AN INTRODUCTION TO THE PCP THEOREM

MIN JAE SONG

ABSTRACT. In this paper, we will first define basic concepts in computational
complexity. Then, we will introduce the PCP Theorem and its equivalent
formulation from the hardness of approximation view. Finally, we will prove
a weaker version of the PCP theorem.

CONTENTS
1. Introduction 1
1.1. The Turing Machine 1
1.2. Classes P and NP 3
1.3. NP and proof verifying system 4
1.4. NP completeness 4
2. The PCP Theorem 6
2.1. The PCP Theorem 6
2.2. Hardness of Approximation View 7
2.3. Equivalence of the Two Views 8
3. A Weak PCP Theorem 9
3.1. Linear Functions 10
3.2. Walsh-Hadamard Code 11
3.3. A Proof of the Weak PCP Theorem 14
4. Fourier Analysis on Boolean Functions 19
4.1. The Fourier Expansion 19
4.2. Basic Fourier Formulas 20
4.3. BLR Linearity Testing 20
5. Conclusion 22
Acknowledgments 22
References 22

1. INTRODUCTION

In this section, we define the basic concepts in computational complexity.

1.1. The Turing Machine. When we are given a certain computation problem,
we first read the problem from the problem sheet, work on our scratch paper for
intermediate calculations, and then write down the final solution. The Turing
machine is a concrete embodiment of this common, yet abstract notion of ”compu-
tation”. We give the Turing machine a computation problem by writing it down
on the input tape so that the machine can read it. Then, the machine performs the
intermediate calculations on the work tapes according to its built-in rules. Finally,
1

2 MIN JAE SONG

the machine outputs the final solution on its output tape after performing all the
necessary calculations.
The structure of the Turing machine is very simple. It consists of:

(1) k-tapes, which are unbounded in length and contain symbols that the ma-
chine can read. We have a single input tape, which corresponds to the
problem sheet and k — 1 work tapes, which correspond to the scratch papers
mentioned above. The last one of the work tapes is designated as the output
tape.

(2) A head for each of the k tapes that can read and write symbols on the tape
and move the tape left and right exactly one cell at a time.

(3) A register which keeps track of the state the machine is currently in,

(4) A finite table of instructions (called the transition function) that, given the
machine’s current state and its readings on the tapes, performs the next
computational step.

The finite set of states of the Turing machine is denoted (). As mentioned above,
the machine contains a ”register” that can hold a single element of @; this is the
"state” of the machine at that instant. This state determines its action at the next
computational step, which consists of the following;:

(1) read the symbols in the cells directly under the k heads

(2) for the k — 1 work tapes, replace each symbol with a new symbol (it has
the option of not changing the tape by writing down the old symbol again)

(3) change its register to contain another state from the finite set @ (it has the
option not to change its state by choosing the old state again)

(4) move each head one cell to the left or to the right (or to stay in place)

Given the information above, we can formally define the Turing machine:

Definition 1.1 (Turing Machine). a Turing machine (TM) M is described by a
tuple (I, @, §) containing:
e A finite set I" of the symbols that M’s tapes can contain. We assume that
I" contains a designated ”blank” symbol, denoted U; a designated ”start”
symbol, denoted >; and the numbers 0 and 1. We call I the alphabet of M.
e A finite set @ of possible states M’s register can be in. We assume that @
contains a designated start state, denoted ¢stq¢, and a designated halting
state, denoted qpqi¢-
e A function 6 : Q xT* — Q xT*~1 x {L,S, R}k, where k > 2, describing the
rules M use in performing each step. This function is called the transition
function of M. L,S, R stands for Left, Stay, and, Right, respectively.

If the machine is in state ¢ € @ and (01,09, ...,0%) are the symbols currently
being read in the k tapes, and (g, (01,02, ...,0%)) = (¢, (05,...0}), z) where z €
{L, S, R}*, then at the next step the o symbols in the last & — 1 tapes will be
replaced by the ¢’ symbols, the machine will be in state ¢’ and the k heads will
move as given by z. (If the machine tries to move left from the leftmost position of
a tape then it will stay in place.)

All tapes except for the input tape initially have the start symbol > in their first
location and in all other locations the blank symbol U. The input tape initially has
the start symbol >, followed by a finite nonblank string x ("the input”), and the
blank symbol L on the rest of its cells. All heads start at the left ends of the tapes
and the machine is in the special starting state gs¢q¢. This configuration is called

AN INTRODUCTION TO THE PCP THEOREM 3

the start configuration of M on input x. Each step of the computation is performed
by applying the function § as described previously. The special halting state gpqz
has the property that once the machine is in ¢p4¢, the transition function ¢ does
not allow it to further modify the tape or change states. Obviously, if the machine
enters qpqit, then it has halted. Throughout this paper, we will be only interested
in machines that halt for every input in a finite number of steps.

Definition 1.2. Let f : {0,1}* — {0,1}* and let T : N — N be some functions,
and let M be a Turing machine. We say that M computes f if for every x € {0,1}*,
whenever M is starts with input , then it halts with f(z) written on its output
tape. We say M computes f in T(n)-time if its computation on every input x
requires at most T'(|z|) steps. Moreover, if T' can be bounded above by a polynomial,
we say M computes f in polynomial time.

Nondeterministic Turing Machine. If we let a machine have two transition
functions dp and 41, then the machine becomes nondeterministic since it may chose
either §p or d; for each computational step. Using this observation, we can define
a new type of machine, called the nondeterministic Turing machine (NDTM).

An NDTM has two transition functions dg and 01, and a special halting state
denoted by ggccept- When an NDTM M computes a function, we envision that at
each computational step M makes a random choice between dy and d; and applies
the chosen transition function. For every input x, we say that M(z) = 1 if there
exists some sequence of these choices (which we call the nondeterministic choices
of M) that would make M reach ggceept On input x. Otherwise - if every sequence
of choices makes M halt without reaching guccept - then we say that M (z) = 0. We
say that M runs in T'(n) time if for every input = € {0,1}* and every sequence of
nondeterministic choices, M halts within T'(|z|) steps.

1.2. Classes P and NP.

Definition 1.3. A language is any subset of {0,1}*. We say a Turing machine M
decides a language L C {0,1}* if it computes the function fr : {0.1}* — {0,1},
where fr(z) =1< x € L.

Definition 1.4 (The class DTIME). Let T': N — N be some function. A language
L is in DTIME(T'(n)) iff there is a TM that runs in time ¢-T'(n) for some constant
¢ > 0 and decides L.

Definition 1.5 (The class NTIME). For every function T : N — Nand L C {0, 1}*,
we say that L € NTIME(T'(n)) if there is a constant ¢ > 0 and a ¢-T'(n)-time NDTM
M such that for every z € {0,1}*,2 € L & M(z) = 1.

Definition 1.6 (Class P). P = U.eyDTIME(n®)
Definition 1.7 (Class NP). NP = U.cyNTIME(n°)

P stands for polynomial time and NP stands for nondeterministic polynomial
time. Languages in P have TMs that solve its membership problem in polynomial
time and languages in NP have NDTMs that solve its membership problem in
polynomial time. The crucial difference between P and NP lies in determinism and
nondeterminism. Nondeterminism seems to give more computational power to the
Turing Machine, enabling it to efficiently solve problems that avoid being solved
by the standard Turing Machine. It is trivial that P C NP since if we set dg = 61,
then the NDTM becomes deterministic.

4 MIN JAE SONG

A somewhat easier way of describing P and NP is that P is the set of problems
whose solutions can be found in polynomial time, while NP is the set of problems
whose solutions can be checked in polynomial time. The famous ”P vs NP” problem
asks, ”if a problem’s solution can be checked in polynomial time, then can it also be
found in polynomial time?”. This important problem still remains open. However,
it is generally considered that P # NP.

Example 1.8 (Sorting Problem). Given a set S of n integers, sort S. This problem
is in P since we can compare all the integers in the set with each other, which can
be done in (}) steps. Hence, this takes O(n?) time.

Example 1.9 (SAT). A boolean formula over variables uq, ..., u, consists of the
variables and the logical operators AND (A), OR (V), and NOT (—). For example,
(u1 Vug) Aus is a boolean formula. Given a boolean formula ¢, determine whether
it is satisfiable. This problem is in NP since given a truth assignment, we can check
whether ¢ is satisfied or not in polynomial time.

1.3. NP and proof verifying system. Languages in NP can be equivalently
defined as languages with efficiently verifiable proof systems.

Definition 1.10 (efficiently verifiable proof systems). A language L C {0,1}* has
an efficiently verifiable proof system if there exists a polynomial p : N — N and
a polynomial-time deterministic Turing Machine V' such that, given an input z,
verifies proofs, denoted 7. The following properties hold:

zelL=3re{0,1}Ple) . ym(z)=1
¢ L=vre{0,1}P0e) . yvm(z)=0

V7™ (z) has access to an input string = and a proof string 7. If x € L, and 7 €
{0,1}7U=D) satisfy V™ (2) = 1, then we call m a certificate or a correct proof. We
denote by NP the class of languages that have efficiently verifiable proof systems.

Equivalence of the two definitions of NP can be understood as the following:
Suppose L is decided by a non-deterministic Turing Machine N that runs in poly-
nomial time. For every = € L, there is a sequence of nondeterministic choices that
makes N accept the input z. We can use this sequence as a certificate or a correct
proof for x. This certificate has polynomially-bounded length and can be verified in
polynomial time by a deterministic machine, which simulates N using these non-
deterministic choices and verifies that it would have accepted x after using these
nondeterministic choices. Hence, L € NP according to Definition 1.7.

Conversely, if L € NP according to Definition 1.7, then we can describe a poly-
nomial time nondeterministic Turing Machine N that decides L. Our machine, N
can "guess” the proof in polynomial time by enumerating all possibilities of the
certificate w and simulate the polynomial time verifier V' in the end. If the verifier
accepts, then N accepts. It follows that N accepts input x if and only if a valid
certificate exists for x. Hence, the nondeterministic Turing Machine N decides L
in polynomial time.

1.4. NP completeness. When we encounter problems, we often feel that there
are problems that are "harder” than the others. Similarly, we would like to know
if there are problems in NP that are harder than the other ones in NP. It turns out
that polynomial-time reduction provides a way to see which problems are ”harder”
than the others!

AN INTRODUCTION TO THE PCP THEOREM 5

Definition 1.11 (Reductions, NP-hardness and NP-completeness). A language
L C {0,1}* is polynomial-time Karp reducible to a language L’ C {0.1}*, denoted
by L <, L', if there is a polynomial-time computable function f : {0,1}* — {0,1}*
such that for every x € {0,1}*,z € L if and only if f(z) € L’

We say that L' is NP-hard if L <, L’ for every L € NP. We say that L is
NP-complete if L’ is NP-hard and L' € NP.

It is remarkable that such NP-complete problems do exist.

Definition 1.12. A boolean formula over variables w1, ...u,, is in CNF form (Con-
junctive Normal Form) if it is an AND of OR'’s of variables or their negations i.e.

it has the form
/\ (\/ Vi)
i

where each v;; is either a variable uy or its negation ;. The terms v;; are called
the literals of the formula and the terms (V;v;;) are called its clauses. A kCNF is a
CNF formula in which all clauses contain at most k literals. We denote by SAT the
language of all satisfiable CNF formulae and by 3SAT the language of all satisfiable
3CNF formulae.

Lemma 1.13 (Cook-Levin Reduction). SAT <, 3SAT

Proof. We give a transformation that maps a CNF fomrula ¢ to a 3CNF formula v
such that ¢ is satisfiable if and only if 1 is satisfiable. We first begin by transforming
4CNF formula into a 3CNF formula. Let C' = x1 V x5 V 23 V x4 be a clause of .
We introduce a dummy variable y and split up C' into two clauses, Cy = 21 Vaa Vy
and Cy = 23V x4 V. C is satisfiable if and only if C; and Cs are both satisfiable.
We can apply this transformation to each of the clauses in ¢. This mapping gives
us a polytime transformation from 4CNF to 3CNF.

The general case follows from induction. Suppose every (k —1)CNF formula can
be transformed into an equivalent 3CNF formula in polynomial time. We claim
that every kCNF formula can be transformed into an equivalent 3CNF formula
in polynomial time as well. Let C be a clause of size k. By applying the above
transformation, we introduce a dummy variable y and split C' into a pair of clauses
Cy of size kK — 1 and C5 of size 3 that depend on the k variables of C' and an
additional dummy variable y. Applying this transformation repeatedly to clauses
of size k yields a polynomial-time transformation of a kCNF formula ¢ into an
equivalent (k — 1)CNF formula ¢’. Then, it follows from the induction hypothesis
that ¢’ can be reduced to an equivalent 3CNF formula % in polynomial time.

O

Theorem 1.14 (Cook-Levin). SAT is NP-complete

For full proof of this theorem, refer to ref[2]. The proof basically uses the locality
of Turing machines, which means that each computation step of a Turing machine
reads and changes only a few bits of the machine’s tapes. As a corollary, we have
that 3SAT is NP-complete, since lemma 1.12 shows that SAT is Karp reducible
to 3SAT. Other than SAT, there are hundreds of NP-complete problems that are
known today. Here are some examples:

e Traveling salesman problem (TSP)
e Maximum cut (MAX-CUT)

6 MIN JAE SONG

e Circuit satisfiability (CKT-SAT)
e Hamiltonian path in a directed graph ({HAMPATH)

We can say that NP-complete problems are the hardest problems in NP since
if we find an efficient algorithm for one NP-complete problem, say, the traveling
salesman problem (TSP), then we can solve all NP problems efficiently by reducing
them to TSP and solving it using the algorithm. This can be formally stated as
the following theorem:

Theorem 1.15. If L is NP-complete, then L € P if and only if P = NP

2. THE PCP THEOREM

While reading every bit of a proof guarentees that the verifier does not err, one
may feel that such a meticulous process is more than necessary. If we allow for
a small margin of error, can’t we get away with reading only parts of a proof?
Surprisingly, the answer to this question is, ”"Yes”. In fact, one view of the PCP
Theorem indicates that we can provide a new proof system which is verifiable by
reading a constant number of bits of the proof. This proof system provides us with
Probabilistically Checkable Proofs, hence the acronym ”PCP”.

2.1. The PCP Theorem. The class PCP is a generalization of the proof veri-
fying system used to define NP, with the following changes. First, the verifier is
probabilistic instead of deterministic. Hence, the verifier can have different outputs
for the same inputs z and w. Second, the verifier has random access to the proof
string 7. This means each bit in the proof string can be independently queried by
the verifier via a special address tape: If the verifier desires say the ith bit in the
proof of the string, it writes ¢ in base-2 on the address tape and then receives the
bit 7[i]. Note that since the address size is logarithmic in the proof size, this model
in principle allows a polynomial-time verifier to check exponentially sized proofs.

Verifiers can be adaptive or nonadaptive. A nonadpative verifier selects its queries
based only on its input and random tape. In other words, no query depends on
responses to prior queries. Adaptive queries, on the other hand, depend on bits it
has already queried on 7 to select its next queries. For the purpose of this paper,
we will restrict the verifiers to be nonadaptive.

Definition 2.1 (PCP verifier). Let L be a language and ¢,7 : N — N. We say
that L has an (r(n), q(n))-PCP wverifier if there is a polynomial-time probabilistic
algorithm V' satisfying:

e FEfficiency: On input a string z € {0,1}" and given random access to a
string m € {0,1}* of length at most ¢(n)2"("™) (which we call the proof), V
uses at most r(n) random coins and makes at most ¢g(n) nonadaptive queries
to locations of 7. Then it outputs ”1” (for "accept”) or ”0” (for "reject”).
We let V7 (x) denote the random variable representing V’s output on input
2 and with random access to .

o Completeness: If x € L, then there exists a proof m € {0,1}* such that
Pr[V™(z) = 1] = 1. We call this string 7 the correct proof or the certificate
for x.

o Soundness: If ¢ L, then for every proof m € {0,1}*, Pr[V™(z) = 1] < 1/2.

We say that a language L is in PCP(r(n), ¢(n)) if there are some constants ¢,d > 0
such that L has a (¢-r(n),d - q(n))-PCP verifier.

AN INTRODUCTION TO THE PCP THEOREM 7

Hence, a PCP verifier checks a proof probabilistically by querying ¢(n) bits of the
proof string in locations determined by the r(n) random coin tosses. The constant
1/2 in the soundness condition is arbitrary, in the sense that changing it to any
other positive constant smaller than 1 will not change the class of languages defined.
This is because we can execute the verifier multiple times to make the constant as
small as we want. For instance, if we run a PCP verifier with soundness 1/2 that
uses r coins and makes g queries ¢ times, it can be seen as a PCP verifier with
soundness 27°¢ that uses cr coins and makes cq queries.

Now that we know what a PCP verifier is, we are in a position to state the PCP
Theorem.

Theorem 2.2 (PCP Theorem). NP = PCP(logn,1)

Hence the PCP Theorem gives us a new characterization of the class NP. Namely,
the class NP is the set of languages which have a (c-logn,d)-PCP verifier. This
means that every NP-language has a PCP verifier that verifies proofs of at most
poly(n) bits by reading a constant number of bits.

Note that PCP(r(n), ¢(n)) € NTIME(2°"(™)¢(n)) since a nondeterministic ma-
chine could ”guess” the proof in 2°("(")) ¢(n) time and verify it deterministically by
running the verifier for all 2°0("(")) possible outcomes of its random coin tosses. If
the verifier accepts for all these possible coin tosses, then NDTM accepts. Hence, as
a special case, we have PCP(logn, 1) C NTIME(29(°8™)) — NP. This is the trivial
direction of the PCP Theorem.

2.2. Hardness of Approximation View. The PCP Theorem can be equivalently
stated in a seemingly different way. It states that computing approximate solutions
to NP optimization problems is no easier than computing exact solutions. For
concreteness, we focus on MAX-3SAT. MAX-3SAT is a problem of finding, given
a 3CNF boolean formula ¢ as input, an assignment that maximizes the number of
satisfied clauses. We first define what an approximation algorithm for MAX-3SAT
is.

Definition 2.3 (Approximation of MAX-3SAT). For every 3CNF formula ¢, the
value of ¢, denoted by val(yp), is the maximum fraction of clauses that can be
satisfied by any assignment to ¢’s variables. In particular, ¢ is satisfiable if and
only if val(p) = 1.

For every p < 1, an algorithm A is a p-approzimation algorithm for MAX-3SAT
if for every 3CNF formula ¢ with m clauses, A(p) outputs an assignment satisfying
at least p-val(p)m of ¢’s clauses.

Theorem 2.4 (PCP Theorem: Hardness of Approximation View). There exists
p < 1 such that for every L € NP there is a polynomial-time function f mapping
strings to (representations of) SCNF formulas such that

(2.5) x € L=wd(f(z)) =1
(2.6) x ¢ L= val(f(z)) <p

Theorem 2.3 shows that for every L € NP, we can covert a p-approximation
algorithm A for MAX-3SAT into an algorithm deciding L, since (2.4) and (2.5)

imply that = € L iff A(f(x)) gives an assignment satisfying at least a p fraction of
the clauses of f(x). This immediately implies the following corollary:

8 MIN JAE SONG

Corollary 2.7. There exists some constant p < 1 such that if there is a polynomial-
time p-approzimation algorithm for MAX-3SAT, then P = NP.

2.3. Equivalence of the Two Views. At first glance, the equivalence of the two
views is not immediate. One view shows that the PCP theorem gives a way to
transform every mathematical proof into a form that is checkable by only looking
at constant bits. The other view shows that computing approximate solutions to
NP optimization problems is as hard as computing the exact solution. To show
equivalence of these views, we first define constraint satisfaction problems.

Definition 2.8 (Constraint Satisfaction Problems (CSP)). If ¢ is a natural number,
then a ¢CSP instance ¢ is a collection of functions ¢, ..., @, (called constraints)
from {0,1}" to {0,1} such that each function ¢; depends on at most ¢ of its input
locations. That is, for every ¢ € [m] there exist j1,...54 € [n] and f : {0,1}7 — {0,1}
such that ¢;(u) = f(u;,,...u;,) for every u € {0,1}".

We say that an assignment u € {0,1}" satisfies constraint o;(u) = 1. The
fraction of the constraints satisfied by u is M, and we let val(p) denote the
maximum of this value over all u € {0,1}". We say that ¢ is satisfiable if val(p) =
1. We call ¢ the arity of .

We will show that the two views are equivalent by proving that they are both
equivalent to the hardness of a certain gap version of ¢CSP.

Definition 2.9 (Gap CSP). for every ¢ € N, p < 1, define p-GAPgCSP to be the
problem of determining for a given gCSP-instance ¢ whether

(1) val(¢) = 1 (in which case we say ¢ is a YES instance of p-GAPqCSP) or
(2) val(¢) < p (in which we say ¢ is a NO instance of p-GAP¢CSP).

We say that p-GAP¢CSP is NP-hard if for every language L in NP there is a
polynomial-time function f mapping strings to (representations of) ¢gCSP instances
satisfying:

e Completeness: x € L = val(f(z)) =1
e Soundness: x ¢ L = val(f(x)) <p

To elaborate, suppose the function f mentioned above exists and let Y denote
the set of strings that represents the YES instances of p-GAPqCSP and N the NO
instances. Then the following holds:

serzel= f(r)eY
e ¢ L= f(x)eEN

It follows that x € L < f(x) € Y. Since f(z) is polynomial-time and L is any

language in NP, L <, Y for all L € NP. Hence, p-GAP¢qCSP is NP-hard.

Theorem 2.10. There exist constants ¢ € N, p € (0,1) such that p-GAPqCSP is
NP-hard.

Theorem 2.11. Theorem 2.2 implies Theorem 2.10

Proof. Assume NP C PCP (logn,1). Then every language L € NP has a PCP
verifier with clogn coins and ¢ query bits. Here, the value of ¢ may differ depending
on the NP language. However, since every NP language is Karp reducible to SAT, all
these numbers can be upper bounded by a universal constant, namely, the number
of query bits required by the verifier for SAT. We show that 1/2-GAPgCSP is NP-
hard for some ¢. Let x be the input of the verifier and r an outcome of a random

AN INTRODUCTION TO THE PCP THEOREM 9

coin toss. Define V, ,(m)=1 if the PCP verifier V" (x)=1 for the coin toss r. Note
that given = and r, V, ,(m) depends on ¢ bits of the proof . Hence, V, ,(7) can
be thought of as a constraint in an instance of gCSP. Then, {V, }r—ciogn can be
seen as an instance of ¢gCSP. Given the completeness and soundness conditions of
the PCP verifier, completeness and soundness of the Gap CSP follow easily. O

Theorem 2.12. Theorem 2.10 implies Theorem 2.2

Proof. Assume that there exist p and ¢ such that p-GAPgCSP is NP Hard. Then,
any language L € NP can be represented as an instance of p-GAPqCSP. Let ¢ be
an instance of gCSP and {¢;}; the set of its constraints. The verifier will verify
the proof 7, which is the truth assignment of this instance, by randomly choosing
an i € [m] and checking that ¢; is satisfied (by making q queries). If z € L, then the
verifier will accept with probability 1 while if = ¢ L, it will accept with probability
at most p. The soundness can be boosted at the expense of a constant factor in
the randomness and number of queries. Il

Theorem 2.13. Theorem 2.4 is equivalent to Theorem 2.9

Since 3CNF formulas are special instances of 3CSP, Theorem 2.3 implies Theo-
rem 2.9 so we only need to show the other direction. Before starting, we first prove
a useful lemma.

Lemma 2.14. FEvery n-variable boolean function can be expressed as a conjunction
of OR’s and AND’s.

Proof. Let f(x) be the given boolean function. we can construct a clause C, con-
sisting of OR’s such that C,(v) = 0 and C,(w) = 1 when v # w. Take the AND of
all Cy’s of v’s such that f(v) =0 ie.

(2.15) o= /\ Cy(21, 22, s 2n)
v:f(v)=0
Note that ¢ has size at most n2". For every w such that f(u) = 0, it holds
that Cy(u) = 0 and hence ¢(u) is also equal to 0. On the other hand, if f(u) =1,
then C,(u) = 1 for every v such that f(v) = 0 and hence ¢(u) = 1. Therefore,
o(u) = f(u) for every u. O

Proof of Theorem 2.12. Note that the CNF formula we constructed in the proof
consists of at most 29 clauses. Hence any constraint in an instance of ¢gCSP can
be expressed as the AND’s of at most 27 clauses, each clause containing only OR’s
and depending on at most ¢ variables. Then, we can use the Cook-Levin Reduc-
tion presented earlier to reduce these into 3CNF formulas. If a ¢gCSP instance is
satisfiable, it immediately follows that its SCNF representation is satisfiable so we
have the completeness condition. if at least € of the constraints are unsatisfiable,
then at least q% of the clauses in 3CNF is unsatisfiable so we have the soundness
condition as well. (]

3. A WEAK PCP THEOREM

The full proof of the PCP Theorem is beyond the scope of this paper. Instead,
we will prove a weaker version of the theorem which still captures some of the
essential techniques used in the full proof.

Theorem 3.1 (Exponential-sized PCP system for NP). NP C PCP(poly(n),1)

10 MIN JAE SONG

The theorem states that every NP statement has an exponentially long proof that
can be locally tested by looking at a constant number of bits. This is weaker than
the PCP theorem stated in the previous section since the proof it validates may be
much larger. In the original theorem, the PCP verifier verifies proofs of polynomial
size whereas in this weaker theorem, the verifier verifies proofs of exponential size.
Still, it is interesting that exponentially sized proofs can be verified by a constant
number of queries.

We will prove this theorem by constructing an appropriate PCP verifier for an
NP-complete language. Since all languages in NP can be polynomially reduced to an
NP-complete language, constructing a PCP verifier for one NP-complete language
will suffice.

3.1. Linear Functions. We first define linear functions over GF(2) as we will
depend on them throughout this study.

Definition 3.2. A function f : {0,1}" — {0,1} is linear if, for every x,y €
{0,1}", f(z +y) = f(z) + f(y), and f(az) = af(z).

It is also convenient to think about bit strings as vectors and define dot products
on them.

Definition 3.3. The dot product of any u,z € {0,1}" is defined as
U T = Zuixi (mod 2)
i=1

where ©u = ujus...u, and x = x123...T,.
Definition 3.4. For u € {0,1}", define ¢, : {0,1}" — {0,1} such that
L(x)=ubdz
It immediately follows that £, (x) is a linear function.
The next lemma, called the random subsum principle, shows that if two bit

strings u, v are different, then for half of the choices of z, £, () # £,(x). It appears
frequently throughout the design of the PCP verifier in the form, Pr[¢,(z) # £,(x)]
-1

R

Lemma 3.5 (Random Subsum Principle). Let u,v € {0,1}". If u # v, then for
half of the choices of x, 0y, () # Ly(x).

Proof. Let u = ujug...u, € {0,1}" and v = vyvs...v, € {0,1}" such that u # v.
Then u and v differ in at least one bit. Let k be the least index such that uy # vy.
We show that £, (x) # £, (z) for half the choices of x € {0,1}" by a simple counting
argument. Let x = x1x5...xz, and consider the following.

i=1,i#k

i=1,i#k

AN INTRODUCTION TO THE PCP THEOREM 11

By definition,

(3.8) ly(z) = Z w;x; + ugxp (mod 2)
i=1,i#k

(3.9) Ly(x) = Z vz + vgxg (mod 2)
i=1,i#k

Suppose (3,6) = (3.7). Then, we have to set z; = 1 to ensure £,(x) # {y(x).
Suppose, on the other hand, (3,6) # (3.7). In this case, setting x; = 0 ensures the
inequality. Since there are 2™ possible choices of x, but a single bit is fixed for every
choice, there are 2"~! possible choices of z where £, (z) # £, ().

O

3.2. Walsh-Hadamard Code. We will use the Walsh-Hadamard code (WH code)
as our main tool. The WH code is a way of encoding binary strings of length n as
binary strings of length 2.

Definition 3.10. WH(u) = £,

This definition may seem counterintuitive since WH maps binary strings of length
n to binary strings of length 2™ while /,, is a function itself. However, we can think
of ¢, as a binary string of length 2". Let ¢ € {0,1}" and set £,(¢) € {0,1} to be the
ith bit of the WH code. This way, we can express £,, as a binary string of length 2.
Quite surprisingly, there is a one-to-one correspondence between linear functions
and WH codes.

Theorem 3.11. A function f: {0,1}"* — {0,1} is linear if and only if there exists
some u € {0,1}" such that f(x) = Ly(z).

Proof. If. Suppose f(x) = £, (x). Tt follows from definition that f is linear.

Only if. Suppose f :{0,1}" — {0,1} is linear. We have to show that there exists
some u such that f(z) = ¢, (x). Consider the following bit vectors:

e1 = 100...0, e5 = 010...0, ..., e, = 000...1

where e; € {0,1}". Using these vectors, we can decompose any vector & = £123...T,
as,
r =x1€1 + T9€2 + ... + TpEN
Since f(z) is linear,
flx) = f(zie1) + fz2e2) + ... + f(xnen)
z1f(er) +xaf(e2) + ... + 2 f(en)

n
= E TiUg
i=1

= Ly(z)
where u; = f(e;).
O

The Walsh-Hadamard code distributes the original message into a message of
much larger length. Hence, we can retrieve the original message with high proba-
bility even if the WH code is partially corrupted because the original information
is distributed over longer strings and each bit in the codeword depends on a lot of

12 MIN JAE SONG

bits of the source word. This characteristic allows us to build a PCP verifier on the
WH code.

3.2.1. Linearity Testing. Suppose we are given access to a function f : {0,1}" —
{0,1}. How do we determine if f is a Walsh-Hadamard codeword? The obvious
way would be to check if

(3.12) fle+y) = flx)+ fy)
for every z,y € {0,1}". Clearly, this test is inefficient since it takes O(2") queries
to f.

With high confidence, can we test f for linearity by reading only a constant
number of its values? The natural test would be to chose z,y at random and check
if it satisfies equation (3.12). This test accepts a linear function with probability 1.
However, it does not guarantee that every function that is not linear is rejected with
high probability. For example, if f differs from a linear function at only a small
fraction of its inputs, then such a local test would reject f with very low probability
since the chance of the test encountering the nonlinear part is small. Thus, we will
not be able to distinguish f from a linear function very well. This suggests that
the test does not work for functions that are ”close” to a linear function. However,
the test may work for functions that are far from linear. So we start by defining
the ”closeness” of two functions.

Definition 3.13. Let p € [0,1]. We say that f,g: {0,1}" — {0,1} are p-close if
Proepo.13n[f(7) = g(x)] > p. We say that f is p-close to a linear function if there
exists a linear function g such that f and g are p-close.

Theorem 3.14 (BLR Linearity Testing). Let f: {0.1}"™ — {0,1} be such that

x’yef{r(),l}n[f(ﬂc +y)=f(x)+ fly)]=>p

for some p > 1/2. Then f is p-close to a linear function.

We defer the proof of Theorem 3.14 to section 5 of this paper as it requires
Fourier analysis on Boolean functions. It is often convenient to set p =1 — § and
say f is (1 — §)-close to a linear function.

Now we define an efficient linearity test 7 (f)

Definition 3.15. T(f) repeats the following K = O(1/6) times.

(1) choose z,y € {0,1}" indepedently at random

(2) If f(x+vy) # f(x) + f(y), then reject and stop. Otherwise, accept.
Lemma 3.16. For any 6 € (0, %), there is a §-linearity test which randomly reads

K = O(3) bits of a 2™ string, and rejects any function that is not (1 — §)-close to
a linear function with a probability of at least %

Proof. Setting K = 2 for T(f) gives us the desired test.
Define € = Pry ¢ 10,132 [f(z +y) # f(x) + f(y)]. By Theorem 3.14, we know that
€ > §. Given these conditions, the probability that T (f) rejects is at least

1—-(1-e¥>1-e 2/ >1-¢2>1/2

Since for each iteration, T (f) queries 3 bits of f, the test randomly reads a total
of 6/4 bits. O

To sum up, 7 (f) satisfies the following conditions for p > %:

AN INTRODUCTION TO THE PCP THEOREM 13

(1) (Completeness) Pr[T(f) = 1] =1 when f is linear

(2) (Soundness) Pr[T(f)=0] > 1 when f is not p-close to linear
Hence, we can see that T(f) is the desired linearity test that always accepts f if it
is linear and rejects with high probability if it is far from linear.

3.2.2. Local Decoding. Suppose § < ; and let f : {0,1}" — {0, 1} be a function
that is (1 —d)-close to a Walsh-Hadamard codeword g. We argue that g is uniquely
defined using the random subsum principle.

Lemma 3.17. Suppose § < % and the function f :{0,1}" — {0,1} is (1 —6)-close
to some linear function g. Then g is unique.

Proof. Suppose g is not unique, Then there exists two distinct linear functions g
and ¢’ such that f is (1 — ¢)-close to functions both ¢g and ¢’. By definition,

(3.18) Pr (@) = g@)] 215> 3/4
(3.19) P @ =g @] =105/

(3.16) and (3.17) imply,
P[0 = o) A (@) = ¢ @)
= IER]::{)(§.71}" g(z) =g ()] >9/16 > 1/2

However by lemma 3.5,

IGRP{)({l}n [g(x) = ¢ (x)] =1/2

Hence we have a contradiction.
O

Given z € {0,1}"™ and random access to f, can we obtain the value g(x)? Tt
seems that by querying f at x, we can obtain g(x) with good probability because
f(x) = g(z) for most of the z’s. However, the given x could be one of the places
where f(z) # g(x), so this single-query procedure is insufficient.

Fortunately, there is still a simple way to recover g(x) with high probability.
Notice that since g is a Walsh-Hadamard codeword, g(z +r) = g(x) + g(r), for any
r € {0,1}™. Then, g(x+r)—g(r) = g(x). Therefore, f(x+r)— f(r) is highly likely
to be equal to g(x).

Definition 3.20. Let D(f), be a procedure such that given an input = and oracle
access to a function f, decodes f(z). We define D(f), as follows:

(1) choose r € {0,1}"™ at random
(2) query f(xz+r), f(r) and output f(z +1r)— f(r).

Lemma 3.21. If f: {0,1}" — {0,1} is (1 — §)-close to a Walsh-Hadamard code-
word g, then, for all x € {0,1}",

PLD(f). = g(a)] > 1 — 26
Proof. Since f is (1 — d)-close to g,
Pr [f(r)#g(r)] <é

rer{0,1}"

14 MIN JAE SONG

Similarly,

LB [faan) # gt <

By the union bound,
Pr [f(z+7)#g(@+7r)V f(r)#g(r)] <26
rer{0,1}"
Hence,
Prf(z+r) = f(z) = g(x)] =126
O

This technique is called local decoding of the Walsh-Hadamard code since it
allows us to recover any bit of the correct codeword (the linear function g) from a
corrupted version (the function f) while making only a constant number of queries.

3.3. A Proof of the Weak PCP Theorem. We will prove the weak PCP the-
orem by constructing a PCP verifier on QUADEQ. We first define CKT-SAT and
QUADEQ. Then, we will show that QUADEQ is NP-complete by reducing from
CKT-SAT.

3.3.1. QUADEQ is NP-complete.

Definition 3.22. The language CKT-SAT consists of all circuits, represented as
strings, that produce a single bit of output and which have a satisfying assignment.
An n-input circuit C is in CKT-SAT iff there exists an assignment u € {0, 1}" such
that C(u) = 1.

Definition 3.23. The language QUADEQ consists of all sets of quadratic equations
over GF(2), represented as strings, which have a satisfying assignment. (a quadratic
equation over uq, us...., U, has the form Zi,je[n] a; ju;u; =b). A collection A of m
quadratic equations is in QUADEQ if there exists an assignment u € {0.1}™ such
that u satisfies all the m quadratic equations in the collection.

As mentioned in Section 1, CKT-SAT is NP-complete. Hence, Karp reducing
CKT-SAT to QUADEQ will suffice to show that QUADEQ is NP-complete.

Lemma 3.24. CKT-SAT <, QUADEQ

Proof. Let C be a circuit. We first assign a variable to represent the value of each
wire in the circuit. Then we express the AND, NOT, and OR gates using equivalent
quadratic polynomials. For instance, if 7 is an AND gate with input j, k¥ we have
the equivalent quadratic polynomial z; = 22, or 2; — z;z; = 0. The equivalent
quadratic equation for any gate i with input j, k is,

2§ 2k, if 7 is an AND gate
) zj+ 2k +zjz, ifdiis an OR gate
e (1—z), if ¢ is a NOT gate and j is its input
Zj if 7 is an OUTPUT gate and j is its input

Clearly, this set of quadratic equations is satisfiable if and only if C is satisfiable.
Also, this reduction is also polynomial-time in the input size of the circuit. Hence,
CKT-SAT <, QUADEQ.

O

Corollary 3.25. QUADEQ is NP-complete

AN INTRODUCTION TO THE PCP THEOREM 15

3.3.2. Constructing a Proof. QUADEQ gives a set of quadratic equations as
input and asks if there is an satisfying assignment for this collection of equations.
Since u; = (u;)? in GF(2), we can assume that all terms in the equations have
exactly degree two. This allows us to describe m quadratic equations over variables
U1, U, ..., Uy, Using matrices. Let A be a m x n? matrix, U an n? matrix, and b an
m dimensional vector. QUADEQ asks, given inputs A and b, find U such that (1)
AU = Db and (2) U is the tensor product u ® u of some n dimensional vector u.

It would seem natural to think that the proof for QUADEQ should consist of
the pair (U,u) € {0, 1}”*”2. Unfortunately, the proof (U, u) is not suitable for a
PCP(poly(n), 1) verifier. Recall that we have poly(n) random coins and are making
only a constant number of queries. Since the PCP verifier bases its decision on
constant number of bits of the proof, each bit in the proof has to depend on a large
number of bits of the natural proof (U,u). In addition, the poly(n) random coins
allows the verifier to effectively cover much longer proofs. As the astute reader may
have noticed, the Walsh-Hadamard code meets these requirements.

Hence, our PCP verifier will have acess to a long proof = € {0, 1}2"*‘2"2, which
we interpret as a pair of functions f : {0,1}"™ — {0,1} and g : {0, 1}”2 —{0,1}. In
a correct proof, f will the be Walsh-Hadamard encoding for u and the function g
will be the Walsh-Hadamard encoding for u ® u.

3.3.3. Test Procedures for the PCP verifier. To verify 7, our PCP verifier V'
needs to carry out the following procedures:

Step 1 Check that f, g are linear functions i.e., f, g are Walsh-Hadamard code-
words.

Step 2 Check that f, g encode the same source word i.e., g encodes u ® u and f
encodes u.

Step 3 Check that U = u ® u satisfies AU = b.

All these steps must be carried out by making only a constant number of queries
to the proof m. Moreover, tests performed by the verifier have to (1) accept correct
proofs with probability 1 and (2) reject proofs with high probability if the instance
is not satisfiable.

Step 1. Linearity of f and g can be tested by the efficient linearity testing 7 (f)
defined in the previous section. The verifier performs a 0.99-linearity test on both
f, g, using only a constant number K = O(ﬁ) of queries. Step 1 applies this
linearity test twice to each of f and g. This gives us the following:
(1) (Completeness) If f and g are linear functions, proof 7 is accepted with
probability 1
(2) (Soundness) If either f or g is not 0.99-close to a linear function, proof m
is accepted with probability of at most ()% + (3)% = 3, i.e. 7 is rejected
with probability of at least %
(3) (Efficiency) Step 1 makes 2K random queries from f and 2K random
queries from g. Each query to f and g requires n and n? random bits,

respectively. Hence, we need 2K (n? 4+ n) = O(n?) random bits for Step 1.

Thus, if either f or g is not 0.99-close to a linear function, then Step 1 rejects

with high probability. Therefore, for the rest of the procedure we can assume that

there exist linear functions f, and g such that f is 0.99-close to f and ¢ is 0.99-close
to g.

16 MIN JAE SONG

We also assume that the verifier can query f and ¢ at any desired point. The
reason is that local decoding allows us to retrieve the values of f and g with good
probability. Steps 2 and 3 will only use a small queries to f and §. Thus with high
probability (say > 0.9) local decoding will succeed on these queries.

Step 2. If f and g encode the same source word u, where f = WH(u) and g =
WH(u® u), we say that f and g are consistent. Consistency of linear functions f
and g can be tested by the following test:
Definition 3.26 (Consistency Test). Given f : {0,1}" — {0,1} and g : {0,1}"*" —
{0.1}, the test procedure C(f, g) is defined as:

(1) Choose r,r’ € {0,1}"

(2) Output 1 (accept) if g(r ® r') = f(r)f(r'). Output 0 (reject) if otherwise.

Suppose that § = WH(w) for some w € {0,1}"*" and f = W H(u) for some

u € {0,1}".

Lemma 3.27 (Completeness). If w = u® u, then Pr[C(f,§) = 1] = 1.
Proof.
foie) = or)-@or)
= (O wm)- () wr))
i€[n] €[]
= (Z UinTiT';)
i,j€[n]
(u@u) o (ror)
= gror)

Lemma 3.28 (Soundness). If w # u® u, then Pr[C(f,§) = 0] > 1

Proof. Let W be an n x n matrix with same entries as w, let U be the n x n matrix

such that U; ; = u;u;, and consider r as a row vector and r’ as a column vector. In
this notation,

Jrer)=wo (rer) = Z w; jriry = rWr'

4.3€[n]
f)f(e) = (Z u;r;) - (Z ury) = Z wiugryry = rUr
i€[n] J€[n] i,5€[n]

The consistency test outputs 0 (rejects) if rWr’ # rUr’. The matrices, W and
U, can be also seen as an n-tuple of column matrices (wy, ..., wy,) and (uq, ..., Uy).
W # U implies that at least one pair of the column matrices are not equal, i.e.,
w; # w; for some ¢ € [n]. We can apply the random subsum principle on this pair
of column matrix and conclude that at least 1/2 of all r satisfy rW # rU.

Applying the random subsum principle for each r, we see that at least 1/2 of the
r’ satisfy rWr' # rUr’. Hence, we conclude that the trial rejects for at least 1/4 of
all pairs of r, r’.

O

AN INTRODUCTION TO THE PCP THEOREM 17

Step 2 performs the consistency test 3 times. This gives us the following:
(1) (Completeness) if f = f = WH(u) and g = § = WH(u ® u), then the
proof m = (f, g) passes Step 2 with probability 1.
(2) (Soundness) if f and g are .99 - close to two linear functions f = W H(u)
and g = W H(w) respectively, such that w # u ® u, then:

e For each iteration, each of f(r), f(r'), and j(r ® r’) is incorrectly de-
coded with a probability of at most 0.02. Thus, the probability that
all three are decoded correctly is at least 0.98% ~ 0.94.

e Given that f(r), f(r'), and g(r ® r') are correctly decoded in a partic-
ular iteration, the probability that 7 is rejected in this iteration is at
least i by soundness of the consistency test.

e Thus, in each iteration the probability that m is rejected is at least
0.94

Theref%)re, the probability that 7 is rejected in at least one iteration is at
least 1 — (1 — 224)3 > 1.
(3) (Efficiency) In each iteration, we need n random bits for choosing each r and
r’. For local decoding, we need n, n and n? random bits for f(r), f(r’), and
g(r®r’), respectively, and query 2 bits for each one of them. Hence, Step 2
uses a total of 3(4n+n?) = O(n?) random bits, and queries 3(2+2+2) = 18
bits of the proof .
Step 3. Now we need to check that the linear function ¢ encodes a satisfying
assignment. The obvious way to check this would be to compute the kth equation
of the input and compare it with b;. In other words, check if

(3.29) Z Ap, i j)yuitt; = br

i,7€[n]
Denoting by z the n? dimensional vector (Ak.(i,j)) (where i, j vary over {1,...,n}),
we see that the above equation can be simply expressed as

g(z) = by,
However, the query bits of this procedure depends on the input size since the
more equations we have, the more comparisons with b we have to make. The PCP
verifier queries only a constant number of bits, so the number of queries required

have to be independent of m. Again, the random subsum principle provides us with
a way out.

Definition 3.30 (Satisfiability Test). Given an m xn? matrix A, an m-dimensional
vector b, and an n?-dimensional vector U, the satisfiability test S4*(U) consists
of the following procedures:

(1) Chooser €p {0,1}™
(2) Output 1 (accept) if (AU) @ r =b ®r. Output 0 (reject) if otherwise.

Lemma 3.31 (Completeness). If U encodes a satisfying assignment, Pr[S4*(U) =
] =1
Proof. If U encodes a satisfying assignment,

AU =Db

which implies
(AU)Or=bor

18 MIN JAE SONG

Lemma 3.32 (Soundness). If AU # b, then Pr[S4*(U) =0] > 1/2

Proof. By the random subsum principle, if AU # b, then (AU) ®r #b®r for 1/2
of the r’s. O

Step 3 executes the satisfiability test twice. This gives us the following:

(1) (Completeness) If g = § = WH(u® u) and u encodes a satisfying assign-
ment, 7 passes step 3 with probability 1.
(2) (Soundness) If g is 0.99 close to a linear function § = WH(u ® u), but u
does not encode a satisfying assignment, then:
e In each iteration, the probability that §(z) will be decoded correctly
is at least 0.98.
e Given that §(z) is decoded correctly in one iteration, 7 is rejected by
this iteration with a probability of at least %
Therefore, w will be rejected by step 3 with a probability of at least 1 —
(1—2%8)2> 1
(3) (Efficiency) Each iteration requires m random bits in order to choose r, and
n? additional random bits for decoding §(z). Two queries from g is needed
in order to decode §(z). Therefore, step 3 uses a total of 2(m + n?) =
2m + 2n? random bits and queries a total of 2(2) = 4 bits from g.

3.3.4. Analysis. Our PCP verifier V is given oracle access to m and performs the 3
steps mentioned above. Here, we show the efficiency, completeness, and soundness
of this PCP verifier.

Lemma 3.33 (Efficiency). V is efficient, that is, r(|z|) = poly(|z|) and q(|z|) =
O(1), where |z| is the size of the instance of QUADEQ which depends on m and n.

Proof. The number of random bits required for each step of the verifier is provided
above. Summing them together yields

r(z) = (2K +5)n® + (2K + 12)n + 2m

which is polynomial in the size of the input.
The total number of queries required is 4K + 22, which is constant. ([

Lemma 3.34 (Completeness). If an instance x of the QUADEQ problem is satis-
fiable, then there exists a proof m such that Pr[V™(z) = 1] = 1.

Proof. Suppose the instance x is satisfiable. Then there must exist a vector u €
{0,1}™ such that A(u® u) = b. If we let f = WH(u) and ¢ = WH(u ® u), the
proof m = (f, g) passes all three steps of the verifier with probability 1. O

Lemma 3.35 (Soundness). If an instance x of the QUADEQ problem is not sat-
isfiable, then for all proof 7, Pr[V™(x) = 0] > %

Proof. Suppose that the instance of the QUADEQ problem is not satisfiable. Then,
for any vector u € {0,1}", we have A(u® u) # b. Let 7 = (f, g) be any binary
string of length (2" + 2”2). We have:

o If either f or g is not 0.99-close to a linear function, then 7 will be rejected
by Step 1 with probability of at least %

AN INTRODUCTION TO THE PCP THEOREM 19

o If f and g are both 0.99-close to linear functions f = WH(u) and § =
W H(w) respectively with w # u ® u, then 7 will be rejected by Step 2
with probability of at least %

e If f and g are 0.99 close to linear functions f = WH(u) and § = WH(w)
respectively with w = u ® u, then we must have A(u ® u) # b. Hence, 7
will be rejected by Step 3 with a probability of at least %

Therefore, in all cases, there is a probability of at least % that 7 will be rejected
by at least one step of the verifier. (I

This shows QUADEQ € PCP(poly(n), 1), which implies NP C PCP(poly(n),1).

4. FOURIER ANALYSIS ON BOOLEAN FUNCTIONS

In this section, we use the set {41, —1} = {£1} instead of {0, 1} for convenience.
We can easily transform {0,1} into {£1} via the mapping b — (—1)°. Note that
this maps addition in GF(2) into the multiplication operation over R.

4.1. The Fourier Expansion. The Fourier expansion of a boolean function f :
{£1}™ — {£1} is its representation in terms of a certain basis (called the Fourier
basis). We first define the inner product of two functions.

Definition 4.1. Let f,g be boolean functions defined on {#1}". The inner product
of f and g, denoted (f, g}, is

(f,9) = Bzegaryn [f(x)g(2)]
Definition 4.2. For a C [n], we define x, : {1} — {£1} by
Xa(z) = H i
i€a
The Fourier basis is the set of x/ s for all a C [n]

Note that this basis is actually the set of linear functions over GF(2) in disguise.
Every linear function of the form b — a ® b (with a,b € {0,1}") is mapped by
our transformation to the function taking x € {£1}" to [, ,,—; #i- This basis
is also orthonormal, as the following theorem shows.

Theorem 4.3. The 2™ parity functions xo : {£1}"™ — {£1} form an orthonormal
basis for the vector space V' of functions {£1}™ — R. That is,

(4.4) <Xou X,B> = da,8

where 6o, = 1 iff = B and 0 otherwise.

Proof. Suppose o # 3. By the random subsum principle, the corresponding linear
functions for xo and xg differ on 1/2 of their inputs. This implies,

1 1
wxg)=1l-=+(=1)-==0
(Xerxs) =15+ (1) - 2
Suppose, on the other hand, @ = 8. Then, xo(z)xg(x) = 1 for all z € {£1}™.
Hence, (xa,x5) = 1. O

These facts lead us to the Fourier expansion theorem.

20 MIN JAE SONG

Theorem 4.5. Every function f : {£1}" — R can be uniquely expressed as a
multilinear polynomial,

(4.6) f@) =3 faxa
aCln]
This expression is called the Fourier expansion of f, and the real number fa 1s

called the Fourier coefficient of f on a.

Proof. 1t suffices to show that the Fourier basis spans the vector space V' of boolean
functions on {£1}". The dimension of V' is 2" since boolean functions on {£1}"
can be expressed as binary strings in {£1}2". The Fourier basis contains 2" or-
thonormal functions. Since orthogonality implies linear independence, it follows
that the Fourier basis spans V. (]

4.2. Basic Fourier Formulas. In this section, we introduce some useful formulas.

Lemma 4.7. For f: {£1}" — R and « C [n], the Fourier coefficient of f on « is
given by

foc = <f7Xoc>

Proof. We can verifiy this directly using orthonormality of the parity functions.

(fs Xa) = (Z fBXBvon> = fa<Xo¢aXo¢> = fa

BE[n]
O
Theorem 4.8 (Plancherel’s Theorem). For any f,g: {£1}" — R,
9) =Y faja
aCn]
Proof. This can also be verified directly.
Z fozXom Z gﬂXﬁ Z fozgﬂd B = Z fagoz
BCIn] a,8C(n]
O

Corollary 4.9 (Parseval’s Identity). For any f: {£1}" — R,
=2 i
aCln]

4.3. BLR Linearity Testing. Now we will prove Theorem 3.14, thus completing
the proof of the weak PCP theorem. We first rephrase the linearity test using {£1}
instead of GF(2).

Definition 4.10. For any two vectors x,y € {+1}", we define componentwise
multiplication xy by
Xy = (T1Y1, -y TnYn)
Notice that xq (Xy) = Xa (X)Xoc (y)

Lemma 4.11. For every e € [0,1], and functions f,g : {£1}" — {£1}, f and g
agree on 3 + 5 of its inputs iff (f,g) =€

AN INTRODUCTION TO THE PCP THEOREM 21

Proof. Note that the inner product is equal to the fraction of inputs which they
agree on minus the fraction of inputs on which they disagree. Suppose f and g
agree on % + 5 of its inputs. Then,

1 € 1 €
(f,9) = EzE{:I:l}" [f(z)g(x)] = 5 + 5~ (1- (5 + 5)) =¢
This equation also gives us the other direction. ([

Recall that the parity function corresponds to a linear function on GF(2). Thus,
if f has a large Fourier coefficient, then it has significant agreement with some
linear function. This allows us to rephrase the BLR linearity test as the following
theorem.

Theorem 4.12. Suppose that f : {£1}" — {£1} satisfies Pr y[f(xy) = f(x)f(y)] >
1 + €. Then, there is some o C [n] such that fo > 2e.

Proof. We can rephrase the hypothesis as Ex,y [f(xy) f(x) f(y)] = (3+€)— (5 —¢) =
2¢. Expressing f by its Fourier expansion,

2 < By [(x9) f () F(¥)] = By (D faxa(xy) (D faxs () (D frxr(v))
a B ol

Since X (Xy) = Xa(X)Xa(y), this becomes
=Exy[> fafofixa®)xaly)xs®)x,(y)]

B,y

Using linearity of expectation and independence of x, y

= D fafofBaylXa(®)xa(¥)x5(3) x4 (¥)]

a,B,y

= Z fafﬁf’yEX[Xa(X)Xﬁ(x)}Ey[Xa(Y)X.y(y)]
a,B,y

= > fafafy(Xarx5) (Xar XA)
a,B,y

Since (Xa,Xs) = da,s, this becomes
= 2.1
[e3

< (max fy) X (Z f2) = max f,

[e3

Since), f2 = (f, f) = 1. Hence max, fo > 2€. O

BLR linearity testing presented in section 3 states that for all p > 1/2, if f(a +
y) = f(z) + f(y) with probability at least p, then f is p-close to some linear
function. Theorem 4.12 implies this. To see this, recall that (f,g) = 2¢ iff f and ¢
agree on 1/2+ ¢ of their inputs. Theorem 4.12 implies that if f(x+vy) = f(z)+ f(y)
with probability at least 1/2 + € = p, then there exists a Fourier coefficient greater
or equal to 2¢.The Fourier coefficient of fa is the inner product of f with some
linear function y,. Hence, if f, > 2¢ for some a C [n], then f agrees with x, on
1/2 4 € = p of its inputs. This implies that f is p - close to a linear function.

22 MIN JAE SONG

5. CONCLUSION

In this paper, we introduced the PCP theorem and its equivalent formulation
from the hardness of approximation view. The theorem states that proofs for NP
decision problems can be verified by just checking a constant number of bits. Since
we are not reading every bit of the proof, it is possible that we may accept a false
proof. However, this probability can be made small by running the verifier multiple
times. From the hardness of approximation view, the PCP theorem says that
approximating a solution arbitrarily is no easier than computing the exact solution.
In other words, we cannot approximate a solution arbitrarily unless P=NP.

We also proved a weaker version of the PCP theorem, which states that proofs
of exponential size can be verified by randomly checking a constant number of bits.
It is weaker in the sense that while the PCP theorem validates proofs of polynomial
size, the weaker version validates proofs of exponential size. We proved this result
by using properties of the Walsh-Hadamard code and BLR linearity testing.

Acknowledgments. It is a pleasure to thank my mentor, Angela Wu, for her
guidance.

REFERENCES

[1] Harry Lewis, Christos Papadimitrou, Elements of the Theory of Computation, Prentice

Hall, 1997

Sanjeev Arora, Boaz Barak, Computational Complexity: A Modern Approach, Cambridge

University Press, 2009

[3] Oded Goldreich, Computational Complexity, Cambridge Univesity Press, 2008

[4] Jose Falcon, Mitesh Jain, ” An introductino to Probabilistically Checkable Proofs and the PCP
Theorem”, June 2, 2013

[5] Ola Svensson, ”Approximation Algorithms and Hardness of Approximation: Lecture 17-
18”, Retrieved August 10, 2013, from http://theory.epfl.ch/osven/courses/Approx13/Notes/
lecturel7-18.pdf

[6] Ryan O’Donell, ”Analysis of Boolean Functions”, Retrieved August 10, 2013, from
http://www.contrib.andrew.cmu.edu/ ryanod/?cat=62

2

