HYPERBOLICITY AND THE WORD PROBLEM

GEORGE HYUN

ABSTRACT. This paper addresses the word problem, i.e. the problem of de-
termining which words in the generators of a group equal the identity. To
do so, we will define the notion of hyperbolicity that requires geodesic trian-
gles to be thin, and use this to define hyperbolic groups. We then present a
proof of the fact that hyperbolic groups have solvable word problems through
Dehn presentations, as well as the converse fact that groups admitting Dehn
presentations are hyperbolic.
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1. INTRODUCTION

Definition 1.1. Let A be any set, which we will call our alphabet. A word is a
finite sequence of elements of A.

Consider, as our alphabet, the set of generators A of some finitely presented
group I', and view concatenation of letters as multiplication. It is clear that every
word is an element of I', and every element of I can be represented by many words:
for instance, for an abelian group with generators a and b, the words aa and abab™!
both represent the same element, but are distinct words, even when freely reduced.
If two words v and w represent the same element of I, we will denote this by
v =pr w. If a word w =p 1, we will call such a word null homotopic. We will
also denote the length of a word w by |w|. Given an arbitrary word w, is there an
algorithm to determine whether it is null homotopic? We will refer to this question
as the word problem, and if such an algorithm exists for a group, then we will say
that the group has a solvable word problem.

We will discuss a particularly simple algorithm, known as a Dehn algorithm,
that will efficiently solve a group’s word problem when this algorithm exists. The
groups for which we can find a Dehn algorithm turn out to be precisely those that
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are hyperbolic groups, where we define a metric space to be hyperbolic if all geodesic
triangles in it are thin in a particular sense, and a group is hyperbolic if its Cayley
graph is a hyperbolic metric space.

In this paper, we will start by introducing Dehn functions and the Dehn algo-
rithm, our solution to the word problem. We will then shift gears to define our
notion of hyperbolicity in metric spaces and groups. Finally, we will give a proof
that a group has a solvable word problem via Dehn algorithm if and only if it is a
hyperbolic group.

We assume the reader is familiar with basic group theory, but don’t expect
prior exposure to any of the geometric aspects of this paper. Armstrong’s book [2]
provides sufficient background.

The argument presented here is primarily adapted from Bridson’s paper [4].

2. DEHN FUNCTIONS

Perhaps the most obvious approach to attacking the word problem is to simply
replace relators in a word w with the identity until the entire word is shown to be
the identity. This solution will be effective if we can bound the number of relators
we need to replace in order to determine whether or not w =r 1 as a function of
|w|. To quantify this, we will work in the free group generated by A, denoted by

F(A), and we will denote equality in F(A) with the symbol =
Definition 2.1. Given a finite presentation P = (A | R) for a group I" and a null
homotopic word w in the letters A*!, we define the algebraic area of w to be

N
Area(w) := min {N | wfgeHxi_lrixi with z; € F(A),r; € Ril}

i=1

To get a sense for what this definition means, we’ll show how to go begin calcu-
lating it in a specific case. Hopefully this example shows how we can think of Area
as denoting the number of times we need to use information from our relators to
arrive at the identity when testing if a word is null homotopic.

Example 2.2. Let I be a Baumslag-Solitar group: particularly,

I' =BS(3,2) := (z,y | x*1y3xy*2>,

2 1

and define a word w := zy 2zy?z 'y lz~!. Perhaps you notice that we can rewrite
this word as

3 1

w = (zy)(y *zy’z ") (zy)
We can remove the letters in the middle parentheses by applying our relator »—! =
y?x~1y~32 once, even though that word is not precisely our relator. Rewrite

rt = (P (y ey (ey ),

2

where we will define z; := y?2~! to match with our definition of Area. Thus, we

have
w = (zy)(y *wy’z ) (wy) " (wy)ay v e (oy) Tt = 1,

and so the Area of this word is 1. In longer words, we would repeatedly attempt
to reduce subwords and use the fact that

Area(ww’) < Area(w) + Area(w’).
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It is also worth pointing out that this complexity is relative to the presentation
we pick. If w is a null homotopic word, then there exist presentations in which w
is a relation. Relative to such a presentation, Area(w) = 1.

Definition 2.3. The Dehn function of a finite presentation P is the function dp :
N — N defined by

dp(n) := max{Area(w) | w =r 1, |w| < n}

The Dehn function essentially tells us how difficult it is to determine if words
of length < n are null homotopic. Analyzing this function will tell us how much
harder this question becomes as you increase the length of w.

3. DEHN ALGORITHMS

We will now describe one efficient algorithm for solving the word problem. Take
a finitely presented group I' with generators A. Suppose we can pick a finite list
of pairs of words (u1,v1), (uz,v2), ..., (Uy,v,) such that u; =r v;, |v;| < |ug|, and
if w is a freely-reduced word in the letters A*! that is null homotopic, then w
contains at least one of the u; as a subword. To determine if a word w represents
the identity, we proceed using the following simple algorithm.

Definition 3.1. A Dehn algorithm for a group I' solves the word problem using
the following steps:
while w is not the trivial word do
freely reduce w
if some wu; is a subword of w then
| replace that instance of u; with v;
else
| return w #r 1
end
end
return w =r 1

This algorithm will terminate in at most |w| steps, as every time we replace a
subword w; with v;, the resulting w is at least one letter shorter. Note that this
proves the following proposition:

Proposition 3.2. If a Dehn algorithm exists for a group T, then I' has a linear
Dehn function.

The existence of a Dehn algorithm gives rise to a natural presentation.
Definition 3.3. We call (A | uiv;", ..., u,v;t) a Dehn presentation.

Of course, this algorithm only works if we can pick appropriate words u; and
v;, i.e. I' has a finite Dehn presentation. Perhaps surprisingly, it turns out that
a group admits a Dehn presentation if and only if it is hyperbolic. Before we can
define hyperbolic groups, however, we need to talk about hyperbolic metric spaces.

4. HYPERBOLIC METRIC SPACES
Consider a metric space (M, d).

Definition 4.1. Let I C R be an interval, and let (M, d) be a metric space. A
geodesic is a path v : I — M such that d(v(a),v(b)) = |a — b| for all a,b € I.
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‘We will also need a local version of this notion:

Definition 4.2. For an interval I and metric space (M, d), a k-local geodesic is a
path v : I — M such that d(v(a), (b)) = |a—0| for all a,b € I such that |a—b| < k.

What we are calling a geodesic is sometimes referred to as a unit speed geodesic.
We could perhaps talk about constant speed geodesics by putting a scaling factor
in front, but the following notion will be more useful for our purposes.

Definition 4.3. Again taking an interval I and metric space (M,d), a (A &)-
quasigeodesic is a path v : I — M such that

1
Sla—bl— = < d(y(a), (b)) < Aa—b| +=

We can think of quasigeodesics as acting on a large scale like geodesics with a
constant scaling factor A\, while exhibiting potentially wild behavior on small scales
less than e.

Definition 4.4. A metric space (M,d) is a geodesic space if any two points are
connected by a geodesic.

For example, any graph with edges of unit length is a geodesic space. R™ with
the Euclidean metric is a geodesic space, as is H". However, R? \ {0} is not a
geodesic metric space, since there is no geodesic connecting = to —x.

We can now define what it means for a metric space to be hyperbolic. Our
condition involves geodesic triangles, which are simply triangles for which every
edge is given by a geodesic.

Definition 4.5. A geodesic metric space M is n-hyperbolic if there exists a constant
1 > 0 such that for every geodesic triangle A C M, each edge of A lies in the 7-
neighborhood of the union of the other two edges. We say M is hyperbolic if it is
n-hyperbolic for some 7.

Essentially, the requirement is that geodesic triangles are thin in the metric
space. As we would hope, the hyperbolic plane H? is log(v/2 + 1)-hyperbolic [1].
As another example, trees are 0-hyperbolic.

In general, local geodesics may not behave like geodesics globally. For instance,
a long local geodesic might have close endpoints. However, in a hyperbolic metric
space, local geodesics are close to geodesics.

Lemma 4.6. Let M be an n-hyperbolic geodesic space and let 7y : [a,b] — M be a
k-local geodesic, where k > 8n. Then im(v) is contained in the 2n-neighborhood of
any geodesic segment [y(a),(b)].
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v(a)

Proof. Pick a point « = 7(t) € im(v) that is at maximal distance from [y(a), ()]
First, suppose (t —a) > 4n and (b —¢) > 4n. Then, we can pick a subarc of v with
midpoint x and length strictly greater than 8n but less than k. Label the endpoints
of this subarc as y and z, and let ¥’ and 2’ be the points on [y(a),~(b)] that are
closest to y and z respectively. Now, consider a geodesic quadrilateral with vertices
y,2,7', and 3. Since v is a k-local geodesic, we know that [y, 2] is a geodesic, so
we can use that as one side of our quadrilateral. Since [y(a),y(b)] is a geodesic, we
can obviously do the same for [y, 2'].

Now, draw in a geodesic diagonal [y, z]. We now have a geodesic triangle [y, v/, z].
Since M is n-hyperbolic, we know that there exists a point w on either [y’, z] or
[v/,y] such that d(w,z) <. Suppose that w € [y,y’]. Then, we have a path from
x to y’ through w that is shorter than d(y,y’):

d(z,y") —d(y,y") < (d(z,w) +d(w,y") — (d(y, w) +d(w,y))
= d($7 w) - d(yu w)
<d(z,w) — (d(y,z) — d(z,w))
= 2d(xz,w) — d(z,y)
<46—46=0

However, this contradicts our choice of z. Thus, w € [y, z].

Again, since M is n-hyperbolic, we know there exists a point w’ on either [z, '] or
[y, 2'] such that d(w,w’) < 7. By a similar argument, we can show that w’ € [y, 2],
and so by the triangle inequality, we have that the distance from « to [y(a),y(D)]
is at most 27.

Next, suppose that (t — a) < 47, and consider the geodesic triangle [y(a), 2, 2],
where we have again picked z such that d(z,z) > 4n. We know that d(z,m) < n
for m € [z,2'] or m € [y(a), Z']. Suppose m € [z, z']. By the triangle inequality, we
have that d(m, z) > 3n. Thus, we have

d(e, ') - d(z,2') < (d(a,m) +d(m, ') — (d(z,m) — d(m, "))

=d(x,m) —d(z,m)
<n—-3n<0
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which contradicts our choices of z and 2’. Thus, m € [y, 2’], and we’re done with
this case. The same argument works if we have (b—t) < 4. Finally, if both (¢ —a)
and (b —t) are less than 47, then + is a geodesic. O

Conceptually, it seems that local geodesics and quasigeodesics are almost op-
posites: having a local geodesic tells us that it behaves well locally but tells us
nothing about how it behaves globally, while having a quasigeodesic describes the
global behavior while ignoring the local behavior. Perhaps surprisingly, it turns out
that in a hyperbolic metric space, many local geodesics are quasigeodesics.

Theorem 4.7. If X is n-hyperbolic then every k-local geodesic in X for k > 8n is
a (), €)-quasi-geodesic, where the constant X > 0 depends only on n, and € < 8.

Proof. Let v : [a,b] — X be an 8n-local geodesic, where a,b € R. If a and b are
within 87 of each other, then we can take A = 1 and ¢ = 0, since v is an 8n-local
geodesic.

Now suppose that |a — b| > 8. We will deal with the upper bound first. If we
divide up the interval [a,b] C R into intervals of length 47, the images under v of
these intervals also clearly have length 47 since 7 is an 87 geodesic. By the triangle
inequality, we can thus say that

d(y(a),v(b)) < V;ﬁbJ dn+e<la—bl+e

for some & < 47.

Next, we deal with setting the lower bound. Let & = [y(a),y(b)] C X, i.e.
a geodesic between the endpoints of v, and ket k' = k/2 + 2. Express v as a
concatenation of M = | (b—a)/k’| geodesic segments of length k', perhaps the final
segment of length [ if (b — a)/k’ is not an integer; i.e.,

b—a=MEK +1.
By Lemma 4.6 above, we can project each endpoint of each of these geodesic seg-
ments to points on & within 27 of the original endpoint. For now, assume that these
projections form a monotone sequence. We will prove this shortly. The distance

between successive projections must be at least k' — 47, and the distance from the
last projection point to v(b) is at least I — 2. Thus,

d(v(a), (b)) = M(K = 4n) +1 =21 = (b—a) — 4nM — 21).
Since M < (b— a)/k’, we conclude

dr(@) 7)) = ¥ b~ a) — 2m,

completing the proof.
Now, we will prove that the projections used above form a monotone sequence.
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> 4n

Consider a subarc of v of length 2k’, denoting its endpoints by x and y and its
midpoint by m. Pick points 2’,4’, and m’ on £ that are a distance at most 27 from
x,y and m respectively, which we can pick by the above lemma. We will now show
that m’ must lie between 2’ and 3’ in order to show that the points we pick on &
appear in the same order as they do on 7.

Let ¢ be the point on im(y) that is 2n away from z in the direction of m, and
pick yo analogously. Consider a geodesic triangle [z, z’, zo]. By definition, both
zo and 2’ have distance at most 27 from x. Since this is a geodesic triangle in
an n-hyperbolic space, we know that any point p € [z, 2] is a distance at most 7
from some point on [z, 2], and so by the triangle inequality, every point on [z, ']
is 3n-close to x. We have thus shown that the entire triangle [z,z’,z¢] is in the
3n-neighborhood of z. Since d(z,m) = k' > 61, we know that this triangle is also
entirely outside of the 3n-neighborhood of m. We can get the same results for the
geodesic triangle [y, ', yo)-

Next, consider a geodesic triangle [xg, Yo, y’]. By hyperbolicity, we know that m
is at most n away from some point n on either [xg,y'] or [yo,y']. Suppose n € [yo, y'].
By the triangle inequality, we get that

d(m,yo) < d(m,n) + d(n,yo) < 3n.

However, we also know that along the 8rn-local geodesic «y, a path of length at least
4n separates m and yp, which is a contradiction. Thus, n € [zg,y’]. We make a
similar argument in a triangle [z¢, %', 2] to determine that a point m” such that
d(n,m") < n must lie on [¢/, 2'], and thus we have that m lies within a distance of
2n from some point m” € [2/,y'] C [v(a),v(b)].

Finally, consider the triangle [m,m’,m”]. Any point on [m’,m”] is a distance at
most 7 from some point on either [m,m'] or [m, m”], both of which have length at
most 27. Thus, any point between m’ and m” is 3n-close to m, which means that
neither z’ nor 3’ can lie between m’ and m”. Thus, m’ € [z/,y/].

This is sufficient to show that the projection from 7 to £ is monotone. Label
v(a 4+ nk’) = p,. Since y(a) = &(a), we know that pg,p1, and ps will be projected
in the correct order. Considering ps as the midpoint between p; and ps3, we know
that given that p; and py were projected in the correct order, p3 must be projected
correctly as well. We can proceed by simple induction to show that this projection
is monotone. (]
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5. HYPERBOLIC GROUPS

To apply our notion of hyperbolicity to groups, we first need to define a metric
on groups. Let I' = (A, R) be a finitely generated group. We will construct a graph
A = A(T, A) as follows. Let each element of T" be a vertex of A. For each g € T" and
a € A, form a directed edge from g to g - a. Thus, edges of the graph correspond
to right multiplication by elements of the generating set.

We can define a metric on this graph A. We can view each edge as a copy of the
unit interval. If we fix a parametrization for each edge, we can then define a length
for each interval in an edge, where the length of the entire edge is 1. With this
parametrization, we have a generalized notion of a path that can start and finish
both in the interior of edges and at vertices. Thus, such paths have well-defined
length. Given z,y € A, we define d(x,y) € [0,00) to be the minimum length of a
path connecting z to y.

It is clear that a graph constructed in this fashion is connected and locally finite.

Theorem 5.1 (Cayley’s Theorem). Fuvery finitely generated group can be faithfully
represented as a symmetry group of a connected, locally finite graph. We will refer
to such a graph as a Cayley graph.

Now that we have a metric space, we can check if it’s hyperbolic.

Definition 5.2. A group is hyperbolic if it is finitely generated and its Cayley
graph is hyperbolic.

A group’s hyperbolicity is independent of our choice of generating set. To show
this, we need to show that all Cayley graphs for a group are the same in some sense,
regardless of generating set. The sense that we're looking for is quasi-isometry.

Definition 5.3. Let X be a metric space. A map ¢ : X — X' is a quasi-isometric
embedding if there are constants k1 > 1, ko > 0 such that for all z,y € X,
1
Az, y) = k2 < d'(9(2), 6(y)) < kad(.y) + k.

1
A quasi-isometric embedding ¢ is a quasi-isometry if, in addition, there is a constant
ks > 0 such that for all y € X’ there exists some x € X such that

d(y, p(x)) < ks.

A quasi-isometry essentially preserves distances within fixed linear bounds, and
its image is cobounded.

Let S and S’ be finite generating sets for some group T', and let A = A(T,S)
and A’ = A(T,S") be the corresponding Cayley graphs. We have that V(A) =
I' = V(A’). We can extend the identity map V(A) — V(A’) to a map ¢ : A — A’
by sending an edge of A linearly to a geodesic in A’ with the same endpoints. By
choosing our geodesics carefully, it is always possible to ensure that the map ¢ is
equivariant, i.e. go(z) = ¢(gz) for all z € § and g € T. Letting

r = max{d'(1,a) | a € S},
it is apparent that each edge of A gets mapped to a path of length at most r € A/,
ie.

d'(¢(x), ¢(y)) < rd(z,y)

for all x,y € A. Applying the same construction in the reverse direction gives us an
equivariant map 1 : A’ — A. It is simple to check that these are quasi-isometries.
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Lemma 5.4. Suppose that S and S’ are finite generating sets for a group I'. Then
there is an equivariant quasi-isometry from A(T,S) to A(T, ).

Thus, we have that the Cayley graphs generated by a group are the same up
to quasi-isometry. Now, we need to show that hyperbolicity is preserved under
quasi-isometry.

Lemma 5.5. Suppose X and X' are quasi-isometric geodesic spaces. Then, X is
hyperbolic if and only if X' is.

This proof is somewhat technical, so to preserve the focus of this paper it is
omitted. It can be found as 6.19 in [3].

With these two results, it is apparent that our definition of a hyperbolic group
is well-defined.

6. HYPERBOLIC GROUPS HAVE SOLVABLE WORD PROBLEM

The key insight here is that hyperbolic metric spaces allow us to get global
information (quasigeodesics) from local phenomena (local geodesics). By simply
applying (4.7) to the paths induced by words in our group, we get that hyperbolic
groups admit Dehn algorithms, and thus have solvable word problems.

Theorem 6.1. If a finitely presented group T' = (A | R) is hyperbolic, it admits a
Dehn presentation.

Proof. Define

Jovst. |v] <|ul and u =p v

S = {u € F(A)

lu| < 8nmax{l, \} }

We know that this set is finite since the alphabet A is finite, and the words u have
bounded length. Now, consider some w € F(A) of length [ such that w =r 1, and
let v, : [0,1] — T denote the path induced by w. If v, is not an 8n-local geodesic,
then there exist two points on -, less than 8 apart such that there exists a shorter
path between them than ~,,. Thus, we can let the word that induces this subarc
be an element of S as one of our w;, let the shortcut be the corresponding v;, and
we’re done.

Now, suppose w is an 8n-local geodesic. By the above lemma, w is a (A, &)-
quasigeodesic. Thus, we have

% e < dr((0), (1) < M+ ¢

Since w is null homotopic, we have that dr(y(0),~v(l)) = 0, so this implies

l
877 >c Z X
Il <8\
Hence, we know v exists because w = 1: namely, we can always pick v as just the
identity element. Thus, we have that w € S. a

The converse is also true. To prove this, we will need another characteristic of
hyperbolic space.

If you consider a circle in R? with the Euclidean metric, it’s well known that
its area will grow at a rate proportional to the square of its circumference. In
hyperbolic space, the analogous statement would have the area growing at a rate
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directly proportional to its circumference. Moreover, having this linear relationship
is unique to hyperbolic spaces.

In order to talk about this relationship, which we will soon define precisely as an
isoperimetric inequality, we first need a notion of area. If you recall the definition
of algebraic Area defined in (2.1), it is clear that for a word w,

Area(w) < 6(I(w)).

We will be using a similar idea to define a coarse geometric notion of Area. Essen-
tially, we will be taking loops in our space, filling them with triangles, and counting
the triangles.

Definition 6.2. Let D? denote the unit disc in the Euclidean plane, i.e. 9D? = S*.
A triangulation of D? is a homeomorphism P from D? to a combinatorial 2-complex
in which every 2-cell is a 3-gon. We endow D? with the induced cell structure and
refer to the preimages under P of 0O-cells, 1-cells, and 2-cells as, respectively, the
vertices, edges, and faces of P.

Definition 6.3. Let M be a metric space, and v : S' — M be a loop of finite
length in M. An e-filling (P, ®) of v consists of a triangulation P of D? and a map
® : D? — M such that ® |g1= v and the image under ® of each face of P is a set
of diameter at most €. We will denote the number of faces of P by |®| and call this
the area of the filling.

Our notion of area will be simply the smallest number of triangles needed to get
an e-filling of ~.
Definition 6.4. Let v be as in Definition 6.3. The e-area of v is defined to be
Area.(c) := min{|®| | ® is an e—filling of ~}.
If no filling exists, then we define Area.(c) := oo.

Armed with this notion of area, we can examine the relationship between area
and perimeter in a space.

Definition 6.5. A function f : [0,00) — [0,00) is called a coarse isoperimetric
bound for M if there exists some € > 0 such that every loop v € M of finite
length has an e-filling and Area.(y) < f(I(y)). We say that M satisfies a linear
isoperimetric inequality if f is linear.

And so we can finally state the theorem that if a metric space satisfies a linear
isoperimetric inequality, then it is hyperbolic. The converse is true as well (see
H.2.7 from [5]), but for our purposes it will not be necessary.

Theorem 6.6. Let M be a geodesic metric space. If there exist constants K, N > 0
such that Areay(c) < Kl(c) + K for every piecewise geodesic loop v € M, then M
is n-hyperbolic, where n depends only on K and N.

A proof is not included due to space constraints, but can be found in H.2.9 of
[5].

Theorem 6.7. If (A | R) is a Dehn presentation for a group I", then T" is hyperbolic.

Proof. Let p be the length of the longest word in R. For each u; € R, we have a
path in A(T, . A) that starts at some element g € T, follows the letters of u;, then
comes back to g via vi_l. Consider one such loop, and act on it by ¢! so that it
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starts at the identity. We can choose some p-filling of this loop using a finite number
of triangles M;. Take such a filling for each u; € R, and let M = max{M;}. We
will now show that any null homotopic loop 7 can be filled with at most MI(vy)
triangles.

Now, consider a loop « of length () in the Cayley graph A(T,.A), labeled by
a word w in the letters of A. Since v is a loop, the word w is null homotopic.
Applying the Dehn algorithm, we can find a subword u; of w that corresponds to
a subpath of v that is not geodesic, as we can find a shorter path with the same
endpoints by following the letters of v;.

Let +' be the loop v with the subpath labeled by u; replaced by the path labeled
by v;. As an inductive hypothesis, suppose we have a standard p-filling D? —
A(T, A) of /. We can get a standard p-filling of v by adding a polyhedral face to
the filling at the point where u; was replaced by v;, and adding edges to divide this
face into at most M triangles.

We can thus say that the p-Area of «y is at most M+MI(v'). Since I(y')+1 < (),
we have that the Area of 7 is at most MI(y). Thus, A(T,.A) is hyperbolic. O
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