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LECTURE 1

Monday, June 191

1. What is a Monoid?

Definition 1.1. A monoid is a set M with

• an associative operation, i.e., a map M ×M → M , written
(m,n) 7→ mn, satisfying

∀m,n, p ∈M, (mn)p = m(np),

• a two-sided identity, i.e., a distinguished element e ∈M satis-
fying

∀m ∈M, me = m = em.

Definition 1.2. A monoid M is commutative or abelian if
mn = nm for all m,n ∈ M . We traditionally write commutative
monoids additively instead of multiplicatively: i.e., we write 0 in place
of e, and m+ n in place of mn.

Definition 1.3. A group is a monoid with inverses; i.e.,

∀m ∈M, ∃m−1 ∈M, mm−1 = e = m−1m.

A group is abelian if the underlying monoid is abelian.

Example 1.4. The nonnegative integers N = Z≥0 under addition
form an abelian monoid.

A first idea of K-theory is to replace a monoid with a group by
formally throwing in inverses. The K stands for “class,” which is spelled
with a K in German.

2. Maps of Monoids

Definition 1.5. Let M,N be monoids, with eM ∈M and eN ∈ N
their respective identity elements. A function f : M → N is a homo-
morphism of monoids or simply a map of monoids if f(eM) = eN
and ∀m,m′ ∈M, f(mm′) = f(m)f(m′).

1These notes were taken by Abigail Sheldon, and TEXed by Jim Fowler.
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6 1. MONDAY, JUNE 192

Definition 1.6. A homomorphism f : M → N is an isomor-
phism if there exists a homomorphism f−1 : N → M with f ◦ f−1 =
f−1 ◦ f = identity. Two monoids M and N are isomorphic if there
exists an isomorphism f : M → N .

Remark 1.7. For monoids, a bijective homomorphism is in fact an
isomorphism.

3. Universal Properties

How can we construct a group from a monoid? We will call the
group that we build from a monoid M the “group completion” of M .

Definition 1.8. The group completion of M is a group G to-
gether with a map i : M → G so that for all groups H and maps of
monoids f : M → H, there exists a unique f̃ : G → H making the
following diagram commute:

M

f

��

i // G

f̃~~
H

That is, f̃ ◦ i = f .

This definition is our first example of a universal property. It is
critical that there exists a unique f̃ .

Note that the group completion of M is more than just the group
G; it is also the map i : M → G, and the universal property says
that if the group completion exists, then G is unique up to unique
isomorphism.

Remark 1.9. To say that a diagram commutes means that the
composition of maps from one object to another object doesn’t depend
on the route you take.

3.1. Uniqueness in Universal Properties. Suppose we have

M
i′−→ G′ satisfying the same universal property as i and G. Then

M

i
��

i′ // G′

ĩww
G

ei′ 77

ĩ ei′
LL

M

i
��

i // G

G
ĩ ei′

>>}}}}}}}}

In the right-hand diagram, using the identity map id : G → G in
place of ĩ ĩ′ would also make the diagram commute. But the map
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produced by the universal property is unique, so it must be that ĩ ĩ′ =
id, and consequently, ĩ and ĩ′ are inverse isomorphisms, and G and G′

are isomorphic. A better way to see this might be by examining the
following diagram:

M ′

i′

��1
11

11
11

11
11

11
11

i

!!CC
CC

CC
CC
i′ // G′

ĩ
��

identity

vv

G

ei′
��
G′

Example 1.10. The group completion of N is Z, because if H
is a group and f : N → H is any map of monoids, then defining
f̃(m−n) = f(m)−f(n) gives a well-defined map making the following
diagram commute:

N
i //

f
��

Z

f̃~~
H

We have used additive notation for the multiplication inH, even though
we did not assume that it is abelian. In fact, we can test the universal
property for the group completion of an abelian monoid by mappings
into abelian groups, because f̃ in the general case must land in an
abelian subgroup of H.

In the previous example, we saw that Z was the group completion
of N by explicitly checking that the universal property was satisfied.
How can we know if we can do this in general? Does every monoid
have a group completion? To explore questions like this, we need to
provide a construction that will take a monoid, and produce a group
G satisfying the universal property.

4. The First Construction

Let M be an abelian monoid, and consider the set of pairs {(m,n) :
m,n ∈M}, thinking intuitively that (m,n) should represent “m− n.”
We define an equivalence relation (m,n) ∼ (m′, n′) if m+ n′ = m′+ n,
which corresponds with our intuition, because if it were the case that
m− n = m′ − n′ then m+ n′ = m′ + n.

Let [m,n] be the equivalence class of the pair (m,n), and let G be
the set of all such equivalence classes. Define an operation on G by
[m,n] + [p, q] = [m + p, n + q]. You should check that this operation
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is well-defined and associative. Further define 0 = [0, 0], and observe
that G is a monoid.

In fact, G is a group, because

[m,n] + [n,m] = [m+ n, n+m] = [m+ n,m+ n] = [0, 0].

Thus we have constructed an abelian group G from an abelian monoid
M .

It remains to verify that G is the group completion of M . Define
i : M → G by setting i(m) = [m, 0]. Given a group H and a map

f : M → H, we define f̃([m,n]) = f(m)− f(n) and we can check that
this satisfies the appropriate universal property.

5. Review: Quotient Groups

Let G be a group, and N / G, i.e., N is a normal subgroup in G,
meaning that for any g ∈ G and n ∈ N , the conjugate gng−1 ∈ N . We
construct the quotient group G/N as the set of cosets gN , with the
operation gN · hN = ghN . There is a map q : G → G/N defined by
q(g) = gN .

We can also define the quotient group by a universal property. The
group G/N with q : G → G/N is the quotient group if the following
is satisfied: for any group H and map f : G → H with f(N) = e,

there exists a unique map f̃ : G/N → H making the following diagram
commute:

G

f

��

q // G/N

f̃||
H

Definition 1.11. Let A,B be subgroups of a group G. The com-
mutator [A,B] subgroup is the subgroup generated by aba−1b−1 for all
a ∈ A and b ∈ B.

6. Other Universal Properties

We give two more examples of universal properties.

Definition 1.12. The free group generated by a set S is a group
F (S) and a map of sets i : S → F (S) such that for any group H
and map of sets f : S → H, there exists a unique map of groups
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f̃ : F (S)→ H making the following diagram commute:

S

f

��

i // F (S)

f̃||
H

The set S need not be finite.

Definition 1.13. The free abelian group generated by a set S
is a group A(S) and a map of sets i : S → A(S) such that for any
abelian group H and map of sets f : S → H, there exists a unique map
of groups f̃ : A(S)→ H making the above diagram commute.

In some sense, these are the same universal property, but in different
“worlds” of mathematics—the first in the “world” of groups, and the
second in the “world” of abelian groups.

We will use F (S) to construct A(S). Consider the following dia-
gram:

F (S)

j̃{{

˜̃
fmm

S

f

��

j ,,

i // A(S)

f̃}}
B

We claim A(S) = F (S)/[F (S), F (S)]. To see that this satisfies the

universal property, first observe ˜̃f vanishes on [F (S), F (S)] because for
any g, h ∈ F (S),

˜̃f(ghg−1h−1) = f(ghg−1h−1) = f(g)f(h)f(g−1)f(h−1)

= f(g)f(h)f(g)−1f(h)−1 = f(g)f(g)−1f(h)f(h)−1 = e

Second, the universal property for quotient groups says that a map
vanishing on [F (S), F (S)] factors through the quotient A(S), which

provides the required f̃ .

7. Another Construction of the Group Completion

Using the notion of a free abelian group, we provide another con-
struction of the group completion G(M) of a monoid M . Let A(M) be
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the free abelian group generated by M as a set, i.e.,

M

f

��

j // A(M)

f̃||
H

We use ⊕ and 	 for the operations in the abelian group A(M). Next,

build the group completion M
i→ G(M) by defining

G(M) = A(M)/subgroup gen. by m⊕ n	 (m+ n) for all m,n ∈M.

The idea is that A(M) doesn’t know anything about the multiplication
in M ; after all, A(M) is the free abelian group generated by the set
M . In building G(M), we have fixed this oversight by forcing m + n
to equal m ⊕ n. We define i : M → G(M) to be the quotient map of
j : M → A(M).

We need to check that G(M) satisfies the universal property of
group completions. That is, given any group H and map of monoids
f : M → H, can we construct a unique map G(M) → H making the

appropriate diagram commute? Examine f̃ : A(M)→ H, and observe

f̃ (m⊕ n	 (m+ n)) = f̃(m) + f̃(n)− f̃(m+ n)

= f(m) + f(n)− f(m+ n)

= f(m) + f(n)− f(m)− f(n) = 0,

so f̃ annihilates the subgroup generated by m ⊕ n 	 (m + n), and

hence by the universal property for quotient groups, the map f̃ factors
through G(M), providing the unique map G(M) → H making the
appropriate diagram commute.

This construction looks very different from the first construction—
but since we proved the uniqueness of the group completion up to
canonical isomorphism, in fact these two constructions give the same
group.

Example 1.14. Let q ∈ N, and let x, y be formal variables. Define
a set

Mq = {0} ∪ {mx : m ∈ N} ∪ {ny : n ∈ N}
and an operation by the rules

0 + c = c

mx+ px = (m+ p)x

my + py = (m+ p)y

mx+ ny = (qm+ n)y
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In fact, x+ y = (q + 1)y implies mx+ ny = (qm+ n)y. Then Mq is a
monoid, and G(Mq) = Z. To verify this last fact, define i : M → Z by
i(0) = 0, i(ny) = n and i(mx) = qm. Then to make the diagram

M

f
��

i // Z

f̃~~
H

commute we need only define f̃(n) = f(ny). Alternatively, we can ex-
plicitly construct the group completion by using the first construction.

It is often easier to chase through universal properties than it is to
chase through the details of a construction—and since verifying that
the universal property holds is enough, relying on a universal property
can often make for shorter, more concise proofs.

Example 1.15. Look at the surfaces handout. The set of homeo-
morphism classes of surfaces is a monoid under the operation of con-
nected sum. Let P be the projective plane, S the sphere, and T be the
torus. Then S is the identity element, and

mP#nP = (m+ n)P

mT#nT = (m+ n)T

mP#nT = (m+ 2n)P

so the set of surfaces under connected sum forms a monoid, which is
isomorphic to the monoid M2 from the previous example, and which
therefore has group completion equal to Z.

8. Likewise for Rings

We can repeat much of the previous material about group comple-
tions, replacing monoids with semirings.

Definition 1.16. A semiring T is an abelian monoid (with oper-
ation + and identity 0) such that T is also a monoid (with operation ·
and identity 1) and satisfies distributive laws:

(s+ s′)t = st+ s′t,

s(t+ t′) = st+ st′.

We also require that 0 is a zero: 0 · t = 0 = t · 0 for all t.

Thus, a semiring is nearly a ring, though we might be missing ad-
ditive inverses.

We now define G(T ), the Grothendieck construction on the semir-
ing.
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Definition 1.17. The Grothendieck construction on a semir-
ing T is a ring G(T ) together with a map i : T → G(T ) such that for
all rings H and maps of semirings f : T → H, there exists a unique
f̃ : G(T )→ H making the following diagram commute:

T

f

��

i // G(T )

f̃||
H

We can construct the ring completion of any semiring by repeating
the first construction for T , thought of as an additive monoid, and
observing that multiplication comes along for free. That is, because

(m− n) · (p− q) = mp+ nq −mq − np
we are led to define

[m,n] · [p, q] = [mp+ nq,mq + np].

You should check that this is well-defined.

9. Burnside Ring

Warning: algebraists might refer to the Burnside ring as B(G), but
topologists refer to it as A(G), and I, being a topologist, will use this
notation.

Definition 1.18. Let G be a group. A G-set S is a set S with an
action of G, i.e., a map G× S →, written (g, s) 7→ g · s, such that

• ∀s ∈ S, e · s = s,
• ∀g, h ∈ G, s ∈ S, g · (h · s) = (gh) · s.

Definition 1.19. Let S and T be G-sets. Then a G-map is a map
f : S → T such that f(g ·s) = gf(s) for all g ∈ G and s ∈ S. A G-map
is a G-isomorphism if there exists an inverse G-map.

Let [S] be the isomorphism class of the G-set S. We can turn the
collection of isomorphism classes of finite G-sets into a semiring as
follows:

• Define [S] + [T ] = [S tT ], where the G-action on S tT comes
from the G-action on S and T .
• Define 0 = [∅].
• Define [S] · [T ] = [S × T ], where the G-action on S × T is the

diagonal action g(s, t) = (gs, gt).
• Define 1 = [?], where ? is a 1-point set with its unique G-

action.
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You should check that these definitions result in a semiring. Define
A(G), the Burnside ring of G, to be the Grothendieck construction
on the semiring of isomorphism classes of finite G-sets.

Definition 1.20. Let G be a group, and H a subgroup of G. An
orbit is the G-set G/H = {gH : g ∈ G} of cosets, with the G-action
G×G/H → G/H given by (k, gH) 7→ kgH.

Theorem 1.21. Any finite G-set is isomorphic to the disjoint union
of orbits.

Corollary 1.22. The Burnside ring A(G) is the free abelian group
generated by orbits.





LECTURE 2

Wednesday, June 211

We have two major goals for today. The first deals with idempo-
tents.

Definition 2.1. An idempotent in a ring R is an element x ∈ R
such that x2 = x.

Example 2.2. In R = R1 × R2, idempotents include e1 = (1, 0)
and e2 = (0, 1).

Our first goal is to explain how this sort of decomposition relates
to prime ideals.

Our second goal deals with simple groups.

Definition 2.3. A simple group is a group G with no nontrivial
normal subgroups.

It is now known how to classify all finite simple groups. The first
step in this classification is the Feit-Thompson theorem—that an odd-
order finite group is solvable, and hence not simple (where “simple”
also means non-abelian).

Definition 2.4. A finite group G is solvable if there exists sub-
groups G0, . . . , Gs such that

G . Gs . Gs−1 . · · · . G0 = {e}
and Gi/Gi−1 is cyclic of prime order.

I will explain how to rephrase the Feit-Thompson theorem in the
language of Burnside rings.

1. Spectrum of a Ring

Let R be a commutative ring.

Definition 2.5. A ring R is Noetherian if every ascending chain
of ideals is eventually constant. More precisely, if I0 ⊂ I1 ⊂ I2 ⊂ · · · is
an ascending chain of ideals, then there exists N so that for all n > N ,
In = In+1.

1TEXed by Jim Fowler.
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16 2. WEDNESDAY, JUNE 212

Example 2.6. The ring Z is Noetherian.

Example 2.7. The ring R[xi|i ∈ N], i.e., a ring adjoin infinitely
many variables, is not Notherian, because

(x0), (x0, x1), (x0, x1, x2), · · ·

gives an infinite ascending chain of ideals Ii with Ii 6= Ii+1.

Theorem 2.8 (Hilbert Basis Theorem). If the ring R is Noether-
ian, then R[x] is Noetherian.

Definition 2.9. An ideal P in a ring R is prime if xy ∈ P implies
x ∈ P or y ∈ P .

Alternatively, an ideal P in a ring R is prime if and only if R/P is
an integral domain.

Remark 2.10. Why are prime ideals important? Unique factoriza-
tion into prime numbers fails; for instance, in Z[

√
−5], we have

2 · 3 = (1 +
√
−5) · (1−

√
−5).

Nonetheless, in this case there is still unique factorization into prime
ideals.

Definition 2.11. The spectrum of a ring SpecR, is the collection
of all prime ideals.

On the surface, this seems uninteresting—but, surprisingly, SpecR
is more than a set: it is a topological space. Usually we think of metric
spaces (i.e., a set with a distance function), which are examples of
topological spaces and provide plenty of intuition—but that intuition
goes completely out the window for a topological space like SpecR.

Definition 2.12. A topological space is a set X with a collection
U of subsets of X. The sets in U are called the open sets of X, and
must satisfy the following properties:

• The empty set ∅ and the whole space X are open sets, i.e.,
∅, X ∈ U .
• If U1, . . . , Un ∈ U , then

⋂n
i=1 Ui ∈ U .

• If {Ui}i∈I is an arbitrary set of sets in U , then
⋃
i∈I Ui ∈ U .

The complement of an open set is an closed set. We call U a topology
on the set X.

Remark 2.13. A set might be open, closed, both open and closed,
or neither open nor closed.
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Definition 2.14 (Product of ideals). Let {I1, . . . , In} be a finite
set of ideals. The product I1 · · · In is the ideal whose elements are all
sums of products x1 · · ·xn with xi ∈ Ii.

Definition 2.15 (Sum of ideals). Let {Ii}i∈I be an arbitrary set
of ideals. Then

∑
i Ii is the ideal whose elements are all sums

∑
i xi

with xi ∈ Ii and all but finitely many of the xi equal to zero.

We now define a topology U on the set SpecR. For I an ideal in
R, define V (I) to be the prime ideals containing I, i.e.,

V (I) = {P a prime ideal in R|P ⊃ I}.
The V stands for “variety.”

Set U = {SpecR− V (I)|I an ideal in R}. We check that U gives a
topology.

• Since V (R) = ∅, we have SpecR−∅ = SpecR ∈ U .
• Since V (0) = SpecR, we have SpecR− SpecR = ∅ ∈ U .
• Suppose U1, . . . Un ∈ U , with Ui = SpecR− V (Ii) for an ideal
Ii. Then,

V (I1) ∪ · · · ∪ V (In) = V (I1 · · · In),

and taking complements proves that
⋂n
i=1 Ui is SpecR−V (I1 · · · In) ∈

U .
• Let {Ui}i∈I be an arbitrary collection of open sets, with Ui =

SpecR− V (Ii). Then,⋂
i

V (Ii) = V

(∑
i

Ii

)
.

Taking complements,⋃
i

Ui =
⋃
i

(SpecR− V (Ii))

= SpecR−
⋂
i

V (Ii)

= SpecR− V

(∑
i

Ii

)
∈ U ,

so the union of an arbitrary collection of open sets is in U .

Our intuition often fails for general topological spaces because they
may fail to satisfy the following very intuitive property:

Definition 2.16. A topological space X is Hausdorff if for any
two points u, v ∈ X there exist open sets U 3 u and V 3 v with
U ∩ V = ∅.
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Definition 2.17. The space SpecR is very far from being Haus-
dorff, as we already see by taking R = Z with its prime ideals 0 and
(p) for prime numbers p. The proper closed sets V ((n)) are the prime
ideals given by the prime divisors of n, so the proper open subsets are
the sets of all but finitely many non-zero primes.

Let X be a topological space with topology U , and Y a subset of
X. Then the subspace topology on Y is

{U ∩ Y |U ∈ U},
i.e., a set is open in the subspace topology if it is the intersection of an
open set in X with Y .

Define

D(r) = {P a prime ideal in R : r 6∈ P} = SpecR− V ((r)),

which is the open set associated with the ideal (r). Every prime ideal
is in D(r) for some r ∈ R. If P ∈ D(r) ∩ D(s), then P ∈ D(rs) ⊂
D(r) ∩ D(s). This is very similar to Euclidean space—every point is
in some open ball, and the intersection of two open balls contains an
open ball. Such a collection is called a neighborhood basis.

Precisely, in R, define an open ball around x of radius ε to be

U(ε, x) = {y ∈ R : |y − x| < ε}.
Every point in R is in some U(ε, x), and U(ε1, x1) ∩ U(ε2, x2) contains
some U(ε, x).

A space X is disconnected if it has disjoint open subsets U and
V with U ∩V = ∅ and U ∪V = X. We say that points x, y ∈ X are in
the same component, written x ∼ y, if there exists a connected C ⊂ X
with x, y ∈ C. The equivalence classes are called components, and
X is the disjoint union of its components.

2. Relating Connectedness and Idempotents

Our goal is to relate the topological notion of connectedness for
SpecR to the algebraic notion of idempotents.

We say that e1 and e2 are orthogonal if e1e2 = 0. An idempo-
tent is indecomposable if it is not a sum of idempotents. If e is
decomposable, i.e., e = e1 + e2, then

e = e2 = (e1 + e2)2 = e1
2 + e2

2 + 2e1e2 = e1 + e2 + 2e1e2,

therefore 2e1e2 = 0. Thus, if 2 is a unit in R or R is an integral domain,
then e1 and e2 are orthogonal.

Theorem 2.18. Let R be a Noetherian ring. There is a bijective
correspondence between:
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• decompositions 1 = e1 + · · ·+ en with the ei’s orthogonal idem-
potents,
• decompositions of R as the direct sum of n ideals,
• decompositions of SpecR as the disjoint union of n open and

closed subsets.

3. Burnside ring

In the first lecture we defined A(G), the Grothendieck ring of the
finite G-sets. We now deepen our understanding of its structure. We
are headed towards the following theorem, which includes the promised
reinterpretation of the Feit-Thompson theorem in terms of the Burnside
ring: their theorem says that if G has odd order, then 0 and 1 are the
only idempotents in A(G).

Theorem 2.19. The group G is solvable if and only if 0 and 1 are
the only idempotents in A(G).

The ring A(G) is difficult to understand directly; instead, for each
subgroup H, we will define a homomorphism χH : A(G) → Z. We
define χH([S]) = |SH |, that is, χH sends a set S to the cardinality
of the points fixed by H. We first check that this is well-defined; if
S and S ′ are isomorphic as G-sets, then SH is isomorphic to (S ′)H ,
and therefore their cardinalities are equal. Note that χH([∅]) = 0 and
χH([?]) = 1. Further, (S × T )H = SH × TH , so

χH([S] · [T ]) = χH([S × T ]) = |(S × T )H |
= |SH × TH | = |SH | · |TH | = χH([S]) · χH([T ]).

Likewise, we check that χH([S] + [T ]) = χH([S]) + χH([T ]). Thus, χH
is a homomorphism from the semiring of isomorphism classes of finite
G-sets to Z and extends by the universal property to a homomorphism
of rings χH from A(G) to Z.

If H ′ = gHg−1, so that H ′ and H are conjugate, then G/H ′ is
isomorphic as a G-set to G/H. Define C(G) =

∏
(H) Z, that is, the

product of a copy of Z for each conjugacy class of subgroups of G.
Define χ : A(G) → C(G) by χ([S]) = (χH([S])), so that the H-th
coordinate of χ([S]) is χH([S]).

Proposition 2.20. The homomorphism χ : A(G) → C(G) is a
monomorphism (i.e., injective).

Example 2.21. Suppose S is a G-set such that every t ∈ S is gs
for some g ∈ G and a fixed s ∈ S. In other words, S consists of a single
orbit. Then S ∼= G/H by gs 7→ gH, where H = {g|gs = s} = Gs is



20 2. WEDNESDAY, JUNE 214

the isotropy (or stabilizer) group of s. In general, a G-set looks like∑
(H) aH [G/H], up to isomorphism.

Understanding the multiplication in A(G) can be difficult. For ex-
ample, G/H × G/K is

⊔
iG/Ji, but it takes some work to figure out

how the Ji’s relate to H and K. But since χ is a monomorphism, we
can multiply in C(G) instead of A(G), and multiplication in C(G) is
easy—after all, C(G) is a product of copies of Z.

The proof of the above proposition requires a definition.

Definition 2.22. Let H,K be subgroups of G. Then H is sub-
conjugate to K, written [G/H] < [G/K], if there exists g ∈ G such
that gHg−1 ⊂ K.

Proof that χ is a monomorphism. Assume not; if χ is not in-
jective, then there is some nonzero a =

∑
(H) aH [G/H] with

χ

∑
(H)

aH [G/H]

 = 0.

Choose J maximal (with respect to subconjugacy) such that aJ 6=
0. If J is not subconjugate to H, then χJ([G/H]) = |(G/H)J | = 0.
Consequently,

χJ

∑
(H)

aH [G/H]

 =
∑
(H)

aHχJ([G/H])

=
∑

(H) with [G/J ] < [G/H]

aHχJ([G/H])

= aJχJ([G/J ]).

But χJ([G/J ]) 6= 0, so χ(a) 6= 0, a contradiction. We conclude χ is a
monomorphism. �

Definition 2.23. A group G is perfect if G = [G,G].

We consider perfect subgroups of a group G. For any subgroup H
of G, there is a descending chain Hs / Hs−1 / · · · / H0 = H with Hs

perfect and Hi/Hi+1 a cyclic group of prime order; Hs is the maximal
perfect subgroup of H.

4. Prime ideals in the Burnside Ring

Let H be a chosen conjugacy class, and let p be a prime ideal in Z
(possibly zero). Define

q(H, p) = {x ∈ A(G) : χH(x) ∈ p}.
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Then q(H, p) is a prime ideal of A(G), and every prime ideal in A(G) is
of this form. But there are some duplicates, namely q(H, p) = q(Hp, p)
where Hp is the maximal “p- perfect” subgroup of H. Here a group is
p-perfect if it has no non-trivial quotient p-groups.

We know all the idempotents in C(G)—the only idempotents in Z
are 0 and 1, so it is clear which elements in

∏
Z are idempotent.

Let π(SpecA(G)) be the set of components of the topological space
SpecA(G), which, by theorem 2.18, correspond to the idempotents in
A(G). The claim is that the elements of π(SpecA(G)) are in one-to-
one correspondence with the conjugacy classes of perfect subgroups of
G. That is, every prime ideal q(H, p) is in the same component as one
and only one q(P, 0), where P is perfect.

Being solvable means there are no non-zero perfect subgroups, so
for a solvable group G, SpecA(G) has only one component.





LECTURE 3

Friday, June 23 1

1. Prime Spectra

For a ring R and an ideal I, we define

V (I) := {P | P ⊃ I}

where the P are prime ideals of R. The Zariski topology on the set of
prime ideals of R is defined by declaring subsets V (I) closed for all I.
Denote this topological space by Spec(R).

Proposition 3.1. If R is an integral domain, then Spec(R) is
connected.

Proof. Suppose that Spec(R) = C1 q C2 where the Ci are open
and hence closed. Since R is an integral domain, (0) is prime. Say
(0) ∈ C1. However, every P ⊃ (0), so V (0) = Spec(R) = C1. �

Consider R =
∏

j∈J Rj where Rj is an integral domain. Let Ij =

(0, 0, . . . , 0, Rj, 0, . . . , 0) where Rj is in the jth slot and let
ej = (0, . . . , 0, 1, 0, . . . , 0) where the 1 is in the jth slot. Denoting
by 1 the identity in R, that is (1, 1, 1, . . . , 1, 1), we see that V ((1− ej))
and V ((1 − ek)) are disjoint for j 6= k. This follows by noting that
the only primes in V ((1− ek)) are uniquely associated to primes in Rk

while primes in V ((1− ej)) are uniquely associated to primes in Rj.

1.1. What are the primes in Z× Z?

Claim 3.2. The only primes in Z× Z are

((1, q)) , ((p, 1)) p, q prime

((1, 0)) , ((0, 1)) .

Now, take
∏n

i=1 Zi with basis elements ei and Zi ∼= Z. Then

(1)
n∐
i=1

V ((1− ei)) = V

(
n∏
i=1

Zi

)
.

1TEXed by Emma Smith.
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2. Simplicial digression

Consider a possibly infinite simplicial set, that is, an ordered set
S = {vertices} and a set of simplices S = {distinguished subsets of S }
with the rules that every vertex is in some simplex and any subset of a
simplex is a simplex. Now, since our vertices are ordered, we can glue
our abstract simplices together to construct a topological space. We
identify each abstract simplex with a copy of the standard n-simplex
∆n defined as

∆n = {(t0, . . . , tn) |
n∑
i=0

ti = 1} ⊂ In+1

where I = [0, 1] ⊂ R. This space has n+ 1 vertices, the ith being 1 in
the ith coordinate, 0 ≤ i ≤ n. Let Sn = {σ ∈ S | σ has n+1 elements}.
For each σ ∈ Sn take a copy of ∆n with vertices relabeled by the
elements of σ, in order. Take the disjoint union of all of these simplices
and identify any faces that are labeled by the same simplices of S.

A partially ordered set is a set A together with a transitive relation
≤ such that a ≤ b and b ≤ a implies a = b. A partially ordered set A
gives a simplicial set S whose vertices are the points of A and whose n-
simplices are the chains a0 < a1 < . . . < an. Thus it gives a topological
space. h This gives us another way of thinking about Spec(R). The
set of prime ideals of R is a partially ordered set under the operation
of inclusion. Consider chains of prime ideals

p0 ⊂ p1 ⊂ · · · ⊂ pn.

These determine simplices. Now Spec(R) may be drawn as in Figures 1
and 2. Note that Spec(Z×Z) is disconnected and that (1, 0) and (0, 1)
are orthogonal idempotents. The intuitive content of our description
of components of Spec(R) in terms of idempotents is that the space
associated with the partially ordered set of primes always breaks up
into components corresponding to idempotents in this fashion. The
picture becomes particularly clear for Burnside rings, where we just
see graphs with components corresponding to idempotents.

Definition 3.3. The dimension of a commutative ring is the max-
imal length n of a chain of prime ideals p0 ⊂ p1 ⊂ . . . ⊂ pn in the ring.

Example 3.4. Let R = k[x1, . . . , xn]. Then a maximal length chain
is

(0) ⊂ (x1) ⊂ (x1, x2) ⊂ . . . ⊂ (x1, . . . , xn),

so we say that k[x1, . . . , xn] is of dimension n.
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(2) (3) (5) (7) (11)

(0)

Figure 1. Spec(Z) for the lowest few primes.

(2,1) (1,2) (1,11)

(0,1)

(3,1) (5,1) (7,1) (11,1) (1,3) (1,5) (1,7)

(1,0)

Figure 2. Spec(Z× Z) for the lowest few primes.

3. Feit-Thomson Theorem

Because it was hard going, we are going to repeat some things we
did before. Take the Burnside ring A(G), that is the free abelian with
one basis element [G/H] for each conjugacy class (H) of subgroups in
G. Recall that H ∼ H ′ if there exists a g ∈ G such that gHg−1 = H ′.

Define χH : A(G)→ Z by

[S]→
∣∣SH∣∣ := |{s | hs = s ∀h ∈ H}| .

Define C(G) =
∏

(H) ZH and eJ = 1 in the Jth spot and 0’s elsewhere.
Then we can define

χ : A(G) → C(G)∑
H

aH [G/H] 7→
∑
J

(∑
H

aH
∣∣(G/H)J

∣∣ eJ)
Just believe that this is a monomorphism. We proved it before.

3.1. Pulling back prime ideals. We wish to consider Spec(A(G)),
but the only spectrum that we understand is that of a product of Z’s.
We shall deal with this by observing how primes work with homomor-
phisms.

Let f : R → S be a ring homomorphism. Let Q ⊂ S be a prime
ideal. Define P ⊂ R by P = {x | f(x) ∈ Q} = f−1(Q).

Lemma 3.5. P is prime in R.
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Proof. Let xy ∈ P for x, y ∈ R. Then since f is a homomorphism,
f(xy) = f(x)f(y). Also, as xy ∈ P we know that f(x)f(y) = f(xy) ∈
Q. Hence, since Q is prime, either f(x) ∈ Q or f(y) ∈ Q. Thus, either
x ∈ P or y ∈ P so P is also prime. �

Now χ is the ring homomorphism under which we wish to pull back
prime ideals. We know the primes in C(G) by equation (1). We shall
denote these pullbacks as follows:

q(H, p) = χ−1 ((1, 1, . . . , 1, p, 1, . . . , 1))

where p is the Hth coordinate and p is prime or 0 (thought of as prime
ideals). Notice that q(H, 0) ⊂ q(H, p) for all primes p. These are the
only inclusions, so A(G) has dimension 1.

3.2. Now for some group theory. Suppose H C J and J/H =
Πp (cyclic group of order p). Then q(H, p) = q(J, p). To see this, look

at a finite J-set S. Then SJ =
(
SH
)J/H

since js = s and jhs = js if
hs = s for all h ∈ H. We claim that

χJ(S) ≡ χH(S) mod p.

This means that the number of elements that are fixed by H but are
not fixed by all of J is divisible by p. Look at elements that are not
fixed by J . This means that they are not fixed by the cyclic group J/H
of order p, and the number of these is divisible by p because not being
fixed they must break up into orbits with p elements each. Hence, we
have graphs

q(H    ,p    )

q(H  ,0)

q(H  ,p  ) s−1 s−1

s

s s

s−1q(H    ,0)

q(H    ,p    )

q(H  ,0)

q(H  ,p  ) s−1 s−1

s

s s

s−1q(H    ,0)

Hence, we see that every chain of subgroups

Hs C · · ·CH2 CH1 CH0 = H

whereHs is a maximal perfect subgroup ofH and each quotientHi/Hi+1 =
Πpi

belongs to precisely one connected component of our spectrum.
Therefore, there is one conjugacy class for each perfect subgroup.

Remark 3.6. Just as we defined Spec(R), we can consider the
maximal spectrum m Spec(R) ⊂ Spec(R) which consists of the maxi-
mal ideals of R. We give it the subspace topology.
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If R = C[x1, . . . , xn], then m Spec(R) ∼= Cn with the Zariski topol-
ogy. In fact, for any field F, the ideals of F[x1, . . . , xn] of the form ((x1−
a1, . . . , xn−an)) for a1, . . . , an ∈ F are certainly maximal. Quotienting
by such ideal is equivalent to evaluating polynomials at (a1, . . . , an).
Thus F injects isomorphically into the quotient F[x1, . . . , xn]/(x1 −
a1, . . . , xn−an). Hilbert’s Nullstellensatz states that all maximal ideals
are of this form when F is algebraically closed. We will look at that
next.





LECTURE 4

Monday, June 26 1

1. Algebraic Geometry

1.1. Weak Nullstellensatz.

Definition 4.1. A field F is said to be algebraically closed if
every polynomial f in F [x] of positive degree has a root in F . Since
F [x] is a PID, this is equivalent to saying that every maximal ideal of
F [x] is of the form (x− a) for some a ∈ F .

Example 4.2. By the fundamental theorem of algebra, the field of
complex numbers C is algebraically closed.

Henceforth, we fix a field F . For each n ≥ 1, we define affine
n-space to be the set An = F n and write A = F [x1, . . . , xn] for its
corresponding polynomial ring.

Theorem 4.3 (Weak Nullstellensatz). If F is an algebraically closed
field, then every maximal ideal of F [x1, . . . , xn] is of the form (x1 −
a1, . . . , xn − an) with a1, . . . , an ∈ F .

In other words, when F is algebraically closed, An is in one to one
correspondence with mSpec(F [x1, . . . , xn]) via

(a1, . . . , an) 7→ (x1 − a1, . . . , xn − an).

The proof of this will be given later.

1.2. Zariski Topology.

Definition 4.4. For any T ⊆ A, we can associate a zero set

Z(T ) = {P ∈ An | f(P ) = 0,∀f ∈ T}
in An. A subset Y of An is an algebraic set if there is a T ⊆ A for
which Y = Z(T ).

Remark 4.5. It is immediate that Z is inclusion reversing. By this
we mean, if T1 ⊆ T2 ⊆ A then Z(T1) ⊇ Z(T2). Secondly, if I is the
ideal generated by T in A, it is easy to see that Z(I) = Z(T ). Indeed

1TEXed by Alan Anders.
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T ⊆ I ⇒ Z(T ) ⊇ Z(I). For the other inclusion, suppose P ∈ Z(T )
so that f(P ) = 0 for all f ∈ T . Since every element g ∈ I is a sum
g =

∑q
i=1 hifi with fi ∈ T and hi ∈ A, we have g(P ) = 0 as well.

Proposition 4.6. Z satisfies the following properties:

(i) Z(T1T2) = Z(T1) ∪ Z(T2) (T1, T2 ⊆ A);

(ii) Z(∪iTi) = ∩iZ(Ti) (∀i ∈ I, Ti ⊆ A);

(iii) Z(∅) = An;

(iv) Z(A) = ∅;
where in the above identities T1T2 = {f1f2 | fi ∈ Ti}.

Proof. With a little thought, the proofs of these identities become
quite obvious. We provide (i) and leave the rest to the reader.

(i) If P ∈ Z(T1T2) and P 6∈ Z(T1), then there is an f1 ∈ T1 for which
f1(P ) 6= 0. So whenever f2 ∈ T2, we have f1(P )f2(P ) = 0 implying
f2(P ) = 0. Conversely, if P is in Z(T1) or Z(T2) then f(P ) = 0 for all
f ∈ T1 or all f ∈ T2. So clearly, (f1f2)(P ) = f1(P )f2(P ) = 0 for all
fi ∈ Ti. �

Definition 4.7. It is apparent from the last proposition that we
can give An a topology whose closed sets are precisely the algebraic
subsets. Equivalently, define the open sets of An to be the complements
of algebraic sets. This is called the Zariski topology.

1.3. Strong Nullstellensatz.

Definition 4.8. To complete our dictionary of correspondences
between subsets of affine space and ideals of our polynomial ring in
n-variables, we form for each Y ⊆ An, the ideal of Y in A by setting

I(Y ) = {f ∈ A | f(P ) = 0,∀P ∈ Y }.
To relate I and Z, we introduce the notion of the radical of an ideal
I in a ring R, which is defined to be

√
I = {f ∈ R | ∃q > 0, f q ∈ I}.

Also, we say that an ideal I is radical if I =
√
I.

Example 4.9. In general, every prime ideal of any ring is always
radical. To get an idea of the radical of an ideal, take p as a prime
number in Z. Then if q > 0,

√
(pq) = (p).

Remark 4.10. Before we prove anything, we note that I, like Z
is inclusion reversing. Also, I ⊆

√
I ⊆ IZ(I) always holds. Indeed, if

f ∈
√
I then there is a q > 0 for which f q ∈ I. So if P ∈ Z(I), then

f(P ) = 0 provides f q(P ) = 0 as well.
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The closure Ȳ of a subspace Y of a topological space is the smallest
closed subspace that contains it, namely the intersection of all closed
subspaces that contains it.

Proposition 4.11. If Y ⊆ An, then ZI(Y ) = Ȳ .

Proof. If P ∈ Y , then f(P ) = 0 for all f ∈ I(Y ). Hence, Y ⊆
ZI(Y ). And since the image of Z consists of closed sets, Ȳ ⊆ ZI(Y ).
Conversely, let W = Z(I) be a closed set containing Y where I is an
ideal of A. Then I(Y ) ⊇ I(W ) ⇒ ZI(Y ) ⊆ ZI(W ). By the previous
remark, I ⊆ IZ(I)⇒W = Z(I) ⊇ ZI(W ) ⊇ ZI(Y ). This completes
the proof. �

Theorem 4.12 (Strong Nullstellensatz - Rabinowitsch). If F is

algebraically closed, then IZ(I) =
√
I for any ideal I in A.

Proof. Let f ∈ IZ(I) be nonzero. Then let J be the ideal
generated by I and fxn+1 + 1 in A′ = F [x1, . . . , xn+1]. Thus, J =
A′I +A′(fxn+1 + 1). We claim Z(J) = ∅. Suppose otherwise and that
P ′ = (a1, . . . , an+1) ∈ Z(J). Then, writing P = (a1, . . . , an), we must
have P ∈ Z(I). Hence, f(P ) = 0. So

(fxn+1 − 1)(P ′) = f(P )an+1 − 1 = −1 6= 0

which contradicts our assumption that P ′ ∈ Z(J).
By the weak Nullstellensatz, Z(J) = ∅ implies J = A′. This pro-

vides g, k ∈ A′ and an h ∈ I for which

1 = gh+ k · (fxn+1 − 1).

Next, observe that A′ = A [xn+1] and write g =
∑q

i=0 gix
i
n+1 where

gi ∈ A. Also, consider 1/f as an element in the quotient field of A.
Then we can evaluate our above expression in xn+1 at 1/f which gives
the equality

1 =

(
q∑
i=0

gi(1/f)i

)
h

in A. Hence, if we multiply through by f q and note that h ∈ I, we see
f q ∈ I as needed. �

Corollary 4.13. There is a one-to-one inclusion reversion corre-
spondence between algebraic sets of An and radical ideals of the corre-
sponding F -algebra A, given by Y 7→ I(Y ) and I 7→ Z(I).
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1.4. On our way to the proof of the weak Nullstellensatz.
The following notion will be helpful in developing our proof.

Definition 4.14. Recall that when R is an integral domain we
have its quotient field or field of fractions Frac(R) = {r/s | s 6= 0}.
We may consider the subring R[a−1] of Frac(R)

R[a−1] = {r/an | n ≥ 0}
for each nonzero a ∈ R. An integral domain R is said to be a G-
domain if R [a−1] is a field for some nonzero a ∈ R.

Example 4.15. Consider the subring R of Q where

R = {a/b ∈ Q | a, b ∈ Z, 2 6 | b}.
It is easy to check R[2−1] = Q so that R is a G-domain.

Proposition 4.16. If R is an integral domain, then R [x] is never
a G-domain.

Proof. Suppose otherwise. Then there is an f ∈ R [x] for which
R [x] [f−1] is a field. This implies that deg f > 0, since if f ∈ R, then
R[x][f−1] = R[f−1][x] is not a field. We must have (1 + f)−1 = g/fn

for some g ∈ R [x]. This implies fn = g(1 + f). Hence, fn is congruent
to 0 mod (1 + f). Since f is clearly congruent to −1 mod (1 + f),
in the ring R [x] /(1 + f), we have (−1)n = 0. This implies that (1 + f)
is the unit ideal. Since deg f > 0, this is impossible. �



LECTURE 5

Monday, June 26 1

1. Algebraic Geometry Continued

1.1. Irreducible algebraic sets.

Definition 5.1. An algebraic set V is irreducible if whenever
V = V1 ∪ V2 where V1, V2 are algebraic sets, then V = V1 or V = V2.

To see what these correspond to under I, we first prove the following
lemma.

Lemma 5.2. If P is a prime ideal in a commutative ring R for
which P ⊇ I1 ∩ · · · ∩ In where I1, . . . , In are ideals, then P ⊇ Ii for
some i.

Proof. If P 6⊇ Ii for all i, then there are xi ∈ Ii with xi 6∈ P .
Because P is a prime ideal, x1 · · ·xn 6∈ P . But x1 · · ·xn ∈ I1∩· · ·∩In ⊆
P . This is a contradiction. �

Proposition 5.3. An algebraic set V is irreducible iff I(V ) is a
prime ideal.

Proof. ⇒: Suppose V is irreducible. Let f1f2 ∈ I(V ). Hence,

Z(f1) ∪ Z(f2) = Z(f1f2) ⊇ ZI(V ) = V

using proposition 4.5, 4.6, and 4.11 from last time. Intersecting both
sides with V and using the irreducibility of V , we find Z(fi) ∩ V = V
for some i = 1, 2. Therefore, Z(fi) ⊇ V which means fi(P ) = 0 for all
P ∈ V . In other words, fi ∈ I(V ).
⇐: Suppose I(V ) is prime and V = V1 ∪V2. Then I(V ) = I(V1)∩

I(V2). By the lemma, I(Vi) ⊆ I(V ) for some i. Taking Z on both
sides, Vi ⊇ V . Since Vi ⊆ V , equality must hold. �

1.2. The proof of the weak Nullstellensatz.

Definition 5.4. Suppose B is an integral domain and A a subring
of B. An element b ∈ B is integral over A if there is a monic poly-
nomial f ∈ A [x] for which f(b) = 0. And B is an integral extension
of A if every element of B is integral over A.

1TEXed by Alan Anders.
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Remark 5.5. Denote the units of a ring A as U(A). Recall a unit
is an element of a ring which has a multiplicative inverse.

Lemma 5.6. If B is an integral extension of A then A ∩ U(B) =
U(A).

Proof. Clearly, U(A) ⊆ A ∩ U(B). So suppose a ∈ A ∩ U(B).
Hence, there is a b ∈ B for which ab = 1. There is a polynomial
f = xn +

∑n−1
i=0 aix

i for which f(b) = 0. Then 0 = an−1f(b) = b +∑n−1
i=0 aia

n−1−i. This implies that b ∈ A and thus a ∈ U(A). �

Corollary 5.7. If a field is an integral extension of a ring R, then
R must be a field as well.

Theorem 5.8. If R is an integral domain and M is a maximal
ideal of R [x1, . . . , xn] where M∩R = 0, then there is a nonzero element
a ∈ R for which Ra is a field and K = R [x1, . . . , xn] /M is a finite field
extension of Ra. In particular, if R is not a G-domain, then R∩M 6= 0.

For a proof of this, see the handout. This does indeed imply the
weak Nullstellensatz. If F is an algebraically closed field and M is
a maximal ideal of F [x1, . . . , xn] , where n ≥ 2, then take R in the
theorem to be F [x1], and consider M ∩ R. Since F is algebraically
closed, f splits into linear factors and one of those factors must be in
M , say x1−a1 ∈M . Similarly there are xi−ai ∈M for all i. Thus M
contains and therefore equals the maximal ideal (x1−a1, · · · , xn−an).



LECTURE 6

Friday, June 30 1

Remark 6.1. All information can be found in the first chapter of
Peter May’s “A Concise Course in Algebraic Topology”

Remark 6.2. Wikipedia has vignettes about the history of the
Fundamental Theorem of Algebra. Leibnitz thought he had a coun-
terexample in the fourth degree polynomial x4 − a4 = 0.

1. Fundamental Group

Algebraic topology assigns discrete algebraic invariants to topologi-
cal spaces and continuous maps. More narrowly, one wants the algebra
to be invariant with respect to continuous deformations of the topology.
Typically, one associates a group A(X) to a space X and a homomor-
phism A(p) : A(X) → A(Y ) to a map p : X → Y . One usually writes
A(p) = p∗.

Remark 6.3. Here is the general plan of attack for algebraic in-
variants. Start with your construction A. Then compute A on spaces
you know and love. Finally, take a problem of interest and manipulate
it to a form your prior calculations allow you to solve. Voila!

The fundamental group is the first invariant studied in algebraic
topology classes. Although at the moment we shall follow the plan for
the fundamental group, later we shall follow this plan with topological
K-theory, as well. On S1 our construction will be called 0, though, and
we shall compute values for all Sn.

1.1. Our construction. Let A = π1, X be a space, and x a point
of X. Thus, we are interested in objects A(X, x) = π1(X, x). Look
at continuous maps f : I → X with the properties f(0) = x and
f(1) = y. We say that such a function defines a path from x to y, as
depicted in Figure 1.

Definition 6.4. Now let f, g be two paths from x to y in X.
We say that f is homotopic to g, written f ' g, if there exists an

1TEXed by Emma Smith.
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x

y

Figure 1. A basic path from x to y.

h : I × I → X with

h(s, 0) = f(s), h(s, 1) = g(s), h(0, t) = x, and h(1, t) = y.

for all s, t ∈ I.

In other words, we are continuously deforming f into g while holding
the endpoints fixed, as shown in Figure 2.

x

y

g
f

Figure 2. A continuous deformation of path f into path
g from x to y.

We write the homotopy class of f as [f ]. This is an equivalence
relation. Let f : x→ y and g : y → z be paths in X. Define

(g · f)(s) =

{
f(2s) 0 ≤ s ≤ 1

2

g(2s− 1) 1
2
≤ s ≤ 1.

This passes to equivalence classes by

[g][f ] := [g · f ].

Check that this is a reasonable definition because

f ' f ′ ⇒ g · f ' g · f ′.
This multiplication operation, after passing to equivalence classes, is
associative and has left and right identities. Suppose f : x → y,
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y

x

z

g

f

Figure 3. The composition of two maps f : x → y
and g : y → z.

g : y → z, and k : z → w are paths in X. Then

(k · g) · f ' k · (g · f)

([k][g])[f ] = [k]([g][f ]).

See, for example, Figures 4, 5.
We also have inverses. Define f−1(s) = f(1− s), i.e. f−1 traverses

the path f in the opposite direction and hence is a path from y to x.
Note that f−1f ' cx where cx is the constant function at x, as shown
in Figure 6.

1.2. Loops. Now, look at paths f where f(0) = x = f(1). We
shall call such paths loops. What we have just shown, above, is that all
the loops with a fixed basepoint x form a group. This group is called
the fundamental group of X with basepoint x. Notice that there is an
awkwardness because in general we must pick a base point, although
as depicted in Figure 7, we can change basepoints along paths. For a
path a from x to y define γ[a] : π1(X, x) → π1(X, y) by (γ[a])([f ]) :=
[a][f ][a]−1. It is easy to check that γ[a] depends ony on the equivalence
class of a and is a homomorphism of groups. For a path b from y to z
we see that γ[b · a] = γ[b] ◦ γ[a]. It follows that γ[a] is an isomorphism
with inverse γ[a−1]. For a path b from y to x we have γ[b · a][f ] =
[b · a][f ][(b · a)−1]. If the group π1(X, x) happens to be abelian, then
this is just [f ]. By taking b = (a′)−1 for another path a′ from x to y we
see that, when π1(X, x) happens to be abelian, γ[a] is independent of
the choice of the path class [a]. Thus, in this case, we have a canonical
way to identify π1(X, x) with π1(X, y).

1.3. Higher homotopy groups. You may have noted that the
fundamental group is called π1. Higher homotopy groups are denoted
πn and are defined as homotopy classes of maps from (Sn, 1)→ (X, x).
By restricting to the first coordinate, a multiplication can be defined.
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f g k

kgf

cy cz cwcx

Figure 4. A picture of a homotopy between (f ◦ g)◦k
and f ◦ (g ◦ k).
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f
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Figure 5. A picture of a homotopy between a path and
the path either right or left composed with the constant
path.
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Figure 6. A picture of a homotopy between two in-
verse paths and the constant path.

a

y

x

Figure 7. A picture of a base point change from x to y.

Say we have p, q : X → Y . We say that p ' q if there exists a
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continuous map h : X × I → Y such that

h(s, 0) = p(s) and h(s, 1) = q(s).

Say that p, q are homotopic if h(1, t) = x for all t ∈ I.

Remark 6.5. Notice that our definition for π1 is consistent with
this since S1 = I/∂I.

Example 6.6. πn(Sn) = Z

A few facts:

• For simply connected compact spaces if there is one nontrivial
higher homotopy group then there are infinitely many.
• There is no non-contractible simply connected compact mani-

fold (or finite CW complex) for which all the homotopy groups
are known.
• Amazingly, however, it has been proven that for n ≥ 2, πn is

abelian.
• If X is a finitely generated simplicial complex which is simply

connected, then πn(X) is finitely generated.

Example 6.7. π2(S1 ∨ S2) is not finitely generated.

Theorem 6.8 (Serre, 1955). All homotopy groups of spheres are
finite with two exceptions. For n ≥ 1,

πn(Sn) = Z π4n−1(S2n) = Z⊕ finite group.

1.4. Back to base points. Say we have a map p : X → Y . Then
we have p∗ : π1(X, x) → π1(Y, p(x)) via the rule [f ] 7→ [p ◦ f ]. Note
that [f ] ∈ π1(X, x) means that f : I → X based at x. Hence, we

have I
f // X

p // Y . Let q be another map from X to Y which is
homotopic to p. If we take a path a from p(x) to q(x), then taking
a(x)(s) = h(x, s) where h is the homotopy between p and q we have
the following diagram.

π1(X, x)
p∗

xxppppppppppp
q∗

&&NNNNNNNNNNN

π1(Y, p(x))
γ[a]

∼=
// π1(Y, q(x))

This diagram commutes. Check by noting that f : I → X and consider
h(f(x), t) as t : 0→ 1. Then stare.

Homotopic maps almost determine the same maps, where almost
means up to the bottom isomorphism.
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1.4.1. When is this isomorphism independent of the choice of paths?
If π1 is commutative, then yes. Generally, no. Say a : x → y and
b : y → x. Then, γ[ba] : x→ x and

(γ[b])(γ[a])([f ]) = (γ[ba])([f ]) = [ba][f ][ba]−1 = [f ]

when the group is commutative.

1.5. Calculations.

Claim 6.9. π1(R, 0) = 0 where 0 is the trivial group.

Proof. Let f : I → R. Contract R to a point by h(s, t) = f(s)t.
�

Note that the same proof works for D2 = {(x+ iy) | ||x+ iy|| ≤ 1}.
Thus, π1(D2, 0) = 0.

Claim 6.10. π1(S1, 1) = Z

Proof.

R/Z = I/∂I →α S1

where α : t → ei2πt. Let pn be a polynomial mapping S1 to S1 such
that pn(z) = zn. Then let fn = pn ◦ α and j : Z → π1(S1, 1) with
j(n) = [fn]. Then [fn][fm] = [fn+m]. This is a homomorphism of
abelian groups. Consider a map

π : π1(S1, 1)→ Z πj = id, π 1− 1

then π is an isomorphism. Look at R → S1 ' I/∂I. Take a piece of
the circle as shown in Figure 8.

Figure 8. A picture of the lifting from a segment on
the circle to Z segments on the real line.

Then in R this corresponds to Z copies of the piece as shown in
figure 8. Thus, we can lift maps to R per the diagram
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R

��

I

f̃
=={{{{{{{{{

f
// I/∂I

with f̃(0) = 0 and π[f ] = f̃(1) by subdividing the leftmost I into
small enough divisions that they lift uniquely. �

2. Fundamental Theorem of Algebra

Theorem 6.11. Every polynomial in one variable has a complex
root.

Definition 6.12. Let p : S1 → S1. Then deg(p) = |p| with

1

%%KKKKKKKKKKKKKKKKKKKKKKKKKKKKK π1(S1, 1)

''NNNNNNNNNNN

p∗ // π1(S1, p(1))

γ[a]

��
π1(S1, 1)

|p|

Proof. Say

p(x) = xn + c1x
n−1 + · · ·+ cn−1x+ cn.

Suppose for contradiction that there are no complex roots of p. In
particular, therefore, there are no complex roots on the unit circle.
Define

p̂(x) =
p(x)

|p(x)|
x ∈ S1.

Assume p(x) 6= 0 for |x| ≥ 1. Then define

j(x, t) =
k(x, t)

|k(x, t)|
where

k(x, t) = xn + t(c1x
n−1 + tc2x

n−2 + · · ·+ tn−1cn)

and
k(x, 0) = xn k(x, 1) = p(x) j(x, 1) = p̂(x).

Thus, deg(p̂) = n. On the other hand, assume p(x) 6= 0 for |x| ≤ 1.
Define

h(x, t) =
p(tx)

|p(tx)|
.
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Then {
h(x, 0) = p(0)

|p(0)|

h(x, 1) = p̂(x)
⇒ deg(p̂) = 0.

Hence, we have shown that the only time there are no zeros is if n = 0
or in other words, p is a constant function. Thus, if n ≥ 1, p has a
complex root. �

2.1. Brouwer fixed point theorem.

Theorem 6.13. There does not exist a retraction r : D2 → S1 such
that r(x) = x for x ∈ S1.

Intuition: in order to retract, we must rip the disk somewhere.
Also, if X →p Y →r Z ⇒ r∗ ◦ p∗ = (rp)∗.

Proof. Suppose there is. Then π1(S1)

id∗ $$JJJJJJJJJ

i∗ // π1(D2)

r∗
��

π1(S1)

Now, since

π1(D2) = 0, this must be a contradiction since we cannot factor the
identity map through 0. �

Corollary 6.14. Let f : D2 → D2. Then there exists a y such
that f(y) = y.

Suppose not. Then for all y we have f(y) 6= y so we can take the
map to S1 given by the intersection point of S1 and the ray from f(x)
to x. If y ∈ S1 this ray will return y so this would be a retraction as
above.
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Tuesday, July 17 1

1. Vector bundles

First, we explain vector bundles. The idea is that we all know
what vector spaces are. That’s linear algebra. We also know about
topological spaces. We would like to blend the two together. So we
start with a topological space (say a subset of Euclidean space), and
for each point in that space, we will have ”over it” a vector space.

Say the topological space is B. We would like a surjective continu-
ous map

E
p // B

(E is the total space, B is the base space) with the property that for
each point, the fibre p−1(b) has a fixed isomorphism to Rn or Cn.
That’s not enough, but here’s a picture.

Think of the Moebius strip. The Moebius strip will be E. There
is a central circle. The map p in this case, is simply projection to that
central circle.

On the other hand, we could also have just the product

S1 ×R.

These are examples of two different bundles over the same space.
We always have an example of a “trivial bundle”

B ×Rn → B.

In a sense, this is the most important example since we require that
every bundle be locally trivial:

Definition 7.1. A local trivialization for

E
p // B

is an open cover of B, O = {U}, and for each U , a homeomorphism

φu : U ×Rn ↪→ p−1(U)

1TEXed by Mohammed Abouzaid.
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such that the diagram

U ×Rn
φU //

π

##GG
GG

GG
GG

GG
p−1(U)

p
{{xx

xx
xx

xx
x

U

commutes.

Recall also, that we have a canonical identification of p−1(b) with
Rn such that the the restriction of φU to {b} ×Rn is a linear map.

To simplify life, we will assume that B is compact.

Definition 7.2. A topological space B is compact if every open
cover has a finite subcover.

We would like our choice of local trivialization to be compatible.
Consider the composition

(U ∩ V )×Rn φU // p−1(U ∩ V )
φ−1

V // (U ∩ V )×Rn

Since all of these maps have to be isomorphisms of vector spaces
on each fibre, we obtain a map

U ∩ V → GLn(R).

Definition 7.3. A vector bundle is a surjective continuous map

E
p // B

which is locally trivial for a cover O such that the corresponding maps

U ∩ V → GLn(R)

are continuous.

Note that GLn(R) is a subset of the set of n × n matrices, and

hence is topologized as a subset of Rn2
.

Later, we will see an important theorem stating that every vector
bundle embeds in a trivial bundle.

2. Tangent bundles

Given a manifold, we can study embeddings

M ↪→ Rq.

The Whitney embedding theorem guarantees that if M is n dimen-
sional, we can choose q to be 2n+ 1.
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For example, we can take the n-dimensional sphere

Sn → Rn+1.

In this case, at every x, we can study the set of v which are orthogonal
to x. This is an n-dimensional vector space at every point, called the
tangent space.

So have a subset of Sn ×Rn+1 consisting of

{(x, v)|v ⊥ x}

which we call the tangent space of Sn. We write this at τ(Sn), which
is a vector bundle Sn.

We can also consider the set of points which are parallel to x ∈ Sn.
We can do this for every manifold which embeds in Rn to obtain a
tangent and normal bundle which both embed in the trivial bundle
M × Rq. We can topologize them as subsets, and check that they
satisfy the appropriate axioms.

One way of checking that these are bundles, is to use upper and
lower hemispheres as the appropriate cover.

In this course, we’re not going to study bundles one at a time.
Rather, we will consider all bundles over a fixed base space, and study
the appropriate structure.

First, we need

Definition 7.4. An isomorphism of vector bundles E and E ′

over the same base B is a map

E
g //

p

��@
@@

@@
@@

E ′

g′~~}}
}}

}}
}

B

which is a linear isomorphism on each fibre.

It turns out that the inverse function is automatically continuous,
and induces the inverse isomorphism of vector spaces when restricted
to each fibre. We will only be looking at isomorphism classes of vector
bundles. We will use ξ for a vector bundle, and [ξ] for its class.

If B is connected, the dimension of the vector bundle is constant.
However, if B is not connected, there are two different notions. Either
we study n-plane bundles, in which the dimension is kept fixed, or,
more generally, we can study vector bundles, where the dimension is
allowed to vary in the different components. For simplicity, we will
always assume connectivity of B.
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Definition 7.5. En(B) is the set of equivalence classes of n-plane
bundles over B.

One may complain that this may not be a set, but we will come to
this set-theoretic point later.

Definition 7.6. Vect(B) is the set of isomorphism classes of vector
bundles over B.

If B is path connected, then

Vect(B) =
∐
n≥0

En(B),

since every vector bundle has a fixed dimension.
Question: What are the isomorphism classes of 0-dimensional bun-

dles?
Answer: There is only one such bundle, consisting of

id : B → B,

we call this [ε0].
This should be thought of as the analogue of the trivial vector space

whose only element is 0. This is a general principle. Anything you can
do to vector spaces, I can do to vector bundles.

For example, given ξ and χ, let us write ξb = ξ−1(b) for the fibre at
a point b. This is standard notation where the projection is given the
same name as the vector bundle. We can now define the Whitney sum
of ξ and χ to be be the vector bundle ξ ⊕ χ whose fibre is given by

(ξ ⊕ χ)b = ξb ⊕ χb.
We will come back later to why this operation is well defined.

But we can check that this operation is compatible with isomorphism
classes. Further, the 0-dimensional bundle acts as the zero for this op-
eration. The result is therefore an abelian monoid, modulo the details
we haven’t checked.

We can now apply the Grothendieck construction to this monoid,
and obtain

K(B)

which is the Grothendieck group of B. When we write K(B), we mean
the Grothendieck group of complex vector bundles over B, which we
sometimes also write KU(B).

There is also a Grothendieck group of real vector bundles

KO(B).

But we need more than a group. Rather, we would like to have a
ring. First, we need to discuss tensor products.
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3. Tensor Products

Let R be a commutative ring, in particular, it could be a field,
which is the case we’re interested in. Suppose we have M , N two R
modules (commutativity implies that we don’t have to worry about left
and right modules). In other words, we have abelian groups together
with a multiplication

R×M →M

which is associative and bilinear. In general, a bilinear map

M ×N
f // P

is a map which is linear in both variables separately.

f(m,n) + f(m′, n) = f(m+m′, n)

f(rm, n) = rf(m,n).

We will now define the tensor product M ⊗R N via its universal
property:

M ×N
f //

i
��

P

M ⊗R N

f̃
:: .

In order to check that this makes sense, we must provide a con-
struction.

Let F be the free R module on the set M ×N . Elements of F are
formal sums

∑
ri(mi, ni) where all but finitely many entries in the sum

vanish. We define

M ⊗R N = F/ ∼
where the equivalence relation is generated by

(m,n) + (m′, n)− (m+m′, n) = 0

(rm, n)− r(m,n) = 0

(m,n) + (m,n′)− (m,n+ n′) = 0

(m, rn)− r(m,n) = 0.

Note the fact that our relations are symmetric in M and N .

Example 7.7. Let V and W be finite dimensional vector spaces of
F. In order to be concrete, we choose bases {v1, . . . , vm} and {w1, . . . , wn}
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of V and W respectively. Consider a vector space V ⊗W spanned by
a basis {vi ⊗ wj}1≤j≤n

1≤i≤m and define a map

(V ×W )

ι

��
V ⊗W

where
ι(vi, wj) = vi ⊗ wj

on basis elements, and is extended by bilinearity to every element of
V ×W . Given any bilinear function to P , we can construct a linear
map f̃ such that the diagram

(V,W )

ι

��

f // P

V ⊗W

f̃
;;

commutes.
This proves the existence (and uniqueness) of the tensor product of

vector spaces.

We have a distributivity property

(V ⊕ V ′)⊗W ∼= (V ⊗W )⊕ (V ′ ⊕W ),

which can be proved either by the universal property, or by the con-
struction.

Note that
0⊗W = 0

while
F⊗W ∼= W.

So direct sum looks like addition, and tensor product looks like mul-
tiplication. Formally, we can say that the set of isomorphism classes
of vector spaces over a fixed field is a semi ring under these two oper-
ations, however, this is a boring object, since isomorphism classes of
vector spaces are determined by their dimension.

However, if we start with an arbitrary ring, and we restrict to good
(projective) finitely generated modules, we obtain

K0(R)

the K-theory group of the ring R. The subscript is referring to the
existence of higher K-theory groups. This is in fact the beginning of
the rich subject of algebraic K-theory.
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4. Topological K-theory

We now repeat the same procedure with vector bundles. First, we
define the tensor product of vector bundles. Given ξ and ξ′, we define
ξ ⊗ ξ′ to be the new vector bundle whose fibre is

(ξ ⊗ ξ′)b = ξb ⊗ ξ′b.

So Vect(B) is a semi ring under Whitney sum and tensor product
with

0 = [ε0]

1 = [ε1].

where

ε1 : B ×R→ B,

is just given by projection to the first factor.
Unfortunately, we have been keeping B fixed this whole time. We

need an aside

Remark 7.8 (Aside on Categories). A category is a field of mathe-
matics. It has objects, say, spaces or groups, and maps between a pair
of objects. We write X, Y , · · · for the objects, and C(X, Y ) for the set
of maps between these objects.

We have composition maps

C(Y, Z)× C(X, Y )→ C(X,Z)

which satisfy associativity, and we have chosen identities

idX ∈ C(X,X).

Now a functor acts on categories

F : C → D

assigning an object FX of D to every object C of C, and acts on mor-
phisms in one of two different ways. A functor can either be covariant

F : C(X, Y )→ D(FX,FY ),

or contravariant

F : C(X, Y )→ D(FY, FX).

We would like to say that K is a contravariant functor from topo-
logical spaces to groups.

Given a continuous map

f : B′ → B
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we will construct a map of rings

K(f) : K(B)→ K(B′).

Further, as in the proof of fundamental theorem of algebra, we would
like for this construction be to homotopy invariant

f ∼= g ⇒ K(f) = K(g).

Given a vector bundle over B, and a map f : B′ → B, we will
construct the pullback of E. Roughly speaking,

E ′ = {(b′, e)|f(b′) = p(e)} ⊂ B′ × E.
We claim that this bundle fits in a commutative diagram

E ′
g //

p

��

E

p′

��
B′

f // B .
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Recall that we defined vector bundles to be surjective maps

E → B

whose fibres
Eb ≡ p−1(b)

are identified with eitherRn orCn. Further, we require a local triviality
condition relative to a cover O of B.

We saw examples such as the Moebius strip, and the tangent and
normal bundles of Sn. However, our goal is to consider

EOn (B),

and
EUn (B),

the sets of equivalence classes of (respectively) real and complex vector
bundles over B. We also introduced

Vect(B),

the set of equivalence classes of bundles of arbitrary (finite) dimension.
Vect(B) is closed under direct sums and tensor products, and is in fact
a semi-ring. We defined

K(B) = KU(B)

to be the Grothendieck group of this semi-ring of complex vector bun-
dles, and

KO(B)

to be the Grothendieck group of real vector bundles.
From the point of view of mathematics in general, KU is more

important, but for an algebraic topologist, KO is a richer object.
We also introduced the notion of categories. One important con-

vention is that we will write an element of C(X, Y ), a map from X to
Y , as an arrow

X → Y.

1TEXed by Mohammed Abouzaid.
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1. A Category of vector bundles

Consider the category Vect whose objects are vector bundles over
arbitrary spaces. We do not take the quotient by equivalence.

A morphism between the vector bundles p and p′ is a commutative
diagram of continuous maps

E
g //

p

��

E ′

p′

��
B

f // B′.

There are two choices here. We can either require that g be a linear
map on each fibre, or, more restrictively, that g induce an isomorphism
on each fibre.

The composition of morphisms

E
g //

p

��

E ′

p′

��

g′ // E ′′

p′′

��
B

f // B′
f ′ // B′′,

is simply given by composing g with g′ and f with f ′

E
g′◦g //

p

��

E ′′

p′′

��
B

f ′◦f // B′′.

In any category, we can formulate the notion of Cartesian product.
Given X and Y objects, the Cartesian product is an object X × Y
together with maps to X and Y satisfying the universal property

X X × Yoo // Y

Z.

ccGGGGGGGGG

;;wwwwwwwww

OO

Not every category has Cartesian products. However, since Cartesian
products exist for sets, it is sometimes possible to construct a Cartesian
product by first taking the Cartesian product of sets, then equipping
it with the appropriate structure.
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We claim that Vect is a category with Cartesian products. Indeed,
we can define the Cartesian product of

D

p

��

E

q

��
A B

to be the map

D × E
p×q

��
A×B,

where the linear structure on the fibres is given by the product of the
linear structures, and local triviality follows by taking the cover of
A × B which consists of products of the open sets of A and B which
are used to prove local triviality of p and q.

Note that in order for this object to be a Cartesian product, we
must allow the maps of vector bundles

D

p

��

D × Eoo

p×q
��

// E

q

��
A A×Boo // B

which are NOT isomorphisms on each fibre. This is a general principle
that requires us to enlarge our categories in order to be able to obtain a
richer structure. Note that we must verify that the universal property
is satisfied for this construction.

We now define pullback in an arbitrary category. Given two maps
p and f in any category, we define their pullback P to be the object
equipped with maps to E and A satisfying the a universal property

Q

��/
//

//
//

//
//

//
//

�� ''OOOOOOOOOOOOOOO

P //

��

E

p

��
A

f // B.

If we let B be a point, then P is the Cartesian product. In the
category of sets, we can map B to a point, and consider the diagram
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P //

��

##

E

p

��

��*
**

**
**

**
**

**
**

**
**

**
*

A× E

{{ww
ww

ww
ww

w

;;wwwwwwwww

A
f //

++VVVVVVVVVVVVVVVVVVVVVVVVVVV B

?,

in particular, the universal property of the Cartesian product implies
that P is equipped with a map to A × E. In the category of sets, we
can in fact define the pullback to be

{(a, e)|f(a) = p(e)} ⊂ (A,E).

We must now prove the existence of pullbacks in Vect. Given a
vector bundle p and a map of topological spaces f , we define f ∗(E) to
be the pullback of topological spaces

f ∗(E)
g //

��

E

p

��
A

f // B

.

Lemma 8.1. f ∗E is a vector bundle.

Proof. Note that

q−1(a) = {(a, e)|f(a) = p(e)} = p−1(f(a)).

So, in particular, the fibres of q are vector spaces. As to local triviality,
we consider a cover O = {U} of open sets U ⊂ B. Now f−1(U) is an
open set in A, and we can construct a trivialization

f−1(U)×Rn //

''NNNNNNNNNNN
q−1f−1(U)

xxqqqqqqqqqq

f−1(U)

by using the trivialization of p. �

Note that this means that given a map f from A to B, we obtain
a well-defined map

En(B)
f∗ // En(A)
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once we check that an isomorphism of vector bundles over B gives an
isomorphism of their pullbacks over A.

Let U be the category of topological spaces (secretly, compact and
connected). And for each n, we have a functor En

U
En // Sets .

In particular, we are assigning not only a set En(B) to every topological
spaces B, but also a map of sets

f ∗ : En(B)→ En(A)

to every map
f : A→ B.

Note that the order was reversed in this procedure. Further, we must
prove that the functor preserves composition (although it reverses the
order in which it’s taken).

We can now make our construction of Whitney sums rigorous. In-
deed, given two bundles p and q over A and B,

D

p

��

E

q

��
A B

the Cartesian product

D × E
p×q

��
A×B,

can be thought of as an external direct sum of vector bundles. If our
bundles are bundles over the same base space we simply pull back this
direct sum over the diagonal

D ⊕ E //

��

D × E
p×q

��
B

∆ // B ×B.
This define the Whitney sum rigorously. We can define tensor products
in the same way, by first defining an external tensor product of
vector bundles, then pulling back this construction along the diagonal.
In general, to check continuity, it is easiest to think of vector bundles
as a set of continuous maps

U ∩ V
φU∩V // GLn(R)
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satisfying an appropriate co-cycle condition. Any continuous opera-
tions on GL(R) yields a natural construction on vector bundles.

Recall that if B is connected,

Vect(B) =
∐
n≥0

En(B).

Note that we have a set valued functor En for each n. By taking their
“disjoint union” we obtain a set valued functor

U Vect // Sets .

Now, Vect(B) had the structure of a semi ring. In fact, given a
map f : A→ B, its pullback

f ∗ : Vect(B)→ Vect(A)

is a map of semi-rings. This entails checking that

f ∗(p⊕ q) ∼= f ∗(p)⊕ f ∗(q)

which can be checked easily at the level of fibres. The same should be
done for the tensor product.

We also have the Grothendieck construction which is a functor from
semi-rings to rings. Indeed, given φ, a map of semi-rings, there exists
a unique map φ̃ making the diagram

R
φ //

i
��

S

j
��

K(R)
φ̃ // K(S)

commute. The existence (and uniqueness) of φ̃ is simply a consequence
of the universal property of K(R). In particular, if A and B are spaces,
and

f : A→ B

is a continuous map, we obtain a map of rings,

K(B)
K(f)

// K(A)

in particular, K is a functor from spaces to rings.

Theorem 8.2. If f ' f ′ : A→ B then

• En(f) = En(f ′)
• Vect(f) = V ect(f ′)
• K(f) = K(f ′).
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This is a surprising (though not difficult to prove) fact. The con-
clusion is the existence of isomorphisms of vector bundles, which is a
rigid notion, while the assumption, that of the existence of a homo-
topy, is a much weaker condition. As a consequence, we will be able to
prove important results in topology. For example, Milnor’s proof that
there are different smooth structures on the n-sphere used cobordism
theory, which is closely related to K-theory. Indeed, the classification
of such structure, uses the homotopy groups of spheres, and relies on
analogous constructions.

Recall that a homotopy from f to f ′ is simply a map

h : A× I → B

such that h(a, 0) = f and h(a, 1) = f ′.

Proof of Theorem 8.2. The idea is to look at h∗(E), which is
a bundle over B × I.

Claim 8.3. For any bundle E ′, there exists a map g of vector bun-
dles

E ′

��

g // E ′

��
A× I r // A× I,

where r(b, t) = (t, 1).

Let us assume the claim holds. If we consider the pull-back, we
obtain a diagram

E ′
g //

$$

��

E ′

��

r∗(E ′)

zzuuuuuuuuu

99tttttttttt

A× I r // A× I.
Now, simply because these are maps of bundles, we can study the

fibres, and conclude that the map

E ′ → r∗E ′

is an isomorphism.
Let us consider the case where E ′ = h∗E; i.e. it is pulled back from

the homotopy. In this case,

h|A×{1} = f ′
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so
r∗E ′ = (f ′)∗E × I → A× I.

In particular, the factor I does not enter in the construction of r∗E ′.
But the claim implies that h∗E ′ is isomorphic to this vector bundle.
Since the same property hold for the restriction to A×{0}, we conclude
that

f ∗(E) ∼= f ′
∗
(E).

�

Preview: On Friday, we will construct spaces BO(n) and BU(n),
and we will show that for real vector bundles,

En ∼= [B,BO(n)]

where the right hand side refers to homotopy classes of maps from B
to BO(n). An analogous statement holds for complex vector bundles.
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We will eventually prove the Bott Periodicity theorem

K(X × S2) ∼= K(X)⊗K(S2).

Using the fact that a vector bundle over a point is just a vector space,
and vector spaces are determined up to isomorphism by their dimen-
sion, we see that

K(?) = Z.

If we choose a point ? ∈ X, the inclusion induces

K(X)
ε // K(?)

which is just recording the dimension of the fibre at ?. We call the
kernel of ε the reduced K-theory K̃(X).

It is a crucial fact that

K̃(S2) ∼= Z.
This can be proved concretely as is done in Atiyah’s book, by using

the cover of S2 by the northern and southern hemisphere. We can also
use a more-homotopy theoretic approach.

Consider X and Y two topological spaces. Consider the set

Maps(X, Y )

of continuous maps from X to Y . We can partition this set into equiv-
alence classes of homotopic maps, where

f ' g

if there exists a map
h : X × I → Y

such that

h ◦ i0 = f

h ◦ i1 = g,

where i0(x) = (x, 0), and i1(x) = (x, 1). One should check that this is
an equivalence relation by proving transitivity, reflexivity, etc.

1TEXed by Mohammed Abouzaid.
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We write [X, Y ] for the quotient of the set of maps by this equiva-
lence relation.

This allows us to define the homotopy category of spaces, whose

• Objects are topological spaces,
• Morphisms are homotopy classes of maps, i.e the set of mor-

phisms from X to Y is [X, Y ].
• Composition is given by choosing representatives of our homo-

topy classes, then composing them as ordinary maps of spaces,
and finally taking the homotopy class of the composite. One
should check that this is independent of the choice of repre-
sentatives.

We are about to prove that

ERn (X),

the set of isomorphism classes of real n-plane bundles over X, can be
identified with

[X,BO(n)],

where BO(n) is a space we are about to construct. A stronger fact is
that the functors En and [ , BO(n)] are naturally isomorphic functors.

Given two contravariant functors

F,G : C → D

a natural transformation

η : F → G

is a “ map between these two functors.” More precisely, for every object
X of C, we have a map

ηX : F (X)→ G(X)

such that for every morphism f : X → Y , the diagram

F (Y )

ηY

��

F (f)
// F (X)

ηX

��
G(Y )

G(f)
// G(X)

,

commutes.
So if we let G(X) = ERn (X), and F (X) = [X,BO(n)], we obtain

contravariant functors from the homotopy category of spaces to sets.
To say that ERn is a functor means that given a continuous map

f : X → Y,
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then we can pull-back bundles from Y to X

f ∗(E)
g //

��

E

p

��
X

f // Y

.

and hence define a map

En(f) : En(Y )→ En(X)

[E] 7→ [f ∗E].

We are now ready to define BO(n). Recall that an inner product on
a real vector space V is a bilinear, symmetric, non-degenerate pairing.
Recall that two vectors are orthogonal if their inner product vanishes.
A subset {bi} of V is said to be orthonormal if

〈bi, bj〉 = δi,j.

In other words, inner products among the vectors bi and bj vanish
unless i = j, in which case the inner product is equal to one.

Let

Vn(Rq) ⊂ Rnq

denote the set of n-tuples of orthonormal vectors in Rq. In particular,
Vn(Rq) inherits a natural topology from the above inclusion. This is
the Stiefel manifold (variety). Note that Vn(Rq) is empty if n > q.

Given an n-tuple of orthonormal vectors, we obtain a basis for an
n dimensional subspace of Rq which is simply their span. In particular

V2(R3)

is simply the set of possible orthonormal bases for planes in R3. Let
us define

Gn(Rq)

to be the set of all n-planes in Rq. When n = 1, we simply recover the
projective space RPq of lines in Rq. We have a map

Vn(Rq)
π // Gn(Rq)

which takes every orthonormal set to the plane that it spans. We
can specify the quotient topology on Gn(Rq) which makes this map
continuous. With this topology, we call Gn(Rq) the Grassmannian, or
the Grassmann manifold.
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On Gn(Rq), we have a natural subundle of the trivial bundle

Gn(Rq)×Rq

��
Gn(Rq).

which as a set is given by

E(γqn) = {(x, v)|v ∈ x}.
Let γqn denote the projection

E(γqn)→ Gn(Rq)

(x, v) 7→ x.

From the point of view of n-plane bundles, the choice of q is arbi-
trary. However, if we embed Rq into Rq+1, we obtain a map

Gn(Rq)→ Gn(Rq+1)

letting q go to infinity, we obtain a space

BO(n) ≡ Gn(R∞).

The right hand side is topologized as an increasing union. This is not
the topology that an analyst would give to R∞. Note that in fact, we
only care about the homotopy type of the space BO(n).

Let us now explain why F (X) = [X,BO(n)] is a functor. This is
in fact a general fact.

Lemma 9.1. If C is any category, and Y is an object of C, then

F (X) ≡ C(X, Y )

is a functor from C to Sets.

Proof. Given
f : X → X ′,

precomposition with f yields a map

C(X ′, Y )→ C(X, Y ).

Associativity of composition of morphisms in C yields the desired prop-
erties of F . �

In general, functors of this type are called representable. The
idea is that Y represents the functor F . In our case, Y will be BO(n).

Note that the bundles E(γqn) glue together to give a bundle

EO(n)
γn // BO(n)
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such that the fibre over every point of BO(n) (which represents an
n-plane in R∞), is simply that n-dimensional vector space.

We define a natural transformation

Φ: [X,BO(n)]→ En(X)

[g : X → BO(n)] 7→ [g∗(γn)].

Recall that [g∗(γn)] is the isomorphism class of the pull-back of the
universal bundle EO(n) over BO(n). This idea of representing functors
is a central idea of mathematics.

Now, given any map

f : X → X ′,

we obtain a commutative diagram

[X ′, BO(n)]

ΦX′
��

f∗≡[f,id]
// [X,BO(n)]

ΦX

��
En(X ′)

f∗≡En(f)
// En(X).

The commutativity of this diagram states that pulling back EO(n)
to X ′ using a map g, then pulling that back to X using f , yields a
bundle which is isomorphic to the pullback of EO(n) by the composite
f ◦ g. This establishes the fact that Φ is a natural transformation. In
fact, we are simply using the general fact that

(f ∗(g∗E) ∼= (g ◦ f)∗E //

��

E

��
X // Y // Z,

which can be checked from the construction of the two bundles on the
top left corner, or by the universal property of pullbacks.

This natural isomorphism of functors gives us two different methods
for studying vector bundles. It remains to prove three things.

• First, if f ' g : X → Y and p : E → Y is an n-plane bundle,
then f ∗E ∼= g∗E.
• Next, Φ is surjective.
• Lastly, Φ is injective.

This will complete the proof that

Φ: [X,BO(n)]→ En(X)

is a natural isomorphism. We begin by proving surjectivity.
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Proof of Surjectivity. The idea is to use a variant of the Whit-
ney embedding theorem. Say M is a manifold embedded in Rq, e.g.
the sphere Sq−1. We can translate the tangent plane at each point to
a plane at the origin, which gives a map

τ(M) //

��

E(γqn)

��

M // Gn(Rq).

which is called the Gauss map of the tangent bundle. If we take every
point to its normal plane, we obtain the Gauss map of the normal
bundle. The idea is to generalize this to arbitrary bundles.

For simplicity, let us assume that our space is compact. This al-
lows us to work with finite covers. Suppose we have such a bundle E
over X. Let O = {U1, . . . , Um} denote the cover over which we have
trivializations

Ui ×Rn //

##GG
GG

GG
GG

GG
p−1(Ui)

{{ww
ww

ww
ww

w

Ui .

Now, recall that E(γqn) ⊂ Gn(Rq)×Rq. So we would like a contin-
uous map of the total space

ĝ : E → Rq

such that the restriction of ĝ to every fibre is an injective linear map.
Using the planes given by the images of the fibres, this would define a
map X → Gn(Rq), and, by construction, we would have a commutative
diagram

E //

��

E(γqn)

��

X // Gn(Rq),

having the property that the top map is an isomorphism on fibres,
which establishes the fact that E is isomorphic to the pullback of the
universal bundle.

We need one fact from point set topology.

Lemma 9.2 (Urysohn’s Lemma). Under appropriate conditions on
the topological space B, there exists a map

λi : B → I

such that λ−1
i ((0, 1]) = Ui.
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Let q = m × n, i.e: the size of the fibre times the number of open
sets in the cover. We think of Rq as

Rn ⊕Rn · · · ⊕Rn

with the ith factor corresponding to Ui. We now define ĝ by

g = (g1, . . . , gm) : E → Rn ⊕Rn · · · ⊕Rn

where
gi(e) = λi(p(e)) · π2(φ−1

Ui
(e))

where π2 is the projection onto the Rn factor of

Ui ×Rn.

Note that gi is clearly a monomorphism on each fibre p−1(Ui) since
it simply identifies every fibre with the corresponding copy of Rn com-
ing from the trivialization φUi

. Since every point lies in some Ui, we
conclude that g is globally a monomorphism on fibres. This completes
the proof of surjactivity of Φ. �

Proof of Injectivity. We must prove that Φ[f ] = Φ[f ′] implies
that f and f ′ are homotopic. Let

E = f ∗(γqn) ∼= f ′
∗
(γqn) = E ′.

We have an isomorphism in the diagram

E ′
α //

��?
??

??
??

? E //

��

E(γqn)

��

X // Gn(Rq),

and we would like to claim that f and f ′ are homotopic. But we know
that the isomorphism class of the pullback is determined by the Gauss
maps. In fact, if the Gauss maps of E and E ′ were linearly independent
at each point, we could simply use the homotopy

ĥ(e, t) = tĝ + (1− t)ĝ′,
which would construct the desired homotopy between f and f ′.

In order to achieve the hypothesis that the Gauss maps of E and
E ′ have linearly independent images, we use two maps

α : R∞ → R∞

eq 7→ e2q

β : R∞ → R∞

eq 7→ e2q+1,
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which are both clearly homotopic to the identity. Note that regardless
of what ĝ and ĝ′ are, the maps αĝ and βĝ′ are necessarily linearly
independent. We can therefore use the above linear homotopy, and
conclude that f and f ′ are homotopic. �
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1. Pullback

Suppose f : X → Y be a continuous map. This induces a map
f ∗ : En(X) → En(Y ), where En(X) denotes the set of isomorphism
classes of n-vector bundles on X. Our goal is to finish the proof of the
following theorem.

Theorem 10.1. Homotopic maps induce isomorphic pullbacks of
vector bundles.

We need some preliminary lemmas.

Lemma 10.2. Set p : E → U × [a, c] with a < b < c. If p|U×[a,b] and
p|U×[b,c] are trivial, then p is trivial.

Proof. The idea is to glue the two trivializations for the sub-
bundles together to explicitly construct a trivialization for the whole
bundle. �

Lemma 10.3. There exists a finite open cover {U1, ..., Un} of B such
that p|Ui×I is trivial for 1 ≤ i ≤ n.

Proof. Use the compactness ofB and an inductive argument using
the previous lemma. �

Proposition 10.4. Suppose p : E → B × I is an n-plane bundle,
where B is compact. Let r : B×I → B×I be defined by r(b, t) = r(b, 1).
Then there exists a map of bundles g : E → E such that the following
diagram commutes.

E

��

g

&&

∼=
##
r∗E

��

// E

p

��
B × I r

// B × I

1These notes were taken and TEXed by Masoud Kamgarpour.
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Thus, E ∼= r∗E.

Proof. Observe that there exists λi : B → I such that λ−1
i (0, 1] =

Ui. Let νi : B → I be defined by νi(b) = λi(b)/max{λ1(b), ..., λm(b)}.
Then we have maxi {vi(b)} = 1. Let

ri(b, t) := (b, max(νib, t)), gi(φi(b, t, v) := φi(b, ri(b, t), v)

Then gi and ri fit into the following commutative diagram.

E

��

gi // E

p

��
B × I ri

// B × I

Then rm ◦ ... ◦ r1 = r and we can define gm ◦ ... ◦ g1 = g. �

Proof. (of Theorem 10.1) Suppose f0 and f1 are maps A → B,
which are homotopic via the homotopy h. Write f0 = h ◦ i0 and f1 =
h ◦ i1 : A→ B. Now by functoriality we have:

f ∗0E = (h ◦ i0)∗E = i∗0h
∗E ∼= i∗0r

∗h∗E ∼= i∗1h
∗E ∼= f ∗1E

�

2. Stably Equivalent Bundles

Write BO(n) as the union ∪qGn(Rn ⊕ Rq). Let in : BO(n) →
BO(n + 1) be the canonical map. (Geometrically this corresponds to
adding ε, the trivial one dimensional bundle).

Definition 10.5. Two vector bundles E and D on X are said to
be stably equivalent if there exists an isomorphism D⊕ εm ∼= E⊕ εn
for some non-negative integers m and n. Let Est(X) be the set of stable
equivalence classes of vector bundles.

Note that if we want to consider based maps, then we add a dis-
joint base point to X, to make it a based space X+. In this case, the
homotopies and the maps we are considering will also be based. Next
let BO = ∪nBO(n). We have:

Theorem 10.6. If X is compact, [X+, BO] ∼= Est(X).

Proof. Because X is compact, the image of any map from X to
BO lands in some BO(n). Now use [X+, BO(n)] ∼= En(X). �

Proposition 10.7. Let X be a compact space. Then for any bundle
E, there exists a bundle D such that E ⊕D is trivial.
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Proof. The idea is to use a Gauss map to construct an orthogonal
complement. (See the section on the sum of tangent bundle and normal
bundle) �

Corollary 10.8. Every element ζ − ν of K(X) can be written of
the form α− q.ε for some integer q and some α ∈ E(X).

Corollary 10.9. Let X be connected and compact. Then, Est(X)
is naturally isomorphic to K̃(X).

Proof. Let ζ − q be an element of K̃(X). Then dimζ = q. Define
a map K̃(X) → Est(X) by ζ − dimζ 7→ [ζ]. It is to see that this is an
isomorphism. �

Corollary 10.10. Under the same assumptions on X we have:

(1) [X+, BO × Z] ∼= KO(X).
(2) [X+, BU × Z] ∼= KU(X).

It is not hard to show that K̃(S2) ∼= Z. This boils down to the fact
that π2(BU) = π2(CP∞) ∼= Z. A surprising and fundamental fact is
the following theorem:

Theorem 10.11. (Bott Periodicity) The canonical map

⊗ : K(X)⊗K(S2)→ K(X × S2)

is an isomorphism.
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Recall that last time we defined the important notion of stable
vector bundles on a topological space X, and showed that for compact
spaces X, we have a canonical isomorphism:

Est(X) = [X+, BO].

Similarly for complex vector bundle on X we have the canonical
isomorphism

K̃(X) = [X+, BU ].

Next observe that the (exterior) tensor product, gives us a map
K(X) ⊗ K(Y ) → K(X × Y ). Bott Periodicity for complex vector
bundles states that this map is an isomorphism for Y = S2. Thus, we
see that it’s fundamental to understand the K-theory of sphere. This
will lead us to the ‘Hopf invariant one’ problem.

1. Digression on representable functors and smash products

Let X∨Y = X×{∗}∪{∗}×Y . Define X∧Y = X×Y/X ∨ Y . X∧Y
is known as the smash product of the spaces X and Y . For example,
S1 ∧ S1 = S2. In fact, it is easy to show that Sm ∧ Sn = Sm+n. (Do
this). This trivial result is at the foundation of the stable homotopy
theory of spheres.

1.1. Cones and Suspension. Let f : X → Y be a continuous
map. We define the cofiber of f , denoted by Cf , to be the topological
space Y ∪f CX, where CX is the cone of X, defined by

CX = X × I/(X × {∗} ∪ {∗} × I).

We thus get a sequence

X → Y → Cf → ΣX → ΣY → ...

This is an ‘exact sequence’ of topological space. Recall that a sequence
of abelian groups is exact if the image of each map is equal to the kernel
of the next.

1These notes were taken and TEXed by Masoud Kamgarpour.
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Example 11.1. The sequence

0→ Z/2→ Z/4→ Z/2→ 0

is an example of a non-split short exact sequence in the category of
abelian groups.

Next consider the contravariant functor Z → [−, Z] applied to the
above exact sequence of topological spaces. Then we get an exact
sequence of based-sets

[X,Z]← [Y, Z]← [Cf, Z]← [ΣX,Z]← ....

Exercise 11.2. Suppose we have a diagram

X

α

��

f // Y

β

��

// Cf

γ

��

// ΣX

��
X

f ′
// Y ′ // Cf ′ // ΣX ′

Such that the left hand square homotopy commutes. Show that there
exists a map γ : Cf → Cf ′ which makes the two right squares homo-
topy commutative. (However, γ is NOT unique, why?)

Note that in the above exact sequence we can replace [ΣX,Z] by the
isomorphic based set [Ci, Z]. Furthermore, one can show that [ΣX,Z]
is a group. Applying this construction twice, one gets that [Σ2X,Z] is
an abelian group. (Exercise! The proofs of these facts are parallels
of the proof that the homotopy groups are actually groups, and that
higher homotopy groups are abelian.)

Next note that the cofibration

X ∨ Y → X × Y → X ∧ Y
gives us an isomorphism:

K(X × Y ) ∼= K(X ∧ Y )⊕K(X)⊕ (Y ).

Using the above isomorphism, it is easy to show that

K̃(Sq) =

{
Z q even

0 q odd

Our goal is to prove Hopf invariant one, which is one of the funda-
mental results in mathematics. Suppose n is an even integer and let
f : S2n−1 → Sn be a map. Denote by X = Cf the cofiber of f . We
attach to this datum a number h(f) known as the Hopf invariant of f .
The exact sequence of spaces

S2n−1 −→ Sn −→ X = Cf −→ S2n −→ Sn−1
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gives rise to maps

K̃(S2n−1) = 0← K̃(Sn) = Zin ← K̃(X) = Za⊕Zb← K̃(S2n) = Zi2n ← K̃(Sn+1) = 0.

Here, a 7→ in and b 7→ i2n. As i2n = i22n = b2 = 0, we see that a2

has to be an integer multiple of b. This multiple is known as the Hopf
invariant of f . Our goal is to sketch the proofs of two theorems. The
first one is easy. The second one is very deep.

Theorem 11.3. Given a map φ : Sn−1× Sn−1 → Sn−1 of bi-degree
(p, q). Then there exists a map f = H(φ) : S2n−1 → Sn such that
h(f) = ±pq.

Theorem 11.4. Hopf Invariant One If f : S2n−1 → Sn has
h(f) = ±1; then, n = 2, 4, or 8.
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Aside: The following theorem is very useful.

Theorem 12.1. F is an equivalence of categories if and only if F
is fully faithful and essentially surjective.

Note however that this result depends on the Axiom of Choice.

1. Division Algebras over R

Let φ : Rn × Rn → Rn be such that φ(x, y) = 0 implies that
x = 0 or y = 0. Assume further that there exists e ∈ Rn such that
φ(e, y) = y = φ(y, e). We have the following surprising theorem.

Theorem 12.2. If φ is as above, then n = 1, 2, 4, or8.

The only known proofs for this purely algebraic result are topolog-
ical. We now sketch a proof of this theorem based on Hopf Invariant
One theorem.

Definition 12.3. Let X be a topological space. X is said to be an
H-space, if there is a continuous multiplication map µ : X ×X → X
and an ‘identity’ element e ∈ X, such that the two maps X → X
given by x 7→ µ(x, e) and x 7→ µ(e, x) are homotopic to the identity by
homotopies based at e.

Exercise: The multiplication φ induces the structure of an H-space
on Sn−1.

Thus, we are reduced to classify which spheres are H-spaces. Let
(p, q) be the bi-degree defined by the following diagram:

Sn−1 × Sn−1
φ // Sn−1

Sn−1

p

88qqqqqqqqqqq

q
88qqqqqqqqqqq

i1i2

OO

1These notes were taken and TEXed by Masoud Kamgarpour.
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Where i1 and i2 are the two inclusions, and p and q are the maps (or
more precisely, the degree of the maps) induced. We have the following
theorem:

Theorem 12.4. If φ : Sn−1 × Sn−1 → Sn−1 is given, and n is odd,
then p = 0 or q = 0.

Proof. φ induces a map on K-theory,

φ∗ : K(Sn−1)→ K(Sn−1 × Sn−1) = K(Sn−1)⊗K(Sn−1).

One can check that

φ∗(k) = p(i⊗ 1) + q(1⊗ j) + r(i⊗ j)

where i, j, k are generators of the appropriate K-groups. Now last time
we saw that i2 = j2 = 0; This shows at once that (φ∗(k))2 = 2pq(i⊗ j).
On the other hand, as k2 = 0, we see that φ∗(k2) = (φ∗)2(k) = 0. It
follows that p = 0 or q = 0. �

2. Towards Hopf Invariant One

From now on we assume n is even and n > 2.

Theorem 12.5. Let φ : Sn−1 × Sn−1 → Sn−1 be given with bi-
degree (p, q). There exists a map f = H(φ) : S2n−1 → Sn such that
h(f) = ±pq.

Proof. To construct f it’s enough to construct a map on the ho-
motopic spaces:

f : CSn−1 × Sn−1 ∪ Sn−1 × CSn−1 −→ ΣSn−1

For this, we write

f([x, t], y) = [φ(x, y), (1 + t)/2], f(x, [y, t]) = [φ(x, y), (1− t)/2]

The essential point is that we have the following commutative dia-
gram:

X

β

��

∆ // X ∧X

Sn ∧ Sn
α∧α

OO

S2n = // S2n

p∧q

OO

It just remains to chase the diagram
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a2 // a⊗ aoo

in ⊗ in

OO

pqi2n

OO

pqin ⊗ inoo

OO

But by the definition of the Hopf invariant pqi2n should map to
pqH(f) in such a commutative diagram. It follows that H(f) = pq. �

2.1. Adams Operations on K-theory. There exists natural ring
homomorphisms ψk : K(X) → K(X) for k a positive integer, satisfy-
ing:

(1) ψ1 = id.
(2) ψp(x) ≡ xp (mod p).
(3) ψk(x) = nkx if x ∈ K̃(S2n).
(4) ψkψl = ψkl = ψlψk.
(5) If ζ is a line bundle, then ψk(ζ) = ζk.

Given these operations, let us see how we can prove Hopf invariant
one:

Theorem 12.6. If h(f) = ±1 then n = 2, 4, or8.

Proof. Let n = 2m. Then φk(a) = kma + µkb, and φk(b) = k2mb.
Furthermore, ψ2(a) ≡ a2 (mod 2). As a2 = h(f)b, we see that

µ2 ≡ h(f) (mod 2).

Now

ψ2ψk(a) = ψ2(kma+ µkb) = 2mkma+ kmµ2b+ 22mµkb.

On the other hand, we have:

ψ2ψk = ψkψ2(a) = ψk(2ma+ µ2b) = 2mkma+ 2mµkb+ b2mµ2b.

It follows that

kmµ2 + 22mµk = 2µk + k2mµ2

which in turn implies that

km(km − 1)µ2 = 2m(2m − 1)µk.
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But now, µ2 is odd; thus, 2m|km − 1 for ALL odd k. The rest
is easy number theory. It is immediate that m has to be even. Let
k = 1 + 2m/2. Then,

km ≡ 1 +m2m/2 (mod 2m).

It follows that
2m|m2m/2

But this last equation is true if and only if m = 2, 4. �



LECTURE 13

Wednesday, August 21

This lecture was mostly review so I shall give outlines and references
to the points in the notes where expanded versions can be found.

1. Vector Bundles

This mostly follows the notes from Lecture 7.
Let p : E → B be a vector bundle. Then we write p−1(b) = Fb ∼= Rn

(or Cn) for the fibre over a point b ∈ B. Vector bundles are locally
trivial meaning that they have an open cover {U} with

U ×Rn
φU //

##GG
GG

GG
GG

GG
p−1(U)

{{xx
xx

xx
xx

x

U

and

U
⋂
V

φ−1
V φU// GLn(R) .

Let M be a manifold. By Whitney’s theorem, there is some q ∈ N
such that we can embed M into Rq. Recall the tangent space τ(M)
and the normal space ν(M) consisting of, respectively, all the tangent
or normal vectors over each point of M . Then

τ(M)⊕ ν(M) ∼= M ×Rq

which is the trivial bundle over M .
We are interested in the collection of all vector bundles over a com-

pact, connected base space B. Define En(B) to be the set of all equiva-
lence classes of n-plane bundles over B. Define Vect(B) = qn≥0En(B).
Notice that Vect(B) is a semiring under⊕, ⊗ with 0 = [ε0] and 1 = [ε1].
It is worth noting that anything we can do to vector spaces, we can do
fibrewise to vector bundles. For example,

(D ⊕ E)b = Db ⊕ Eb (D ⊗ E)b = Db ⊗ Eb.

1TEXed by Emma Smith.
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Applying the Grothendieck construction to Vect(B), in the real case
we denote the result by KO(B) and in the complex case by KU(B) or
simply K(B).

1.1. Lifting vector bundles. Let p : E → B be a vector bundle
and f : A→ B a map of spaces. Then we can define the lift of p to a
vector bundle over A as follows.

{(a, e) | f(a) = p(e)} = f−1(E)

q

��

g // E

p

��
A

f
// B.

Note that q−1(a) ∼= p−1(f(a)) ∼= Rn. Hence, we have

f ∗ : En(B) → En(A)

Vect(B) → Vect(A)

KO(B) → KO(A).

Similarly,

(ff ′)−1(E) ∼= (f ′)−1(f−1(E))

��

// f−1(E)
g //

q

��

E

p

��
A′

f ′ // A
f // B

or in other words, f ′∗f ∗ = (ff ′)∗.

1.2. Universal Bundle. This is almost directly out of A Concise
Course in Algebraic Topology, Chapter 23, Section 1.

Let Vn(Rq) be n-tuples of orthonormal vectors in Rq and Gn(Rq)
be the grassmanian of n-planes in Rq. Then we have

Vn(Rq) � � //

γq
n

��

RN

GnR
q

where γqn sends the n-tuple of vectors to the plane that they span.
There are natural maps increasing each index by adding the canonical
basis vector of the new dimension.

Vn+1(Rn+1 ⊕Rq) oo

��

Vn(Rn ⊕Rq) //

��

Vn(Rn ⊕Rq+1)

��
Gn+1(Rn+1 ⊕Rq) oo Gn(Rn ⊕Rq) // Gn(Rn ⊕Rq+1)
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Define BOn =
⋃
q Gn(Rn ⊕ Rq) and EOn =

⋃
q En(Rn ⊕ Rq) with

γn : EOn → BOn and En(Rn⊕Rq) = {(x, v) | x is an n-plane and v ∈
x a vector}.

Technically, it is usual to assume that B is paracompact, but we
shall require a numerable open cover. This means that there are con-
tinuous maps λU : B → I such that λ−1

U (I) = U and that the cover
is locally finite in the sense that each b ∈ B is a point of only finitely
many open sets in our cover. Any open cover of a paracompact space
has a numerable refinement.

Last time we used the notation [X, Y ] it meant the space of unbased
maps from X to Y . Now we shall change notation. From now on, [X, Y ]
is the space of based homotopy classes of based maps. We also define
X+ = X q {∗}. Hence, [X+, Y ] is the space of unbased homotopy
classes of unbased maps X → Y since the disjoint point is sent to the
basepoint of Y and then X can be mapped anywhere.

Theorem 13.1. Define Φ : [B+, BOn] → En(B)] by taking f :
[B,BOn] 7→ [f ∗γn]. Let t : A → B be any continous map. Then the
following diagram commutes.

En(B) oo Φ
[B+, BOn]

t∗

��

[f ]
_

��
En(A) oo Φ

[A+, BOn] [f ◦ t]

Definition 13.2. A functor F is called representable or repre-
sented by Y if there exists an object Y such that F (−) = [−, Y ].

As an example, the functor En is represented by BOn.

Proof. We need to construct a map (g, f) : E → En of vector
bundles that is an isomorphism on fibres.

E

p

��

g // En(Rr)

��

B
f // Gn(Rr)

It will follow that E is equivalent to f ∗En, thus showing that Φ is
surjective. It suffices to construct a Gauss map ĝ : E → R∞ that is a
linear monomorphism on fibres, since we can then define f(e) be the
image under ĝ of the fibre through e and can define g(e) = (f(e), ĝ(e)).
Going the other way, given a bundle map (g, f) we can define our
Gauss map by ĝ(e) = π2(g(e)) where π2 is projection onto the second
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component. Suppose we have coordinate charts

φi : Ui ×Rn

''OOOOOOOOOOO

∼= // p−1(Ui)

yyrrrrrrrrrr

Ui ⊂ B.

Since B is compact, choose a finite open cover {U1, . . . , Um} and λi :

B → I such that λ−1
i (0, 1] = Ui. Define ĝi(e) =

{
0 if e /∈ p−1(Ui)

λi(e)π2φ
−1(e) if e ∈ p−1(Ui)

.

Take a direct sum of m copies of Rn. Call this new space Rr where
r = mn. Then ĝ(e) = ĝ1(e)⊕ ĝ2(e)⊕ · · · ⊕ ĝm(e).

Given two maps f, f ′ : B → BOn we want Φ[f ] = Φ[f ′]⇒ f ' f ′.
This will give us a map of bundles

E × I //

��

E

��
B × I // B.

Let (f ′)∗EOn = E ′ and f ∗EOn = E. Then look at

E ′
∼=
α

//

��@
@@

@@
@@

@ E //

��

EOn

γn

��
B

f

f ′
// BOn

To get a homotopy between these bundles we need a homotopy between
the corresponding Gauss maps. Let ĝ : E → R∞ and ĝ′ : E ′ → R∞.
Notice that we also have ĝα : E ′ → R∞. Suppose the images of ĝα
and ĝ′ are linearly independent in R∞. Then we can write an explicit
homotopy as

ĥ(e, t) = tĝα(e) + (1− t)ĝ′(e), ĥ : E ′ × I → R∞.

However, if we define χ1 : R∞ → R∞ by ei 7→ e2i and χ2 : R∞ →
R∞ by ei 7→ e2i+1 then χ1ĝα and χ2ĝ

′ will be linearly independent in
R∞. �

Say we have

E

p

��
A

f0∼=f1 // B
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then our functor is homotopy invariant if this implies that f ∗0E
∼= f ∗1E.

Define a map r : B × I → B × I by the rule r((b, t)) = (b, 1). Let
h : f0

∼= f1 be a homotopy. Then

r∗h∗E //

��

h∗E

��
B × I // B × I

but we claim that for any bundle E over B × I there exists a g such
that

E //

��

E

��
B × I // B × I

or in other words, r∗E ' E. Given this claim we have

f ∗0E ' (h ◦ i0)∗E

' i∗0h
∗E

' i∗0r
∗h∗E

' i∗1h
∗E

' f ∗1E

as desired.

Proof of claim. Take a bundle E → U × [a, c]. Then if it is
trivial over U × [a, b] and U × [b, c] then it is trivial over U × [a, c].
Consider then diagrams

U × [a, b]×Rn

��

// p−1(U × [a, b])

vvlllllllllllll
U × [b, c]×Rn

��

// p−1(U × [b, c])

vvlllllllllllll

U × [a, b] U × [b, c]

Now, if we have {U1, . . . , Um} and 0 = a0 < a1 < . . . < aq = 1 such
that Ui × [aj−1, aj] is trivial, fix Ui and apply the above q times. Then
we know that our bundle is trivial over Ui × I. Let ri : I → [ai, 1] for
1 ≤ i ≤ m, and set r = r1 ◦ · · · ◦ rm and g = g1 ◦ · · · ◦ gm. Remember
that we have λi : B → I such that λ−1

i (0, 1] = Ui. Define

νi(b) =
λi(b)

maxλi(b)
≤ 1 maxiνi(b) = 1.

Then we have ri(b, t) = (b,max(νi(b), t)) and gi = id outside p−1(Ui×I),
gi(φi(b, t, v)) = φi(ri(b, t), v) inside p−1(Ui × I). �


