
A NOTE ON THE SPLITTING PRINCIPLE

J.P. MAY

Abstract. We offer a new perspective on the splitting principle. We give
an easy proof that applies to all classical types of vector bundles and in fact
to G-bundles for any compact connected Lie group G. The perspective gives
precise calculational information and directly ties the splitting principle to the
specification of characteristic classes in terms of classifying spaces.

In the algebraic topology proseminar at Chicago, a student, Nils Barth, asked
for the precise relationship between the splitting principle and the specification of
Chern classes in terms of maximal tori. This note gives the quick and more general
answer that popped to mind. It should be utterly standard, but it was new to me
and to other faculty in the audience. Certainly I have not seen it in print.

Let T = T n be a maximal torus in a compact connected Lie group G of rank
n and let R be a commutative ring in which p is invertible for all primes p such
that H∗(G; Z) has p-torsion. Classical results of Borel [3] determine these primes
explicitly when G is simply connected and describe how to determine them in terms
of the elementary abelian p-subgroups of G in general. Other classical results of
Borel [1] imply that H∗(BG; R) is a polynomial ring over R on n even degree
generators. The information relevant here is just that H∗(BG; R) is concentrated
in even degrees.

By the Bott-Samelson theorem [4], H∗(G/T ; Z) has no torsion and is also con-
centrated in even degrees, hence H∗(G/T ; R) is a free R-module. Let EG be a
universal principal G-bundle and take BT = EG/T and BG = EG/G. Inclusion of
orbits gives a G-bundle p : BT −→ BG with fiber G/T . Taking cohomology with
coefficients in R henceforward, we see immediately that the Serre spectral sequence
of this bundle collapses to give

(1) H∗(BT ) ∼= H∗(BG) ⊗ H∗(G/T )

as an H∗(BG)-module via p∗. In particular, H∗(BT ) is a free H∗(BG)-module.
Now let ξ be a G-bundle over a space X . For convenience, we assume that X

is path connected. Let ξ have classifying map f : X −→ BG. Of course, we can
think of ξ as a principal G-bundle or as a G-bundle with fiber F for any G-space
F . Construct the pullback diagram

(2) Y
g

//

q

��

BT

p

��

X
f

// BG.
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Then q : Y −→ X is a G-bundle with fiber G/T . In particular, X is compact if and
only if Y is compact. The action of π1(X) on H∗(G/T ) is trivial, since it is the
pullback of the action of π1(BG) = 0, and the elements of H∗(G/T ) are permanent
cycles in the Serre spectral sequence of q because they are permanent cycles in the
Serre spectral sequence of p. Therefore the Serre spectral sequence of q collapses
to give an isomorphism

(3) H∗(Y ) ∼= H∗(X) ⊗ H∗(G/T ).

The edge homomorphism shows that

q∗ : H∗(X) −→ H∗(Y ) ∼= H∗(X) ⊗ H∗(G/T )

is the canonical inclusion, x → x ⊗ 1. Some readers might prefer to use the
Eilenberg-Moore spectral sequence to obtain these conclusions.

The map p is the universal example for the reduction of the structural group of
a G-bundle from G to T . The G-bundle q∗ξ over Y is classified by f ◦ q = p ◦ g and
therefore has a canonical reduction. We view this reduction of the structural group

of q∗ξ as a generalized splitting principle.

Theorem 1 (Generalized splitting principle). For a G-bundle ξ over X, there is

a G-bundle q : Y −→ X with fiber G/T and a reduction of the structural group of

q∗ξ to T such that H∗(Y ) ∼= H∗(X) ⊗ H∗(G/T ) and q∗ is the canonical inclusion.

Reinterpreting the diagram (2), the map g classifies a T -bundle ζ that is the
fiberwise product of n-circle bundles ζi with classifying maps the coordinates gi of
g : Y −→ BT ∼= (BT 1)n. The equality f ◦ q = p ◦ g says that q∗ξ is the G-bundle
obtained by extending the structure group of ζ from T to G. If we know p∗ on
characteristic classes, then we can read off the characteristic classes of q∗ξ from
those of the circle bundles ζi. That is, for an element α in H∗(BG), thought of as
a characteristic class,

(4) α(q∗ξ) = q∗α(ξ) = q∗f∗(α) = (g1, · · · , gn)∗p∗(α).

Provided that π1(G) is a free Abelian group, similar arguments work in K-theory,
using its Serre or Eilenberg-Moore spectral sequence (see e.g. [5, 6]). In particular,
with this restriction on π1(G), q∗ is a monomorphism in K-theory.

We describe the classical examples, referring the reader to [2] for background.
The first three apply to any commutative ring R and also work, with suitable
modifications, in K-theory. Write H∗(BT ) as the polynomial algebra in the n
canonical generators xi. For example, viewing BS1 = CP

∞ as K(Z, 2), the xi are
the fundamental classes. Let σi denote the ith elementary symmetric function in n
variables.

Example 2. Take G to be U(n), T = T n to be the subgroup of diagonal matrices,
and the fiber F to be Cn. The universal Chern classes are characterized as the
unique elements ci of H∗(BU(n)) such that

p∗(ci) = σi(x1, · · · , xn).

We have a splitting of q∗ξ into the sum of n complex line bundles ζi, and

ci(q
∗ξ) = σi(c1(ζ1), . . . , c1(ζn)).
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Example 3. Take G to be SU(n) ⊂ U(n), T = T n−1 ⊂ T n to be the subgroup
of diagonal matrices of determinant 1, and F to be Cn. With the left square an
instance of (2), we have the evident commutative diagram

(5) Y
g

//

q

��

BT n−1

p

��

i
// BT n

p

��

X
f

// BSU(n)
j

// BU(n).

Here j∗(c1) = 0 and j∗(ci) = ci in H∗(BSU(n)) for i > 1. Via i∗, we can identify
H∗(BT n−1) as P [x1, · · · , xn]/(σ1(x1, . . . , xn)). The interpretation is that an n-
plane U(n)-bundle ξ with a reduction of its structural group to SU(n) splits along
q as the sum of n line bundles whose tensor product is the trivial line bundle.

Example 4. Take G to be Sp(n), T to be the subgroup of diagonal matrices with
complex entries, and F to be Hn. Observe that T ⊂ U(n) ⊂ Sp(n), where the
second inclusion is given by extension of scalars from C to H. One way to define
the symplectic characteristic classes ki is by

j∗(ki) =
∑

a+b=2i

(−1)a+icacb,

where j : BU(n) −→ BSp(n) is the induced map of classifying spaces, and this is
equivalent to p∗(ki) = σ2

i in H∗(BT ). Here, in the diagram (2), p factors through j.
The interpretation of the diagram is that if ξ is a quaternionic n-plane bundle, then
q∗ξ splits as the sum of n quaternionic line bundles that are obtained by extension
of scalars from n complex line bundles ζi. Moreover,

ki(q
∗ξ) = σ2

i (c1(ζ1), · · · , c1(ζn)).

In the following example, we require 2 to be invertible in R.

Example 5. Take G to be SO(2n + ε) where n ≥ 1 and ε = 0 or ε = 1. Take
T = T n ∼= SO(2)n embedded in G as n (2 × 2)–matrices along the diagonal, with
a last diagonal entry 1 if ε = 1. Then H∗(BSO(2n)) is the polynomial algebra on
the Pontryagin classes Pi, 1 ≤ i < n and the Euler class χ, where χ2 = Pn, and
H∗(BSO(2n + 1)) is the polynomial algebra on the Pi, 1 ≤ i ≤ n. Observe that
T ⊂ U(n) ⊂ SO(n), where the second inclusion is given by identifying C

n with
R2n, as usual. One way to define Pi and χ is by

j∗(Pi) =
∑

a+b=2i

(−1)a+icacb and j∗(χ) = cn,

where j : BU(n) −→ BSO(2n) is the induced map of classifying spaces, and this is
equivalent to p∗(Pi) = σ2

i and p∗(χ) = σn in H∗(BT ). Here, in the diagram (2), p
factors through j. The interpretation of the diagram is that if ξ is an oriented real
(2n + ε)-plane bundle, then q∗ξ splits as the sum of the realifications of n complex
line bundles ζi and, if ε = 1, a trivial real line bundle. Moreover,

Pi(q
∗ξ) = σ2

i (c1(ζ1), · · · , c1(ζn))

and, if ε = 0,

χ(q∗ξ) = σn(c1(ζ1), · · · , c1(ζn)).
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We could easily go on to consider the exceptional Lie groups or to consider
generalizations to H-spaces and in particular to p-compact Lie groups, with their
maximal tori. We leave such examples and elaborations to the interested reader.

Using maximal 2–tori and mod 2 cohomology, we can often obtain an analogous
splitting principle in terms of real line bundles. We illustrate in the case of the
orthogonal groups, where we have the following analogues of Examples 2 and 3.
We now take cohomology with coefficients in the field F2.

Example 6. Let O(1)n ⊂ O(n) be the subgroup of diagonal matrices. Write
H∗(BO(1)) as the polynomial algebra in the n canonical basis elements xi. Let
p : BO(1)n −→ BO(n) be the evident bundle with fiber O(n)/O(1)n. The Stiefel-
Whitney classes are the unique elements wi of H∗(BO(n)) such that

p∗(wi) = σi(x1, · · · , xn).

The Serre spectral sequence of p has trivial local coefficients and collapses at E2.
Let ξ be a real n-plane bundle over X with classifying map f : X −→ BO(n) and
form the pullback

Y
g

//

q

��

BO(1)n

p

��

X
f

// BO(n).

The Serre spectral sequence of q collapses at E2 to give an isomorphism

H∗(Y ) ∼= H∗(X) ⊗ H∗(O(n)/O(1)n),

and q∗ : H∗(X) −→ H∗(Y ) is the canonical inclusion, x → x ⊗ 1. We have a
splitting of q∗ξ into the sum of n real line bundles ζi, and

wi(q
∗ξ) = σi(w1(ζ1), . . . , w1(ζn)).

Example 7. Let O(1)n−1 ⊂ O(1)n be the subgroup of SO(n) ⊂ O(n) consisting
of the diagonal matrices of determinant 1. Let ξ be an oriented real n-plane bundle
with classifying map f : X −→ BSO(n) and define Y to be the pullback in the left
square of the diagram

Y
g

//

q

��

BO(1)n−1

p

��

i
// BO(1)n

p

��

X
f

// BSO(n)
j

// BO(n).

Again, we have H∗(Y ) ∼= H∗(X) ⊗ H∗(SO(n)/O(1)n−1) with q∗ the canonical
inclusion. Here j∗(w1) = 0 and j∗(wi) = wi in H∗(BSO(n)) for i > 1. Via i∗,
we can identify H∗(BO(1)n−1) as P [x1, · · · , xn]/(σ1). The interpretation is that
an n-plane O(n)-bundle ξ with a reduction of its structural group to SO(n) splits
along q as the sum of n line bundles whose tensor product is the trivial line bundle.
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de Lie compacts. Annals of Math. 57(1953), 115–207.

[2] A. Borel. Topology of Lie groups and characteristic classes. Bull. Amer. Math. Soc. 61 (1955),
397–432.

[3] A. Borel. Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes. Tôhuku
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