Well-foundedness of Countable Ordinals and the Hydra Game

Noah Schoem

September 11, 2014

1 Abstract

An argument involving the Hydra game shows why \mathbf{ACA}_0 is insufficient for a theory of ordinals in which collections of ordinals are well-founded. This is then briefly explained in light of Gentzen-style proof theory.

2 Introduction

Reverse mathematics is the study of the strength of mathematical results, and poses questions of the form "What is the weakest system of axioms required to prove a given result?" Reverse mathematics exhibits many different logical systems; however, there are a few canonical ones, simply because many classical results in mathematics are equivalent to a member of this collection. Most of this introduction is based on Simpson's *Subsystems of Second Order Logic* [6].

This paper will not delve too deeply into the universe of systems of Reverse mathematics. Briefly, though a system of Reverse mathematics is a set-theoretic construct $M = (|M|, S_M, +_M, \cdot_M, 1_M, 0_M, 1_M, <_M)$, where |M| is the natural numbers of the model M, S_M is the universe of sets of M, $+_M$ and \cdot_M are the addition and multiplication operations of |M|, respectively, 0_M and 1_M are the additive and multiplicative identities of |M|, respectively, and $<_M$ is a binary operation on |M|. M always follows the basic axioms of arithmetic and the set-theoretic induction axiom.

The axioms of the various systems differ, though, (for the purposes of this paper) in which elements S_M is guaranteed to contain.¹ There are the three canonical systems we will be working with in this paper:

• **RCA**₀, for *Recursive Comprehension*, specifies that S_M contains all recursive sets, that is the comprehension $\{x \in |M| \mid \phi(x)\}$ exists whenever ϕ is a recursive formula. **RCA**₀ is sufficient to develop a theory of \mathbb{R} , a theory of complete separable metric spaces, and algebraic closures of countable fields.

¹Some systems differ in the system of natural numbers used as well. In the case where $|M| = \mathbb{N}$, M is called an ω -model; when $|M| \neq \mathbb{N}$, M is a non- ω -model.

- ACA₀, for Arithmetical Comprehension, specifies that S_M contains all arithmetical sets, that is the comprehension $\{x \in |M| \mid \phi(x)\}$ exists whenever ϕ is an arithmetical formula (that is, quantifying only over first-order free variables). Assuming RCA₀, one can prove that ACA₀ is equivalent to König's Lemma on trees, Bolzano-Weierstrass, and Arzela-Ascoli.
- **ATR**₀, for Arithmetical Transfinite Recursion, which is **ACA**₀ plus the existence of sets defined by transfinite recursion of an arithmetical formula over a well-order. Assuming **RCA**₀, **ATR**₀ is equivalent to the Cantor-Bendixson Theorem.

The system \mathbf{ATR}_0 is also equivalent to a statement about countable well-orders:

Theorem 2.1. Under \mathbf{RCA}_0 , the following are equivalent:

- 1. ATR_0
- Given any two α and β countable well-orderings, there exists an f : α → β order preserving, injective, and mapping α to an initial segment of β, or a g : β → α order preserving, injective, and mapping β to an initial segment of α.

Because of this equivalence, Simpson has remarked that \mathbf{ATR}_0 is the weakest system containing a sensible theory of ordinals [6]. Hirst has proved a few other such equivalences supporting this claim, such as the equivalence of \mathbf{ATR}_0 to the Cantor Normal Form theorem and Sherman's inequality in [2] and to an ordinal division algorithm in [3].

However, there *are* a few weaker results about comparison of countable ordinals and countable ordinal arithmetic that hold in ACA_0 , and some that even hold in RCA_0 . These will be discussed in subsequent sections.

With this in mind, it is quite reasonable to claim that \mathbf{ACA}_0 is insufficient to develop a proper theory of ordinals, and natural to ask how insufficient \mathbf{ACA}_0 is. Perhaps, for instance, \mathbf{ACA}_0 is sufficient to prove that any (countable) collection of ordinals is well-founded. This paper will demonstrate that this is not the case; in fact, we will show that under \mathbf{ACA}_0 , if the countable ordinals are well-founded, then \mathbf{ACA}_0 is consistent (that is, there exists a model of \mathbf{ACA}_0), and hence \mathbf{ACA}_0 cannot prove that collections of (countable) ordinals are well-founded. This will be done by showing that the well-foundedness of ordinals is sufficient over \mathbf{ACA}_0 to prove that the Hydra game is winnable, and then invoking a result about the strength of systems able to show that the Hydra game is winnable. (See Section 3 for a definition of the Hydra game.)

These results will then be explained in the context of Gentzen-style proof theory, and why these results would be expected given that the proof theoretic ordinal of \mathbf{ACA}_0 is ϵ_0 .

Remark 2.2. Reverse mathematical ordinals are *not* the same as the ordinals of **ZF**; rather, under the Reverse mathematical systems, ordinals are codes for particular countable well-orders, usually encoded as Kleene's \mathcal{O} . When we say countable ordinals in this paper, we really mean *codes* for countable well-orderings.

3 The Hydra Game

We think of a hydra as a tree:

Definition 3.1 (\mathbf{RCA}_0). A *hydra* is a finitely branching finite tree with an assigned root node. We call terminal nodes "heads".

In an imaginary fight with Hercules and a hydra, on Hercules' *n*th turn, he cuts off any head that he wishes. When he does so, the hydra spawns new heads in the following manner: If Hercules cut off a head immediately above root of the hydra, the hydra spawns no new heads for turn n + 1. Otherwise, if head h was removed, navigate from h two nodes closer to the head, and call this new node p. Identify T(p) with the subtree of the hydra with root node p. Then the hydra at turn n + 1 will have n additional copies of T(p) starting at node p.

Hercules wins the Hydra game if, given a Hydra and some strategy, Hercules reduces the Hydra to the trivial tree (having only its root node) after finitely many steps. Classically, Hercules will always succeed:

Theorem 3.2. Under ZF, for every Hydra, every strategy is a winning strategy.

Proof strategy. Each Hydra is assigned an ordinal in such a way that cutting off a head strictly reduces the associated ordinal. Then playing out a Hydra game results in a smallest such ordinal, which must be 0.

This paper will develop the necessary definitions and theorems to prove this in **ZF**; actually, this result will be proven in the weaker system $\mathbf{ACA}_0 + WF(COrd)$, where WF(COrd) is the statement that every collection of countable well-orders is well-founded. Assigning hydras to ordinals will require a development of the theory of countable ordinals in \mathbf{ACA}_0 .

4 Basic Ordinal Arithmetic

Classically, given two ordinals α and β , we say that $\alpha \leq \beta$ if α is isomorphic to an initial segment of β . However, there is another notion of ordering that is useful in weaker Reverse mathematical systems [4].

The classical definition of ordering on ordinals pulls neatly into \mathbf{RCA}_0 :

Definition 4.1 (RCA₀). Let α and β be countable ordinals. Then α is strongly less than or equal to β , written $\alpha \leq_s \beta$, if there exists an order preserving injection $f : \alpha \to \beta$ that maps α onto an initial segment of β .

There is, however, another notion that is more useful when working in systems weaker that \mathbf{ATR}_0 :

Definition 4.2 (RCA₀). Let α and β be countable ordinals. Then α is weakly less than or equal to β , written $\alpha \leq_w \beta$, if there exists an order preserving injection $f : \alpha \to \beta$.

The following is then clear:

Theorem 4.3 (**RCA**₀). $\alpha \leq_s \beta \implies \alpha \leq_w \beta$.

The following is slightly less clear:

Theorem 4.4 (ATR₀). $\alpha \leq_w \beta \implies \alpha \leq_s \beta$.

Proof sketch. Given an order preserving injection $f : \alpha \to \beta$, use arithmetical transfinite recursion to build a bijection g from α to an initial segment of β by "pulling down" elements of α that map "too far over".

Thankfully, ACA_0 , and even RCA_0 , are sufficient to encapsulate some important behavior of ordinals. For instance:

Theorem 4.5 (**RCA**₀). Let α and β be ordinals. Then the usual definitions of $\alpha + \beta$ and $\alpha \cdot \beta$ are well-defined and ordinals [3].

5 Ordinal Addition

We will need the following theorem:

Theorem 5.1. Let α , β , and γ be countable ordinals where $\beta <_w \gamma$. Then $\alpha + \beta <_w \alpha + \gamma$.

This proof is done in two parts. First, it is shown that if $\beta \leq_w \gamma$, then $\alpha + \beta \leq \alpha + \gamma$. Then, it is shown that if $\alpha + \beta \equiv_w \alpha + \gamma$, then $\beta \equiv_w \gamma$. This proves Theorem 5.1.

Proof. Suppose that $\beta \leq_w \gamma$ with $f : \beta \to \gamma$ being an order preserving injection. Then the map $f' : \alpha + \beta \to \alpha + \gamma$ defined by f'(a) = a whenever $a \in \alpha$ and f'(x) = f(x) otherwise is an order preserving injection from $\alpha + \beta$ to $\alpha + \gamma$.

Then, suppose that $\alpha+\beta \equiv_w \alpha+\gamma$ with $f: \alpha+\beta \to \alpha+\gamma$ and $g: \alpha+\gamma \to \alpha+\beta$ being order preserving injections, and suppose that the set $S = \{x \in \beta \mid f(x) \in \alpha\}$ (which exists by arithmetical comprehension) is nonempty. Then S has a β -least element b.

We now have two cases. If b is not the smallest element of β , then for some b' < b, f(b') > f(b) which contradicts that f is order preserving. If b is the smallest element of β , then since f is order preserving and injective, f(b) must be the greatest element of α . But then f(f(b)) = f(b), so f is not injective, which contradicts the injectivity of f.

Therefore, S is empty, and hence the image of β under f is contained in γ . Thus, f restricted to β witnesses $\beta \leq_w \gamma$.

By the same argument, g restricted to γ witnesses $\gamma \leq_w \beta$. Therefore, $\beta \equiv_w \gamma$ as desired.

		L.

6 Ordinal Multiplication

The following draws heavily from [3].

For the classical proof of the Hydra game's winnability, ordinal multiplication must satisfy some regular properties. Thankfully, ordinal multiplication satisfies the most basic monotonicity in \mathbf{RCA}_{0} .

Theorem 6.1 (RCA₀). If α , β , γ , and δ are countable well-orderings such that $\alpha \leq_w \gamma$ and $\beta \leq_w \delta$, then $\alpha \gamma \leq_w \beta \delta$.

7 Ordinal exponentiation

The classical definition of ordinal exponentiation pulls cleanly down to \mathbf{RCA}_0 :

Definition 7.1 (**RCA**₀). Let α and β be countable well-orders. Then α^{β} is the structure given by the set S of all finite sequences $(b_0, a_0), \ldots, (b_n, a_n)$ with $a_i \neq 0$ for all applicable i and $k < l \implies b_k >_{\beta} b_l$. Order is defined as the lexicographic ordering.

Several nice properties of exponentiation can be proven in \mathbf{RCA}_0 :

Theorem 7.2. Let α , β , and γ be countable well-orderings. Then

- 1. $\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$
- 2. $(\alpha^{\beta})^{\gamma} = \alpha^{\beta\gamma}$
- 3. If α , β , and γ are nonzero and $\alpha \leq \beta$, then $\alpha^{\gamma} \leq \beta^{\gamma}$ and $\gamma^{\alpha} \leq \gamma^{\beta}$. This holds whether \leq is strong or weak.

However, ACA_0 is required to show that ordinal exponentiation produces ordinals. These are Definitions 2.1 and 2.2 and Theorems 2.3, 2.4, and 2.6 in [2]:

Theorem 7.3 (\mathbf{RCA}_0). The following are equivalent:

- 1. ACA_0
- 2. If α and β are countable well-orders, then so is α^{β} .

We will need that ordinals are strictly monotonic under exponentiation. Thankfully, this holds in ACA_0 :

Theorem 7.4 (ACA₀). If α and β are countable well-orders, then $\alpha \leq_w \beta$ if and only if $\omega^{\alpha} \leq_w \omega^{\beta}$.

Proof. This is Lemma 4.3 in [2].

Corollary 7.5 (ACA₀). If α and β are countable well orders with $\alpha <_w \beta$, then $\omega^{\alpha} <_w \omega^{\beta}$.

Proof. If $\alpha <_w \beta$, then $\omega^{\alpha} \leq_w \omega^{\beta}$. To see that this inequality is strict, if it happens that $\omega^{\alpha} \equiv_w \omega^{\beta}$, then by the preceding theorem $\alpha \equiv_w \beta$, which contradicts $\alpha <_w \beta$.

Some ordinals have a special property that gives a weakened version of strict monotonicity of right addition.

Definition 7.6 (**RCA**₀). An ordinal α is said to be *indecomposable* if for all final segments β of α , $\alpha \leq_w \beta$.

Theorem 7.7 (ACA₀). Suppose that α , β , and γ are countable ordinals with α , $\beta \neq 0$, α , $\beta \geq_w \gamma$, and $\alpha >_w \beta$. Then $\omega^{\alpha} + \gamma >_w \omega^{\beta} + \gamma$.

Proof. By Theorem , $\omega^{\alpha} + \gamma \geq_w \omega^{\beta} + \gamma$.

Now, suppose $\omega^{\alpha} + \gamma \equiv_w \omega^{\beta} + \gamma$. Then let $f : \omega^{\alpha} + \gamma \to \omega^{\beta} + \gamma$ be an order preserving injection. If $f|_{\omega^{\alpha}}$ maps into ω^{β} , then $\omega^{\alpha} \leq_w \omega^{\beta}$. Else, f maps a final segment of ω^{α} into γ . By Corollary 3.6 of [2], ω^{α} is indecomposable, and hence $\omega^{\alpha} \leq_w \gamma$. So $\omega^{\alpha} \leq_w \omega^{\beta}$. By a symmetric argument, $\omega^{\beta} \leq_w \omega^{\alpha}$. Hence, $\omega^{\alpha} \equiv_w \omega^{\beta}$.

We will also need one final result:

Theorem 7.8 (ACA₀). Let δ be a countable ordinal, and let n be a finite ordinal. Then $\omega^{\delta+1} >_w \omega^{\delta} n$.

Proof. $\omega^{\delta+1} \equiv_w \omega^{\delta} \omega$, and by Theorem 13.2 of [3], $\omega^{\delta} \omega >_w \omega^{\delta} n$.

8 Ordinal Arithmetic and the Hydra Game

This section takes place in the context of ACA_0 . The particular encoding scheme is inspired by [1] and [5].

Given a hydra, we wish to encode it into an ordinal. We do this as follows: Given a hydra T, we begin by assigning the ordinal 0 to each head. Then for each node N on the tree with child nodes C_1, \ldots, C_k with assigned ordinals $\alpha_1 \geq_w \cdots \geq_w \alpha_k$, we assign the ordinal $\sum_{i=1}^k \omega^{r_i}$ to node N. Since the tree is finite, this process will eventually assign a unique ordinal α to the root node. We then associate the hydra T with the ordinal α and, for convenience, will denote $\alpha := o(T)$.

Theorem 8.1. Any move in the hydra game reduces the associated ordinal. That is, if T and T' are hydras, associated to ordinals o(T) and o(T'), respectively, with T' being the result of cutting a head off of T at stage n of the game. then $o(T') <_w o(T)$.

Proof. If $T \to_n T'$ is cutting off a node at the root, then $o(T) = \alpha + 1$ for some ordinal α and $o'(T) = \alpha$, and clearly $o(T') <_w o(T)$.

Otherwise, we will examine the subtree S that consists of all branches from the node below which the head h in T is cut off to produce T'. We will call S without h by the name V, and the tree above the root node of V by V'. Then $o(S) = \omega^{o(V')+1}$ and $o(V) = \omega^{o(V)}n$. By Theorem 7.8, $o(S) <_w o(V)$.

Then, by Theorems 5.1, 7.7, and 7.5, $o(T') <_w o(T)$.

Theorem 8.2. Under $ACA_0 + WF(COrd)$, the hydra game is always winnable in finitely many steps.

Proof. Let T be a hydra, σ be a strategy within \mathbf{ACA}_0 , and consider the collection A of all countable ordinals produced applying σ to T over finitely many steps. By Well-foundedness of Countable Ordinals, A has a minimal member ρ . If $\rho \neq 0$, then the hydra R associated to ρ has a head, and thus for the hydra R' produced by applying strategy σ at step n to R, $\rho >_w o(R')$ by Theorem 8.1. This contradicts minimality of ρ , and thus $\rho = 0$.

9 Consistency Results

Now that we know that the Hydra game, within $\mathbf{ACA}_0 + WF(COrd)$, is always winnable, we are poised to show that WF(COrd) is independent of \mathbf{ACA}_0 .

Kirby and Paris [5] showed the following result:

Lemma 9.1 (ACA₀). If the hydra game is winnable, then the first-order system **PA** is consistent, meaning that there exists a model $M \models \mathbf{PA}$.

From there, a conservation result on models from [6] translates this into a statement about ACA_0 :

Lemma 9.2 (ACA₀). PA is the first order part of ACA₀; that is, given any model M of ACA₀, $M \models$ PA, and given a model $M \models$ PA, there exists a model M' with $M \subseteq_{\omega} M'$ and $M' \models$ ACA₀.

Proof. Theorem IX.1.5 and Corollary IX.1.6 in [6]. \Box

Corollary 9.3 (ACA₀). If the Hydra game is winnable, then ACA_0 is consistent.

Proof. Apply Lemma 9.1, and then invoke Lemma 9.2.

A simple application of Gödel's Incompleteness Theorem then gives the desired result:

Theorem 9.4 (Independence of WF(COrd) from ACA_0). WF(COrd) is independent of ACA_0 .

Proof. WF(COrd), by Theorem 9.3, sufficient to prove $Con(\mathbf{ACA}_0)$. Gödel's Incompleteness Theorem then gives that WF(COrd) is independent of \mathbf{ACA}_0 .

Remark 9.5. In a sense, it is reasonable to suspect that ordinals are not necessarily well-founded in \mathbf{ACA}_0 . The construction of hydras and their associations with ordinals gives a collection of ordinals S with a (classical) supremum of ϵ_0 . Then the well-foundedness of S would imply the well-foundedness of ϵ_0 , which by a classical result of Gentzen, is the smallest ordinal that \mathbf{ACA}_0 cannot prove is well-founded.

10 Acknowledgements

I would like to thank Jonny Stevenson for his mentoring and guidance, and without him this project would never have come to be. I would also like to thank Peter May for hosting the research program that made this investigation possible.

References

- Michal Forišek. What is an example of a counterintuitive mathematical result? http://www.slate.com/blogs/quora/2014/06/04/hydra_game_ an_example_of_a_counterintuitive_mathematical_result.html, August 2009.
- [2] Jeffrey L. Hirst. Reverse mathematics and ordinal exponentiation. Annals of Pure and Applied Logic, 1994.
- [3] Jeffrey L. Hirst. Reverse mathematics and ordinal multiplication. Mathematical Logic Quarterly, 1998.
- [4] Jeffrey L. Hirst. Ordinal inequalities, transfinite induction, and reverse mathematics. *Journal of Symbolic Logic*, 1999.
- [5] Laurie Kirby and Jeff Paris. Accessible independence results for peano arithmetic. Bulletin of the London Mathematical Society, 1982.
- [6] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Association for Symbolic Logic, 2009.