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1. Introduction 

In this paper we show that, up to homotopy, the only "reasonable" functor 
which assigns a CW complex to every small category is the classifying space 
construction. This result is part of our attempt to better understand the 
relationship between the homotopic category of small categories and the ho- 
motopy category of CW complexes. This in turn is only part of the larger long- 
term program to develop the algebraic topology of small categories. 

We prefer to compare the category of small categories, cg~,g, with the category 
of simplicial sets, X. The relationship between f and CW complexes is already 
well understood. In particular, if the maps between simplicial sets which induce 
isomorphisms of homotopy groups are inverted, the new homotopy category is 
called the homotopic category for ~ .  It is equivalent to the homotopy category 
of ~,, the category of spaces of homotopy type of a CW complex [5; VII, 1]. The 
equivalence is given by Milnor realization I ]: 2 / I~  ~ .  

In cg~g, the objects are small categories, the morphisms are the functors, and 
homotopies are generated by natural transformation. Homotopy groups have 
been defined and so a homotopic category can be obtained for cg~Z. 

Latch [10] and Thomason [19] have shown that the homotopic categories for 
cg~Z and 24# are equivalent. The standard functor nerve, N: cg~g~+S, gives the 
equivalence. The classifying space construction is B = I N [ :  c ~ d - + ~ .  This 
gives the equivalence between the homotopic category for cg~, and the ho- 
motopy category for f .  

Categorical realization c: Y--~cg~Z is the left adjoint for nerve. Although 
c N ~ - I d ~ ,  categorical realization is not a homotopy inverse for nerve because 
Nc: Y I ~ Y  is wildly wrong. 

In [10], the functor F: S--~cgad which gives the category of simplices F X  
for each simplicial set X, was shown to be an inverse functor to N: cg~d__, : f  for 
the equivalence of homotopic categories. F is the left adjoint for a functor S~: 
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~ - *  Y. There is a natural transformation N "-~ S~. Studying the relationship 
between these two functors was the main motivation for our work in this paper. 
The main theorem applies and shows that 

N A u S e A  

always gives an isomorphism on homotopy groups. In particular, this and the 
Latch version of the equivalence of the homotopie categories for ~ '  and f 
can be used to show that the adjunctions 

I d x ~ S ~ F  F S T ~ - ~ I d ~  

for the adjoint pair F ~S~ induce isomorphisms for homotopy groups for every 
simplicial set and category respectively (see Corollary 4.7). 

We state our main result now and explain the necessity of our hypotheses. 

(4.1) Theorem. Let So: ~ Z ~ Y  be a representable functor with a natural 
transformation N " , S o. I f  each of the ,small categories O[k] representing the k- 
simplices of So(_ ) are strongly contractible in c~d, then 

N A-~  SoA 

induces an isomorphism of homotopy groups for all A C ~ ' .  [] 

We need the natural transformation N ~ S o to be able to compare the two. 
For the other way, S o , N, a simple extra condition is necessary (see Theorem 
4.1'). We need representability to avoid cases such as SoA equal to a point for all 
A. The 0[k] are in some sense basic k-cells; so they should be contractible. It is 
curious that there is only one "homotopy"  condition in the hypothesis, i.e. the 
contractability of the 0 [kl. This theorem gives conditions for S o to be an inverse 
to F for the equivalence between the homotopic categories for ~g~d and X. 

In [41, conditions are given on the 0[-k]'s so that the left adjoint for S o is a 
homotopy inverse for nerve. 

We give special thanks to R. Fritsch for his many contributions to this work 
and this careful reading and criticism of our first draft; in particular, many of 
the details of the examples in Section V were developed by the first author and 
R. Fritsch. The authors would also like to thank Ellis Cooper, Alex Heller, 
Haynes Miller, and John Moore for useful conversations and Princeton Uni- 
versity, North Carolina State University, and the University of Konstanz for 
partial support during this work. 

In Section 2, we give the basic definitions and constructions that we need for 
(g~r and .H, while in Section 3 we develop the necessary homotopy theory in 
both places. We prove the main theorem and its immediate corollaries in 
Section 4. The final section is devoted to a list of examples. 

2. Preliminaries 

Let d be the category whose objects are finite total orders [k], k__> O, and whose 
morphisms are order preserving functions ~: [pl--~Ek] ([-5; II, 21). It is well 
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known (e.g. see [5; II, 2]) that A is generated by the collection of increasing 
injections 3i: [ k - 1 ]  >~ I-k] with ir 6 ~, k>0,  0<  i<k; and by the collection of 
nondecreasing surjections ai: [ - k + l ] ~ [ k ]  which twice takes the value i, 
O<=i<=k,k~O. 

Let E**o represent the category of sets. The functor category [A ~ 6%~] of 
simplicial sets is denoted by S .  For each X ~ Y ,  X: A~ let X k represent 
the collection of k-simplices X([k]). The representable simplicial sets, A (_, I-k]): 
A~ are called the standard simplicial sets; and are denoted simply by 
A [k], k > 0. Similarly, A (~): A [p] --+ A [k] will denote the simplicial map A (_, c~): 
A(_, [p])--+A (_, [k]), for c~: [p] ~ [k].in A. 

Mor (X, Y) represents the set of all maps from X to Y,, while ~ ( X ,  Y) 
denotes the "internal-horn" simplicial function space whose collection of k- 
simplices is Mor(X x A [k], Y). Because the "internal-hom" functor is the right 
adjoint to "product" [5; II, 2], 

(2.1) Mor(W x X, r )~Mor(W,  ~ ( X ,  Y)) 

naturally in W, X and Y. 
cg~ represents the category of small categories. The objects of a small 

category A form a set. Let Mor(A,B) denote the set of functors from small 
category A to small category B. The "internal-horn" category cg~{(A,B) has 
objects, the functors F: A-*B and morphisms, natural transformations co: 
F ~ G .  As above, the "internal-horn" functor is right adjoint to "product";  
i.e., 

(2.2) Mor(C • A, B) ~ Mot(C, cg~g(A, B)) 

naturally in A, B and C. 
For any functor 0: A--* ~c~, define the O-singular functor 

So: ~g---" [A op, o%~] 

by the following "representable" construction: For each A6Cg~g, 

(2.3) So(A)=-Mor(O,A): A~ 

Hence a k-simplex in S0(A ) is a functor r: O[k] ~ A .  
Nerve, the standard example of a functor from cg~g to X,, is obtained as a 

singular functor in the following way: Consider the full inclusion functor l: 
A ~ cg~g, where z [k] -- k is the small category whose objects are u, 0 < u < k, and 
having a unique morphism u ~ v  for each u<v. In fact, 0 is a terminal object of 
cg~g; 1 the category with two objects and one nonidentity morphism 0--, 1. The 
nerve functor N: cg~zd~.~ is the ~-singularfunctor; i.e., for each small category 
A, 

(2.4) N(A)-=Mor0_,A): d~ 

Thus A is the simplicial set whose k-simplices, (NA)k =Mor(k,  A), are diagrams 
in A of the form 

a l  a 2  a k 

p o - - - ~ p l ~ p 2 ~ . . . - - ~ p k  l ~ P k  . 
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The ith-face (resp. degeneracy) of this k-dimensional simplex is obtained by 
deleting the objects Pi (resp. replacing Pi by Id: Pi ~ Pi) in the evident way. Since 
l: A ~ ~g~g is full and faithful, 

(2.5) g(k) - Mor0 _, 1 [k]) = A (_, [k]) - A [k] ; 

thus N preserves terminal objects, i.e. 

(2.6) N(O)~A [0]. 

The left adjoint of nerve is categorical realization c: ~{'---~cga~d [5; II, 4]; in fact 
the adjunction 

(2.7) cN " , I d ~  

is invertible. Since N is a right adjoint, it preserves all limits; and in particular, 
N preserves all products, i.e. 

(2.8) N ( A x B ) ~ N A x N B .  

From (2.7), it follows that N is also full and faithful [5; I, 1], i.e. 

(2.9) Mor(A,B) ~Mor(NA,  NB). 

Actually, N also preserves "internal-Homs." 

(2.10) Lemma. N: cg~g---,X commutes with the "internal-Horn" construction, 
i.e. 

N (cg~g(A, B)) - Y{'(NA, NB) 

naturally in A and B. [] 

Proof For each [k]cA, 

N(cg~#(A, B)) k--- Mor(k, c#~/(A, B)), by (2.4) 

Mor(k x A, B), by (2.2) 

~ M o r ( g ( k  x A),NB), by (2.9) 

Mor(NA x A [k], NB), by (2.5) and (2.8) 

-(J{~(NA, NB)) k. 

Since the above equivalences are all natural, the lemma follows. [] 

The nerve functor, N: cg~g__,.f, and each general So: cg~g___, oU have left 
adjoints, because of the following general Kan-type construction [83. 

(2.11) Lemma. Let cg be a cocomplete (i.e. arbitrary colimits exist) category and 
O: A---~ a functor. Then there exists an adjoint pair O-qSo, where 

So : cg___, [A % S ~ ]  -= S 

is the 0-singular functor defined by So(A)=Mor(O ,A) for A~Cg; and the O- 
realization functor 0: X--~c( is its left adjoint. Lastly, O: ~ { ~ g  is determined 



Simplicial Sets fi'om Categories 199 

uniquely by the requirements that it preserve colimits and 

O(A[k])---0(A( , [k]) )~0[k] .  [] 

cg~g is a cocomplete category [5; Dic,], and thus satisfies the hypothesis of 
Lemma 2.11. Now consider an arbitrary 0: A ~ cg~g. Then So: cg~g__+ oU is a 
right adjoint and hence, it preserves all limits; in particular, terminal objects 

(2.12) Se(O)~A[O3, 

and products 

(2.13) So(A xB)~-S0(A ) xS0(B ). 

3. Simplicial and Categorical Homotopy 

Strong homotopy (SH) in Y is the equivalence relation generated by the 
following elementary homotopies [13]: Let the " i  th vertex" inclusions ui: X ~ X 
x A [1] correspond to the simplicial maps 

X ~ X x A [ O ]  ~d• X x A [1], i--- 0, 1. 

If f, geMor(X, Y), f ~ g  iff there is a simplicial map h: X x A [1]--+ Y such that 
h-u  o = f  and h .u  1 =g.  

Similarly, the strong homotopy (SH) relation for cg~r is developed as follows: 
Suppose F, GeMor(A, B). A natural transformation co: F-  " ~ G is considered an 
elementary homotopy. Each one corresponds to a functor o5: A x 1---,B such 
that o5. (Id x c~l)=F and os(Id x c~~ G. Since N preserves products (2.8) 

NO5: NA x N I ~ N ( A  x l ) - * N B .  

As N I ~ A [ 1 ]  the standard 1-simplex, No5 is a simplicial homotopy and 
N F ~ N G .  Furthermore, since N is full and faithful by (2.9), N F ~ N G  in 
insures the existence of a functor O5: Axl- - - ,B,  and thus the existence of a 
natural transformation co: F ~ G. Hence, the strong homotopy relation in cg~g, 
i.e. the equivalence relation generated by natural transformation, corresponds 
fully via N to the SH relation in J{'. 

(3.l) Lemma. N F ~ N G  in :~ iff F ~ G  in c~d. [] 

Under mild hypotheses, So: c g ~ { ~ X  will also, as does N, preserve strong 
homotopies. 

(3.2) Proposition. I f  there exists a natural transformation 

q: O- " ~t: A-~ cg~, then So: ~z~d ~ ~ preserves strong homotopies. 

Proof Let 

(3.3) 0 -Mor( r /_ ,  _): N " ,So: cgcJ--~ ~ 
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be the natural transformation induced from t/: 0 , ,; i.e. for each A~Cg~7, 
[k] ed  

(3.4) F/(A)k - Mor(t/([k]), A): Mor 0 [k], A)-~ Mor(0[k], A). 

Suppose F, GeMor(A,B) such that F~G; i.e., there is a functor H: A x I ~ B  
(equivalent to a natural transformation F- " , G) such that Ho(Id x 6*)=F and 
H o (Id x a ~ = G. Define h: S0(A ) x A El] --+ S o(B) to be the following composition: 

So(A) x d [ 1 ]  ~o• ,So(A) xSo(1)~So(A• 

~ ' ~ ' ~ -  - . ~  ~__~_. Ss(H) 
h ~ . _ . _ ~ _ _ _ ~  

so~8) 

where ~/([1]): N(1)~4[1]~So(1 ). The naturality of ~: N ~ S  o and the fact 
that S o (2.13) (and thus N) preserves products, together guarantee that the 
following diagram commutes: 

So(A ) x A[1] Id• S0(A ) xSo(1)~So(A x 1) sotm~So(B) 

So(A) xd[O] ~a• So(A)• _-- _.S0(A ) 

S0(A) • ~ [0] --- So(A) x ~ [0] 

Hence houo=ho(IdxN(61))=So(F), and similarly, houl=ho(IdxN((~~ 
=So(G ). Thus So(F)~So(G ). Clearly, any "zig-zag" of natural transformations 
goes to a "zig-zag" of elementary homotopies in ~ and the proposition 
follows. [] 

The Milnor geometric realization is a functor I-J: .>V--~-5~ [14], where Yo/~ 
is a convenient category (in the sense of Steenrod [18]) of compactly generated 
weak Hausdorff spaces which contains CW complexes. In fact, IXI is a CW 
complex for every X e Y .  Geometric realization commutes with products; i.e., 
the canonical map 

I X x g l  ~ , l x l x l g l  

is a homeomorphism. Hence since JA[1]I~I, the unit interval, the Milnor 
realization preserves strong homotopies. 

A map f :  X-~ Y in Jd is called a weak homotopy equivalence (WHE) if If  f: 
INI--+IYI is a homotopy equivalence of CW complexes. We say a functor F: 
A-~B in cg~{ is a weak homotopy equivalence if NF: N A - , N B  is a WHE in aT; 
or equivalently, if BF: BA-- ,BB is a homotopy equivalence in 3-5/e, where B 
=IN_l: c g ~ 7 ~ / ~  is the classifying space functor [15]. 
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Remark. Notions of homotopy groups can be defined internally in cg~g (e.g. see 
[2], [6]), and in X (e.g. see [7J, [9]). The functors [_[: 2U-~.~/~ and N: 
cg~zd~g(( relate these with each other and with the usual ~-Sd notion of 
homotopy groups. In each case, an analogue of Whitehead's theorem, which 
characterizes WHE's by the property of inducing isomorphisms on homotopy 
groups, holds. 

A map f: X-+ Y in cg~zg or 2(  is said to be a strong homotopy equivalence 
(SHE) if f has a strong homotopy inverse; i.e., there is a g: Y ~ X  such that f g  
and g f  are strongly homotopic to Idy and Idx, respectively. 

Since the fnnctors N: rg~zz'-~ 2(( (see Lemma 3.1) and I-[: W ~ f l  preserve 
strong homotopies, f :  X ~  Y a SHE in cg~d or 2U implies Ifl or INfl is a 
homotopy equivalence; hence, f is a WHE. However, for X and Y CW 
complexes, WHE and SHE are the same (= homotopy equivalence, (HE)) ([17; p. 
405]). In (g~r and g(( elementary examples show that not every WHE is a SHE. 

(3.5) Lemma. I f  f: A-+ B is a strong homotopy equivalence (SHE) in ~,, then the 
map of simplicial function spaces 

Y ( f ,  X): X(B, X ) ~  Y(A, X) 

is a SHE in JY~, for every X ~ JY'. [] 

Proof: See [5; IV, 1.5]. [] 

Remark. The condition SHE cannot be weakened to WHE. For example, if B 
=A [0] and A = X  is the simplicial real line (the infinite zig-zag), then Y ( B , X )  
has one component and XU(A, X) has infinitely many components. 

By Lemma 2.10, Lemma 3.1, and the definition of SHE, we have: 

(3.6) Lemma. I f  F: A--~B is a SHE in cg~zd, then the map of "internal-horn" 
categories cg~d(F,X): cg~r is a SHE in r(~d, for every 
X ~Cg~Z. [] 

A small category A is called strongly contractible (SC) if it is SHE to the 
terminal category 0. A simple, but useful example of Lemma (3.6) follows from: 

(3.7) Proposition. I f  A has an initial (or terminal) object, then A is SC. [] 

Proof Let J:  0---,A be the inclusion functor such that J(0)=u,  the initial object 
of A. If T: A---,0 is the terminal functor (in cgad), then T o J ~ I d  0 and there is a 
natural transformation J T  " ~ Id A (by the fact that u is initial). Hence A is SHE 
to 0. [] 

The category k has both a terminal (k) and initial (0) object and so 0 and k 
are SHE. We will need the following special case of Lemma 3.6 in our proof of 
the main theorem. 

(3.8) Corollary. For A ~ z ~ ,  thefunctor 

rg~z~'(0, A) ~ A  --~ ((~zZ (p, A) 

induced by the unique functor p--~ O, is a SHE. [] 
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A bisimplicial set W is a functor W: m ~ x z~oP ----~ ofa~/j. The diagonal functor 

diag: [A ~ • A ~ Eeed] ---* [-A ~ g~ga] =- 

from the category of bisimplicial sets to simplicial sets, is defined by the rule 

(diag W)k = W([k] ,  [k]) .  

Similarly, a bisimplieial space T is a functor T: A ~ x A~ with diagonal 
simplicial space diag T given by 

(diag T)k = T([k], [k]). 

In [15], Segal gives a realization functor I-[e,-: [ A~ JSfi]--~J~fl,  from the 
category of simplicial spaces to the convenient category Y-g//, which is similar to 
Milnor's construction[ l: [A ~ N~,] ~-af-+~-~//. Both of these are constructed 
as special colimits called "coends" [12; IX, 6]. The next well known lemma 
follows from the special form of these realizations, and from the fact that 
colimits commute with each other (see [,12; IX, 8]). We will frequently denote a 
simplicial set X~[A ~ 6%~] by [k] ~--,X([k])= Xk, and its geometric realization 
by IXI = IEk] ~--,Xk]. 

(3.9) Lemma. There are natural homeomorphisms 

[[q]~--q[pl~--~ W([p], [ql)lb- 

[[p] ~--,(diag W)p] 

~[[P] ~--~ I [q] ~ W([p], [q])l If  

for any bisimplicial set W: A ~ x z] ~ ---~ d~ [] 

The following theorem is the essential "tool" used in the proof of our main 
theorem. 

(3.10) Theorem. Suppose g: W " ,V: A ~ x zt~ is a map of bisimplicial 
sets satisfying the condition for each p, 

(3.11) g([p], _): W([p], _) , V([,p], _): A~ 

is a WHE. Then (diag g): (diag W) " ~ (diag V): A op__, ge4~ is a WHE. [] 

Proof. Suppose condition (3.11) holds; then for each p, 

[[q] ~ g ( [ p ] ,  [q])t: [[q] ~ W([p], [q])J ~ t[q] ~ V([p], [,q])t 

is a HE in 3-~//. Both 

[p]  ~ I[,q] ~ W(Ep], [q])l 

and 

[p] ~--,[[q] ~ r(Ep], [q])[ 
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are "good" simplicial spaces (in the sense of Segal [16; App. A]), since 

[[q] ~ W( ai, [q])l: I[q] ~ W([p], [q])[ ~ l[q] ~ W([p + 1], [q])l 

are always closed cofibrations ([5; III, 3]). Segal proves that 

liP] v-~ [[q] ~--~g([p], [q])llj 

is a HE in 3-~fi in Proposition A.1 [16]. Thus from Lemma 3.9 

[[p] ~ (diag g)pl 

is also a HE in 3-;fi; and hence (diagg) is a WHE in 2f. [] 

(3.12) Remark.  From the symmetry of Lemma 3.9, it is clear that Theorem 3.10 
holds when condition (3.11) is replaced by: 

(3.13) for each q, 

g( , [q]): W(_, [q])-+ V(_, [q]) is a WHE. 

(3.14) Remark. Theorem 3.10 seems to have been proved independently by 
Bousfield and Kan [1, p. 335], Segal [16], and Tornehave. 

4. The Main Theorem 

(4.1) Theorem. Let  O: A - ~ c J  be a functor  such that 

(i) there exists a natural transformation 

rl : O ~ t : A --~ cgcc~ 

(ii) ~/([k]): O[k]--* l [k]-=k is a S H E  in cg~d for  all k. Then the induced natural 
transformation (3.3) of  singular functors 

O: N -  " ~ So: cg~_+ y 

is a W H E ;  i.e., for  every small category A, 

0(A): NA ~+ S0(A ) 

is a WHE in f . [] 

(4.2) Remark. Note that the homotopy inverses (ii) for each q([k]) are not 
collectively required to be natural in k. In fact, none of the examples detailed in 
Section 5 have natural homotopy inverses. 

Since f :  X - + Y  is a WHE in ~ iff If1: IXI~iYI is a HE in J~/~, the 
following corollary holds: 

(4.3) Corollary. I f  O: A-~cg~d  is a functor  satisfying (i) and (ii) of  Theorem 4.1, 
then for  every small category A, 
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[O(A) I: B A ~  ISo(A)k 

is a H E  in J-~/~, i.e. B A  and IS0(A)l are naturally of  the same homotopy type. [] 

(4.4) Remark. T h e o r e m  4.1 is not  true, in general, for na tura l  t ransformat ions  r/: 
,0. In part icular,  consider the terminal  na tura l  t r ans format ion  z: ~ " ,0, 

where 0: A ~ C g ~  " is the constant  functor  taking value 0. However ,  a s imple 
extra condit ion is enough to prove:  

(4.1) Theorem.  Let  O: A-+Cg~d be a functor such that 

(i) there exists a natural transformation rl: t ~ O: A __~ cg~g 

(ii) t/([k]): z [ k ] - ~ O [ k ]  is a S H E  in cgc~{ for  all k and 

(iii) O[1](O?)~ 06X(b))=0, for  any objects a and b in 0[0] .  Then the 
induced natural transformation oJ" singular functors 

~: S o , N :  cgc~g~Yg 

is a W H E .  [] 

Sketch Proof  o f  Theorem 4.1'. The internal condi t ion (iii) above is seen to be 
equivalent  to the existence of a simplicial m a p  9~ such that  the following d iagram 
commutes  

A [ 1 ] ~ N 1  x q(l) . So(1 ) , N ( 1 ) ~  d [-1] 

A [ 0 ] ~ N 0 §  -~ ,S0(0 ) O(O)+NO~A[O] 

for i =0 ,  1. N o w  we use this 2 : N 1  - ,  S0(I ) in the p roof  of  Propos i t ion  3.2 to show 
that  So: cried--+ 24/` preserves strong homotopies .  Thus, with appropr ia te  modifi-  
cations, the p roof  of Theo rem 4.1, given below, adapts  to show f/: S o , N is a 
W H E .  [ ]  

(4.5) Remark. If 0: A ~ c d ~ {  satisfies the hypotheses  (i) and (ii) of T h e o r e m  (4.1), 
then so does 0~ A--+ cdc~d. Since k~ naturally,  

(i) t/~ : 0 ~ - ~  s ~ = l : A ~ cgc~z" and 

(ii) t/~ (0[k])~ is a SHE for all k. 

Hence  f/op: N " )Soop: c g c ~ / ~  is a W H E .  

(4.6) Remark. The hypotheses  for T h e o r e m  4.1 as stated in the in t roduct ion  are 
equivalent  to those stated here. The  s ta tement  " representable  functor  So" is 
equivalent  to S o being the singular functor for a 0: A--+ (g~{. Since k is SC, (ii) is 
equivalent  to O[k] being SC. By the Yoneda  lemma,  a na tura l  t r ans format ion  
N ) S o is equivalent  to one: 0 ~ 1. 

Let 7: A __+ cg~g be as in Example  5.13. We denote ~ by F (see R e m a r k  5.15). 

(4.7) Corollary. The adjunctions 

Id:~ >S.tF and FS~ " ~ I d ~  l 
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induce WHE's 

X ~ S y F X  and FS~A--~A 

for all X~JU and A~Cga~g. [] 

Proof. Categorical realization c: x f ~ c ~ g  is the left adjoint to N: G~d~XU, 
and the adjunction cN , Id~e is invertible (2.7). Because the natural transfor- 
mation y ~+z induces N ,Sy (3.3), there is also a natural transformation 
F ~ c  (from adjoint functor theory [12; IV, 7]). Consider the commutative 
diagram of natural transformations 

(4.8) 

cN~ F N  

I d ~  ~ -FS~ 

coming from the natural transformation y ,;, and the two adjunctions. In 
[101, it was shown that F N  , cN is a WHE. Theorem 4.1 implies N , S~ is 
a WHE and in [10], it is shown that F preserves WHE's; so F N ~ F S ~  is a 
WHE. By the commutativity of the diagram (4.8), FS~ ~Id~ t must be a 
WHE. 

The composition natural transformation 

F " ~FS~F ,F 

given by the two adjunctions is the identity (for any adjoint pair); so is a WHE. 
By the above, FS~ , I d ~  is a WHE;  thus F S ? F ~ F  is also. These two 
facts show that F ~FS~F is a WHE. Latch [101 shows that f :  X ~  Y is a 
WHE in : f  iff Ff: F X  ~ F Y is a WHE in c~d;  hence Idx , S~F is a WHE in 
~C. This concludes the proof. [] 

Proof of Theorem 4.1. The proof is done by applying Segal's Theorem 3.10 to 
several pairs of functors from ~ '  to the category [A ~ x A ~ o~r of bisim- 
plicial sets. 

Step 1. Define F: cG~/---~ [A~ x A  ~ Er by 

(4.9) F(A)([p], [q])-= N(~f~d(; [q], A))p 
= Mot(p, cg~d (z [q], A)) 

Mo t0  [q] x p, A) 

where the last equivalence is simply the adjoint relation (2.2) for the "internal- 
hom", and the fact ;[q] x p ~ p  x t[q]. Similarly, G: cg~d-+ [A~ A ~ g~.zo] is 
given by 
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(4.10) 

D.M. Latch et ak 

G(A)(Ep], [q]) - N (cffz~r (0 [q], A))p 

=- Mor(p, cff~g(O [q], A)) 

Mor(0[q] x p, A) 

~_ Mor(0[q], g'~g(p, A)) 

- S o ( ~ ( p ,  A))~. 

The natural transformation r/: 0 , ~ induces a natural transformation 

(4.11) rl: F " )G: (~a~-e, EA~176 

where 

(4.12) g/(A)([p], [q]) = N ( ~ ( t / ( [ q ] ) ,  A))p 

= Mor(t/(Eq]) x p, A). 

Next we show, for each A~f~d ,  

f/(A): F(A)---, G(A) 

satisfies the hypothesis of Theorem 3.10; i.e. 

Y/(A)(_, [q]): F(A)(_, [q])--+ G(A)(_, Eq]) 

is a WIlE for every q. Since t/: O[q]--, ~[q] is a SHE, Lemma 3.6 shows that 

~d(t/(Eq]), A): ~ffag(t [q], A)-~ ~ff~d(O [q], A) 

is always a SHE. Thus Lemma 3.1 implies 

N (~,~(t/(Eq]), A)): N (<ga~d(z [q], A))--+ N(~g~d(O[q], A)) 

[11 Ill III 
Y/(A)(_,[q]) : F(A)(_,[q]) -* G(A)(_,Eq]) 

is a SHE, and thus a WHE. Hence by Theorem 3.10, 

(4.13) diagY/(A): diag F(A)-~ diag G(A) 

is a WHE. 

Step 2. Define G: c~,__~ [AOP x A ~ o~o] by 

(4.14) G(A)([p], [q])=-Mor(O[q],A) 

= So(A)q. 

Next we construct a natural transformation 

(4.15) p: G ,G: (~r176176 

Let 02: A ~ x A~ be given by 

Oz(Ep3, Eq]) = 0[q]; 
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and 

~: OXI )02: ~ff~z4f---+[A~176 

be the natural transformation given by the projection functor 

#([p], [q]): O[q] x p ~  O[q]. 

Then/~ induces the natural transformation 

(4.16) Mor(#, _): Mor(02(_, _), _ ) ~ M o r ( 0  x l(_, _)_). 

But by (4.10), 

Nor  ((0 x t)([p], [q]), A) ~ G(A)([p], l-q]). 

Thus Mor(#, _) is equivalent to a natural transformation 

(4.17) ~ : G " , G: cg~d , [A ov x A op, 6%a]. 

To show 

(4.18) diag#(A): diagd(A)--~diagG(A) 

is a WHE, we prove, as above that ~ satisfies the hypothesis of Theorem 3.10; i.e. 
#(A)([p], _): G(A)([p], _ ) ~  G(A)([p], _) is a WHE for every p. From (4.10) and 
(4.14), it suffices to show 

(4.19) ~(a)([p], _): S o (A)-+ S o (cgz~g(p, A)) 

is a WHE for every p. By Corollary 3.8, A-* cg~g(p,A) is a SHE. By Proposition 
3.2, S o preserves SHE's; and we have (4.19) is a SHE, and thus a WHE, 
completing Step 2. 

Step 3. Define ~#: cg~g-~[A~ x A  ~ o~r by the rule 

(4.20) /7(A)([p],l-q])-Mor (t[-q],A) 

= N(A)q. 

Then as in Step 2, there is a natural transformation 

p: _ # ~  F: cg~g___, [AOp x zt ~ Ec~zo]. 

The same argument as in Step 2 with z [q] in place of 0[q], proves that 

(4.21) diag#(A): d i agF(A)~d iagF(A)  

is a WIlE for every small category A. 

Final Step. Note that S O and diagG, and S,=-N and diag,# are naturally 
equivalent. Then for each small category A, the following natural diagram 
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commutes: 

S0(A) 

~(A) 

N(A) 

-~ ,diagG(A) 

lcl" gfi(A) la 

diag G(A) 

ldiagt/(A) 

diag F(A) 

l diagp(A) 

, diag F(A). 

Since diag g(A) (4.18), diagfi(A) (4.21), and diag f/(A) (4.13) are all WHE's, 

V/(A): N A ~ So(A ) 

is a WHE; completing the proof of the theorem. [] 

5. Examples 

Although the nerve functor N=S,: ~ g ~ d ~ Y  has a "simple" description, it has 
certain disadvantages. For example, N(A) is a Kan complex iff A is a groupoid 
(e.g. see [11]). In particular, N ( k ) - A [ k ]  is not a Kan complex for k > l .  The 
"straightforward" calculation of higher homotopy groups for NA using Kan's 
methods 1-9] and NA's "simple" structural definition is not practical, in general. 
The following catalogue of homotopy replacements for nerve is offered with the 
hope that some constructions in categorical and simplicial homotopy theory 
may become clearer. 

The format for each of the examples is as follows. We specify each 0: 
zl--~cd~d by giving the representing category 0[k], for each k, and specifying 
0(5): O[k-1] ~ O[k], O(ai): 01-k + 1]--~ O[k]. Next, we indicate why each O[k] is 
SC. Lastly, we define the natural transformation t/: 0 >1: A ~ g ~ r  leaving 
the details here to the reader. Special properties and remarks pertinent to each 
example will follow in the form of numbered remarks. 

(5.1) Example. Let Zlface denote the (non-full) subcategory of A whose objects 
are those of A and whose morphisms are all order-preserving injections ~: 
[p] >~ [k]. Define ~: A ~ ~g~ as follows: 

(i) ~[k] =(Aface~.[k]) ~ with objects ~: l-p] >---~ l-k] and morphisms/~: c ~ / 3  iff 

l-q]) " , 1-p] commutes in Aface. 

[Q 
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(ii) #(6~): ( A f ~ e ~ [ k - 1 ] ) ~  ~ is given by ~(c5i)(c0=c5io~: 
[p ]  >--, [k ] .  

(iii) ~(ai): (Af,~e ~ [k + 1])~ (A f,o~ + [k])  ~ has a more complicated descrip- 
tion. If c~: [p] --. [k+  1], consider the mono-epi factorization of aloe: 

(5.2) [p]> ~ [k+ l ]  

(,rf~) + [K], [k]. 

Then ~ (~i)(~) _ (o" ~) +. 
For completeness, we give an equivalent description of #: A ~ cg~g. Let 1' be 

the category with two objects { - 1 ,  O} and one nonidentity morphism - 1 ~  O. 
Then 

~[k] ~ (,=FIo I '~.<- i>)  ~ 

k 

where < - 1 ) = < - 1 ,  - 1  .... , - 1 }  in 1~ 1'. The injection c~: [p]> 
i = 0  

represented uniquely by <u o, u 1 . . . . .  Uk) where 

-- 1, if c~-1 (i) = 0 
ui= 0, if ~ - 1 ( i ) + 0 .  

Also ~(6i): \ i=o 1 ' \  < - 1 ) )  ~li__l~ ~ 1"-, < - 1 )  is given by 

, [k ]  is 

(5.3) ~Oi)(Uo,Ul,...,uk l>-<Uo ..... -1. , . . . ,uk_l>. 
l 

and ~(~ \ i=o 1 ' \ ( - 1 ) )  --~li__[I ~ 1 ' \ ( - 1 )  by 

~(G ~) <Uo, ul . . . .  , u~+ 1> - <Uo , . . . ,  w i , . . . ,  u~ + 1>, 

where w i = sup {ul, u~ + 1 }- 
Each ~[k] has initial object Id[k]: [k]-~ [k], since ~: Id[k~-~c~ uniquely in 

(Aface,~[k]) ~ Hence ~[k] is SC, for every k by (3.7). 
The natural transformation 0: ~ >z, relating ~ to t, is "first" evaluation; 

i.e. for each k, t/([k]): ~ [ k ] ~ k  is the functor defined by ~ 

(5.4) r/(Ek]) (~: I-p] >~[k])=~(O)ek. 

(5.5) Remark .  This example has strong geometric appeal. Each ~[k] has a 
definite "cell-like" structure. For example, ~[1] is pictured by 
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and ~ [2] is depicted by 

(5.6) Remark. From (2.9), 

S;op(A)k = Mor(~ ~ [kJ, A) 

- Mor  (N ~op [kJ, N A), 

naturally. But N~~ A ~ J { "  is the functor A': A ~ J f  [7] used in Kan's  
construct ion of Ex: : f - -+  J r .  Hence S;o~: c g ~ : ( (  is natural ly equivalent to 
E x o N :  g%d-+ J r ,  i.e. 

(5.7) S;op(A) ~ E x ( N A )  

for each AeCg~d. Of course, the work of Kan  [7J gives Theorem 4.1 for this case. 
The next two remarks were observed by the first au thor  and R. Fritsch. 

(5.8) Remark. Note  that  S;(A) is a Kan  complex iff A satisfies the following two 
conditions: 

(i) For  each diagram p a , r ( b q in A, there exists a commuta t ive  square 

a p )r  

ib'] ~'b 
p' ---~:--+ q 

(ii) If p 2+ b u 7 q ~r, i.e. ba=ba', then there exists a morphism p' ,p  such 

that  a u = a' u. 
Condit ions (i) and (ii) say that A admits a calculus of right fractions ([-5; I, 

21). In particular, since the categories k clearly satisfy (i) and (ii), S~(k) are all 
Kan  complexes. In an analogous fashion we see that  S~op(k) and hence 
E x ( N k ) ~ E x ( A  [kJ) are Kan  complexes. 

(5.9) Remark. Although S~op: cgcJ--~Jf  preserves WIlE's ,  its left adjoint  ~op: 
J r - - ,  cgc~ (see L e m m a  2.11) does not  preserve WHE's .  See [4]. 

(5.10) Example. Let 2: A __,cg~g be defined as follows: 

(i) 2[k]  is the small category having as objects pairs (c~,j), where c~: [q] >-~ [kJ 
in Afaoo and O<j<q. A morphism ~: (c~,j)~(fi, l) of 2[k]  "is"  an injection /~: 
[p] )--+ [q] such that  ~o # = f i  in Aface and ~(j)<fi(l). 
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(ii) 2(c5i): 2 [ k -  1] - J2 [k ]  is defined by 2(c~ ~) (c~,j)---(~5 i o a,j). 

(iii) 2(ai): 2 [k + 1] ~ 2 [k] is given by 2(a i) (~,j) - ((o -i a)+, (o -i ~)o (j)), where 
(o_~ c0+ o (a~ ~)o = d o ~ is the "mono-epi" factorization (5.2) of 0 "i o R. 

As above, each 2[k] has initial object (IdLk~,0), since ~: (IdLkl, 0)~(c~,j) is 
always defined and is unique. Hence 2[k] is SC, for every k. 

The natural transformation ~/: 2 ~ z  is "evaluate", i.e. for each k, r/([k]): 
2 [k] ~ k is the functor given by evaluation 

q ([k])(cqj) = ~(j)ek. 

(5.11) Remark. Although S;: tfzvz'--,2f preserves SHE's (by Theorem 4.1), its 
left adjoint 2~: ~F~cgc~g (see Lemma 2.11) does not preserve SHE's. See [4]. 

(5.12) Remark. 2 = c o g :  A--+c~a~ ', where the functor g: A~,~s was used by R. 
Fritsch in [3] to show that under certain conditions an isomorphism between 
the one-skeletons of ~ X and fi Y in ~f  implies the existence of an isomorphism 
between X and Y. 

(5.13) Example. Define 7: A ~c#~d as the "comma category" functor: 
(i) 7[k] is the small comma category (A~[k]) ~ with objects all order 

preserving maps a: [p] ~ [k] and morphisms #: c ~ f l  such that 

[ q ] - - .  , [p] 

\/  
[k] 

commutes in A. 

(ii) 7 (c~i) - (A ,L 6i)~ (A ~ [k - 1 ] )  ~ --~ (A ~, [ k ] )  ~ is simply composition with c5 i, 
i.e. 

y(~')(~: [p]-~ [k- i])=6~o =. 

(iii) Similarly, y(a i) ~- (A ,L a")~ (A + [k + 1]) ~ (A ,~ [k]) ~ 

The following equivalent formulation of 7: A - + c ~ d  was developed by the 
first author and E. Cooper. Let A' be the category formed from A by formally 

adding an initial object { -1} .  Then ? [ k ] ~  A ' \ ( - I >  , where ( - 1 ) =  
k \ i = 0  

( -  1, - 1,. . . ,  - 1> of ~] A'. Each ~: [p]-+ [k] of (A +[k]) ~ is represented in 
i - O  

A' \ ( - 1) by (v o, vi,..., vk), where 
i=0  

f<[mi], if the number of elements in ~- 1 (i) is m i + 1 
v i = [ - 1 ,  if ~-1(i)=0.  
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The functor 7(hi): A ' \ ( - 1 }  --* 1-1 A ' \ ( - 1 }  is similar to the alter- 
\ i = o  i 

nate description (5.3) of ~(~); i.e. 

/v  1 vk \ 3~(~5i) ( ( V o , . . . ,  vk _ t ) )  = 0 . . . . .  - . . . . .  
/ 

However, the description for 

7(~'): A ' \ ( - 1 )  - '  [ I A ' \ ( - 1 )  
\ i = o  \ i = o  

is more complicated; i.e. 

~(~)((Vo,  . . . ,  v~+ ,5) = {Vo, . . . ,  w~, . . . ,  v~+ ~) 

where 

[ [ m i + m i + l + l ] ,  i f  vi=[mi] ,  vi+ 1 = Imp+l] 

J[mi], if v i=[m/]  and V i + l = - I  
W i I |[mi+l], if v i = - i  and v i + l = [ m i + l ]  

! 

[ - 1 ,  if v i = - - I = v i +  l .  

Each ~[k] has initial object IdLkl: [k] ~ [k] since ~: Id~k I , c~ uniquely in 
(A $l-k])~ thus ~/[k] is SC. 

The natural t ransformation t/: ~/ , t is "first" evaluation, as in the case for 
4; i.e. for each k, t/([k]): 7 [ k ] ~ k  is the functor defined by 

t/([k]): (c~: [p] - -  [k]) ~ ~(0)ek. 

(5.14) Remark. There is the "characteristic set" evaluation natural  transfor- 
m a t i o n z : y -  , ~ given for each k by 

z ( [ k ] ) ( ( v 0  . . . .  , V k ) ) = ( U 0 , . . . , U k } ,  

0, if v i q= - 1 
where u i = 

- 1 ,  if v i = - l .  

Clearly, 

41 x-- ,~  
\ ./ 
\ 

~/ 
# 

is a commutative diagram of natural  transformations which induces a cor- 
responding commutative diagram of singular functors 

P~ \I, i 
N 
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If A is a one way delta (i.e. at most one of the morphism sets A(p,q), A(q,p) is 
nonempty for each pair of objects p, q in A), then 

2(A): S~(A) ~ , S,(A) 

is an isomorphism of simplicial sets. In particular, it follows from Remark 5.8 
that S~(k) is Kan for every k, since k is clearly a one way delta. 

(5.15) Remark. In contrast with the other left adjoint realization functors from 
to cg~zg, ~-=F: y _ > c g ~ /  preserves WHE's (see [10]). Since F plays an 

important role in the study of the relationship between the homotopic categories 
of c~d  and :g(, we give an explicit description for this "category of simplices" 
functor" For each simplicial set X, F X  has as objects the collection II  X k of all 

k >0  
simplices of X and as morphisms ~.: <x,[k])---,<X(~)x, [p]), for every ~: 
[p]---~ [k] in A. If f :  X-* Y in ~ ,  then Ff: FX---~FY is defined by Ff(<x,[k])) 
=<Lx, [k]>. 
(5.16) Example. Let U: df,ce~--~A be the (non-full) inclusion of Aface into A. 
Define co: A--~ ~c~d as the "comma category" functor: 

(i) co[k] is the small comma category (Uf[k])  ~ with objects all order 
preserving maps ~: I-p]---, [k] and morphisms #: ~---~/3 such that 

[g ] ,  . , [ p ]  

[k] 

commutes in A and #ffAface. 
(ii) co(&i)-(U{(Si) ~ (U+[k-1])~ ~ is simply composition with &i; 

i.e. co(&~)(~: I-p] -~ [ k -  1])=&~o c~ 
(iii) Similarly, co(ai) - l o p .  =(UJ.cr) . (U+[k+ 1])~ ~ 
To see that each co [k] is S C, consider the functor F [k]" co[k] ~ co [k] which 

is defined as follows: 

FEk] (~: [p] ~, [ k ] ) -  ~: [p + k +  13 -~ [k] 

where [p + k + 1] is represented by the totally ordered set having elements 

{0, 1,2, ..., p, 0, 1-, ..., F:} 

with ordering defined by 

0 < l < - - . < p ,  

0 < l < . . . < k ,  

r<~ if fl(r)<s in [k], 

X<r if 13(r)Ns in [k]; 

and with fl(r)-=/3(r) and fl(~)~s. There is a natural transformation 

u [ k ] :  F [ k ] -  " ,Idc<k]: co [k ]  --~ co [k ]  

given by 

~[k](~)=~: ~ p ,  
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where u: [p] ~-* [p + k + 1] is the unique injection making 

[p]> ~ , [ p + k + 1 ]  

[k3 
commute. 

Similarly, there is a natural transformation 

v [k] : f [k] , A (ldEkl): co [k] --~ co [k] 

where A(Idlk~) is the constant functor with value ldrk1: [k] ~ [ k ]  in co[k]. Thus 
co[k] is SC (via a two-stage homotopy). 

The natural transformation t/: co >2 is "first" evaluation, as in the case for 
and 3. 

(5.17) Remark. Using arguments similar to those for ~?-F: ---, (See [10]), the left 
adjoint o3-F~: Y l ~ c g a d  preserves WHE's. The dual F~ 5f-*~g~g is the 
functor A: a'f- ,cg~g used by Lee in [11]. Furthermore, for each simplicial set 
X, F~X is the subcategory of FX with the same objects, but only having 
morphisms/~: <x, [k]) ~ <X(#) x, [p]) for each #: [p] ~-* [k] in Af,ce. 
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