̂i . . . ,vp]
)

=
i−1∑
j=0

(−1)i[v0, . . . , v̂j , . . . , v̂i . . . ,vp] +
p∑
j=i

(−1)i[v0, . . . , v̂i , . . . , v̂j . . . ,vp]

=
p∑
i=0

i−1∑
j=0

(−1)i+j [v0, . . . , v̂j , . . . , v̂i . . . ,vp] +
p∑
i=0

p∑
j=i+1

(−1)i+j−1[v0, . . . , v̂i , . . . , v̂j . . . ,vp]

=
∑
j<i

(−1)i+j [v0, . . . , v̂j , . . . , v̂i . . . ,vp] +
∑
j>i

(−1)i+j−1[v0, . . . , v̂i , . . . , v̂j . . . ,vp]

= 0.

This follows because we can switch the roles of i and j in the last sum. When we
do so, the second sum becomes the negative of the first, completing our proof. �

For all p, recall that Cp(K) forms an abelian group. We now have a sequence
of homomorphisms of abelian groups with the property that ∂p−1 ◦∂p = 0. Such a
sequence is formally called a chain complex.

Cp(K)
∂p
−−→ Cp−1(K)

∂p−1
−−−−→ Cp−2(K) −→ . . . −→ C1(K)

∂1−−→ C0(K)
∂0−−→ 0

Definition 2.14. A p-chain is a cycle if its boundary is zero. Let

Zp = {p-cycles of K over Z}

Then Zp(K) is a subgroup of Cp(K) and by definition:

Zp(K) = Ker(∂p)
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An interesting way to understand cycles is to note that the boundary of any
simplex is, in fact, a cycle. This follows directly from our lemma ∂p−1 ◦∂p = 0, i.e.,
that the formal sum of the boundaries of the boundary of any simplex is always
zero.

Definition 2.15. A p-chain is a boundary if it can be written as the boundary of
an element in Cp+1(K). Let Bp(K) denote this set of boundaries. Therefore:

Bp(K) = Im(∂p+1)

From this, since ∂p−1 ◦ ∂p = 0, it must be true that Bp(K) ⊂ Zp(K). Finally, we
will use this to define the homology groups of K .

Definition 2.16. The p-th homology group of a simplicial complex K is given by:

Hp(K) = Zp(K)/Bp(K) = Ker(∂p)/Im(∂p+1)

This quotient is valid since we are looking at subgroups of the abelian group
Cp(K), which ensures that Bp(K) is indeed a normal subgroup of Zp(K). The el-
ements of Hp(K) are equivalence classes of p-cycles that do not bound any p + 1
chain. In this way, the homology group characterizes p-dimensional holes in the
original complex. Two p-cycles are in the same equivalence class if z1, z2 ∈ Zp(K)
such that z1 − z2 ∈ Bp(K). If this holds, then z1 and z2 are considered homologous.

For a finite simplicial complex, the homology groups are finitely generated
abelian groups, which means we can understand their structure more generally
according to the following theorem:

Theorem 2.17. If G is a finitely generated abelian group then it is isomorphic to a
direct sum of the form

G �Z
β ⊕Z/t1 ⊕ · · · ⊕Z/tm.

for non-negative β and positive t1, . . . , tm.

In general, one can compute homology with coefficients in a group G. This
involves starting with the tensor product Cp(K)⊗

Z
G, which can viewed as formal

sums

X = α1σ
p
1 + . . .+αkσ

p
k ,

as before, but with α1, . . . ,αk ∈ G.

Definition 2.18. The p-th homology group with coefficients in G of a simplicial
complex K , written Hp(K ;G), comes from instead taking

Cp(K)⊗G
∂p⊗idG
−−−−−−→ Cp−1(K)⊗G −→ . . . −→ C1(K)⊗G

∂1⊗idG−−−−−−→ C0(K)⊗G
∂0⊗idG−−−−−−→ 0,

defining Zp(K ;G) and Bp(K ;G) with respect to these ∂p ⊗ idG’s, and then taking

Hp(K ;G) = Zp(K ;G)/Bp(K ;G) = Ker(∂p ⊗ idG)/Im(∂p+1 ⊗ idG).

Remark. In this notation, Hp(K ;Z) =Hp(K).

Example 2.19. Most TDA practitioners take G = Z/2Z, which we also view as the
additive group of the field F2. This has the effect of discarding orientation, since
now −σ = σ . This weakens our ability to distinguish between topological spaces,
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but greatly simplifies computation. By the universal coefficient theorem of homology,
we get a split exact sequence showing the existence of an isomorphism:

Hp(K ;Z/2Z) � (Hp(K)⊗Z/2Z)⊕Tor(Hp−1(K),Z/2Z).

(See [Hat02, §3A] for details on the theorem and the Tor functor.) In practical
terms, if via Theorem 2.17 we write our (finitely-generated) homology groups as

Hp(K) �Z
β ⊕Z/t1 ⊕ · · · ⊕Z/tm

Hp−1(K) �Z
γ ⊕Z/u1 ⊕ · · · ⊕Z/u` ,

then our isomorphism shows that

Hp(K ;Z/2Z) � (Z/2Z)β+t ⊕ (Z/2Z)u � (Z/2Z)β+t+u ,

where t, u are the number of ti ’s, uj ’s that are divisible by 2, respectively. This
is a result on the rank, and so the actual choice of isomorphism is unimportant;
when doing computations, one would compute Hp(K ;Z/2Z) outright instead of
computing Hp(K) and passing to Hp(K ;Z/2Z) afterwards.

Most importantly, Hp(K ;Z/2Z) is a Z/2Z-vector space. This leads to a se-
quence of numbers with useful geometric interpretation:

Definition 2.20. The dimension of Hp(K ;Z/2Z) is the p-th Betti number of K
(with coefficients in Z/2Z), written βp = β + t + u. For any space, these Betti
numbers over Z/2Z form a sequence of non-negative integers (β0,β1,β2, . . .) which
we call the Betti signature.

Betti signatures are topological invariants, as spaces which are homeomor-
phic (i.e., there exists a bicontinuous map transforming one to the other) have the
same Betti signatures. For example, if K is a simplicial complex, then the complex
K ′ where some vertex v was shifted by a small ε will still have the same homology
groups and Betti signature, despite being a different space.

Remark. How does one interpret the Betti signature geometrically? The mantra
is that Hp(K) consists of “cycles mod boundaries” (where working in Hp(K ;Z/2Z)
causes some of these cycle classes to vanish). Thus, the dimension βp ofHp(K ;Z/2Z)
roughly expresses the maximal number of independent cycles that are not bound-
aries. In the 1-dimensional setting, this corresponds to the number of holes (see
Figure 4).

Example 2.21. If two vertices (0-simplices) are connected by a sequence of 1-
simplices, then they are the boundary of the corresponding 1-chain. Hence β0
counts the number of connected components.

Example 2.22. A higher-dimensional example is the torus, which has Betti sig-
nature (1,2,1,0, . . . ). One can triangulate the torus to get a simplicial complex
comprised by 2-simplices. Then:
• The 2-chain summing over all the 2-simplices is a cycle (each triangle edge
σ , is shared by exactly 2 triangles, and thus upon taking boundaries gives 0).
This 2-chain is a generator that gives β2 = 1, as it encloses the “void” that is the
torus’ interior.

• One can find a basis of two 1-chains to give β1 = 2. One is any sum of 1-
simplices corresponding to a meridian of the torus. The other is any sum cor-
responding to the equator of the torus.
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�

v3

v4

v0
v1

v2

Figure 4. The wedge of two circles is homeomorphic to a simpli-
cial complex with Betti signature (1,2,0, . . . ). For example, β1 = 2
expresses that Hp(K ;Z/2Z) has the basis [v0,v1] + [v1,v2] + [v0,v2]
and [v0,v3] + [v3,v4] + [v0,v4], which are cycles without being
boundaries of some 2-chain.

• The torus (and its triangulation) is a connected space, so by Example 2.21 we
have β0 = 1.

2.3. Persistent homology

In the previous section, we defined simplicial homology and showed how Betti
numbers are a geometrically-descriptive topological property of a simplicial com-
plex. In this section, we will introduce the application of simplicial homology
to topological data analysis of point cloud data. The proposed method, called
persistent homology, builds a simplicial complex from the point cloud data and
analyzes the homology of the complex. One hopes that the constructed simplicial
complex approximates the hypothetical underlying space from which our points
are sampled from.

We study a specific complex construction that is induced by three pieces of
data:
• A discrete set of points {xα} in a topological space X (for example, X = R

n).
• A distance function (metric) d : X ×X→R≥0
• A choice of ε > 0.

One creates an abstract simplicial complex as follows (description courtesy of
[Sal14]):

Definition 2.23. Given the discrete points {xα} ⊆ X with metric d and choice of
ε > 0, we create the Vietoris-Rips complex VRε, an abstract simplicial complex,
by taking {xα} to be our vertex set, and creating abstract k-simplices [x0,x1, . . . ,xk]
for every (k + 1)-subset in {xα} such that:

d(xi ,xj ) < ε for all 0 ≤ i, j ≤ k.
(This definition ensures that subsets of our abstract k-simplices are also simplices.)

By the geometric realization theorem (Theorem 2.9), the abstract simplicial
complex VRε can be embedded in some R

N , allowing for practical visualization
(even if our original space X is not obviously a subset of Euclidean space, such as
a space of functions). Furthermore, by the correspondence of finite abstract and
geometric simplicial complexes, if we were taking X = R

N already, then we could
also perform the Vietoris-Rips construction geometrically (by taking geometric
k-simplices in the space instead). We do this in the following example:
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Example 2.24. Consider Figure 5, which illustrates three points in R
2. The first

row depicts each point enclosed by a ball of radius ε/2, for small ε (left) and large
ε (right). Beneath these are the corresponding Vietoris-Rips complexes, realized
geometrically (the points are taken to be 0-simplices).

Figure 5. Simplicial complex and Vietoris-Rips complexes for
varying ε.

On the left, ε is too small for any points to be within distance ε pairwise, re-
sulting in no higher-dimensional simplices. However on the right, since the circles
intersect pairwise, then the points are less than ε apart, and we add corresponding
1- and 2-simplices.

Remark. Note that if the points had been arranged in a square, then for some
intermediate value of ε, the 1-simplices would be created but not the 2-simplices.

Finally, by varying the choice of ε we induce a filtration, a nested sequence of
subcomplexes [Ede06]. In particular, if ε < ε′ , then VRε is a subcomplex of VRε′
and for any increasing sequence {εi}n0, there exist natural inclusion maps:

VRε0
↪→VRε1

↪→ . . . ↪→VRεn
The inclusion maps VRεi → VRεj for i ≤ j are continuous simplicial maps,

i.e., they send a k-simplex of VRεi to a k′-simplex of VRεj where k′ = k. As it
sends cycles and boundaries to cycles and boundaries respectively, this defines
corresponding homomorphisms on the p-th homology groups with coefficients in
G (in general, this follows since homology is a functor):

Hp(VRε0
;G)→Hp(VRε1

;G)→ ·· · →Hp(VRεn ;G)

This sequence of maps are called the induced homomorphisms, and we label
them as:

f
i,j
p :Hp(VRεi ;G)→Hp(VRεj ;G)

where 0 ≤ i < j ≤ n for any dimension p.

From these maps, we define the analogs for homology groups and Betti num-
bers for persistence:
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Definition 2.25. The p-th persistent homology groups (with coefficients in G)
are the images of f i,jp for all 0 ≤ i < j ≤ n:

H
i,j
p = Im

(
f
i,j
p

)
= Zp(VRεi ;G)/(Bp(VRεj ;G)∩Zp(VRεi ;G))

If we take G to be Z/2Z, then H
i,j
p is again a Z/2Z-vector space. Then as

before, we can take the p-th persistent Betti numbers as:

β
i,j
p = rank(H i,j

p ).

Note that the map f i,jp sends homology classes of VRεi to those of VRεj and in
this transition, some classes are subsumed into other classes or die out. In persis-
tent homology, we are interested in the classes which persist under the map and
we look at H i,j

p to gather this information. In particular, the classes that exist in
VRεi and survive to exist in VRεj are classes of cycles that do not become bound-

aries in VRεj , and βi,jp gives the dimension of this vector space of persisting cycle
classes.

A standard method of visualizing persistent Betti numbers was developed by
Edelsbrunner, Letscher, and Zomorodian [HE00], which produces a graph of in-
tervals for each homology class in a given dimension. Intervals are plotted above
an axis parameterizing ε, where a non-trivial cycle class that begins in VRεi and
dies at VRεj corresponds to a visual bar depicting the interval [εi ,εj ]. A set of such
intervals is called the barcode for that dimension. Classes that persist over large
intervals of ε are considered topological signatures of the purported underlying
space, whereas short-lived classes may be inherent noise (as the data represents
discrete samples). Examples can be found at the end of this paper, in Figure 8.

Analyzing a dataset using persistent homology involves creating the Vietoris-
Rips complex at a series of incremented spatial scales. In this way, persistent
Betti numbers identify lasting features of the data, providing a improved under-
standing of a hypothesized underlying topological space, one not limited to the
structure imputed at a single spatial scale.

Remark. Namely, one hopes that (one of) the long-lasting i, j-signatures of per-
sistent Betti numbers (βi,j0 ,β

i,j
1 , . . . ) (where long-lasting means εj − εi is relatively

large) coincides with the Betti signature of the underlying space.

2.4. Witness complexes

Sadly, however, there are pragmatic considerations that prevent us from actu-
ally computing the full Vietoris-Rips complex for most values of ε. The Vietoris-
Rips complex can become computationally unreasonable for large data sets rela-
tively quickly - for n points in R

m, the complex can have as many as Ω(nm) sim-
plices [Dey13]. To work around this computational hurdle, Carlsson and de Silva
proposed a method for building a streamlined simplicial complex from a data set
that can be made significantly smaller than the Vietoris-Rips complex by strategi-
cally selecting only a subset of data points, called landmark points [DSC04]. Per-
forming persistent homology on this witness complex is far more computationally
efficient and can be proven a robust alternative. The following construction of the
witness complex, originally proposed in [DSC04] has been adapted from [Hen15].
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Definition 2.26. A witness complexW (Z,L) is a simplicial complex constructed
from a point cloud data set Z and a subset of landmark points L as follows:
The simplex σ = [σ1, . . . ,σk] ⊂ L is contained inW (Z,L)⇔ there is a witness point
x ∈ Z such that:

∀σi ∈ σ,∀y ∈ L \ {σ1, . . . ,σk}, we have d(x,σi) < d(x,y).

There are two standard ways to choose the landmark set, each with its own
horrors:

• Random selection: Let t be the number of landmark points desired. Choose t
points from Z at random.

• Max-min selection: Let t be the number of landmark points desired. Begin
by selecting p1 ∈ Z at random. Using induction, suppose p1,p2, . . . ,pi−1 have
already been chosen. Take pi ∈ Z be a point that maximizes the function:

x 7→min{d(x,p1),d(x,p2), . . . ,d(x,pi−1)}

Repeat this inductively until t points have been selected.

Random selection tends to recover a landmark set that is reflective of the in-
herent density of Z. The max-min method tends to choose landmark points that
are well-distributed within the space, but is more susceptible to noise and tends to
select outliers, which may result in an unrepresentative topology. Both methods
construct computationally efficient witness complexes that retain the underlying
topology of the original space up to some error, making them appealing options
for high-dimensional data analysis. For more on the justification of the witness
complex as a reliable representation of the data space, see [DSC04].

3. Data collection and classification

In this section, we describe the nature of the experimental data made avail-
able for our topological analysis. The experimental conditions and some of the
subsequent data analyses are outlined in significant detail in the prior work of
Takahashi et al. [TKC+15], which we summarize in this section. In addition, we
perform further types of classifications to identify additional neuronal classes for
later use. The methodology and relationship between these classes is also outlined
in the section.

3.1. Experimental setup

In this experiment, three rhesus macaque monkeys (labelled Rs, Mk, Rj) par-
ticipated in a random target-pursuit task (RTP). Each monkey’s arm rested on a
two-joint exoskeletal robotic arm which corresponded their reaching movements
to the movement of a visual cursor. Each monkey was trained to move the cursor
to the visibly-presented target. Once the monkey passed the cursor over the tar-
get, the next target was presented at a random location on the surface. This was
repeated without pause over the duration of an hour.

Each monkey had a 10×10 microelectrode array implanted in the arm area of
its primary motor cortex (MI). These were used to record electric field potentials
over time, which can be filtered into two primary components:

• The local field potentials (LFP) are given by low-pass filtering and are thought
to represent aggregate potentials from current entering the local area.
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• The action potentials or spike data are given by high-pass filtering, corre-
sponding to the output activity of individual neurons via spiking (rapid depo-
larization and repolarization of the cell’s membrane potential).

For each monkey, we therefore received access to the following data (ampli-
fied, filtered, and pre-processed as outlined in [TKC+15]):

• Times when the target was reached (and the next target displayed)
• The LFPs at up to 96 of the 100 electrodes (channels) at a resolution of 1 ms
• The spike times for each of 59 to 115 neurons (units), with each neuron also

corresponded to a channel
• The waveforms for every neuron spike (each recorded as 48 uniform time

points over a duration of 1.6 ms).

3.2. Neuronal classifications

Unlike LFPs, which are inherently aggregate measures, spike data essentially
encodes the behavior of individual neurons. Working across all the recorded neu-
rons is what allows us to study motor cortical population activity as a whole. On
the physiological side, there exist classes of neurons that are either functionally
or physically distinct. Given the experimental apparatus, our hope is that we can
distinguish classes based on both their individual spiking properties (firing rates
over time, spike waveforms, etc.), as well as their behavior with respect to other
neurons and even LFPs.

Here, we define and motivate some classifications we can take over our neu-
ronal populations. Each class can then be analyzed via both conventional and
topological data methods. If the classifications are chosen well, then the results
can be given model-based neurological interpretations:

Narrow and wide neurons. The most apparent natural classification was made by
examining the mean spike waveform widths (time difference between trough and
peak of extracellular potential) of each neuron. In the case of our data, Takahashi
et al. [TKC+15] showed that a bimodal Gaussian mixture model was the best fit
for the distribution of waveforms for each monkey. Across monkeys, this leads us
to define:

• Narrow neurons as those with spike widths of 0.2667 ms or less.
• Wide neurons as those with spike widths of 0.4000 ms or more.

Prior literature has performed similar classifications based on spike width and
suggested that narrow neurons correspond to “local inhibitory neurons.” How-
ever, [TKC+15] notes that the percentage of narrow neurons observed is much
greater than the number of local inhibitory neurons in the neocortex (around
20%), and so there may be other types such as “excitatory pyramidal neurons”
that may be included in this category.

We will primarily deal with subsets of narrow neurons, as almost all con-
nected and oscillatory neurons are narrow as well, and because they have some
agreed-upon interpretation. There are also other incidental differences between
the two populations; for example, when the LFP beta power increased during a
time window, narrow neurons also increased in power, while wide neurons de-
creased.
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Figure 6. Mean spike waveforms for the narrow and wide neu-
rons of Rs, respectively.

Connected neurons. A primary novel contribution of [TKC+15] was the use of a
point-process generalization of Granger causality to give the spiking behavior
of the motor cortical population a spatiotemporal interpretation. First, Granger
causality allowed for the creation of a statistically-sound generative model where
a neuron’s spikes can be attributed to inhibitory or excitatory connections from
other neurons and their spike behaviors. Then, via the unit-channel correspon-
dence, we can infer the spatial orientation of each connection via the locations of
the channel electrodes on the array (and thus along M1).

Figure 7. Inferred directed networks of connected neurons in Rs,
corresponding to different (overlapping) time windows. (Image
from [TKC+15].)

Furthermore, this analysis can be done over different relative time windows,
which allows one to study how the functional connections between neurons evolve
relative to the target hit time. For example, we informally see from Figure 7 that
the number of effective connections peak around 100-250ms after the target be-
comes visible, where the connections are located as shown.

We say that the connected neurons for a relative time bin are those deemed
connected by the Granger analysis. We consider this class since one might expect
that neurons which are functionally connected have distinct properties from those
which are not, or from the whole population itself, over that same partial window.
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4. Topological analysis

In this section, we are motivated by the work of Singh et al. [SMI+08], who en-
coded the spiking rates of a cortical population into a point cloud data set, where
the points corresponded to neuron spike counts per time window. We adapt their
analysis in spirit and perform it on our populations of motor cortex neurons. In
the same way, we derive point clouds corresponding to time windows, which we
then filter for noise. Ultimately (up to a choice of persistent threshold), we get
Betti signatures that we purport to describe the underlying topology of the neu-
ron spikes.

4.1. Prior work

In the work of Singh et al., arrays of 100 electrodes were implanted in the V1 to
directly detect time-dependent voltage signals, which were then processed using
spike sorting to obtain firing times for N distinct neurons in the array’s detection
profile. They took data from two experimental situations: in the spontaneous
case, the eyes of the animals were occluded, preventing direct visual stimulus
and in the evoked case, monkeys were shown a sequence of movie clips. The
spike-sorted data, which was a collection of all spike times for the N neurons, was
first separated into 10 second segments, which were further sorted into 200 50ms
bins. For each 50ms bin, they could then count the number of firing events of a
given neuron within that bin. In each 10 second window, the five neurons with
the highest firing rate were selected and for each bin, a vector in R

5 was created
whose components were the number of times each of the five neurons fired within
the bin. The result is a point cloud of data consisting of 200 points in R

5.
Beginning with these point clouds, a witness complex was constructed via the

max-min procedure based on 35 landmark points. Looking at the distribution
of the ”topological signatures” across the 10-second data segments for both the
spontaneous and evoked cases, the analysis suggests that the two main signatures
dominate: a circle and a sphere. From this, it is inferred that the spontaneous and
evoked cases exhibit similar topological distributions. Why would these topolog-
ical structures exist within the visual cortex? The authors suggest the result is
possibly a function of the following two facts, which are both experimentally sup-
ported: the primary visual cortex is tiled by maps of preferred orientation and
spatial frequency and that extreme spatial frequencies tend to align with orienta-
tion pinwheels.

4.2. Activity and witness spaces

In general, given a distinguished class of K neurons and a distinguished time
window relative to each hit time (e.g., [+150ms, +300ms)), one can construct a
point cloud of data from their spikes in the following manner:
• Let N be the number of admissible time windows. That is, N corresponds to

subset of target hits that we are considering. Relative to those hit times, we
consider the relative time window.

• For the i-th time window, we take ~xi ∈RK such that its j-th coordinate is

~xi,j = ln((# spikes of neuron j) + 1)

This gives us N points, each with components in K dimensions. This fol-
lows the precedent set by [SMI+08], except they take K = 5 where the neurons
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are chosen based on being the most active. Furthermore we take the logarithm of
the spike count (plus 1 to maintain well-definedness) under the accepted model
of neuron spikes within a window as Poisson-like, specifically where the spike
counts of a neuron are logarithmic in a linear combination of its input neurons
[TKC+15]. Intuitively, this is the idea that the existence of a 30th spike is not
as indicative as that of a 3rd spike for a neuron over a time window. This also
minimizes the impact of outliers.

Our operating assumption is that these points are sampled from some gener-
ative topological manifold embedded in R

K , plus error. We shall call this implicit
manifold the activity space. For example, in the case of Figure 1, the activity
space would be the circle (or something homologous to it). It is this manifold
whose topological properties we want to quantify up to homology. We do this by
computing the persistent homology of witness complexes on the point cloud, with
the belief that sufficiently stable properties (namely, Betti signatures that persist
longer than a given persistence threshold) reflect properties of the underlying
activity space.

For the analyses in the section, we used the following intermediate space to
compute persistent homology:

• We take a witness complex of the point cloud, taking the first point to be
our seed and then using max-min selection to produce a landmark set of 100
points.

• We directed the software to only keep track of the first three homology groups
(H0,H1,H2), for ease of computation.

• We compute homology over Z/2Z. While this cannot distinguish, e.g., between
the Betti signatures of a Klein bottle and a torus, each Betti number will still
encode the intuitive notion of number of independent cycle classes.

This project utilized JavaPlex, an open-source computational tool for comput-
ing persistent homology on point cloud data sets. For software download, see
http://appliedtopology.github.io/javaplex/. For accompanying documen-
tation, see https://github.com/appliedtopology/javaplex/wiki/Tutorial.

4.3. Persistence barcodes

Now that we have the notion of an activity space, we can vary the following
variables and consider how the topology features change by observing the barcode
of the derived witness complexes:

• The distinguished class of neurons
• The distinguished time window (relative to the hit time)

We parallel the analysis of Figure 7 by taking the relative time windows to be
[-50ms, +100ms), [0ms, +150ms), etc. as well. Like in the second half of [TKC+15],
or in the spontaneous versus evoked comparison of [SMI+08], our goal is to see if
and how the topology of the motor cortex evolves relative from when the next target
becomes visible to the monkey.

• The distinguished class of neurons below are the narrow neurons for monkey
Rs.

• The admissible windows are subintervals from periods when the time between
hits is not too short (e.g., < 300 ms) but also not too long (e.g., > 1 s).

http://appliedtopology.github.io/javaplex/
https://github.com/appliedtopology/javaplex/wiki/Tutorial
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Using these and the aforementioned parameters for constructing the witness
complex gives Figure 8. It depicts the barcodes of the witness complex over the
narrow neurons of Rs, as computed on shifting time windows relative to the hit
time.

5. Conclusions

In this expository and preview paper, we motivated and established the math-
ematical theory behind persistent homology as a method of analysis that can cap-
ture topological properties of data. We then saw how problems in biology, and
specifically in neuroscience, can be made amenable to topological analysis by con-
verting the data into a discrete point cloud which encodes the relevant properties.

We introduced our experimental setup and data set for neuronal populations
in the motor cortex, and converted activities into classes and point clouds of data,
disambiguated by relative time windows, each with potentially different topo-
logical structure. In fact, in Figure 8 we see visually that there is a suggestive
evolution of topological features that occur over the time windows, as the mo-
tor cortex switches into the active mode around 150ms to 300ms (the presence of
longer/later 1 and 2-dimensional holes). This is all very informal; a significant
amount of work remains to show that these differences are stable with respect to
certain choices made (e.g., the choice of first point in the max-min procedure).

This paper shows that this line of inquiry can give results that conventional
techniques might not, due to the distinctly deformation-independent nature of
TDA. Our first future goal is make our analysis broader and more rigorous:

• Models must be validated; e.g., we want a mathematical/physiological jus-
tification versus an intuitive one of taking logarithms, max-min instead of
weighted random, and other choices.

• Persistence should be quantified; e.g., how long does (1, 2, 1) persist as op-
posed to (1, 2, 2), etc.? If one takes different persistence thresholds, where only
homology classes that last longer than 0.3, 0.4, etc., are taken to be meaningful,
this may lead to different results.

• Statistical significance has not been tested; e.g., one should shuffle spike counts
and seeing if the prevalence of certain Betti signatures changes. This tests the
null hypothesis.

• Noise is an issue; perhaps some observations are outliers (imagine having noisy
points in the middle of the circle in Figure 1; this would affect the inferred Betti
signature by introducing an extra component). How do we detect and correct
for this (e.g., only including points from regions of sufficient density)?

• We observed persistent homology in narrow neurons of Rs, but what about
wide neurons? Connected neurons? Neurons across the three monkeys? Dif-
ferent choices of time windows?

Finally, the second future goal is to deduce a neurological basis for what our topo-
logical results actually mean in terms of brain functionality, as done by [SMI+08].

In sum, one should view persistent homology as yet another weapon in their
data analysis arsenal, with all the possible choices and tradeoffs associated with
it. We hope the reader is convinced of the viability of persistent homology as both
a general analytical tool, and as a tool that can be novelly applied in this specific
domain of studying neurons in the primary motor cortex.
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[−50ms,100ms) [0ms,150ms)

[50ms,200ms) [100ms,250ms)

[150ms,300ms) [200ms,350ms)

Figure 8. Persistence barcodes for the various time windows of
narrow neuronal activity in Rs. Each line corresponds to a per-
sisting element in the respective Hi . The x-axis is proportional to
the filtration parameter ε.
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