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Abstract. This is a small 60th birthday tribute to Bruce Williams, to whom

the senior author is grateful for many years of congenial and illuminating math-

ematical conversations. We first recall how a description of local coefficients
that Eilenberg introduced shortly before Bruce was born leads to spectral se-

quences for the computation of local homology and cohomology groups. We

then show how to construct new equivariant analogues of these spectral se-
quences and give a worked example of how to apply them.

In applications of the Serre spectral sequence, one usually uses trivial local coef-
ficients. This perhaps reflects the tendency of much of modern algebraic topology
to steer away from the unstable world, where the fundamental group cannot be
ignored. But it also perhaps reflects our lack of tools for computing the relevant
homology and cohomology with local coefficients. We recall a simple universal coef-
ficient spectral sequence that seems to have long been folklore but, to our knowledge,
first appeared in print in the form that we are concerned with in Goerss and Jardine
[3, p. 340], although some analogues appeared earlier, for example in Brown [1,
VII§7]. Even in [3], however, this spectral sequence is not connected up with the
Serre spectral sequence, which is there only discussed for simply connected base
spaces. Part of the point is that the definition of local coefficients that appears in
the construction of the Serre spectral sequence is not tautologically the same as the
definition that gives the cited universal coefficient spectral sequence.

The connection comes from an old result of Eilenberg [2], popularized by White-
head [9, VI.3.4] and, more recently, by Hatcher [4, App3.H]. It identifies the local
coefficients that appear in the context of fibrations with a more elementary defini-
tion in terms of the chains of the universal cover of the base space. The identification
makes local coefficients especially familiar and tractable. We shall first say how this
goes nonequivariantly and then explain the equivariant generalization.

Let X be a path connected based space with universal cover X̃. Let π = π1(X)
and let π act on the right of X̃ by deck transformations. Let M be a left and N be
a right module over the group ring R[π]. Let C∗ be the normalized singular chain
complex functor with coefficients in R.

Definition 1. Define the homology of X with coefficients in M by

H∗(X;M) = H∗(C∗(X̃)⊗R[π] M).

Define the cohomology of X with coefficients in N by

H∗(X;N) = H∗(HomR[π](C∗(X̃), N)).

Functoriality in M and N for fixed X is clear. For a based map f : X −→ Y ,
where π1(Y ) = ρ, and for a left R[ρ]-module P , we may regard P as a R[π]-module
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by pullback along π1(f), and then, using the standard functorial construction of
the universal cover, we obtain

f∗ : H∗(X; f∗P ) −→ H∗(Y ;P ).

Cohomological functoriality is similar. The definition goes back to Eilenberg [2],
a paper submitted for publication in May, 1946, and published a year later. This
was well before he and others had assimilated Leray’s cryptic 1946 announcement
[5] of what we now call spectral sequences. The definition deserves more emphasis
than it is usually given because it implies spectral sequences for the calculation of
homology and cohomology with local coefficients, as we shall recall. The definition
has the homology of spaces and the homology of groups as special cases.

Example 2. If π acts trivially on M and N , then H∗(X;M) and H∗(X;N) are
the usual homology and cohomology groups of X with coefficients in M and N . We
can identify C∗(X) with C∗(X̃)/IC∗(X̃) ∼= C∗(X̃)⊗R[π]R, where R[π] acts trivially
on R and I ⊂ R[π] is the augmentation ideal. This implies the identifications

C∗(X̃)⊗R[π] M ∼= C∗(X;M) and HomR[π](C∗(X̃), N) ∼= C∗(X;N).

Example 3. If X = K(π, 1), then H∗(X;M) and H∗(X;N) are the usual homol-
ogy and cohomology groups of π with coefficients in M and N since C∗(X̃) is an
R[π]-free resolution of R. That is,

H∗(K(π, 1);M) = TorR[π]
∗ (R,M) and H∗(K(π, 1);M) = Ext∗R[π](R,N).

Example 4. If M = R[π]⊗ A and N = Hom(R[π], A) for an R-module A, where
⊗ = ⊗R and Hom = HomR, then

H∗(X;M) ∼= H∗(X̃, A) and H∗(X;N) ∼= H∗(X̃;A).

Scholium 5. If we replace N by M (viewed as a right R[π]-module) in the co-
homology case of the previous example, then we are forced to impose finiteness
restrictions and consider cohomology with compact supports; compare [4, 3H.5].

We have universal coefficient spectral sequences that generalize the last two
examples. When π acts trivially on M and N , they can be thought of as versions
of the Serre spectral sequence of the evident fibration X̃ −→ X −→ K(π, 1).

Theorem 6 (Universal Coefficients). There are spectral sequences

E2
p,q = TorR[π]

p,q (H∗(X̃),M) =⇒ Hp+q(X;M)

and
Ep,q2 = Extp,qR[π](H∗(X̃), N) =⇒ Hp+q(X;N).

Proof. In the E2 and E2 terms, p is the homological degree and q is the internal
grading. Let ε : P∗ −→ M be an R[π]-projective resolution of M and form the
bicomplex C∗(X̃)⊗R[π] P∗. The quasi-isomorphism ε induces a quasi-isomorphism

id⊗ ε : C∗(X̃)⊗R[π] P∗ −→ C∗(X̃)⊗R[π] M.

One way to see this is to filter C∗(X̃) ⊗R[π] P∗ by the degrees of C∗(X̃), giving a
spectral sequence whose E0-term has differential id⊗d. Since C∗(X̃) is R[π]-free,
the resulting E1-term is C∗(X̃) ⊗R[π] M , the resulting E2-term is H∗(X;M), and
E2 = E∞ with no extension problem. Filtering the other way, by the degrees of
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P∗, we obtain a spectral sequence whose E0-term has differential d⊗ id. The result-
ing E1-term is H∗(X̃) ⊗R[π] P∗ and the resulting E2-term is TorR[π]

∗,∗ (H∗(X̃),M).
The argument in cohomology is similar, starting from HomR[π](C∗(X̃), I∗) for an
injective resolution η : N −→ I∗ of N . �

We record the most obvious example.

Corollary 7. Let π be a finite group of order n and R be a field of characteristic
prime to n. Then

H∗(X;M) ∼= H∗(X̃)⊗R[π] M and H∗(X;N) ∼= HomR[π]

(
H∗(X̃), N

)
.

Proof. Since R[π] is semi-simple, E2
p,q = 0 and Ep,q2 = 0 for p > 0. Therefore the

spectral sequences collapse to the claimed isomorphisms. �

Whitehead [9, VI.3.4 and 3.4*] (see also Hatcher [4, 3H.4]) proves the following
result and ascribes it to Eilenberg [2]. We will say a little about the proof below.

Theorem 8. For path connected spaces X and covariant and contravariant local
coefficient systems M and N on X, the classical local homology and cohomology
groups H∗(X; M ) and H∗(X; N ) are naturally isomorphic to the homology and
cohomology groups H∗(X;M) and H∗(X;N), where M and N are the restrictions
of M and N to π.

Remark 9. When N is an R[π]-algebra, H∗(X;N) is an R-algebra. An elaboration
of Whitehead’s proof shows that when N is R-algebra valued, H∗(X; N ) and
H∗(X;N) are isomorphic as R-algebras.

Therefore our Theorem 6 gives a universal coefficient theorem for the compu-
tation of homology and cohomology with local coefficients. If p : E −→ X is a
fibration with fiber F and path connected base space X, this gives a means to
compute the local homology and cohomology groups that appear as

E2
∗,∗ = H∗(X; H∗(F ;R)) and E∗,∗2 = H∗(X; H ∗(F ;R))

of the Serre spectral sequences for the computation of H∗(E;R) and H∗(E;R).
Even the trivial case when π is finite of order n and R is a field of characteristic
prime to n often occurs in practice. Writing Mπ for the coinvariants M/IM , where
I ⊂ R[π] is the augmentation ideal, and Nπ for the invariants, or fixed points,
Corollary 7 implies isomorphisms

E2 ∼= H∗(X̃;H∗(F ;R)π) and E2
∼= H∗(X̃;H∗(F ;R)π).

In general, the spectral sequences of Theorem 6 help make the Serre spectral se-
quence amenable to explicit calculation in the presence of non-trivial local coefficient
systems.

Heading towards an equivariant generalization, we recall part of the proof of
Theorem 8. In Definition 1, we took M and N to be left and right modules over
the group ring R[π] and took C∗(X̃) to be the normalized singular chains of X̃. A
(left or right) R[π]-module M is the same as a (covariant or contravariant) functor
from π, viewed as a category with a single object, to the category of R-modules.
Similarly, X̃ can be viewed as a contravariant functor from π to the category U of
unbased topological spaces, and then C∗(X̃) is a functor from π to the category of
chain complexes of R-modules.
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A local coefficient system M on a space X is a functor (covariant or contravariant
depending on context, corresponding to our left and right R[π]-module distinction
above) from the fundamental groupoid Π = ΠX to the category of R-modules.
When X is path connected with basepoint ∗, the category π = π1(X) with single
object ∗ is a skeleton of Π. Therefore M is determined by its restriction M to π.

Rather than restricting to π, we could instead redefine X̃ to be the contravariant
functor Π −→ U that sends a point x ∈ X to the space X̃(x) of equivalence classes
of paths starting at x and sends a path γ from x to y to the map X̃(y) −→ X̃(x)
given by precomposition with γ. Since π is a skeleton of Π, the following definition
is equivalent to Definition 1 when X is connected. By Theorem 8, there is no
conflict with the classical notation for homology with local coefficients. Let ChR
denote the category of chain complexes of R-modules.

Definition 10. Let M : Π −→ R-mod and N : Πop −→ R-mod be functors and
let C∗(X̃) : Πop −→ U −→ ChR be the composite of the universal cover functor
with the functor C∗. Define the homology of X with coefficients in M to be

H∗(X; M ) = H∗(C∗(X̃)⊗Π M )

where ⊗Π is the tensor product of functors (which is given by an evident coequalizer
diagram). Similarly, define

H∗(X; N ) = H∗
(

HomΠ(C∗(X̃),N )
)

where HomΠ is the hom of functors (which is given by an evident equalizer diagram).

Equivariant Generalizations

Note that our distinctions between left and right and between covariant and con-
travariant are unimportant above, since we are dealing with groups and groupoids.
However, our motivation actually comes from (Bredon) equivariant homology and
cohomology. Here the fundamental “groupoid” is only an EI-category (endomor-
phisms are isomorphisms) and the distinction is essential. There is an equivariant
Serre spectral sequence, due to Moerdijk and Svensson [6], but it has not yet had
significant calculational applications. The essential reason is the lack of a way to
compute its E2-terms. However, our observations above generalize nicely to Bre-
don homology and cohomology. In fact, the ideas here arose in work in progress
by the second author on characteristic classes in Bredon cohomology, about which
remarkably little is currently known.

Definition 10 generalizes directly to the equivariant case. From now on, let X
be a G-space, where G is a discrete group1. Following tom Dieck [8], we can define
the fundamental group category2 ΠGX to be the category whose objects are pairs
(H,x), where x ∈ XH ; a morphism from (H,x) to (K, y) consists of a G-map
α : G/H −→ G/K, determined by α(eH) = gK, together with a homotopy class
rel endpoints [γ] of paths from x to α∗(y) = gy. Here α∗ : XK −→ XH is the map
given by α∗(z) = gz, which makes sense since g−1Hg ⊂ K.

Likewise, tom Dieck defines the equivariant universal cover X̃ to be the func-
tor X̃ : (ΠGX)op −→ U which sends (H,x) to X̃H(x), the universal cover of
XH viewed as having basepoint x. For a morphism (α, [γ]) : (H,x) −→ (K, y),

1With a little more detail, we could generalize to topological groups.
2It might better be called the fundamental groupoid or EI-category.
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X̃(α, [γ]) : X̃(K, y) −→ X̃(H,x) takes a class of paths [β] starting at y ∈ XK to
the class of the composition (α∗β) ∗ γ.

We can now define equivariant cohomology with local coefficients. In fact, ab-
breviating notation by letting Π = ΠGX, Definition 10 applies verbatim: we need
only add G to the notations. We repeat the definition for emphasis.

Definition 11. Let X be a G-space and write Π = ΠGX. Let M : Π −→ R-mod
and N : Πop −→ R-mod be functors and let CG∗ (X̃) : Πop −→ U −→ ChR be the
composite of the universal cover functor with the functor C∗. Define the homology
of X with coefficients in M to be

HG
∗ (X; M ) = H∗(CG∗ (X̃)⊗Π M )

and
H∗G(X; N ) = H∗

(
HomΠ(CG∗ (X̃),N )

)
.

Mutatis mutandis3, the proofs in Whitehead or Hatcher [9, 4] apply to show that
this definition of Bredon (co)homology with local coefficients is naturally isomorphic
to the Bredon (co)homology with local coefficients, as defined in Mukherjee and
Pandey [7], which they in turn show is naturally isomorphic to the (co)homology
with local coefficients, as defined and used by Moerdijk and Svensson in [6] to
construct the equivariant Serre spectral sequence of a G-fibration p : E −→ B.

We quickly review the homological algebra needed for the equivariant generaliza-
tion of Theorem 6. Since R-mod is an Abelian category, the categories [Π, R-mod]
and [Πop, R-mod] of functors from Π to R-mod are also Abelian, with kernels and
cokernels defined levelwise. These categories have enough projectives and injectives.
Specifically, by the Yoneda lemma the covariant and contravariant represented func-
tors RΠ((H,x),−) and RΠ(−, (H,x)) (where R denotes the free R-module functor)
are projective for each (H,x). Therefore, given a functor M , we can construct an
epimorphism P −→ M with P projective by taking P to be a direct sum of
representables, one for each element of each R-module M (H,x). Similarly, the
contravariant functors Hom(RΠ((H,x),−) , A) are injective when A is an injective
R-module. Given any N , we can construct a monomorphism N −→ I by taking
I to be a product of such injective functors, one for each R-module N (H,x). We
define TorΠ(N ,M ) in the obvious way. It is the homology of the complex of R-
modules that is obtained by tensoring the functor N with a projective resolution
of the functor M . We define ExtΠ(N1,N2) similarly.

The following equivariant analogue of the nonequivariant statement that C∗(X̃)
is a free R[G]-module should be a standard first observation in equivariant homology
theory, but we have not seen it in the literature. While the nonequivariant assertion
is obvious, it is the crux of the proof of Theorem 6.

Theorem 12. With Π = ΠGX, each functor CGn (X̃) : Π
op −→ R-mod is a direct

sum of representable functors of the form RΠ(−, (H,x)).

Granting this result, we can prove the equivariant generalization of Theorem 6.

Theorem 13. With Π = ΠGX, there are spectral sequences

E2
p,q = TorΠ

p,q(H∗(X̃),M ) =⇒ HG
p+q(X; M )

3Changing that which must be changed, essentially nothing in our case.
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and
Ep,q2 = Extp,qΠ (H∗(X̃),N ) =⇒ Hp+q

G (X; N ).

Here the functor H∗(X̃) : Πop −→ R-mod is the homology of the chain com-
plex functor CG∗ (X̃); that is, H∗(X̃)(H,x) is the homology of the chain complex
C∗(X̃)(H,x).

Proof. Let ε : P∗ −→ M be a projective resolution of M . As in the nonequiv-
ariant theorem, form the bicomplex of R-modules C∗(X̃) ⊗Π P∗. Recall that the
tensor product of a functor with a representable functor is given by evaluation,
RΠ(−, (H,x)) ⊗Π M ∼= M (H,x). It follows that tensoring with such projective
modules is exact.

In particular, if we filter our bicomplex by degrees of C∗(X̃), we get a spectral
sequence with E1-term C∗(X̃)⊗Π M , so the resulting E2 = E∞ term is H∗(X,M ),
exactly as in the nonequivariant case.

If we instead filter by degrees of P∗, d0 = d⊗id, then the E1 term is H∗(X̃)⊗Π,P∗
and the E2 term is TorΠ

∗,∗(H∗(X̃),M ), as desired.
The construction of the second spectral sequence is similar, starting from an

injective resolution η : N −→ I ∗. �

Proof of Theorem 12. The proof is analogous to that of the nonequivariant result,
but more involved. We may identify CGn (X̃)(H,x) with the free R-module on gen-
erators given by the nondegenerate singular n-simplices σ : ∆n −→ X̃(H,x). We
must show that these free R-modules piece together appropriately into a free func-
tor. More specifically, by the Yoneda lemma, each σ : ∆n −→ X̃(K, y) determines
a natural transformation

ισ : RΠ(−, (K, y)) −→ CGn (X̃)

that takes id ∈ Π((K, y), (K, y)) to σ. We thus obtain a natural transformation⊕
(K,y)

⊕
{τ}

RΠ(−, (K, y)) −→ CGn (X̃)

from any set of sets of nondegenerate n-simplices {τ : ∆n −→ X̃(K, y)}, one set
for each object (K, y) in Π. We must show that there is a set of choices of sets {τ}
such that the resulting natural transformation is a natural isomorphism, that is,
a levelwise isomorphism. This amounts to showing that the following statements
hold for our choice of generators τ and each object (H,x). First, for any arrows
(α1, [γ1]) and (α2, [γ2]) in Π with source (H,x) and any generators τ1 and τ2,
(α1, [γ1])∗τ1 = (α2, [γ2])∗τ2 must imply that both (α1, [γ1]) = (α2, [γ2]) and τ1 = τ2.
Second, for every σ : ∆n −→ X̃(H,x), there must be a generator τ and an arrow
(α, [γ]) such that σ = (α, [γ])∗τ .

Fixing n, define the generating set for varying (K, y) as follows. Regard the
initial vertex v of ∆n as a basepoint. Recall that X̃(K, y) is the universal cover
of XK defined with respect to the basepoint y ∈ XK , so that the equivalence
class of the constant path cK,y at y is the basepoint of X̃K . In choosing our
generating sets, we restrict attention to based maps σ : ∆n −→ X̃(K, y) that are
non-degenerate n-simplices of X̃K . Such maps σ are in bijective correspondence
with based nondegenerate n-simplices σ0 : ∆n −→ XK . The correspondence sends
σ to its composite with the end-point evaluation map p : X̃(K, y) −→ XK and
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sends σ0 to the map σ : ∆n −→ X̃(K, y) that sends a point a ∈ ∆n to the image
under σ0 of the straight-line path from v to a. Restrict further to those σ that
cannot be written as a composite

∆n
ρ //X̃(K ′, y′)

(α,γ)∗ //X̃(K, y)

for any morphism (α, γ) : (K ′, y′) −→ (K, y) in Π. For each such σ, we can obtain
another such σ by composing with the isomorphism (ξ, δ)∗ induced by an isomor-
phism (ξ, δ) in Π. We say that the resulting maps σ are equivalent, and we choose
one τ in each equivalence class of such based singular n-simplices σ.

It remains to verify that the natural transformation defined by these sets {τ} is
an isomorphism. This is straightforward but somewhat tedious and technical.

For the injectivity, suppose that (α1, [γ1])∗τ1 = (α2, [γ2])∗τ2, where τ1, τ2 are in
our generating set and

(α1, [γ1]) ∈ Π((H,x), (K1, y1)) , τ1 : ∆n −→ X̃(K1, y1)

(α2, [γ2]) ∈ Π((H,x), (K2, y2)) , τ2 : ∆n −→ X̃(K2, y2).
Since τi(v) = c(Ki,yi) for i = 1, 2, we see that (αi, [γi])∗τi must take v to [γi]. Since
(α1, [γ1])∗τ1 = (α2, [γ2])∗τ2, this means that [γ1] = [γ2]; call this path class [γ]. In
turn, this implies that α∗1y1 = α∗2y2; call this point z ∈ XH , so that [γ] is a path
from x to z. Since (αi, [γi]) = (αi, [cz]) ◦ (id, [γ]) and (id, [γ]) is an isomorphism in
Π, we must have

(α1, [cz])∗τ1 = (α2, [cz])∗τ2.
In particular, if we compose each side of this equation with p, we obtain

p ◦ (α1, [cz])∗τ1 = p ◦ (α2, [cz])∗τ2
as maps ∆n −→ XH . Since we have commutative diagrams

∆n
τi // X̃(Ki, yi)

(α,[cz ])∗//

p

��

X̃(H, z)

p

��
XKi

α∗i // XH

for each i, this implies that we have a commutative square

∆n
p◦τ1 //

p◦τ2
��

XK1

α∗1
��

XK2
α∗2 // XH

If the maps αi : G/H −→ G/Ki are defined by elements gi ∈ G, this implies that
the common composite ∆n −→ XH factors through the fixed-point sets XgiKig

−1
i

for each i, and hence through XL, where L is the smallest subgroup containing
g1K1g

−1
1 and g2K2g

−1
2 . Since Ki ⊂ g−1

i Lgi, the maps αi : G/H −→ G/Ki factor
through the maps βi : G/Ki −→ G/L specified by βi(eKi) = giL and there result
factorizations of the τi as

∆n
//X̃(g−1

i Lgi, yi)
(q,[cz ])∗ //X̃(Ki, yi),

where q denotes either quotient map G/Ki −→ G/g−1
i Lgi. By our choice of the

generators τ , this can only happen if g−1
i Lgi = Ki, giving g1K1g

−1
1 = g2K2g

−1
2 .
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In terms of g1 and g2, we see that our equation (α1, [cz])∗τ1 = (α2, [cz])∗τ2 says
that g1τ1 = g2τ2, that is, τ2 = g−1

2 g1τ1. Since g−1
2 g1 defines an isomorphism

G/K2 −→ G/K1, we again see by our choice of the generators τ that τ1 = τ2 and
that g−1

2 g1 ∈ K1 = K2. This in turn implies that the maps αi : G/H −→ G/Ki

defined by the gi are identical. The conclusion is that (α1, [γ1])∗τ1 = (α2, [γ2])∗τ2
implies τ1 = τ2 and (α1, [γ1]) = (α2, [γ2]), as desired.

It only remains to show that we have accounted for all elements of Cn(X̃)(H,x).
For any map σ : ∆n −→ X̃(H,x), σ(v) is a homotopy class of paths from (H,x)
to (H,x′) in XH . Call this class [γ]. Then (id, [γ]) is an isomorphism with inverse
(id, [γ−1]), and σ′ = (id, [γ−1])∗σ takes v to the homotopy class of the constant path
at (H,x′); it follows that σ = (id, [γ])∗σ′. Similarly, if σ′ factors through X̃(K, y)
for some K properly containing a conjugate of H, then by definition σ = (α, [γ])∗τ
for some τ : ∆n −→ X̃(K, y). We can choose a τ that does not itself factor and is
in our chosen set of generators. �
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