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1 Abstract

An argument involving the Hydra game shows why ACA0 is insufficient for a
theory of ordinals in which collections of ordinals are well-founded. This is then
briefly explained in light of Gentzen-style proof theory.

2 Introduction

Reverse mathematics is the study of the strength of mathematical results, and
poses questions of the form “What is the weakest system of axioms required
to prove a given result?” Reverse mathematics exhibits many different logical
systems; however, there are a few canonical ones, simply because many classical
results in mathematics are equivalent to a member of this collection. Most of
this introduction is based on Simpson’s Subsystems of Second Order Logic [6].

This paper will not delve too deeply into the universe of systems of Reverse
mathematics. Briefly, though a system of Reverse mathematics is a set-theoretic
construct M = (|M |, SM ,+M , ·M , 1M , 0M , 1M , <M ), where |M | is the natural
numbers of the model M , SM is the universe of sets of M , +M and ·M are the
addition and multiplication operations of |M |, respectively, 0M and 1M are the
additive and multiplicative identities of |M |, respectively, and <M is a binary
operation on |M |. M always follows the basic axioms of arithmetic and the
set-theoretic induction axiom.

The axioms of the various systems differ, though, (for the purposes of this
paper) in which elements SM is guaranteed to contain.1 There are the three
canonical systems we will be working with in this paper:

• RCA0, for Recursive Comprehension, specifies that SM contains all recur-
sive sets, that is the comprehension {x ∈ |M | | φ(x)} exists whenever φ is
a recursive formula. RCA0 is sufficient to develop a theory of R, a theory
of complete separable metric spaces, and algebraic closures of countable
fields.

1Some systems differ in the system of natural numbers used as well. In the case where
|M | = N, M is called an ω-model; when |M | 6= N, M is a non-ω-model.
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• ACA0, for Arithmetical Comprehension, specifies that SM contains all
arithmetical sets, that is the comprehension {x ∈ |M | | φ(x)} exists when-
ever φ is an arithmetical formula (that is, quantifying only over first-order
free variables). Assuming RCA0, one can prove that ACA0 is equivalent
to König’s Lemma on trees, Bolzano-Weierstrass, and Arzela-Ascoli.

• ATR0, for Arithmetical Transfinite Recursion, which is ACA0 plus the
existence of sets defined by transfinite recursion of an arithmetical formula
over a well-order. Assuming RCA0, ATR0 is equivalent to the Cantor-
Bendixson Theorem.

The system ATR0 is also equivalent to a statement about countable well-orders:

Theorem 2.1. Under RCA0, the following are equivalent:

1. ATR0

2. Given any two α and β countable well-orderings, there exists an f : α→ β
order preserving, injective, and mapping α to an initial segment of β, or a
g : β → α order preserving, injective, and mapping β to an initial segment
of α.

Because of this equivalence, Simpson has remarked that ATR0 is the weakest
system containing a sensible theory of ordinals [6]. Hirst has proved a few other
such equivalences supporting this claim, such as the equivalence of ATR0 to
the Cantor Normal Form theorem and Sherman’s inequality in [2] and to an
ordinal division algorithm in [3].

However, there are a few weaker results about comparison of countable ordi-
nals and countable ordinal arithmetic that hold in ACA0, and some that even
hold in RCA0. These will be discussed in subsequent sections.

With this in mind, it is quite reasonable to claim that ACA0 is insufficient to
develop a proper theory of ordinals, and natural to ask how insufficient ACA0

is. Perhaps, for instance, ACA0 is sufficient to prove that any (countable)
collection of ordinals is well-founded. This paper will demonstrate that this is
not the case; in fact, we will show that under ACA0, if the countable ordinals
are well-founded, then ACA0 is consistent (that is, there exists a model of
ACA0), and hence ACA0 cannot prove that collections of (countable) ordinals
are well-founded. This will be done by showing that the well-foundedness of
ordinals is sufficient over ACA0 to prove that the Hydra game is winnable,
and then invoking a result about the strength of systems able to show that the
Hydra game is winnable. (See Section 3 for a definition of the Hydra game.)

These results will then be explained in the context of Gentzen-style proof
theory, and why these results would be expected given that the proof theoretic
ordinal of ACA0 is ε0.

Remark 2.2. Reverse mathematical ordinals are not the same as the ordinals
of ZF; rather, under the Reverse mathematical systems, ordinals are codes
for particular countable well-orders, usually encoded as Kleene’s O. When we
say countable ordinals in this paper, we really mean codes for countable well-
orderings.
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3 The Hydra Game

We think of a hydra as a tree:

Definition 3.1 (RCA0). A hydra is a finitely branching finite tree with an
assigned root node. We call terminal nodes “heads”.

In an imaginary fight with Hercules and a hydra, on Hercules’ nth turn, he
cuts off any head that he wishes. When he does so, the hydra spawns new heads
in the following manner: If Hercules cut off a head immediately above root of
the hydra, the hydra spawns no new heads for turn n+ 1. Otherwise, if head h
was removed, navigate from h two nodes closer to the head, and call this new
node p. Identify T (p) with the subtree of the hydra with root node p. Then the
hydra at turn n+ 1 will have n additional copies of T (p) starting at node p.

Hercules wins the Hydra game if, given a Hydra and some strategy, Hercules
reduces the Hydra to the trivial tree (having only its root node) after finitely
many steps. Classically, Hercules will always succeed:

Theorem 3.2. Under ZF, for every Hydra, every strategy is a winning strategy.

Proof strategy. Each Hydra is assigned an ordinal in such a way that cutting off
a head strictly reduces the associated ordinal. Then playing out a Hydra game
results in a smallest such ordinal, which must be 0.

This paper will develop the necessary definitions and theorems to prove
this in ZF; actually, this result will be proven in the weaker system ACA0 +
WF (COrd), where WF (COrd) is the statement that every collection of count-
able well-orders is well-founded. Assigning hydras to ordinals will require a
development of the theory of countable ordinals in ACA0.

4 Basic Ordinal Arithmetic

Classically, given two ordinals α and β, we say that α ≤ β if α is isomorphic
to an initial segment of β. However, there is another notion of ordering that is
useful in weaker Reverse mathematical systems [4].

The classical definition of ordering on ordinals pulls neatly into RCA0:

Definition 4.1 (RCA0). Let α and β be countable ordinals. Then α is strongly
less than or equal to β, written α ≤s β, if there exists an order preserving
injection f : α→ β that maps α onto an initial segment of β.

There is, however, another notion that is more useful when working in sys-
tems weaker that ATR0:

Definition 4.2 (RCA0). Let α and β be countable ordinals. Then α is weakly
less than or equal to β, written α ≤w β, if there exists an order preserving
injection f : α→ β.

The following is then clear:
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Theorem 4.3 (RCA0). α ≤s β =⇒ α ≤w β.

The following is slightly less clear:

Theorem 4.4 (ATR0). α ≤w β =⇒ α ≤s β.

Proof sketch. Given an order preserving injection f : α → β, use arithmetical
transfinite recursion to build a bijection g from α to an initial segment of β by
“pulling down” elements of α that map “too far over”.

Thankfully, ACA0, and even RCA0, are sufficient to encapsulate some
important behavior of ordinals. For instance:

Theorem 4.5 (RCA0). Let α and β be ordinals. Then the usual definitions
of α+ β and α · β are well-defined and ordinals [3].

5 Ordinal Addition

We will need the following theorem:

Theorem 5.1. Let α, β, and γ be countable ordinals where β <w γ. Then
α+ β <w α+ γ.

This proof is done in two parts. First, it is shown that if β ≤w γ, then
α + β ≤ α + γ. Then, it is shown that if α + β ≡w α + γ, then β ≡w γ. This
proves Theorem 5.1.

Proof. Suppose that β ≤w γ with f : β → γ being an order preserving injection.
Then the map f ′ : α + β → α + γ defined by f ′(a) = a whenever a ∈ α and
f ′(x) = f(x) otherwise is an order preserving injection from α+ β to α+ γ.

Then, suppose that α+β ≡w α+γ with f : α+β → α+γ and g : α+γ → α+β
being order preserving injections, and suppose that the set S = {x ∈ β | f(x) ∈
α} (which exists by arithmetical comprehension) is nonempty. Then S has a
β-least element b.

We now have two cases. If b is not the smallest element of β, then for some
b′ < b, f(b′) > f(b) which contradicts that f is order preserving. If b is the
smallest element of β, then since f is order preserving and injective, f(b) must
be the greatest element of α. But then f(f(b)) = f(b), so f is not injective,
which contradicts the injectivity of f .

Therefore, S is empty, and hence the image of β under f is contained in γ.
Thus, f restricted to β witnesses β ≤w γ.

By the same argument, g restricted to γ witnesses γ ≤w β.
Therefore, β ≡w γ as desired.

4



6 Ordinal Multiplication

The following draws heavily from [3].
For the classical proof of the Hydra game’s winnability, ordinal multiplication

must satisfy some regular properties. Thankfully, ordinal multiplication satisfies
the most basic monotonicity in RCA0.

Theorem 6.1 (RCA0). If α, β, γ, and δ are countable well-orderings such
that α ≤w γ and β ≤w δ, then αγ ≤w βδ.

7 Ordinal exponentiation

The classical definition of ordinal exponentiation pulls cleanly down to RCA0:

Definition 7.1 (RCA0). Let α and β be countable well-orders. Then αβ is
the structure given by the set S of all finite sequences (b0, a0), . . . , (bn, an) with
ai 6= 0 for all applicable i and k < l =⇒ bk >β bl. Order is defined as the
lexicographic ordering.

Several nice properties of exponentiation can be proven in RCA0:

Theorem 7.2. Let α, β, and γ be countable well-orderings. Then

1. αβ+γ = αβ · αγ

2. (αβ)γ = αβγ

3. If α, β, and γ are nonzero and α ≤ β, then αγ ≤ βγ and γα ≤ γβ. This
holds whether ≤ is strong or weak.

However, ACA0 is required to show that ordinal exponentiation produces
ordinals. These are Definitions 2.1 and 2.2 and Theorems 2.3, 2.4, and 2.6 in
[2]:

Theorem 7.3 (RCA0). The following are equivalent:

1. ACA0

2. If α and β are countable well-orders, then so is αβ.

We will need that ordinals are strictly monotonic under exponentiation.
Thankfully, this holds in ACA0:

Theorem 7.4 (ACA0). If α and β are countable well-orders, then α ≤w β if
and only if ωα ≤w ωβ.

Proof. This is Lemma 4.3 in [2].

Corollary 7.5 (ACA0). If α and β are countable well orders with α <w β,
then ωα <w ω

β.
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Proof. If α <w β, then ωα ≤w ωβ . To see that this inequality is strict, if
it happens that ωα ≡w ωβ , then by the preceding theorem α ≡w β, which
contradicts α <w β.

Some ordinals have a special property that gives a weakened version of strict
monotonicity of right addition.

Definition 7.6 (RCA0). An ordinal α is said to be indecomposable if for all
final segments β of α, α ≤w β.

Theorem 7.7 (ACA0). Suppose that α, β, and γ are countable ordinals with
α, β 6= 0, α, β ≥w γ, and α >w β. Then ωα + γ >w ω

β + γ.

Proof. By Theorem , ωα + γ ≥w ωβ + γ.
Now, suppose ωα + γ ≡w ωβ + γ. Then let f : ωα + γ → ωβ + γ be an order

preserving injection. If f |ωα maps into ωβ , then ωα ≤w ωβ . Else, f maps a
final segment of ωα into γ. By Corollary 3.6 of [2], ωα is indecomposable, and
hence ωα ≤w γ. So ωα ≤w ωβ . By a symmetric argument, ωβ ≤w ωα. Hence,
ωα ≡w ωβ .

We will also need one final result:

Theorem 7.8 (ACA0). Let δ be a countable ordinal, and let n be a finite
ordinal. Then ωδ+1 >w ω

δn.

Proof. ωδ+1 ≡w ωδω, and by Theorem 13.2 of [3], ωδω >w ω
δn.

8 Ordinal Arithmetic and the Hydra Game

This section takes place in the context of ACA0. The particular encoding
scheme is inspired by [1] and [5].

Given a hydra, we wish to encode it into an ordinal. We do this as follows:
Given a hydra T , we begin by assigning the ordinal 0 to each head. Then for
each node N on the tree with child nodes C1, . . . , Ck with assigned ordinals
α1 ≥w · · · ≥w αk, we assign the ordinal

∑k
i=1 ω

ri to node N . Since the tree is
finite, this process will eventually assign a unique ordinal α to the root node.
We then associate the hydra T with the ordinal α and, for convenience, will
denote α := o(T ).

Theorem 8.1. Any move in the hydra game reduces the associated ordinal.
That is, if T and T ′ are hydras, associated to ordinals o(T ) and o(T ′), respec-
tively, with T ′ being the result of cutting a head off of T at stage n of the game.
then o(T ′) <w o(T ).

Proof. If T →n T
′ is cutting off a node at the root, then o(T ) = α+ 1 for some

ordinal α and o′(T ) = α, and clearly o(T ′) <w o(T ).
Otherwise, we will examine the subtree S that consists of all branches from

the node below which the head h in T is cut off to produce T ′. We will call S
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without h by the name V , and the tree above the root node of V by V ′. Then
o(S) = ωo(V

′)+1 and o(V ) = ωo(V )n. By Theorem 7.8, o(S) <w o(V ).
Then, by Theorems 5.1, 7.7, and 7.5, o(T ′) <w o(T ).

Theorem 8.2. Under ACA0+WF (COrd), the hydra game is always winnable
in finitely many steps.

Proof. Let T be a hydra, σ be a strategy within ACA0, and consider the col-
lection A of all countable ordinals produced applying σ to T over finitely many
steps. By Well-foundedness of Countable Ordinals, A has a minimal member ρ.
If ρ 6= 0, then the hydra R associated to ρ has a head, and thus for the hydra R′

produced by applying strategy σ at step n to R, ρ >w o(R′) by Theorem 8.1.
This contradicts minimality of ρ, and thus ρ = 0.

9 Consistency Results

Now that we know that the Hydra game, within ACA0+WF (COrd), is always
winnable, we are poised to show that WF (COrd) is independent of ACA0.

Kirby and Paris [5] showed the following result:

Lemma 9.1 (ACA0). If the hydra game is winnable, then the first-order system
PA is consistent, meaning that there exists a model M |= PA.

From there, a conservation result on models from [6] translates this into a
statement about ACA0:

Lemma 9.2 (ACA0). PA is the first order part of ACA0; that is, given any
model M of ACA0, M |= PA, and given a model M |= PA, there exists a
model M ′ with M ⊆ω M ′ and M ′ |= ACA0.

Proof. Theorem IX.1.5 and Corollary IX.1.6 in [6].

Corollary 9.3 (ACA0). If the Hydra game is winnable, then ACA0 is con-
sistent.

Proof. Apply Lemma 9.1, and then invoke Lemma 9.2.

A simple application of Gödel’s Incompleteness Theorem then gives the de-
sired result:

Theorem 9.4 (Independence of WF (COrd) from ACA0). WF (COrd) is in-
dependent of ACA0.

Proof. WF (COrd), by Theorem 9.3, sufficient to prove Con(ACA0). Gödel’s
Incompleteness Theorem then gives that WF (COrd) is independent of ACA0.
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Remark 9.5. In a sense, it is reasonable to suspect that ordinals are not neces-
sarily well-founded in ACA0. The construction of hydras and their associations
with ordinals gives a collection of ordinals S with a (classical) supremum of ε0.
Then the well-foundedness of S would imply the well-foundedness of ε0, which
by a classical result of Gentzen, is the smallest ordinal that ACA0 cannot prove
is well-founded.
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