
CONVERGENCE OF FOURIER SERIES

KEVIN STEPHEN STOTTER CUDDY

Abstract. This paper sets out to explore and explain some of the basic con-

cepts of Fourier analysis and its applications. Convolution and questions of

convergence will be central. An application to the isoperimetric inequality will
conclude the paper.
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1. Introduction to Fourier Series

It will be important for the reader to recall Euler’s Formula:

(1.1) eix = cos(x) + i sin(x), ∀x ∈ R

Throughout this paper, an “integrable” function should be interpreted as integrable
in the Riemann sense as well as bounded.

Definition 1.2. For an integrable, bounded function f : [a, b]→ C we can define,
for any integer n, the nth Fourier coefficient

f̂(n) =
1

b− a

∫ b

a

f(x)e−2πinx/(b−a)dx.

When there is no question about the function we are referring to we may write

f̂(n) = an. From these coefficients we get the Fourier series S(x) =
∑∞
n=−∞ f̂(n)e2πinx

(note that this sum may or may not converge). To denote that a Fourier series is
associated to a function f we write

f ∼
∞∑

n=−∞
f̂(n)e2πinx

Definition 1.3. The N th partial sum of the Fourier series for f , where N is a

positive integer, is given by SN (f)(x) =
∑N
n=−N f̂(n)e2πinx/L.
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Example 1.4. Let f(x) = x on [−π, π] and let f(x) be 2π-periodic (extended

in the normal sense). Then f̂(n) =
1

2π

∫ π
−π xe

−inxdx =
i(−1)n

n
, n 6= 0 or 0 if

n = 0 after applying integration by parts and trigonometric identities. Then the

Fourier series is defined as
∑∞
−∞ f̂(n)einx. For example, the 2nd partial sum S2 is

−i
2
e−2ix + ie−ix− ieix +

i

2
e2ix, or − sin(2x) + 2 sin(x). Below is a graph comparing

this approximation to f ; the Fourier series is in green while f is in red.

Figure 1. f(x) vs S2(f)(x)

Fourier series are useful approximations for functions because, like Taylor series,
they are infinitely differentiable and easy to (formally) differentiate and integrate.
In some cases, Fourier series are in fact much more useful than Taylor series. For
example, an infinite Taylor series approximating a function f must be centered at
a certain point and may only converge for x in a neighborhood of a certain radius
around that point. Fourier series, on the other hand, need not be centered at any
specific point. Furthermore, a function must be differentiable to have a (meaningful)
Taylor series, whereas a function must be merely integrable to have a Fourier series.
If we are to use Fourier series, then we must answer some questions about their
convergence because a divergent Fourier series will be of no use when approximating
a function. To better study convergence we will examine convolutions, which may
be thought of as continuous weighted averages of sorts.

Understanding convolution will allow us to view Fourier series in a different way
and provide insight about their summability. The section following convolution is
focused on convergence or divergence of infinite Fourier series and the conditions
necessary to guarantee such convergence. At the end of the paper, we will look
at one application of Fourier analysis to a fundamental principle of geometry: the
isoperimetric inequality. The reader is expected to have a strong background in
calculus as well as some knowledge of analysis.

2. Convolution and Kernels

Definition 2.1. Convolution - an operation between two functions denoted by ∗,
where

(f ∗ g)(x) ≡
∫
f(y)g(x− y)dy.
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Four our purposes, convolution will be between two 2π-periodic integrable functions
on R denoted by ∗, where

(f ∗ g)(x) ≡ 1

2π

∫ π

−π
f(y)g(x− y)dy.

Remark 2.2. Properties of the convolution operation, which can be proven for
continuous functions using the definition of convolution, include:

• f ∗ (g + h) = (f ∗ g) + (f ∗ h)
• (cf) ∗ g = c(f ∗ g) = f ∗ (cg)∀c ∈ C
• f ∗ g = g ∗ f
• (f ∗ g) ∗ h = f ∗ (g ∗ h)
• f ∗ g is continuous

• f̂ ∗ g(n) = f̂(n)ĝ(n)

In fact, all of these properties except the one about continuity hold if either f
or g (or both) is merely integrable. A later lemma will even make the continuity
property hold if either f or g is continuous and the other is integrable.

Now, let’s look at some applications of convolution to Fourier series. We can
start with the Dirichlet kernel Dn(x), which, when convoluted with a function
f(x), yields the nth partial sum of the Fourier series for f . So another way to think
about a Fourier series is a convolution with the Dirichlet kernel.

Definition 2.3. Dirichlet kernel - the kernelDN (x) defined asDN (x) =
∑N
n=−N e

inx.

It is not obvious that this expression is the one satisfying the equation SN (f)(x) =
(f ∗DN )(x). The following argument shows how it is derived. We know that

SN (f)(x) =

N∑
n=−N

f̂(n)einx,

where

f̂(n) =
1

2π

∫ π

−π
f(y)e−inydy.

We substitute this expression for f̂ and put every einx inside the integral to get

1

2π

N∑
n=−N

∫ π

−π
f(y)ein(x−y)dy.

Now we can switch the integral and summation signs because everything converges
absolutely (this is after all a finite sum) and, factoring out f(y) from the sum, we
get

SN (f)(x) =
1

2π

∫ π

−π
f(y)

N∑
n=−N

ein(x−y)dy.

This fits our definition of convolution and shows that DN (x) =
∑N
n=−N e

inx.

Remark 2.4. There is a closed-form expression of the Dirichlet kernel that can be

derived from the general expression for geometric series
∑N
n=0 w

n =
1− wN+1

1− w
.

Splitting the Dirichlet kernel into two sums,
∑N
n=0 e

inx and
∑N−1
n=0 e

−i(n+1)x, and
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applying the series identity and trigonometric identities gives that the N th Dirichlet
kernel is

sin((N + 1
2 )x)

sin(x2 )
.

This is not obviously defined at x = 0, but a quick look at the summation form of
the Dirichlet kernel shows that DN (0) = 2N + 1, which is also the limit as x goes
to 0 of the closed-form Dirichlet kernel.

Now we can introduce the concept of “good kernels,” which will aid us in deter-
mining the usefulness of a given function f ’s Fourier series.

Definition 2.5. A family of good kernels is a sequence of functions {Kn(x)}∞n=1

that satisfies the following properties:

• For all n ≥ 1,
1

2π

∫ π
−πKn(x)dx = 1

• There exists M ≥ 0 such that for all n ≥ 1,
∫ π
−π |Kn(x)|dx ≤M

• For every δ > 0,
∫
δ≤|x|≤π |Kn(x)|dx→ 0 as n→∞.

Note that if Kn is positive, which will often be the case for our purposes, then the
first condition implies the second.

Theorem 2.6. Let {Kn(x)}∞n=1 be a family of good kernels, and f be an integrable,
2π-periodic function. Then

lim
n→∞

(f ∗Kn)(x) = f(x)

whenever f is continuous at x. If f is continuous everywhere, then the above limit
is uniform.

Proof. f is continuous at x, so for all ε′ > 0, there exists δ > 0 such that |y| < δ
implies |f(x− y)− f(x)| < ε′.

Because good kernels integrate to 2π (this is the first property in definition 2.5)
we can write

(f ∗Kn)(x)− f(x) =
1

2π

∫ π

−π
Kn(y)f(x− y)dy − f(x)

=
1

2π

∫ π

−π
Kn(y)[f(x− y)− f(x)]dy.

The triangle inequality then implies

|(f ∗Kn)(x)− f(x)| ≤ 1

2π

∫ π

−π
|Kn(y)||f(x− y)− f(x)|dy =

(2.7)
1

2π

∫
|y|<δ

|Kn(y)||f(x−y)−f(x)|dy+
1

2π

∫
δ≤|y|≤π

|Kn(y)||f(x−y)−f(x)|dy,

where the last equality is obtained by breaking up the domain of integration into
two disjoint parts.

By the continuity of f at x, the first integral in equation 2.7 is bounded by
ε′

2π

∫
|y|<δ |Kn(y)|dy. Because

∫ π
−π |Kn(y)|dy ≤ M (second property in definition

2.5), we can write
ε′

2π

∫
|y|<δ

|Kn(y)|dy ≤ ε′M

2π
.
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To bound the second integral in equation 2.7 we note that f is bounded due to
our definition of integrability, say by B. Therefore we can use the trivial bound,

1

2π

∫
δ≤|y|≤π

|Kn(y)||f(x− y)− f(x)|dy ≤ 1

2π

∫
δ≤|y|≤π

|Kn(y)|(2B)dy.

Letting n get large, this integral gets arbitrarily small due to the third property in
definition 2.5.

Pick ε′ > 0 sufficiently small, so that Mε′

2π ≤ ε/2, and then n sufficiently large
(it will depend on δ, ε′) so that the second integral is bounded by ε/2. Therefore,
for these large n, |f ∗Kn(x)− f(x)| < ε, proving the first part of the theorem. As
[−π, π] is compact, any continuous f is uniformly continuous. Thus we can pick
δ > 0 independently of x and the above analysis shows uniform convergence. �

Remark 2.8. The Dirichlet kernel is unfortunately not a good kernel. Using either
the closed-form or summation expression, we can see that it does not have the sec-
ond property of good kernels:

∫ π
−πDN (x)dx is not bounded for all N ≥ 1. However,

it does satisfy the first property of good kernels, which can be seen intuitively from
the closed-form expression: the average value of the Dirichlet kernel is 1. If the
Dirichlet kernel were a good kernel, then by Theorem 2.6, the Fourier series of a
function f(x) would converge to f at every point of continuity. This result is not
true: several examples of continuous functions whose Fourier series diverge every-
where or almost everywhere have been created by mathematicians like Kolmogoroff,
Lebesgue, and Fejér [3].

Despite yielding this dead end, convolution can still be used to prove several
important facts about Fourier series. These facts require an understanding of some
unconventional types of summation, which can then be used to sum the terms of a
Fourier series to the function it hopes to approximate.

Definition 2.9. A series
∑∞
k=0 ck is Cesàro summable if the quantity

σN =
S0 + S1 + . . .+ SN−1

N

converges as N tends to infinity, where the nth partial sum Sn is defined as
∑n
k=0 ck.

We say the series is Cesàro summable to σ when lim
N→∞

σN = σ. The quantity σN is

called the N th Cesàro mean of the sequence sk or the N th Cesàro sum of the series∑∞
k=0 ck.

Example 2.10. Consider the Grandi series, 1 − 1 + 1 − 1 . . .. This series clearly
does not converge as n→∞. However, using the definition of Cesàro summability,

we can see that it is Cesàro summable to 1/2: We see that SN =

{
1, N even

0, N odd
and

that the sum of the first N − 1 partial sums is given by dN+1
2 e. So

σN =
d(N + 1)/2e

N
,

which converges to 1/2 asN →∞ (the first few Cesàro sums are 1, 1/2, 2/3, 2/4, . . .)

Definition 2.11. Fejér kernel - the family of kernels {Fn(x)}∞n=1 given by FN (x) =
D0(x)+···+DN−1(x)

N .
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Remark 2.12. The Fejér kernel convoluted with a function f yields the N th Cesàro
sum of f ’s Fourier series. This is not obvious, but it becomes clear considering the
following argument. By definition, the N th Cesàro sum of a Fourier series σN (f)(x)
equals

S0(f)(x) + · · ·+ SN−1(f)(x)

N
=

(f ∗D0)(x) + · · ·+ (f ∗DN−1)(x)

N
,

so by the properties of convolution, the Fejér kernel must be

FN (x) =
D0(x) + · · ·+DN−1(x)

N
.

Lemma 2.13. FN (x) = 1
N

sin2(Nx/2)
sin2(x/2)

, and the Fejér kernel is a good kernel.

Proof. First we will establish the closed-form expression for FN (x). Note that,
again, it is not well-defined at 0, but the same argument that we used with the

Dirichlet kernel applies here. We know DN (x) = sin((N+1/2)x)
sin(x/2) , so

NFN =

N−1∑
n=0

DN (x) =
sin(x/2)

sin(x/2)
+ · · ·+ sin((N − 1/2)x)

sin(x/2)
.

=
sin(x/2) sin(x/2) + sin(3x/2) sin(x/2) + · · ·+ sin((N − 1/2)(x)) sin(x/2)

sin2(x/2)

Now we can apply the identity

sin((m+ 1/2)x) sin(x/2) =
1

2
(cos(mx)− cos((m+ 1)x)),

which causes quite a bit of cancellation and leaves us with

=
1/2(1− cos(Nx))

sin2(x/2)
.

Applying the previous identity to sin(Nx/2) sin(Nx/2),

=
sin2(Nx/2)

sin2(x/2)
.

Dividing by N then yields FN = sin2(Nx/2)
N sin2(x/2)

. Now, FN clearly has the first property

of good kernels because DN does. Notice that FN is strictly positive, so the first
property of good kernels implies the second. Finally, for all ε > 0 there exists δ
such that δ ≤ |x| ≤ π implies sin2(x/2) ≥ ε > 0, so FN (x) ≤ 1

Nε , which implies
that ∫

δ≤|x|≤π
|FN (x)|dx → 0

as N →∞. �

Applying Theorem 2.6 to Fejér kernels gives us an important theorem about
Cesàro summability of Fourier series.

Theorem 2.14. If f is integrable and 2π-periodic, then the Fourier series of f is
Cesàro summable to f at every point of continuity of f . Moreover, if f is continu-
ous, then the Fourier series of f is uniformly Cesàro summable to f .

There is also a Corollary that will be needed later and is an immediate conse-
quence of this Theorem:
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Corollary 2.15. Functions that are continuous on the interval [−π, π] with f(−π) =
f(π) can be uniformly approximated by trigonometric polynomials.

Proof. The partial sums of f ’s Fourier series used in the Cesàro sums, and thus the
Cesàro sums themselves, are trigonometric polynomials that uniformly sum to f as
N →∞. �

This method lets us use a function’s Fourier series to approximate it, albeit via
an unusual type of summation. Let’s look at a different type that can be used to
sum the terms of a Fourier series.

Definition 2.16. A complex series
∑∞
k=0 ck is Abel summable if, for all r in [0, 1),

the series
∑∞
k=0 ckr

k = A(r) converges and lim
r→1

A(r) exists. The quantities A(r)

are Abel means, and we say the series is Abel summable to s if lim
r→1

A(r) = s.

Example 2.17. This will serve as an example for both an Abel-summable series
and the fact that not every Abel-summable series is also Cesàro-summable (al-
though in fact, every Cesàro-summable series is Abel-summable). Consider the
series 1− 4 + 9− 16 . . .+ (−1)k(k + 1)2. Letting S0 = 1 and attempting a Cesàro
sum, we see that

σN =

∑N−1
k=0 Sk
N

,

where Sk is the kth partial sum of the series. Examining the sequence of partial

sums, we see that Sk = (−1)k (k+1)(k+2)
2 , so the Cesàro sum becomes

σN =

∑N−1
k=0 (−1)k (k+1)(k+2)

2

N
.

This sum diverges as N → ∞ by the Limit Test - the terms do not go to 0. Thus
the series is not Cesàro summable. Attempting to Abel sum, on the other hand,
yields

A(r) =

∞∑
k=0

(−1)k(k + 1)2rk

which is the power series for
1− r

(1 + r)3
centered at 0 (or for |r| < 1). Thus the limit

as r → 1 is 0, so the series is Abel summable to 0 (note that A(1) 6= 0, but the
limit is 0).

Definition 2.18. Poisson kernel-the family of kernels {Pr(x)} , 0 ≤ r < 1 given by
Pr(x) =

∑∞
n=−∞ r|n|einx.

Remark 2.19. The Poisson kernel is important because it gives us the Abel sums
of a function’s Fourier series: Ar(f)(x) = (f ∗ Pr)(x). To see this, we need only
rearrange some terms to fit our definition of convolution:

Ar(f)(x) =

∞∑
n=−∞

r|n|f̂(n)einx =

∞∑
n=−∞

r|n|
(

1

2π

∫ π

−π
f(y)e−inydy

)
einx

=
1

2π

∫ π

−π
f(y)

( ∞∑
n=−∞

r|n|ein(x−y)

)
dy

Switching the integral and infinite sum sign is justified due to the uniform conver-
gence of the series. This then yields that Pr(x) =

∑∞
n=−∞ r|n|einx.
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Remark 2.20. A closed-form expression for the Poisson kernel is
1− r2

1− 2r cosx+ r2
.

This is derived by splitting Pr(x) into

∞∑
n=0

(reix)n +

∞∑
n=1

(re−ix)n

and applying identities for geometric series and Euler’s formula. Defining this
expression at x = 0 requires a procedure similar to defining the Dirichlet and Fejér
kernels at this point. It should also be noted that this expression holds only for
0 ≤ r < 1.

Lemma 2.21. For any sequence an ∈ [0, 1) such that lim an = 1, Pan is a family
of good kernels.

Proof. If 1/2 ≤ r < 1 and δ ≤ |x| ≤ π, then the denominator 1 − 2r cosx + r2 ≥
cδ > 0, giving us a constant positive lower bound.

Thus Pr(x) ≤ (1− r)2

cδ
when δ ≤ |x| ≤ π, and this upper bound on the Poisson

kernel becomes arbitrarily small when r tends to 1 from below, so for every δ > 0,
the integral of the Poisson kernel goes to 0 as r goes to 1:

∫
y≥0

Pr(x)→ 0 as r → 1.

This is the definition of the third property of good kernels.
The closed-form expression shows that Pr(x) is always positive when 0 ≤ r < 1,

so the first property would imply the second. For the first property, integrating
the Poisson kernel in summation form yields only 1

2π

∫ π
−π e

i(0)xdx - all terms where
n 6= 0 integrate to 0. This expression equals 1, so all three properties of good
kernels are satisfied. �

Applying Theorem 2.6 to this lemma yields the following theorem.

Theorem 2.22. The Fourier series of an integrable 2π-periodic function is Abel
summable to f at every point of continuity. Moreover, if f is continuous, then the
Fourier series of f is uniformly Abel summable to f .

This result demonstrates a particular case of the general fact that every Cesàro
summable series is Abel summable to the same limit.

3. Criteria for Convergence

Now we will move away from considering unusual methods of summation in
order to guarantee convergence and start to consider convergence of Fourier series
summed in the usual way. The reader should assume in this section that any
function f considered is 2π-periodic (most proofs can be extended to any periodic
function). In order to do move forward, we need to understand the vector space of
complex-valued integrable functions on [0, 2π]. This is a vector space over C. We
define an inner product as

(f, g) =
1

2π

∫ 2π

0

f(x)g(x)dx.

This inner product is bilinear, and the norm of f or ‖f‖ is(
1

2π

∫ 2π

0

|f(x)|2dx
)1/2

.
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Let en(x) = einx. It is important for the reader to observe that under this inner
product, the family {en}n∈Z is orthonormal, or

(en, em) =

{
1 if n = m

0 if n 6= m

Notice also that

(f, en) =
1

2π

∫ 2π

0

f(x)e−inxdx = an.

Recall that SN (f) =
∑
|n|≤N anen, which is a sum of these inner products with

coefficients en. Now we can introduce a small lemma:

Lemma 3.1.
(f −

∑
|n|≤N

anen) ⊥
∑
|n|≤N

bnen

for any complex numbers bn under the inner product previously defined.

Proof. Applying the properties of the inner product,

(f −
∑
|n|≤N

anen,
∑
|n|≤N

bnen) = (f,
∑
|n|≤N

bnen)− (
∑
|n|≤N

anen,
∑
|n|≤N

bnen)

Applying the orthonormal property of {en}, bilinearity, and the fact that (f, en) =
an,

= (a0b0 + . . .+ anbn + a−nb−n)− (a0b0 + . . .+ anbn + a−nb−n) = 0

�

Intuitively, this lemma says that subtracting all of the e1, . . . , en“components”
of f leaves a function that is perpendicular to the space spanned by {e1, . . . , en}.

Now we can apply the Pythagorean Theorem to the decomposition

f = f −
∑
|n|≤N

anen +
∑
|n|≤N

anen,

where f −
∑
|n|≤N anen ⊥

∑
|n|≤N anen by the previous lemma, to get ‖f‖2 =

‖f −
∑
|n|≤N anen‖2 + ‖

∑
|n|≤N anen‖2. The last sum is equal to

(
∑
|n|≤N

anen,
∑
|n|≤N

anen)

which reduces to

a0a0(e0, e0) + . . .+ anan(en, en) + a−na−n(e−n, e−n) =
∑
|n|≤N

|an|2.

Our final result is thus

(3.2) ‖f‖2 = ‖f − SN (f)‖2 +
∑
|n|≤N

|an|2,

where SN (f) is the N th partial sum of f ’s Fourier series and an are the Fourier
coefficients. From the above we can deduce the Best Approximation Lemma.

Lemma 3.3. Best Approximation Lemma: ‖f(x) − SN (f)(x)‖ ≤ ‖f(x) −∑N
|n|=1 cnen‖
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Proof. We start by rewriting the difference between f and any sum of trigonometric
polynomials to include f ’s Fourier series:

f −
∑
|n|≤N

cnen = f − SN (f) +
∑
|n|≤N

(an − cn)en

Applying the Pythagorean Theorem to the perpendicular components f − SN (f)
and

∑
|n|≤N (an − cn)en,

‖f −
∑
|n|≤N

cnen‖2 = ‖f − SN (f)‖2 + ‖
∑
|n|≤N

bnen‖2

where bn = an− cn. This gives us the desired result because ‖g‖2 is never negative:

‖f(x)− SN (f)(x)‖ ≤ ‖f(x)−
N∑
|n|=1

cnen‖.

Equality holds when the last norm is 0 (when an = cn). �

This Lemma shows that the Fourier approximation of a function is the best

approximation of the form
∑N
|n|=1 cnen where ck ∈ C. Together with the following

lemma about approximating integrable functions, we can prove our first important
convergence theorem.

Lemma 3.4. Suppose f(x) is a 2π-periodic integrable function that is bounded by
B. Then there exists an infinite sequence {fk} of continuous, 2π-periodic functions,
k = 1, 2, . . . such that

sup
x∈[−π,π]

|fk(x)| ≤ B, ∀k = 1, 2, . . .

and ∫ π

−π
|f(x)− fk(x)|dx→ 0

as k →∞.

Proof. First we assume f is real (in general, apply the following proof to the real
and imaginary parts of a complex-valued function separately). Given ε > 0, we can
choose a partition −π = x0 < x1 < · · · < xN = π of the interval [−π, π] so that
the upper and lower sums of f differ by at most ε because f is integrable. Now we
denote f∗ the step function defined by

f∗(x) = sup
xj−1≤y≤xj

f(y) if x ∈ [xj−1, xj)

for 1 ≤ j ≤ N. Now f∗ is obviously bounded by B, and moreover

(3.5)

∫ π

−π
|f∗(x)− f(x)|dx =

∫ π

−π
(f∗(x)− f(x))dx < ε

This function f∗ is not continuous, but we can modify it to make it so. For small
δ > 0, let f̃(x) = f∗(x) when the distance between x and any partition point

x0 . . . xN is at least δ. When x is within δ of a partition point, define f̃(x) to be

the linear function connecting f∗(x−δ) and f∗(x+δ). This makes f̃(x) continuous
- it helps to visualize f∗(x) as a step function with one step above each interval

[xj−1, xj). Then think of f̃ as f∗ with δ removed from each end of every step and
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lines drawn connecting the new ends of all of the steps.
Now let f̃ = 0 in the neighborhood of x = −π and x = π. This lets us extend f̃
to a 2π-periodic function. The absolute value of this extension is still less than our
bound on f , B. Moreover, f̃ differs from f∗ only in the N intervals of length 2δ
surrounding the partition points. We thus have∫ π

−π
|f∗(x)− f̃(x)|dx ≤ 2BN(2δ).

If we choose sufficiently small δ, we then get∫ π

−π
|f∗(x)− f̃(x)|dx < ε

Combining this equation and 3.5, the triangle inequality yields∫ π

−π
|f(x)− f̃(x)|dx < 2ε.

Denoting by fk our function f̃ so constructed, when 2ε = 1/k, we see that the se-
quence {fk} has the properties required by the lemma. Letting k →∞ is analogous
to letting δ → 0 and N →∞. �

Now we get to the theorem.

Theorem 3.6. Mean Square Convergence-Suppose f is integrable on the interval
[0, 2π]. Then

1

2π

∫ 2π

0

|f(x)− SN (f)(x)|2dx→ 0

as N →∞.

Proof. Remember that ‖f − SN (f)‖ =
(

1
2π

∫ 2π

0
|f(x)− SN (f)|2dx

)1/2

. A restate-

ment of Corollary 2.15 is that if f is continuous on the interval [0, 2π] and 2π-
periodic, then given ε > 0, there exists a trigonometric polynomial P such that

|f(x)− P (x)| < ε

for all x. Let the degree of P be M . This means that (P, en) 6= 0 implies n ≤ M .
Squaring and integrating both sides of the inequality yields, by our definition of
the norm of f and the Best Approximation Lemma,

‖f − SN (f)‖ < ε

whenever N ≥ M . This gives the desired result when f is continuous. When f is
merely integrable, we can apply Lemma 3.4 to give us a continuous function g that
satisfies

sup
x∈[−π,π]

|g(x)| ≤ sup
x∈[−π,π]

|f(x)| = B

and ∫ π

−π
|f(x)− g(x)|dx < ε2

Using our definition of norm and the fact that supx∈[−π,π] |f(x)| = B,

‖f − g‖2 =
1

2π

∫ 2π

0

|f(x)− g(x)|2dx
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=
1

2π

∫ 2π

0

|f(x)− g(x)||f(x)− g(x)|dx

≤ 2B

2π

∫ 2π

0

|f(x)− g(x)|dx

which, by Lemma 3.4,

≤ Cε2.
It should be noted here that changing the limits of integration has no effect because
the functions are 2π-periodic. Now we know that there exists a trigonometric
polynomial P such that ‖g−P‖ < ε because g is continuous. Then ‖f −P‖ < C ′ε.
We know by the Best Approximation Lemma that P is the Fourier series of f ,
giving us the desired result. �

This Theorem, together with equation 3.2, gives us Parseval’s identity.

Theorem 3.7. Parseval’s identity:
∑∞
n=−∞ |an|2 = ||f ||2

Proof. Recall equation 3.2

‖f‖2 = ‖f − SN (f)‖2 +
∑
|n|≤N

|an|2.

We just proved that the first quantity on the right goes to 0 as n → ∞, so the
equation considered at n =∞ gives us the desired result. �

In fact, we can prove a more general version of Parseval’s Identity.

Lemma 3.8. Suppose F and G are integrable and 2π-periodic with F ∼
∑
ane

inx

and G ∼
∑
bne

inx. Then

(F,G) =
1

2π

∫ 2π

0

F (x)G(x)dx =

∞∑
n=−∞

anbn.

Proof. This proof uses some messy but easy algebra to rewrite (F,G).

(F,G) =
1

4
((F +G,F +G)−(F −G,F −G)+ i(F + iG, F + iG)− i(F − iG, F − iG))

=
1

4
(‖F +G‖2 − ‖F −G‖2 + i‖F + iG‖2 − i‖F − iG‖2)

By Parseval’s Identity and more algebra,

=

∞∑
n=−∞

anbn.

�

Mean-square convergence and Parseval’s identity tell us some important things
about convergence of expressions closely related to Fourier series. As for Fourier
series themselves, the following few theorems give conditions that guarantee con-
vergence of a function f ’s Fourier series to f . We can start with a theorem that
will make later proofs easier.

Theorem 3.9. Let f be a continuous function with associated Fourier coefficients
{an}. Then if

∑∞
n=−∞ |an| <∞, we have SN (f)→ f uniformly as N →∞.
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Proof. Let g(x) =
∑∞
n=−∞ anen and SN (f)(x) =

∑
|n|≤N anen. Note that g(x)

is defined everywhere because
∑∞
n=−∞ |an| < ∞, which is a consequence of our

conditions. First we will prove that

lim
n→∞

∑
|n|≤N

anen = g(x)

and that this limit is uniform. By the definitions of SN and g(x) and the triangle
inequality, we have

|SN (f)(x)− g(x)| = |
∑
|n|>N

anen| ≤
∑
|n|>N

|an|.

This last quantity can be made arbitrarily small with largeN because
∑∞
n=−∞ |an| <

∞, proving our first claim. Now we know that g(x) is the uniform limit of contin-
uous, 2π-periodic functions, so g(x) is also continuous and 2π-periodic. Now note
that for large N (such that N > |n|),

(SN (f)(x), en) =
1

2π

∫ 2π

0

 ∑
|n|≤N

ane
inx

 e−inxdx = an.

This, along with the fact that SN (f)(x)→ g(x) uniformly as N →∞, tells us that
(g(x), en) = an. In other words, g(x)’s Fourier series is identical to f(x)’s. Now we
can consider the function f−g. Because f and g have identical Fourier coefficients,
this function’s Fourier coefficients are all 0 by distributivity of the integral. Finally,
we apply Parseval’s Identity to this new function:

0 =

∞∑
n=−∞

|an|2 = ||f − g||2 =
1

2π

∫ 2π

0

|(f − g)(x)|2dx

We know that if
∫
|(f − g)(x)|dx = 0 for continuous f and g, then f − g = 0 or

f = g because any point of inequality would require inequality in a surrounding
region and thus a nonzero integral. This gives us the desired result. �

Lemma 3.10. Let f be a differentiable function with an integrable derivative. Then
the following holds:

f̂ ′(n) = inf̂(n).

In other words, the derivative of f ’s Fourier series equals the Fourier series for f ′.

Proof. Starting with the definition,

2πf̂(n) =

∫ 2π

0

f(x)e−inxdx.

Applying integration by parts,

=

[
f(x)

−e−inx

in

]2π

0

+
1

in

∫ 2π

0

f ′(x)e−inxdx.

The first term vanishes because f is periodic, leaving

2πf̂(n) =
1

in

∫ 2π

0

f ′(x)e−inxdx.
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Some rearranging yields the desired result,

inf̂(n) =
1

2π

∫ 2π

0

f ′(x)e−inxdx = f̂ ′(n).

�

This lemma gives us a tool we will use several times in the rest of this section.
Now we can prove our first convergence theorem.

Theorem 3.11. If f is 2π-periodic and has an integrable derivative, then its
Fourier series converges absolutely and uniformly to f .

Proof. We will prove that the Fourier series converges and then invoke Theorem
3.9 to prove that it converges to f . We start by removing the term a0,

∞∑
n=−∞

an = a0 +

∞∑
|n|=1

an.

Now we just need to prove convergence for the last sum. Using the Cauchy-Schwarz
Inequality,  ∞∑

|n|=1

an

2

≤
∞∑
|n|=1

1

n2

∞∑
n=−∞

n2a2
n

The sum
∑∞
|n|=1

1
n2 equals π2

3 . For the last sum, we have the following by Lemma

3.10 and Parseval’s Identity:
∞∑

n=−∞
|n2a2

n| =
∞∑

n=−∞
|f̂ ′(n)|2 = ‖f ′‖2 <∞,

where the norm exists because f has an integrable derivative, giving us the desired
result. �

This theorem will do for continuously differentiable functions, but what can
we say about functions that aren’t continuously differentiable? The following few
theorems are about functions with less restrictions.

Lemma 3.12. For any 2π-periodic and integrable function f ,

f̂(n) = − 1

2π

∫ π

−π
f(x+ π/n)e−inxdx

and hence

f̂(n) =
1

4π

∫ π

−π
[f(x)− f(x+ π/n)]e−inxdx

Proof. We have by definition

f̂(n) =
1

2π

∫ π

−π
f(y)e−inydy.

Notice that we can make substitutions without changing the bounds of integration
as long as we are integrating over the period of f because f is periodic. Making
the substitution y = x+ π/n, we have

f̂(n) =
1

2π

∫ π

−π
f(x+ π/n)e−in(x+π/n)dx
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=
1

2π

∫ π

−π
f(x+ π/n)e−inxe−πidx

Applying a form of Euler’s Identity,

= − 1

2π

∫ π

−π
f(x+ π/n)e−inxdx,

giving us the first desired result. Then we see that

2f̂(n) =
1

2π

(∫ π

−π
f(x)e−inxdx −

∫ π

−π
f(x+ π/n)e−inxdx

)
so

f̂(n) =
1

4π

∫ π

−π
[f(x)− f(x+ π/n)]e−inxdx,

giving us the second part of the lemma. �

Now we will introduce a quick definition to make our next theorem more clear.

Definition 3.13. A function satisfies a Hölder condition of order α if

|f(x+ h)− f(x)| ≤ C|h|α

for some 0 < α ≤ 1, some C > 0, and all x, h.

Theorem 3.14. If f is integrable and 2π-periodic and satisfies a Hölder condition
of order α, namely

|f(x+ h)− f(x)| ≤ C|h|α

for some 0 < α ≤ 1, some C > 0, and all x, h, then

f̂(n) = O(1/|n|α).

Proof. Using the previous lemma, we know that

|f̂(n)| = 1

4π
|
∫ π

−π
[f(x)− f(x+ π/n)]e−inxdx|.

By the triangle inequality for integrals, we see that

|f̂(n)| ≤ 1

4π

∫ π

−π
|f(x)− f(x+ π/n)||e−inx|dx.

Now we can apply the Hölder condition to get

|f̂(n)| ≤ 1

4π

∫ π

−π
C|π/n|α|e−inx|dx.

Applying
∫ π
−π |e

−inx|dx = 2π yields

|f̂(n)| ≤ Cπα

2|n|α
,

which is the desired result. �

One might be tempted to try to use this theorem to prove convergence of a func-
tion f ’s Fourier series whenever f satisfies some sort of Hölder condition. Together
with Parseval’s Identity, this theorem tells us that the Fourier series of a function
f converges absolutely and uniformly to f at every point of continuity as long as f
satisfies a Hölder condition of order α and the series

∑∞
n=1

1
nα converges. Unfortu-

nately, this sum diverges for all α such that 0 < α ≤ 1. Thus the theorem gives a
lower bound on the speed of the decay of the Fourier coefficients, but this bound is



16 KEVIN STEPHEN STOTTER CUDDY

unfortunately too low to guarantee convergence. An approach similar to Theorem
3.11 may seem logical, but this will lead us nowhere. Instead, we will use a different
method of proof to guarantee convergence given certain Hölder conditions.

For the following sequence of lemmas and the resulting proof, let f be a 2π-
periodic function which satisfies a Hölder condition of constants K and α, or

|f(x)− f(y)| ≤ K|x− y|α.

Lemma 3.15. Let gh(x) = f(x+ h)− f(x− h) for every positive h. Then

1

2π

∫ 2π

0

|gh(x)|2dx =

∞∑
n=−∞

4| sin(nh)|2|f̂(n)|2

and
∞∑

n=−∞
| sin(nh)|2|f̂(n)|2 ≤ K2h2α22α

4
.

Proof. We will prove each part of the lemma separately. For the first part, we will

start by proving ĝh(n) = 2i sin(nh)f̂(n). Using the definition of ĝh(n),

ĝh(n) =
1

2π

∫ π

−π
(f(x+ h)− f(x− h))e−inxdx

=
1

2π

(∫ π

−π
f(x+ h)e−inxdx−

∫ π

−π
f(x− h)e−inxdx

)
Again note that we can change variables without changing the bounds of integra-
tion. Using the changes of variables y = x+ h and z = x− h,

=
1

2π

(∫ π

−π
f(y)e−inyeinhdx−

∫ π

−π
f(z)e−inze−inhdx

)
= einhf̂(n)− e−inhf̂(n)

This, after applying Euler’s Identity, equals 2i sin(nh)f̂(n), proving the equation at
the beginning of the proof. Applying Parseval’s Identity to this equation yields the
first desired result,

1

2π

∫ 2π

0

|gh(x)|2dx =

∞∑
n=−∞

4| sin(nh)|2|f̂(n)|2.

For the second part of the lemma, we use the fact that, by our assumptions,
|gh(x)| ≤ K(2h)α. Applying our result from the first part of the proof,

∞∑
n=−∞

4| sin(nh)|2|f̂(n)|2 ≤ 1

2π

∫ 2π

0

|K(2h)α|2dx = K222αh2α.

Dividing by 4 yields the upper bound K222αh2α

4 , the desired result. �

The next lemma applies the previous one and brings us closer to our goal of
some sort of Hölder condition as the sole requirement for Fourier convergence.

Lemma 3.16. Let p be a positive integer. Then
∑

2p−1<|n|≤2p |f̂(n)|2 ≤ K2π2α

22αp+1 .
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Proof. This proof is based on the idea of dyadic shells, a type of argument that
appears often in Fourier analysis. The intuition behind this type of argument is
that regularity at scale t translates to summability at scale 1/t. We start by letting
h in the previous lemma equal π/2p+1. This yields∑

2p−1<|n|≤2p

| sin(
nπ

2p+1
)|2|f̂(n)|2 ≤ K222απ2α

22+2αp+2α
=
K2π2α

22αp+2
.

Now because we are only summing over 2p−1 < |n| ≤ 2p, the argument of sin is
between π

4 and π
2 , and we have

1

2

∑
2p−1<|n|≤2p

|f̂(n)|2 <
∑

2p−1<|n|≤2p

| sin(
nπ

2p+1
)|2|f̂(n)|2.

Connecting the inequalities and rearranging yields the desired result:∑
2p−1<|n|≤2p

|f̂(n)|2 ≤ K2π2α

22αp+1
.

�

Now we come to a strong theorem about Fourier convergence.

Theorem 3.17. Bernstein’s Theorem: If f is continuous and satisfies a Hölder
condition of order α > 1/2, then the Fourier series of f converges absolutely to f .

Proof. Using the Cauchy-Schwarz Inequality, ∑
2p−1<|n|≤2p

|f̂(n)|

2

≤
∑

2p−1<|n|≤2p

|f̂(n)|2
∑

2p−1<|n|≤2p

1.

The last sum is 2p. By the previous lemma, the right side of this inequality (and

thus both sides) is less than or equal to 2p
(
K2π2α

22αp+1

)
which is equal to K2π2α

2p(2α−1)+1 .

Now considering the absolute, uniform convergence of the entire Fourier series∑∞
n=−∞ |f̂(n)|, we see that this sum is equal to

|f̂(1)|+ |f̂(0)|+ |f̂(−1)|+
∞∑
p=1

∑
2p−1<|n|≤2p

|f̂(n)|.

Let C equal K2π2α

2 . Applying our new version of the inequality from Lemma 3.16
and a geometric sum identity, we get

|f̂(1)|+ |f̂(0)|+ |f̂(−1)|+
∞∑
p=1

∑
2p−1<|n|≤2p

|f̂(n)|

≤ |f̂(1)|+ |f̂(0)|+ |f̂(−1)|+ C

22α−1

1

1− 22α−1
.

Note that the geometric sum identity only holds if 2α − 1 is greater than 0, or

α > 1/2. This bounds the infinite sum in question
∑∞
n=−∞ |f̂(n)|, and we can

apply Theorem 3.9 to give us the desired result. �

This theorem gives us something much stronger than our previous result from
Theorem 3.11, requiring only a Hölder condition of order α > 1/2 to guarantee
convergence of a function f ’s Fourier series to f .
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4. Isoperimetric Inequality

Now let’s look at one practical application of the material in this paper, the
isoperimetric inequality. Prior to stating the theorem we should define a few things:

Definition 4.1. A curve is the image of a function γ, which is a mapping γ :
[a, b]→ R2. For our purposes, a curve must also be continuously differentiable. We
denote a curve with the symbol Γ. A curve is called simple and closed if it does not
intersect itself, but its starting and ending points coincide; that is, γ(s1) = γ(s2) if
and only if s1 and s2 are the endpoints a and b.

• Length of a curve Γ is defined as l =
∫ b
a
|γ′(s)|ds or

∫ b
a

(x′(s)2 +y′(s)2)1/2ds
if Γ is parametrized by γs = (x(s), y(s)).
• Area enclosed by a curve Γ is defined using Green’s Theorem as A =

1
2

∣∣∫
Γ
(xdy − ydx)

∣∣ or 1
2

∣∣∣∫ ba (x(s)y′(s)− y(s)x′(s))ds
∣∣∣ (more information on

Green’s Theorem and its use in calculating area can be found in [2]).

Theorem 4.2. Suppose that Γ is a simple closed curve in R2 of length l, and let
A denote the area of the region enclosed by this curve. Then

A ≤ l2

4π
,

with equality if and only if Γ is a circle.

Proof. Without loss of generality, we can assume x′(s)2 + y′(s)2 = 1 for all s ∈
[0, 2π]. This is equivalent to letting the length of our curve equal 2π. Then we see
that

(4.3)
1

2π

∫ 2π

0

(x′(s)2 + y′(s)2)ds = 1.

Here x(s) and y(s) are 2π-periodic because they parametrize a closed curve, so we
may consider the following Fourier series:

x(s) ≡
∑

ane
ins , y(s) ≡

∑
bne

ins , x′(s) ≡
∑

anine
ins , y′(s) ≡

∑
bnine

ins

Note that the series for x′ and y′ are such due to Lemma 3.10. We can apply
Parseval’s Identity to 4.3 by splitting the integral into two integrals:

1

2π

∫ 2π

0

x′(s)2ds+
1

2π

∫ 2π

0

y′(s)2ds =

∞∑
n=−∞

|anin|2 +

∞∑
n=−∞

|bnin|2

(4.4) =

∞∑
n=−∞

|n|2(|an|2 + |bn|2) = 1

Because x(s) and y(s) are real-valued, we can do the same to our equation defining
area, this time with the bilinear form of Parseval’s Identity (Lemma 3.8):

A = π
1

2π

∣∣∣∣∫ 2π

0

(x(s)y′(s)− y(s)x′(s))ds

∣∣∣∣
= π

∣∣∣∣∣
∞∑

n=−∞
aninbn −

∞∑
n=−∞

bninan

∣∣∣∣∣ = π

∣∣∣∣∣
∞∑

n=−∞
n(anbn − bnan)

∣∣∣∣∣ .
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Now we can apply a pair of inequalities that are true for all complex numbers and
are easy to verify:

(4.5) |anbn − bnan| ≤ 2|an||bn| ≤ |an|2 + |bn|2

We also have the inequality |n| ≤ |n|2 because n ∈ Z, so we may use Equation 4.4
and our area equation to get

A ≤ π
∞∑

n=−∞
|n|2(|an|2 + |bn|2) = π.

This gives us the first part of the theorem. When A = π, we must have both
|n| = |n|2 for all n and equality in Equation 4.5. This means our parametric
equations look like this:

x(s) = a−1e
−is + a0 + a1e

is , y(s) = b−1e
−is + b0 + b1e

is

We also know that both equations are real-valued, so a−1 = a1 and b−1 = b1
(because all imaginary parts of the Fourier series will cancel out). Equation 4.4
implies that 2(|a1|2 + |b1|2) = 1, and the second inequality in Equation 4.5 then
implies that a1 = b1 = 1/2. We can write a1 = 1

2e
iα and b1 = 1

2e
iβ and use

the first inequality in Equation 4.5 and Euler’s Formula, Equation 1.1, to see that
| sin(α− β)| = 1, or α− β = kπ/2, k ∈ Z. Applying Euler’s Formula again, we see
then that

x(s) =
1

2
ei(−α−s) + a0 +

1

2
ei(α+s) = a0 + cos(α+ s)

and

y(s) =
1

2
ei(−β−s)+b0+

1

2
ei(β+s) = b0+cos(β+s) = b0+cos(α+s−kπ

2
) = b0±sin(α+s)

These equations parametrize a circle, proving the second part of the theorem. �
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