VIZING’S THEOREM AND EDGE-CHROMATIC GRAPH
THEORY

ROBERT GREEN

ABSTRACT. This paper is an expository piece on edge-chromatic graph theory.
The central theorem in this subject is that of Vizing. We shall then explore
the properties of graphs where Vizing’s upper bound on the chromatic index
is tight, and graphs where the lower bound is tight. Finally, we will look at a
few generalizations of Vizing’s Theorem, as well as some related conjectures.
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1. INTRODUCTION & SOME BASIC DEFINITIONS

Definition 1.1. An edge colouring of a graph G = (V,FE) isamap C: E — S,
where S is a set of colours, such that for all e, f € E, if e and f share a vertex,

then C(e) # C(f).

Definition 1.2. The chromatic index of a graph x/(G) is the minimum number
of colours needed for a proper colouring of G.

Definition 1.3. The degree of a vertex v, denoted by d(v), is the number of edges
of G which have v as a vertex. The maximum degree of a graph is denoted by A(G)
and the minimum degree of a graph is denoted by 6(G).

Vizing’s Theorem is the central theorem of edge-chromatic graph theory, since it
provides an upper and lower bound for the chromatic index x’'(G) of any graph G.
Moreover, the upper and lower bound have a difference of 1. That is, for all finite,
simple graphs G, A(G) < X' (G) < A(G) + 1.

This theorem motivates the study of the properties of graphs where Vizing’s
lower bound holds (class one graphs) and graphs where the upper bound holds
(class two graphs), and characterizations of each.
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2. VI1ZING’S THEOREM

Definition 2.1. A colour c is absent at a vertex v if, given an edge colouring of
G, no edge with v as a vertex receives the colour ¢. A colour ¢ is present at a
vertex v if, given an edge colouring of G, there exists an edge with v as a vertex
that is assigned the colour c.

Theorem 2.2. (Vizing) For any finite, simple graph G, A(G) < X' (G) < A(G)+1

Proof. The lower bound, A(G), is trivial, since if G has a vertex v of degree d, then
at least d edges share v as a vertex and cannot be coloured with less than d colours.
Now, suppose for contradiction that there exist counterexamples to Vizing’s
upper bound. Of these counterexamples, let G be a counterexample of minimal
size — that is, if one edge of G is removed, G becomes (A(G) + 1)-edge-colourable.
Let e = {v,wp} be the edge that, if removed, reduces the chromatic index of G
to A(G) + 1.

We construct a sequence of edges {v,wo}, {v, w1}, {v,wa},... and a sequence of
colours ¢y, ¢1, co, ... called a Kempe Chain as follows:

Let ¢; be a colour absent at w;. Let {v,w;11} be an edge coloured ¢;. The
Kempe Chain stops at k& € N when either ¢, is a colour absent at v, or ¢, is already
used on {v,w,} for j < k.

If ¢ is absent at v, then we can reassign colours ¢; to {v,w;} for i € [k] and we
are done.

So now assume ¢y, is not absent at v. Let ¢, be a colour absent at v (We know that
this colour exists because we are allowing ourselves A 4 1 colours where maximum
degree is A). Then recolour {v,w;} for i € [j — 1], and remove the colour from
{v,w;}. We now must find a way to colour {v, w;}. Note that ¢ is absent at both
w; and wy,.

Case 1: If ¢, is absent at v, then colour {v,w;} with c.

Case 2: If ¢, is absent at w;, then colour {v,w;} blue.

Case 3: If ¢, is absent at wy, then colour {v, w;} with ¢; for j <14 < k and colour
{v, wi} with ¢, (since none of the {v,w;}, j <1i < k are coloured with either ¢; or
Cq)-
If none of these conditions hold, then consider the subgraph G’ of G consisting
only of edges coloured with ¢ or c,, and their corresponding vertices. Note that
the components of G’ are either paths or cycles. Since none of the above conditions
hold, v, w;, and wy must all be endpoints of paths, and so they cannot all be part
of the same component.

In the component containing exactly one of these vertices, switch ¢, with ¢,.
Then condition 2 or 3 must apply.

|

Definition 2.3. Graphs that can be coloured with A colours are called class one
graphs. Graphs that require A + 1 colours are called class two graphs.

Naturally, these definitions provoke a lot of questions about how to tell whether
a graph is class one or class two. As we will see below, it is far more likely for a
random graph to be class one.
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3. GENERAL PROPERTIES OF CLASS ONE AND CLASS TwOo GRAPHS

Theorem 3.1. (Erdds) Almost all graphs are class one. That is, if U, is the set
of class one graphs on n vertices, and V,, is the set of all graphs on n vertices, then

‘I‘Lil‘ —1 asn — oo.

The proof of this theorem relies on two previous theorems by Erdés, the first
being that almost all graphs are connected, and the second being that almost all
graphs have a unique vertex of maximum degree. With these two, it suffices to
show (as Vizing did) that every graph with a unique vertex of maximum degree
must be class one. More specifically, he showed that every class two graph must
have at least three vertices of maximum degree.

Definition 3.2. A graph is regular if every vertex has the same degree. A k-
regular graph is a graph where every vertex has degree k.

Definition 3.3. A perfect matching on a graph G = (V, E) is a subset F C E
such that for all v € V', v appears as the endpoint of exactly one edge of F'.

Theorem 3.4. A reqular graph on an odd number of vertices is class two

Proof. Let G be a k-regular graph on n = 2z 4 1 vertices, for some . On a graph
of odd order, k = 2] for some [, otherwise the k-regularity condition is violated.

By the Handshake Lemma, G has %" =1(2z + 1) edges.

Now, assume for contradiction that k colours can colour the edges of G.

@ =z+ % (average edges per colour), so there is at least one colour that
appears on x+1 edges. But G only has 2x+1 vertices, so two of these same-coloured
edges must share a vertex, and we have a contradiction. By Vizing’s Theorem, the

only other option for the chromatic index is k£ + 1.
O

Alternatively, this theorem is an immediate corollary of a much more complex
theorem that states that a k-regular graph is class one if and only if it is one-
factorable (can be written as the union of k perfect matchings). Clearly, a graph
on an odd number of vertices cannot have even one perfect matching, let alone k
of them.

Now we come to an important theorem of Konig regarding bipartite graphs.

Definition 3.5. A graph G = (V, E) is bipartite if V can be partitioned into two
sets V1 and V5 such that if v,w € V;, then v # w.

Theorem 3.6. (Konig) If G is bipartite, then x'(G) = A(G)

Proof. Suppose, for contradiction, that counterexamples exist. Let G be a class
two bipartite graph of minimum size.

Let e = {v, w} be the edge that, if removed, transforms G into a class one graph.
So X' (G —e) = A(G — e). Since G — e can be coloured with A(G) colours, each of
the A(G) colors must be assigned to an edge incident to either v or w (otherwise
this color could be assigned to e producing a class one coloring of G).

Now, in G — e, d(v) < A(G) and d(w) < A(G), so there is a colour ¢, absent at
v, and a colour ¢, absent at w. Then ¢, # ¢, and furthermore, ¢, is present at w
and ¢ is present at v.



4 ROBERT GREEN

Let P be a path of maximum length having initial vertex w whose edges are
alternately coloured ¢, and ¢,. Note that v ¢ P, since otherwise P has odd length,
implying that the first and last edges of P are both coloured with ¢,. This is a
contradiction, since ¢, is absent at v, so v is not incident with any edge coloured
by ¢q.

Interchanging the colours ¢, and ¢, on the edges of P produces a new edge
colouring of Ge with A(G) colours in which neither v nor w is incident with an
edge coloured by c,.

Assigning {v, w} to ¢, then produces a class one edge colouring of G.

|

Definition 3.7. Let G = (V, E) be a graph. An independent edge set F' C E is
a set of edges where no two of them share any vertex. The edge-independence
number o'(G) of G is the size of the largest independent edge set in G.

It goes without saying that no graph can have an independent edge set with size

greater than ‘2&' It also does not take much work to observe that x'(G) > OCI,I(SC‘;).

Theorem 3.8. If |E(G)| > o/ (G)A(G), then G is class two.

Proof. By assumption, and the observation above, we have the following inequality:

oo JEL @(@AQ)
A (O R (e)

By Vizing’s Theorem, x'(G) = A(G) + 1.

= A(G)

4. THE PETERSEN GRAPH AND OTHER SNARKS

Definition 4.1. A bridge is an edge of a graph that, if removed, increases the
number of connected components of the graph.

Definition 4.2. A snark is a bridgeless, 3-regular, class two graph.

Snarks have some very interesting properties, especially the Petersen Graph.
Snarks are quite hard to find or invent, and until 1946, the Petersen Graph was
the only known Snark. Since then, many others have been discovered, and infinite
families of snarks with similar characteristics have been constructed.

Figure [T} is the Petersen Graph.

Theorem 4.3. The Petersen Graph is class two.

Proof. Suppose, for contradiction, that there exists a three-edge-colouring of the
Petersen Graph. Since the Petersen Graph contains a five-cycle (the outer one), all
three colours must appear on this five-cycle. Call these colours ¢y, ¢3, c3.

One of these colours will appear once on the five-cycle, whereas the others will
appear twice. Assume without loss of generality that the colouring of the outer
five-cycle goes ¢y, co,c3,c1,co. This will determine the colours of the five edges
connecting the inner five-cycle to the outer one.

Notice that this determines the colour of four of the edges of the inner five-cycle
— two of which are adjacent to each other and receive the same colour. Thus we

have a contradiction.
O
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FiGURE 1. The Petersen Graph

FIGURE 2. The Petersen Graph, drawn differently

FIGURE 3. Flower Snarks

In 1975, Rufus Isaacs constructed an infinite family of snarks, called the Flower
Snarks. Up until this point, only three snarks had been known to the mathematical
community (See figure [2).

Construction of the Flower Snarks started with the Petersen Graph (shown
above). We then replace the central vertex with a three-cycle to form J5, the three-
petaled Flower Snark. Js,J7, and so on, are constructed by adding two petals to
the graph and two vertices to the central cycle. Proving that these graphs are
snarks goes the same way as the above proof for the Petersen Graph.

Js3, Js, and J; are pictured in figure
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5. GENERALIZATIONS AND CONJECTURES REGARDING VIZING’S THEOREM

Of course, as mathematicians, we are never satisfied when we solve a specific
problem (in this case, Vizing’s Theorem). Rather, we seek to continue learning
about the subject, see if we can relate it to anything else, and try to make our
results as general as possible.

A question one might ask about Vizing’s Theorem is, ” Why is the upper bound
on the chromatic index A + 1, of all things?”

The next theorem generalizes Vizing’s Theorem to multigraphs (graphs that can
have more than one edge between two vertices, and can have edges whose endpoints
are the same vertex).

Definition 5.1. The maximum multiplicity of a graph p(G) is the maximum
number of edges connecting the same pair of vertices.

Theorem 5.2. For any multigraph, x'(G) < A(G) + 1(G)

For simple (non-multi) graphs, this theorem simplifies to Vizing’s Theorem,
X'(G) <AG) +1

After the publication of this incredibly complex theorem, Claude Shannon (known
mainly for his work in Information Theory) came up with an upper bound for the
chromatic index of a multigraph purely in terms of A:

. 3A(Q)
Theorem 5.3. For any multigraph G, X'(G) < ===

Proof. Suppose, for contradiction, that counterexamples exist. Let G be a coun-
terexample of minimum size.

Let A(G) = A and pu(G) = p and X/'(G) = k.

Because G is minimal, for every edge f € E, X'(G— f) =k — 1.

By Theorem 5.2, k < A + p. By assumption, k > %.

Let v and w be vertices of G such that there are pu edges joining them. Let e be
one of the edges joining v and w.

Then x'(G —e) = k — 1, so there exists a (k — 1)-edge coloring of G — e. Now,
the number of colors not used in coloring the edges incident to v is at least (k —
1) = (A —1) = k — A. The same is true of edges incident to w.

FEach of these £k — A or more colors not used to color edges incident to v must
be used to color edges incident to w, and vice versa — otherwise e can be coloured
easily.

Thus, the number of colours used to colour the edges incident to v and w (except
e)is2(k—A)+p—1.

By assumption, % < k, and by Theorem 5.2, k < A + u, so we have % < [

Thus 2k — (32) —1 <k — 1 and 22 > k, a contradiction.

O

Another generalization of Vizing’s Theorem has been proposed (a generalization
to hypergraphs, rather than multigraphs). However, this generalization has yet to
be proven.

Definition 5.4. A hypergraph H = (V, E) is defined by its vertex set V and its
edge set E. For graphs, F is confined to be a subset of the two-vertex elements of
p(V). However, for hypergraphs, E can be any subset of (V) — that is, an edge
can connect more than two vertices.
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Definition 5.5. A uniform hypergraph is a hypergraph whose edges all have the
same size. A k-uniform hypergraph is a hypergraph whose edges all have size k.

Conjecture 5.6. Let H be a simple k-uniform hypergraph, and assume that every
set of k—1 vertices is contained in at most r edges. Then there exists an (r+k—1)-
edge-coloring so that any two edges which share k — 1 vertices have distinct colors.

This conjecture simplifies to Vizing’s Theorem in the case where k = 2.

Conjecture 5.7. Every Snark is contractible to the Petersen Graph. That is, every
snark can be reduced to the Petersen graph by deleting certain edges and contracting
others.

This was conjectured by Tutte, and recently four mathematicians named Robert-
son, Sanders, Seymour, and Thomas announced that they had discovered a proof.
As of August 2015, this proof remains unpublished. This theorem is exceptionally
significant, as it would characterize snarks much more strongly than the ”bridgeless
3-regular class two” definition. In addition to this, it provides yet another proof of
the Four Colour Theorem (every planar graph can be vertex-coloured by at most
four colours).

Remark 5.8. (Etymology of Snark)
Snarks were named in 1976 by a mathematician named Martin Gardner, after
the elusive creature of Lewis Carrol’s nonsense poem, The Hunting of the Snark.
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