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Introduction

The first year graduate program in mathematics at the University of Chicago
consists of three three-quarter courses, in analysis, algebra, and topology. The first
two quarters of the topology sequence focus on manifold theory and differential
geometry, including differential forms and, usually, a glimpse of de Rham cohomol-
ogy. The third quarter focuses on algebraic topology. I have been teaching the
third quarter off and on since around 1970. Before that, the topologists, including
me, thought that it would be impossible to squeeze a serious introduction to al-
gebraic topology into a one quarter course, but we were overruled by the analysts
and algebraists, who felt that it was unacceptable for graduate students to obtain
their PhDs without having some contact with algebraic topology.

This raises a conundrum. A large number of students at Chicago go into topol-
ogy, algebraic and geometric. The introductory course should lay the foundations
for their later work, but it should also be viable as an introduction to the subject
suitable for those going into other branches of mathematics. These notes reflect
my efforts to organize the foundations of algebraic topology in a way that caters
to both pedagogical goals. There are evident defects from both points of view. A
treatment more closely attuned to the needs of algebraic geometers and analysts
would include Cech cohomology on the one hand and de Rham cohomology and
perhaps Morse homology on the other. A treatment more closely attuned to the
needs of algebraic topologists would include spectral sequences and an array of
calculations with them. In the end, the overriding pedagogical goal has been the
introduction of basic ideas and methods of thought.

Our understanding of the foundations of algebraic topology has undergone sub-
tle but serious changes since I began teaching this course. These changes reflect
in part an enormous internal development of algebraic topology over this period,
one which is largely unknown to most other mathematicians, even those working in
such closely related fields as geometric topology and algebraic geometry. Moreover,
this development is poorly reflected in the textbooks that have appeared over this
period.

Let me give a small but technically important example. The study of gen-
eralized homology and cohomology theories pervades modern algebraic topology.
These theories satisfy the excision axiom. One constructs most such theories ho-
motopically, by constructing representing objects called spectra, and one must then
prove that excision holds. There is a way to do this in general that is no more dif-
ficult than the standard verification for singular homology and cohomology. I find
this proof far more conceptual and illuminating than the standard one even when
specialized to singular homology and cohomology. (It is based on the approxima-
tion of excisive triads by weakly equivalent CW triads.) This should by now be a



2 INTRODUCTION

standard approach. However, to the best of my knowledge, there exists no rigorous
exposition of this approach in the literature, at any level.

More centrally, there now exist axiomatic treatments of large swaths of homo-
topy theory based on Quillen’s theory of closed model categories. While I do not
think that a first course should introduce such abstractions, I do think that the ex-
position should give emphasis to those features that the axiomatic approach shows
to be fundamental. For example, this is one of the reasons, although by no means
the only one, that I have dealt with cofibrations, fibrations, and weak equivalences
much more thoroughly than is usual in an introductory course.

Some parts of the theory are dealt with quite classically. The theory of fun-
damental groups and covering spaces is one of the few parts of algebraic topology
that has probably reached definitive form, and it is well treated in many sources.
Nevertheless, this material is far too important to all branches of mathematics to
be omitted from a first course. For variety, I have made more use of the funda-
mental groupoid than in standard treatments,! and my use of it has some novel
features. For conceptual interest, I have emphasized different categorical ways of
modeling the topological situation algebraically, and I have taken the opportunity
to introduce some ideas that are central to equivariant algebraic topology.

Poincaré duality is also too fundamental to omit. There are more elegant ways
to treat this topic than the classical one given here, but I have preferred to give the
theory in a quick and standard fashion that reaches the desired conclusions in an
economical way. Thus here I have not presented the truly modern approach that
applies to generalized homology and cohomology theories.?

The reader is warned that this book is not designed as a textbook, although
it could be used as one in exceptionally strong graduate programs. Even then, it
would be impossible to cover all of the material in detail in a quarter, or even in a
year. There are sections that should be omitted on a first reading and others that
are intended to whet the student’s appetite for further developments. In practice,
when teaching, my lectures are regularly interrupted by (purposeful) digressions,
most often directly prompted by the questions of students. These introduce more
advanced topics that are not part of the formal introductory course: cohomology
operations, characteristic classes, K-theory, cobordism, etc., are often first intro-
duced earlier in the lectures than a linear development of the subject would dictate.

These digressions have been expanded and written up here as sketches without
complete proofs, in a logically coherent order, in the last four chapters. These
are topics that I feel must be introduced in some fashion in any serious graduate
level introduction to algebraic topology. A defect of nearly all existing texts is
that they do not go far enough into the subject to give a feel for really substantial
applications: the reader sees spheres and projective spaces, maybe lens spaces, and
applications accessible with knowledge of the homology and cohomology of such
spaces. That is not enough to give a real feeling for the subject. I am aware that
this treatment suffers the same defect, at least before its sketchy last chapters.

Most chapters end with a set of problems. Most of these ask for computa-
tions and applications based on the material in the text, some extend the theory
and introduce further concepts, some ask the reader to furnish or complete proofs

1But see R. Brown’s book cited in §2 of the suggestions for further reading.
2That approach derives Poincaré duality as a consequence of Spanier-Whitehead and Atiyah
duality, via the Thom isomorphism for oriented vector bundles.
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omitted in the text, and some are essay questions which implicitly ask the reader
to seek answers in other sources. Problems marked % are more difficult or more
peripheral to the main ideas. Most of these problems are included in the weekly
problem sets that are an integral part of the course at Chicago. In fact, doing the
problems is the heart of the course. (There are no exams and no grades; students
are strongly encouraged to work together, and more work is assigned than a student
can reasonably be expected to complete working alone.) The reader is urged to try
most of the problems: this is the way to learn the material. The lectures focus on
the ideas; their assimilation requires more calculational examples and applications
than are included in the text.

I have ended with a brief and idiosyncratic guide to the literature for the reader
interested in going further in algebraic topology.

These notes have evolved over many years, and I claim no originality for most
of the material. In particular, many of the problems, especially in the more classical
chapters, are the same as, or are variants of, problems that appear in other texts.
Perhaps this is unavoidable: interesting problems that are doable at an early stage
of the development are few and far between. I am especially aware of my debts to
earlier texts by Massey, Greenberg and Harper, Dold, and Gray.

I am very grateful to John Greenlees for his careful reading and suggestions,
especially of the last three chapters. I am also grateful to Igor Kriz for his sugges-
tions and for trying out the book at the University of Michigan. By far my greatest
debt, a cumulative one, is to several generations of students, far too numerous to
name. They have caught countless infelicities and outright blunders, and they have
contributed quite a few of the details. You know who you are. Thank you.






CHAPTER 1

The fundamental group and some of its
applications

We introduce algebraic topology with a quick treatment of standard mate-
rial about the fundamental groups of spaces, embedded in a geodesic proof of the
Brouwer fixed point theorem and the fundamental theorem of algebra.

1. What is algebraic topology?

A topological space X is a set in which there is a notion of nearness of points.
Precisely, there is given a collection of “open” subsets of X which is closed under
finite intersections and arbitrary unions. It suffices to think of metric spaces. In that
case, the open sets are the arbitrary unions of finite intersections of neighborhoods
Ue(z) = {yld(z,y) <e}.

A function p : X — Y is continuous if it takes nearby points to nearby points.
Precisely, p~1(U) is open if U is open. If X and Y are metric spaces, this means
that, for any € X and € > 0, there exists 6 > 0 such that p(Us(z)) C Uc(p(x)).

Algebraic topology assigns discrete algebraic invariants to topological spaces
and continuous maps. More narrowly, one wants the algebra to be invariant with
respect to continuous deformations of the topology. Typically, one associates a
group A(X) to a space X and a homomorphism A(p) : A(X) — A(Y) to a map
p: X — Y one usually writes A(p) = p..

A “homotopy” h : p ~ q between maps p,q : X — Y is a continuous map
h: X x I — Y such that h(z,0) = p(z) and h(z,1) = g(z), where I is the unit
interval [0, 1]. We usually want p, = g. if p ~ ¢, or some invariance property close
to this.

In oversimplified outline, the way homotopy theory works is roughly this.

(1) One defines some algebraic construction A and proves that it is suitably
homotopy invariant.

(2) One computes A on suitable spaces and maps.

(3) One takes the problem to be solved and deforms it to the point that step
2 can be used to solve it.

The further one goes in the subject, the more elaborate become the construc-
tions A and the more horrendous become the relevant calculational techniques.
This chapter will give a totally self-contained paradigmatic illustration of the basic
philosophy. Our construction A will be the “fundamental group.” We will calcu-
late A on the circle S! and on some maps from S* to itself. We will then use the
computation to prove the “Brouwer fixed point theorem” and the “fundamental
theorem of algebra.”
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2. The fundamental group

Let X be a space. Two paths f,g: I — X from z to y are equivalent if they
are homotopic through paths from x to y. That is, there must exist a homotopy
h: I x 1 — X such that

h(s,0) = f(s), h(s,1)=g(s), h(0,t)=2, and h(l,t)=y

for all s,t € I. Write [f] for the equivalence class of f. We say that f is a loop if
f(0) = f(1). Define m1 (X, x) to be the set of equivalence classes of loops that start
and end at z.

For paths f : x — y and g : y — 2, define g - f to be the path obtained by
traversing first f and then g, going twice as fast on each:

f(2s) if0<s<1/2

(9-f)(s) = {9(23—1) if1/2<s<1.

Define f~1 to be f traversed the other way around: f~!(s) = f(1—s). Define ¢, to
be the constant loop at z: ¢,(s) = . Composition of paths passes to equivalence
classes via [g][f] = [g- f]- Tt is easy to check that this is well defined. Moreover, after
passage to equivalence classes, this composition becomes associative and unital. It is
easy enough to write down explicit formulas for the relevant homotopies. It is more
illuminating to draw a picture of the domain squares and to indicate schematically
how the homotopies are to behave on it. In the following, we assume given paths

firx—y, g:y—2 and h:z—w.

h-(g-f)=(h-g)-f

f g h

Co Cuw

Cyg f f Cy
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Moreover, [f~ - f] = [c,] and [f - f~'] = [¢,]. For the first, we have the following
schematic picture and corresponding formula. In the schematic picture,

fe=fl0.4] and  f7' =YL -1

! !

f(2s) if0<s<t/2
h(s,t) = { f(t) ift/2<s<1—t/2
F2—2s) fl—t/2<s<L.

We conclude that 71 (X, z) is a group with identity element e = [¢,] and inverse
elements [f]~! = [f~!]. It is called the fundamental group of X, or the first
homotopy group of X. There are higher homotopy groups m,(X,z) defined in
terms of maps S — X. We will get to them later.

3. Dependence on the basepoint

For a path a : z — v, define y[a] : m (X, z) — 71 (X, y) by v[a][f] = [a-f-a~1].
It is easy to check that «[a] depends only on the equivalence class of a and is a
homomorphism of groups. For a path b: y — z, we see that v[b-a] = y[b] o y[a]. Tt
follows that v[a] is an isomorphism with inverse y[a~!]. For a path b:y — x, we
have y[b - a][f] = [b- a][f][(b- a)~!]. If the group m1(X,z) happens to be Abelian,
which may or may not be the case, then this is just [f]. By taking b = (a’)~! for
another path a’ : x — y, we see that, when m1 (X, x) is Abelian, v[a] is independent
of the choice of the path class [a]. Thus, in this case, we have a canonical way to
identify m (X, ) with 71 (X, y).

4. Homotopy invariance

For a map p : X — Y, define p,. : m(X,2) — m(Y,p(x)) by p«f] =
[p o f], where p o f is the composite of p with the loop f : I — X. Clearly
P« is a homomorphism. The identity map id : X — X induces the identity
homomorphism. For a map ¢: Y — Z, g, o p. = (g o p)s.

Now suppose given two maps p,q : X — Y and a homotopy h : p ~ q. We
would like to conclude that p, = g., but this doesn’t quite make sense because
homotopies needn’t respect basepoints. However, the homotopy h determines the
path a : p(z) — q(z) specified by a(t) = h(x,t), and the next best thing happens.
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PROPOSITION. The following diagram is commutative:
T (X, l‘)

m (Y, p(x)) m (Y, q()).

7vlal

PROOF. Let f: I — X be aloop at x. We must show that go f is equivalent
toa-(po f)-a~t. It is easy to check that this is equivalent to showing that Cp(z) 18
equivalent to a=!-(go f)~!-a-(po f). Define j : I x I — Y by j(s,t) = h(f(s),t).
Then

J(s,0) =(po f)(s), J(s,1)=(qo f)(s), and j(0,t) =a(t) =j(1,1).
Note that j(0,0) = p(z). Schematically, on the boundary of the square, j is

qof

pof

Thus, going counterclockwise around the boundary starting at (0,0), we traverse
at-(qgof)™t-a-(pof). The map j induces a homotopy through loops between
this composite and c,,). Explicitly, a homotopy k is given by k(s,t) = j(r:(s)),
where 1 : I — I X I maps successive quarter intervals linearly onto the edges of
the bottom left subsquare of I x I with edges of length ¢, starting at (0,0):

5. Calculations: 7;(R) =0 and 71(S!) = Z

Our first calculation is rather trivial. We take the origin 0 as a convenient
basepoint for the real line R.

LEMMA. m(R,0) =0.

PROOF. Define k : R x I — R by k(s,t) = (1 — t)s. Then k is a homotopy
from the identity to the constant map at 0. For a loop f : I — R at 0, define
h(s,t) = k(f(s),t). The homotopy h shows that f is equivalent to cg. O

Consider the circle S! to be the set of complex numbers = y + iz of norm 1,
y? + 22 = 1. Observe that S! is a group under multiplication of complex numbers.
It is a topological group: multiplication is a continuous function. We take the
identity element 1 as a convenient basepoint for S'.

THEOREM. 71(S1,1) = Z.
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PRrROOF. For each integer n, define a loop f,, in St by f.(s) = e2™"%. This is
the composite of the map I — S! that sends s to €2™** and the nth power map on
S1: if we identify the boundary points 0 and 1 of I, then the first map induces the
evident identification of I/0I with S'. It is easy to check that [fi][fn] = [fmtnl,
and we define a homomorphism i : Z — m1(S%,1) by i(n) = [f,]. We claim that
i is an isomorphism. The idea of the proof is to use the fact that, locally, S looks
just like R.

Define p : R — S by p(s) = 2™, Observe that p wraps each interval [n, n+1]
around the circle, starting at 1 and going counterclockwise. Since the exponential
function converts addition to multiplication, we easily check that f,, = po fn, where
fn is the path in R defined by f,(s) = sn.

This lifting of paths works generally. For any path f: I — S with f(0) =1,
there is a unique path f : I — R such that f(0) = 0 and po f = f. To see
this, observe that the inverse image in R of any small connected neighborhood in
St is a disjoint union of a copy of that neighborhood contained in each interval
(r+n,r+mn+1) for some r € [0,1). Using the fact that I is compact, we see
that we can subdivide I into finitely many closed subintervals such that f carries
each subinterval into one of these small connected neighborhoods. Now, proceeding
subinterval by subinterval, we obtain the required unique lifting of f by observing
that the lifting on each subinterval is uniquely determined by the lifting of its initial
point.

Define a function j : 71(S',1) — Z by j[f] = f(1), the endpoint of the lifted
path. This is an integer since p(f(1)) = 1. We must show that this integer is
independent of the choice of f in its path class [f]. In fact, if we have a homotopy
h : f =~ g through loops at 1, then the homotopy lifts uniquely to a homotopy
h:IxI— R such that ;L(O, 0)=0and po h = h. The argument is just the same
as for f: we use the fact that I x I is compact to subdivide it into finitely many
subsquares such that h carries each into a small connected neighborhood in S*. We
then construct the unique lift h by proceeding subsquare by subsquare, starting at
the lower left, say, and proceeding upward one row of squares at a time. By the
uniqueness of lifts of paths, which works just as well for paths with any starting
point, ¢(t) = h(0,t) and d(t) = h(1,t) specify constant paths since h(0,t) = 1 and
h(1,t) = 1 for all t. Clearly c is constant at 0, so, again by the uniqueness of lifts
of paths, we must have

f(s)=h(s,0) and  §(s) = h(s,1).

But then our second constant path d starts at f(1) and ends at g(1).

Since j[fn] = n by our explicit formula for f,, the composite joi : Z — Z is
the identity. It suffices to check that the function j is one-to-one, since then both ¢
and j will be one-to-one and onto. Thus suppose that j[f] = j[g]. This means that
f(1) = g(1). Therefore g=' - f is a loop at 0 in R. By the lemma, [ - f] = [co].
It follows upon application of p, that

A =1g" f1=[al

Therefore [f] = [¢g] and the proof is complete. O
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6. The Brouwer fixed point theorem

Let D? be the unit disk {y + iz|y? + 2% < 1}. Its boundary is S*, and we let
i: S' — D? be the inclusion. Exactly as for R, we see that m1(D?) = 0 for any
choice of basepoint.

PROPOSITION. There is no continuous map r : D?> — S such that roi = id.

PROOF. If there were such a map r, then the composite homomorphism

7T1(Sl,1) Z-;>7T1(.D2,1) T—*>7T1(Sl,1)

would be the identity. Since the identity homomorphism of Z does not factor
through the zero group, this is impossible. (|

THEOREM (Brouwer fixed point theorem). Any continuous map
f:D?> — D?
has a fized point.

PROOF. Suppose that f(z) # x for all z. Define r(z) € S! to be the intersec-
tion with S of the ray that starts at f(x) and passes through 2. Certainly r(x) =
if z € S'. By writing an equation for r in terms of f, we see that r is continuous.
This contradicts the proposition. ([

7. The fundamental theorem of algebra

Let ¢ € m1(S',1) be a generator. For a map f : S' — S, define an integer

deg(f) by letting the composite
w1 (51, 1) L (87, 7(1) T mi(57,1)

send ¢ to deg(f)c. Here a is any path f(1) — 1; v[a] is independent of the choice
of [a] since 71(S',1) is Abelian. If f ~ g, then deg(f) = deg(g) by our homotopy
invariance diagram and this independence of the choice of path. Conversely, our
calculation of 71 (S, 1) implies that if deg(f) = deg(g), then f ~ g, but we will not
need that for the moment. It is clear that deg(f) = 0 if f is the constant map at
some point. It is also clear that if f,,(z) = 2™, then deg(f,) = n: we built that fact
into our proof that 71(S!,1) = Z.

THEOREM (Fundamental theorem of algebra). Let
fl@)=a"+cz" "+ epmt

be a polynomial with complex coefficients c;, where n > 0. Then there is a complex
number x such that f(x) = 0. Therefore there are n such complex numbers (counted
with multiplicities).

PRrROOF. Using f(z)/(x—c) for aroot ¢, we see that the last statement will follow
by induction from the first. We may as well assume that f(z) # 0 for z € S*. This
allows us to define f : S1 — S by f(z) = f(x)/|f(z)]. We proceed to calculate
deg(f). Suppose first that f(z) # 0 for all 2 such that |z| < 1. This allows us to
define h : S' x I — S by h(x,t) = f(tx)/|f(tx)|. Then h is a homotopy from the

constant map at £(0)/|£(0)| to f, and we conclude that deg(f) = 0. Suppose next
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that f(z) # 0 for all z such that |z| > 1. This allows us to define j : S* x [ — S*
by j(z,t) = k(x,t)/|k(x,t)|, where

E(x,t) = t"f(x/t) = 2™ + t(cra™ ' +tegx™ 2 4 -+t 1ey,).

Then j is a homotopy from f, to f , and we conclude that deg( f) =n. One of our
suppositions had better be false! O

It is to be emphasized how technically simple this is, requiring nothing remotely
as deep as complex analysis. Nevertheless, homotopical proofs like this are relatively
recent. Adequate language, elementary as it is, was not developed until the 1930s.

PROBLEMS

(1) Let p be a polynomial function on C which has no root on S!. Show that
the number of roots of p(z) = 0 with |z| < 1 is the degree of the map
p: St — St specified by p(2) = p(2)/|p(2)].

(2) Show that any map f : S' — S* such that deg(f) # 1 has a fixed point.

(3) Let G be a topological group and take its identity element e as its base-
point. Define the pointwise product of loops a and 8 by (af)(t) =
a(t)B(t). Prove that of is equivalent to the composition of paths - «.
Deduce that 71 (G, e) is Abelian.






CHAPTER 2

Categorical language and the van Kampen
theorem

We introduce categorical language and ideas and use them to prove the van
Kampen theorem. This method of computing fundamental groups illustrates the
general principle that calculations in algebraic topology usually work by piecing
together a few pivotal examples by means of general constructions or procedures.

1. Categories

Algebraic topology concerns mappings from topology to algebra. Category
theory gives us a language to express this. We just record the basic terminology,
without being overly pedantic about it.

A category € consists of a collection of objects, a set € (A, B) of morphisms
(also called maps) between any two objects, an identity morphism id4 € €(A, A)
for each object A (usually abbreviated id), and a composition law

o€ (B,C) x €(A, B) — €(A,C)

for each triple of objects A, B, C. Composition must be associative, and identity
morphisms must behave as their names dictate:

ho(gof)=(hog)of, idof=f, and foid=f
whenever the specified composites are defined. A category is “small” if it has a set
of objects.
We have the category . of sets and functions, the category % of topological
spaces and continuous functions, the category ¢ of groups and homomorphisms,
the category /b of Abelian groups and homomorphisms, and so on.

2. Functors

A functor F : € — 2 is a map of categories. It assigns an object F(A) of
2 to each object A of ¥ and a morphism F(f) : F(A) — F(B) of 2 to each
morphism f: A — B of ¥ in such a way that

F(ida) =idpay and  F(go f) = F(g) o F(f).

More precisely, this is a covariant functor. A contravariant functor F' reverses the
direction of arrows, so that F sends f : A — B to F(f) : F(B) — F(A) and
satisfies F(g o f) = F(f) o F(g). A category € has an opposite category €°P
with the same objects and with €°P(A, B) = ¥ (B, A). A contravariant functor
F:% — 2 is just a covariant functor €°P — 2.

For example, we have forgetful functors from spaces to sets and from Abelian
groups to sets, and we have the free Abelian group functor from sets to Abelian
groups.

13
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3. Natural transformations

A natural transformation a : F© — G between functors ¥ — &2 is a map of
functors. It consists of a morphism a, : F(A) — G(A) for each object A of €
such that the following diagram commutes for each morphism f: A — B of ¥:

F(f)
— >

- -G
G(f)
Intuitively, the maps a4 are defined in the same way for every A.

For example, if F' : .¥ — /b is the functor that sends a set to the free
Abelian group that it generates and U : &b — % is the forgetful functor that
sends an Abelian group to its underlying set, then we have a natural inclusion of
sets S — UF(S). The functors F' and U are left adjoint and right adjoint to each
other, in the sense that we have a natural isomorphism

Ab(F(S), A) = (S, U(A))

for a set S and an Abelian group A. This just expresses the “universal property”
of free objects: a map of sets S — U(A) extends uniquely to a homomorphism of
groups F(S) — A. Although we won’t bother with a formal definition, the notion
of an adjoint pair of functors will play an important role later on.

Two categories ¢ and Z are equivalent if there are functors F': ¥ — 2 and
G : 9 — € and natural isomorphisms FFG — Id and GF' — Id, where the Id
are the respective identity functors.

4. Homotopy categories and homotopy equivalences

Let 7 be the category of spaces X with a chosen basepoint z € X; its mor-
phisms are continuous maps X — Y that carry the basepoint of X to the basepoint
of Y. The fundamental group specifies a functor 7 — ¥, where ¥ is the category
of groups and homomorphisms.

When we have a (suitable) relation of homotopy between maps in a category
%, we define the homotopy category h% to be the category with the same objects
as ¢ but with morphisms the homotopy classes of maps. We have the homotopy
category h7Z/ of unbased spaces. On .7, we require homotopies to map basepoint to
basepoint at all times ¢, and we obtain the homotopy category h.7 of based spaces.
The fundamental group is a homotopy invariant functor on .7, in the sense that it
factors through a functor h.7 — 9.

A homotopy equivalence in % is an isomorphism in h%/. Less mysteriously, a
map f: X — Y is a homotopy equivalence if there is a map g : Y — X such that
both go f ~ id and f o g ~ id. Working in .7, we obtain the analogous notion of
a based homotopy equivalence. Functors carry isomorphisms to isomorphisms, so
we see that a based homotopy equivalence induces an isomorphism of fundamental
groups. The same is true, less obviously, for unbased homotopy equivalences.

ProrosiTION. If f: X — Y is a homotopy equivalence, then
form(X,z) — m(Y, f(2))

is an isomorphism for all x € X.
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PrROOF. Let g : Y — X be a homotopy inverse of f. By our homotopy
invariance diagram, we see that the composites

m(X,z) L5 m (Y, f(2) 25 m(X, (g o f)(@))
and

m(Y.y) L m(X,g(y) 2 m (Y (F 0 9)(y))
are isomorphisms determined by paths between basepoints given by chosen homo-
topies go f ~ id and f o g ~ id. Therefore, in each displayed composite, the first
map is a monomorphism and the second is an epimorphism. Taking y = f(z)
in the second composite, we see that the second map in the first composite is an
isomorphism. Therefore so is the first map. O

A space X is said to be contractible if it is homotopy equivalent to a point.

COROLLARY. The fundamental group of a contractible space is zero.

5. The fundamental groupoid

While algebraic topologists often concentrate on connected spaces with chosen
basepoints, it is valuable to have a way of studying fundamental groups that does
not require such choices. For this purpose, we define the “fundamental groupoid”
II(X) of a space X to be the category whose objects are the points of X and whose
morphisms x — y are the equivalence classes of paths from = to y. Thus the set
of endomorphisms of the object x is exactly the fundamental group m (X, x).

The term “groupoid” is used for a category all morphisms of which are isomor-
phisms. The idea is that a group may be viewed as a groupoid with a single object.
Taking morphisms to be functors, we obtain the category ¢ &2 of groupoids. Then
we may view II as a functor % — Y.

There is a useful notion of a skeleton sk% of a category €. This is a “full”
subcategory with one object from each isomorphism class of objects of ¥, “full”
meaning that the morphisms between two objects of sk% are all of the morphisms
between these objects in %. The inclusion functor J : sk — ¥ is an equivalence
of categories. An inverse functor F' : ¥ — sk% is obtained by letting F'(A)
be the unique object in sk% that is isomorphic to A, choosing an isomorphism
as 1 A — F(A), and defining F(f) = apo foay' : F(A) — F(B) for a
morphism f: A — B in 4. We choose a to be the identity morphism if A is in
sk%, and then F'J = Id; the a4 specify a natural isomorphism « : Id — JF.

A category ¥ is said to be connected if any two of its objects can be connected
by a sequence of morphisms. For example, a sequence A «— B — C connects
A to C, although there need be no morphism A — C. However, a groupoid ¢
is connected if and only if any two of its objects are isomorphic. The group of
endomorphisms of any object C is then a skeleton of 4¥’. Therefore the previous
paragraph specializes to give the following relationship between the fundamental
group and the fundamental groupoid of a path connected space X .

PROPOSITION. Let X be a path connected space. For each point x € X, the
inclusion m (X, x) — TI(X) is an equivalence of categories.

PROOF. We are regarding m1 (X, ) as a category with a single object z, and it
is a skeleton of II(X). O
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6. Limits and colimits

Let & be a small category and let 4 be any category. A Z-shaped diagram
in ¢ is a functor F': 9 — €. A morphism F' — F’ of 9P-shaped diagrams is a
natural transformation, and we have the category 2[%] of Z-shaped diagrams in
%. Any object C' of € determines the constant diagram C that sends each object
of 7 to C and sends each morphism of & to the identity morphism of C.

The colimit, colim F', of a Z-shaped diagram F’ is an object of € together with
a morphism of diagrams ¢ : F' — colim F' that is initial among all such morphisms.
This means that if n : F — A is a morphism of diagrams, then there is a unique
map 7 : colim FF — A in ¥ such that 77 o . = 1. Diagrammatically, this property
is expressed by the assertion that, for each map d : D — D’ in 2, we have a
commutative diagram

(d)

F(D)

The limit of F is defined by reversing arrows: it is an object lim F' of ¥ together
with a morphism of diagrams 7 : lim /' — F' that is terminal among all such
morphisms. This means that if € : A — F' is a morphism of diagrams, then there
is a unique map € : A — lim F' in % such that 7 o £ = £. Diagrammatically, this
property is expressed by the assertion that, for each map d : D — D’ in 2, we
have a commutative diagram

F(d)

F(D’)

If 2 is a set regarded as a discrete category (only identity morphisms), then
colimits and limits indexed on & are coproducts and products indexed on the set
2. Coproducts are disjoint unions in . or %, wedges (or one-point unions) in .7,
free products in ¢, and direct sums in &/b. Products are Cartesian products in all
of these categories; more precisely, they are Cartesian products of underlying sets,
with additional structure. If & is the category displayed schematically as

e%d—>f or dﬁ%dla

where we have displayed all objects and all non-identity morphisms, then the co-
limits indexed on Z are called pushouts or coequalizers, respectively. Similarly, if
2 is displayed schematically as

e——=d=<=—1Ff or d—=d,
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then the limits indexed on Z are called pullbacks or equalizers, respectively.

A given category may or may not have all colimits, and it may have some but
not others. A category is said to be cocomplete if it has all colimits, complete if it
has all limits. The categories ., %, 7, 4, and /b are complete and cocomplete.
If a category has coproducts and coequalizers, then it is cocomplete, and similarly
for completeness. The proof is a worthwhile exercise.

7. The van Kampen theorem

The following is a modern dress treatment of the van Kampen theorem. I should
admit that, in lecture, it may make more sense not to introduce the fundamental
groupoid and to go directly to the fundamental group statement. The direct proof
is shorter, but not as conceptual. However, as far as I know, the deduction of
the fundamental group version of the van Kampen theorem from the fundamental
groupoid version does not appear in the literature in full generality. The proof well
illustrates how to manipulate colimits formally. We have used the van Kampen
theorem as an excuse to introduce some basic categorical language, and we shall
use that language heavily in our treatment of covering spaces in the next chapter.

THEOREM (van Kampen). Let & = {U} be a cover of a space X by path
connected open subsets such that the intersection of finitely many subsets in O is
again in 0. Regard O as a category whose morphisms are the inclusions of subsets
and observe that the functor 11, restricted to the spaces and maps in O, gives a
diagram

ne:0—9&
of groupoids. The groupoid TI(X) is the colimit of this diagram. In symbols,
II(X) = colimpyeq II(U).

PrOOF. We must verify the universal property. For a groupoid ¥ and a map
n : |0 — € of O-shaped diagrams of groupoids, we must construct a map
7 : II(X) — € of groupoids that restricts to ny on II(U) for each U € &. On
objects, that is on points of X, we must define 7(x) = ny(z) for x € U. This is
independent of the choice of U since & is closed under finite intersections. If a path
f @ — y lies entirely in a particular U, then we must define 7[f] = n([f]). Again,
since O is closed under finite intersections, this specification is independent of the
choice of U if f lies entirely in more than one U. Any path f is the composite of
finitely many paths f;, each of which does lie in a single U, and we must define 7j[f]
to be the composite of the 7[f;]. Clearly this specification will give the required
unique map 7], provided that 7 so specified is in fact well defined. Thus suppose
that f is equivalent to g. The equivalence is given by a homotopy h : f ~ g through
paths + — y. We may subdivide the square I x I into subsquares, each of which
is mapped into one of the U. We may choose the subdivision so that the resulting
subdivision of I x {0} refines the subdivision used to decompose f as the composite
of paths f;, and similarly for g and the resulting subdivision of I x {1}. We see

that the relation [f] = [¢] in II(X) is a consequence of a finite number of relations,
each of which holds in one of the TI(U). Therefore 7([f]) = 77([g]). This verifies the
universal property and proves the theorem. (Il

The fundamental group version of the van Kampen theorem “follows formally.”
That is, it is an essentially categorical consequence of the version just proved.
Arguments like this are sometimes called proof by categorical nonsense.
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THEOREM (van Kampen). Let X be path connected and choose a basepoint
x € X. Let O be a cover of X by path connected open subsets such that the
intersection of finitely many subsets in O is again in O and x is in each U € 0.
Regard O as a category whose morphisms are the inclusions of subsets and observe
that the functor mi(—,x), restricted to the spaces and maps in O, gives a diagram

m|0: 0 — 9
of groups. The group m1(X, ) is the colimit of this diagram. In symbols,
m1 (X, x) & colimyeg m (U, ).
We proceed in two steps.
LEMMA. The van Kampen theorem holds when the cover O is finite.

PRrROOF. This step is based on the nonsense above about skeleta of categories.
We must verify the universal property, this time in the category of groups. For a
group G and a map 7 : |0 — G of O-shaped diagrams of groups, we must show
that there is a unique homomorphism 7 : 71 (X, 2) — G that restricts to ny on
m1(U, ). Remember that we think of a group as a groupoid with a single object
and with the elements of the group as the morphisms. The inclusion of categories
J : m(X,x) — II(X) is an equivalence. An inverse equivalence F : II(X) —
m1(X, x) is determined by a choice of path classes z — y for y € X; we choose
¢, when y = x and so ensure that F o J = Id. Because the cover & is finite and
closed under finite intersections, we can choose our paths inductively so that the
path © — y lies entirely in U whenever y is in U. This ensures that the chosen
paths determine compatible inverse equivalences Fy : II(U) — w1 (U, z) to the
inclusions Jy : w1 (U, 2) — TI(U). Thus the functors

(V) —% (U, 2) 22> G

specify an O-shaped diagram of groupoids II|¢ — G. By the fundamental
groupoid version of the van Kampen theorem, there is a unique map of groupoids

&:IX)—G
that restricts to ny o Fyy on II(U) for each U. The composite
(X, 2) L= T(X) —>G

is the required homomorphism 7. It restricts to gy on 71 (U, z) by a little “diagram
chase” and the fact that Fyy o Jy = Id. It is unique because £ is unique. In fact,
if we are given 7 : m(X,x) — G that restricts to ny on each w1 (U,x), then
7o F : TI(X) — G restricts to ny o Fyy on each II(U); therefore £ = 7o F and thus
EoJ =1 ]

PrOOF OF THE VAN KAMPEN THEOREM. We deduce the general case from the
case just proved. Let % be the set of those finite subsets of the cover & that are
closed under finite intersection. For . € %, let Uy be the union of the U in ..
Then .¥ is a cover of Uy to which the lemma applies. Thus

colimpe sy m (U, ) = 1 (Uy, x).

Regard % as a category with a morphism . — 7 whenever Uy C Us. We claim
first that
colimye g m (Us, z) = m (X, ).
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In fact, by the usual subdivision argument, any loop I — X and any equivalence
h : I xI — X between loops has image in some Uy. This implies directly
that 71 (X, z), together with the homomorphisms 71 (Ug,x) — 71 (X, x), has the
universal property that characterizes the claimed colimit. We claim next that

colimyeg m (U, x) 2 colimye s m (Ugy, x),
and this will complete the proof. Substituting in the colimit on the right, we have
colimge gz m (Ug, ) & colimye g colimyes m1 (U, x).

By a comparison of universal properties, this iterated colimit is isomorphic to the
single colimit

colimy, »ye(o,7) m (U, x).

Here the indexing category (&, %) has objects the pairs (U, ) with U € &;
there is a morphism (U,.¥) — (V,.7) whenever both U C V and Uy C Ug.
A moment’s reflection on the relevant universal properties should convince the
reader of the claimed identification of colimits: the system on the right differs
from the system on the left only in that the homomorphisms 71 (U, ) — m1(V, x)
occur many times in the system on the right, each appearance making the same
contribution to the colimit. If we assume known a priori that colimits of groups
exist, we can formalize this as follows. We have a functor ¢ — % that sends U to
the singleton set {U} and thus a functor & — (€, .%) that sends U to (U,{U}).
The functor 7 (—,z) : € — ¥ factors through (&, %), hence we have an induced
map of colimits

colimyeg 71 (U, x) — colimy, »)e (o, 7) T1(U, ).

Projection to the first coordinate gives a functor (&, %) — €. Its composite with
m1(—,x) : 0 — ¥ defines the colimit on the right, hence we have an induced map
of colimits

colim(y, o)e(o,7) m1 (U, ) — colimyeq 71 (U, x).

These maps are inverse isomorphisms. ([l

8. Examples of the van Kampen theorem

So far, we have only computed the fundamental groups of the circle and of
contractible spaces. The van Kampen theorem lets us extend these calculations.
We now drop notation for the basepoint, writing 71 (X)) instead of m (X, x).

PROPOSITION. Let X be the wedge of a set of path connected based spaces X;,
each of which contains a contractible neighborhood V; of its basepoint. Then m1(X)
is the coproduct (= free product) of the groups 71 (X;).

PRroOF. Let U; be the union of X; and the V; for j # i. We apply the van
Kampen theorem with & taken to be the U; and their finite intersections. Since
any intersection of two or more of the U; is contractible, the intersections make no
contribution to the colimit and the conclusion follows. ]

COROLLARY. The fundamental group of a wedge of circles is a free group with
one generator for each circle.
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Any compact surface is homeomorphic to a sphere, or to a connected sum of
tori T? = S x S, or to a connected sum of projective planes RP? = 52 /Z, (where
we write Zg = Z/2Z). We shall see shortly that 71 (RP?) = Z,. We also have the
following observation, which is immediate from the universal property of products.
Using this information, it is an exercise to compute the fundamental group of any
compact surface from the van Kampen theorem.

LEMMA. For based spaces X and Y, m (X xY) 2 7 (X) x 7 (Y).

We shall later use the following application of the van Kampen theorem to prove
that any group is the fundamental group of some space. We need a definition.

DEFINITION. A space X is said to be simply connected if it is path connected
and satisfies m1(X) = 0.

PROPOSITION. Let X = UUV, where U, V', and UNV are path connected open
neighborhoods of the basepoint of X and V is simply connected. Then m (U) —
m1(X) is an epimorphism whose kernel is the smallest normal subgroup of w1 (U)
that contains the image of m (U NV).

PRrROOF. Let N be the cited kernel and consider the diagram

/\\

m(UNV) ) -~ S m(U)/N
\ //7

The universal property gives rise to the map &, and £ is an isomorphism since, by
an easy algebraic inspection, m1(U)/N is the pushout in the category of groups of
the homomorphisms m (UNV) — 7 (U) and m(UNV) — 0. O

PROBLEMS

(1) Compute the fundamental group of the two-holed torus (the compact sur-
face of genus 2 obtained by sewing together two tori along the boundaries
of an open disk removed from each).

(2) The Klein bottle K is the quotient space of S! x I obtained by identifying
(2,0) with (z71,1) for z € S1. Compute 71 (K).

(3) * Let X = {(p,q)lp # —q} C S™ x S™. Define a map f : S® — X by
f(p) = (p,p). Prove that f is a homotopy equivalence.

(4) Let € be a category that has all coproducts and coequalizers. Prove that
% is cocomplete (has all colimits). Deduce formally, by use of opposite
categories, that a category that has all products and equalizers is com-
plete.



CHAPTER 3

Covering spaces

We run through the theory of covering spaces and their relationship to fun-
damental groups and fundamental groupoids. This is standard material, some of
the oldest in algebraic topology. However, I know of no published source for the
use that we shall make of the orbit category &(m(B,b)) in the classification of
coverings of a space B. This point of view gives us the opportunity to introduce
some ideas that are central to equivariant algebraic topology, the study of spaces
with group actions. In any case, this material is far too important to all branches
of mathematics to omit.

1. The definition of covering spaces

While the reader is free to think about locally contractible spaces, weaker con-
ditions are appropriate for the full generality of the theory of covering spaces. A
space X is said to be locally path connected if for any € X and any neighbor-
hood U of x, there is a smaller neighborhood V of x each of whose points can be
connected to x by a path in U. This is equivalent to the seemingly more stringent
requirement that the topology of X have a basis consisting of path connected open
sets. In fact, if X is locally path connected and U is an open neighborhood of a
point z, then the set

V = {y|y can be connected to = by a path in U}

is a path connected open neighborhood of x that is contained in U. Observe that
if X is connected and locally path connected, then it is path connected. Through-
out this chapter, we assume that all given spaces are connected and locally path
connected.

DEFINITION. A map p: E — B is a covering (or cover, or covering space) if
it is surjective and if each point b € B has an open neighborhood V such that each
component of p~1(V) is open in E and is mapped homeomorphically onto V by p.
We say that a path connected open subset V with this property is a fundamental
neighborhood of B. We call E the total space, B the base space, and Fj, = p~*(b)
a fiber of the covering p.

Any homeomorphism is a cover. A product of covers is a cover. The projection
R — S'is a cover. Each f,, : S* — S' is a cover. The projection S® — RP"
is a cover, where the real projective space RP" is obtained from S™ by identifying
antipodal points. If f: A — B is a map (where A is connected and locally path
connected) and D is a component of the pullback of f along p, then p: D — A is
a cover.

21
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2. The unique path lifting property

The following result is abstracted from what we saw in the case of the particular
cover R — S'. Tt describes the behavior of p with respect to path classes and
fundamental groups.

THEOREM (Unique path lifting). Let p: E — B be a covering, letb € B, and
let e, e’ € Fy.
(i) A path f: I — B with f(0) = b lifts uniquely to a path g : I — E such
that g(0) =e and pog = f.
(ii) Fquivalent paths f ~ f' : I — B that start at b lift to equivalent paths
g~g : I — FE that start at e, hence g(1) = ¢'(1).
(iil) ps«:m(E,e) — m1(B,b) is a monomorphism.
(iv) p«(m1(E,€")) is conjugate to p.(m (F,e)).
(v) As e’ runs through Fy, the groups p.(mi(E, ")) run through all conjugates
of p«(m1(E,e)) in m(B,b).

PrOOF. For (i), subdivide I into subintervals each of which maps to a fun-
damental neighborhood under f, and lift f to g inductively by use of the pre-
scribed homeomorphism property of fundamental neighborhoods. For (ii), let
h:IxI — B beahomotopy f ~ f’ through paths b — b’. Subdivide the square
into subsquares each of which maps to a fundamental neighborhood under f. Pro-
ceeding inductively, we see that h lifts uniquely to a homotopy H : I x I — E such
that H(0,0) = e and p o H = h. By uniqueness, H is a homotopy g ~ ¢’ through
paths e — €', where g(1) = ¢’ = ¢’(1). Parts (iii)—(v) are formal consequences of
(i) and (ii), as we shall see in the next section. O

DEFINITION. A covering p : E — B is regular if p.(m(E,e)) is a normal
subgroup of 71(B, b). It is universal if E is simply connected.

As we shall explain in §4, for a universal cover p : E — B, the elements of
F, are in bijective correspondence with the elements of 71 (B, b). We illustrate the
force of this statement.

EXAMPLE. For n > 2, S™ is a universal cover of RP™. Therefore 71 (RP™) has
only two elements. There is a unique group with two elements, and this proves our
earlier claim that m (RP™) = Zs.

3. Coverings of groupoids

Much of the theory of covering spaces can be recast conceptually in terms of
fundamental groupoids. This point of view separates the essentials of the topol-
ogy from the formalities and gives a convenient language in which to describe the
algebraic classification of coverings.

DEFINITION. (i) Let € be a category and z be an object of €. The category
2\% of objects under x has objects the maps f : . — y in €’; for objects f : & — gy
and ¢ : £ — z, the morphisms 7 : f — g in 2\% are the morphisms v : y — z
in ¥ such that yo f = g : x — z. Composition and identity maps are given by
composition and identity maps in 4. When ¥ is a groupoid, v = go f~!, and the
objects of 2\ € therefore determine the category.
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(ii) Let € be a small groupoid. Define the star of =, denoted St(x) or Ste(z),
to be the set of objects of £\%, that is, the set of morphisms of ¥ with source z.
Write € (x,x) = 7(%€, x) for the group of automorphisms of the object x.

(iii) Let & and % be small connected groupoids. A covering p: & — £ is a
functor that is surjective on objects and restricts to a bijection

p: St(e) — St(p(e))

for each object e of &. For an object b of A, let F} denote the set of objects of &
such that p(e) = b. Then p~1(St(b)) is the disjoint union over e € F}, of St(e).

Parts (i) and (ii) of the unique path lifting theorem can be restated as follows.

PROPOSITION. Ifp: E — B is a covering of spaces, then the induced functor
I(p) : II(E) — II(B) is a covering of groupoids.

Parts (iii), (iv), and (v) of the unique path lifting theorem are categorical
consequences that apply to any covering of groupoids, where they read as follows.

PROPOSITION. Let p : & — A be a covering of groupoids, let b be an object
of B, and let e and e’ be objects of Fy.

(i) p:w(&,e) — 7(B,b) is a monomorphism.
(ii) p(w(&,¢€")) is conjugate to p(w(&,e)).
(i) As e’ runs through Fy, the groups p(w(E,e’)) run through all conjugates
of p(n(&,€)) in n(A,b).

PRrOOF. For (i), if g,¢' € n(&,e) and p(g) = p(g’), then g = ¢’ by the injectivity
of p on St(e). For (ii), there is a map g : e — ¢’ since & is connected. Conjugation
by g gives a homomorphism 7(&,e) — (&, e’) that maps under p to conjugation
of w(4,b) by its element p(g). For (iii), the surjectivity of p on St(e) gives that
any f € 7(4%,b) is of the form p(g) for some g € St(e). If €’ is the target of g, then
p(m(&,¢€’)) is the conjugate of p(w(&,e)) by f. O

The fibers F;, of a covering of groupoids are related by translation functions.

DEFINITION. Let p : & — % be a covering of groupoids. Define the fiber
translation functor T' = T'(p) :  — . as follows. For an object b of B, T'(b) = Fy.
For a morphism f : b — V' of B, T(f) : F, — Fy is specified by T(f)(e) = ¢/,
where €’ is the target of the unique g in St(e) such that p(g) = f.

It is an exercise from the definition of a covering of a groupoid to verify that T
is a well defined functor. For a covering space p: E — B and a path f : b — ¥/,
T(f): Fy, — Fy is given by T(f)(e) = g(1) where g is the path in E that starts
at e and covers f.

PROPOSITION. Any two fibers Fy, and Fy of a covering of groupoids have the
same cardinality. Therefore any two fibers of a covering of spaces have the same
cardinality.

PROOF. For f:b— V', T(f): F, — Fy is a bijection with inverse T'(f~1).
(|
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4. Group actions and orbit categories

The classification of coverings is best expressed in categorical language that
involves actions of groups and groupoids on sets.

A (left) action of a group G on a set S is a function G x S — S such that
es = s (where e is the identity element) and (¢'g)s = ¢'(gs) for all s € S. The
isotropy group G of a point s is the subgroup {g|gs = s} of G. An action is free if
gs = s implies g = e, that is, if G5 = e for every s € S.

The orbit generated by a point s is {gs|g € G}. An action is transitive if for
every pair s,s’ of elements of S, there is an element g of G such that gs = s'.
Equivalently, S consists of a single orbit. If H is a subgroup of G, the set G/H
of cosets gH is a transitive G-set. When G acts transitively on a set S, we obtain
an isomorphism of G-sets between S and the G-set G/G; for any fixed s € S by
sending gs to the coset gGs.

The following lemma describes the group of automorphisms of a transitive
G-set S. For a subgroup H of G, let N H denote the normalizer of H in G and define
WH = NH/H. Such quotient groups W H are sometimes called Weyl groups.

LEMMA. Let G act transitively on a set S, choose s € S, and let H = G.
Then W H is isomorphic to the group Autg(S) of automorphisms of the G-set S.

PRrROOF. For n € NH with image 7 € WH, define an automorphism ¢(7) of
S by ¢(7)(gs) = gns. For an automorphism ¢ of S, we have ¢(s) = ns for some
n € G. For h € H, hns = ¢(hs) = ¢(s) = ns, hence n"'hn € Gy = H and
n € NH. Clearly ¢ = ¢(n), and it is easy to check that this bijection between W H
and Autg(.S) is an isomorphism of groups. O

We shall also need to consider G-maps between different G-sets G/H.

LEMMA. A G-map a: G/H — G/K has the form a(gH) = gyK, where the
element v € G satisfies Y *hy € K for allh € H.

PRrOOF. If a(eH) = vK, then the relation
vK = a(eH) = a(hH) = ha(eH) = hvK
implies that y~'hy € K for h € H. (]

DEFINITION. The category €(G) of canonical orbits has objects the G-sets
G/H and morphisms the G-maps of G-sets.

The previous lemmas give some feeling for the structure of &(G) and lead to
the following alternative description.

LEMMA. The category O(QG) is isomorphic to the category 4 whose objects are
the subgroups of G and whose morphisms are the distinct subconjugacy relations
v YHy C K fory€Q.

If we regard G as a category with a single object, then a (left) action of G on a
set S is the same thing as a covariant functor G — .%. (A right action is the same
thing as a contravariant functor.) If Z is a small groupoid, it is therefore natural
to think of a covariant functor T': # — . as a generalization of a group action.
For each object b of &, T restricts to an action of w(4,b) on T'(b). We say that
the functor T is transitive if this group action is transitive for each object b. If #
is connected, this holds for all objects b if it holds for any one object b.
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For example, for a covering of groupoids p : & — %, the fiber translation
functor T restricts to give an action of m(Z,b) on the set F,. For e € Fp, the
isotropy group of e is precisely p(7(&,e)). That is, T(f)(e) = e if and only if the
lift of f to an element of St(e) is an automorphism of e. Moreover, the action
is transitive since there is an isomorphism in & connecting any two points of Fy.
Therefore, as a w(4,b)-set,

F, =2 n(AB,b)/p(r(&,¢)).

DEFINITION. A covering p : & — £ of groupoids is regular if p(7(&,¢e)) is a
normal subgroup of 7(%,b). It is universal if p(7(&,e)) = {e}. Clearly a covering
space is regular or universal if and only if its associated covering of fundamental
groupoids is regular or universal.

A covering of groupoids is universal if and only if 7(%, ) acts freely on Fy, and
then Fj is isomorphic to 7(%,b) as a w(%,b)-set. Specializing to covering spaces,
this sharpens our earlier claim that the elements of Fj, and 71 (B, b) are in bijective
correspondence.

5. The classification of coverings of groupoids

Fix a small connected groupoid # throughout this section and the next. We
explain the classification of coverings of Z. This gives an algebraic prototype for
the classification of coverings of spaces. We begin with a result that should be
called the fundamental theorem of covering groupoid theory. We assume once and
for all that all given groupoids are small and connected.

THEOREM. Letp: & — B be a covering of groupoids, let X be a groupoid,
and let f: Z — P be a functor. Choose a base object xg € 2, let by = f(xo),
and choose ey € Fy,. Then there exists a functor g : ' — & such that g(xg) = eo
and pog = f if and only if

f(@( 2, 20)) C p(n(&, e0))
in w(PB,by). When this condition holds, there is a unique such functor g.

PROOF. If g exists, its properties directly imply that im(f) C im(p). For an
object z of 2" and a map « : xg — x in Z, let & be the unique element of
St(eg) such that p(a) = f(«a). If g exists, g(«) must be @ and therefore g(x) must
be the target T'(f(«))(eo) of & The inclusion f(n(Z,z0)) C p(7(&,ep)) ensures
that T(f(a))(ep) is independent of the choice of «, so that g so specified is a well
defined functor. In fact, given another map o' : zg — x, @~ o’ is an element of
(X2, xo). Therefore

for some ( € (&, e9). Thus

p(ao f) = fla)op(B) = fla)o f(a)™' o f(a') = f(a).

This means that & o 3 is the unique element &' of St(eg) such that p(a’) = f(a/),
and its target is the target of &, as required. ([l
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DEFINITION. A map g : & — &’ of coverings of Z# is a functor g such that
the following diagram of functors is commutative:

g

N

Let Cov(Z) denote the category of coverings of %; when £ is understood, we write
Cov(&, &) for the set of maps & — &’ of coverings of .

&

éal

LEMMA. A map g: & — &' of coverings is itself a covering.

PROOF. The functor g is surjective on objects since, if ¢/ € &’ and we choose
an object e € & and a map f : gle) — €' in &, then ¢ = g(T(p'(f))(e)). The
map g : Ste(e) — Stg(g(e)) is a bijection since its composite with the bijection
P Ste(g(e)) — Sta(p'(g(e))) is the bijection p : Ste(e) — Stz(p(e)). O

The fundamental theorem immediately determines all maps of coverings of %
in terms of group level data.

THEOREM. Letp: & — B and p' : & — B be coverings and choose base
objects b€ B, e € &, and € € &' such that p(e) = b = p'(e'). There exists a map
g: & — &' of coverings with g(e) = €' if and only if

p(r(&,6) € p'(r(8. ),
and there is then only one such g. In particular, two maps of covers g,g9' : & — &’
coincide if g(e) = g'(e) for any one object e € &. Moreover, g is an isomorphism if
and only if the displayed inclusion of subgroups of w(%,b) is an equality. Therefore
& and &' are isomorphic if and only if p(w(&,e)) and p'(w(&’,€')) are conjugate
whenever p(e) = p'(e').

COROLLARY. If it exists, the universal cover of % is unique up to isomorphism
and covers any other cover.

That the universal cover does exist will be proved in the next section. It is
useful to recast the previous theorem in terms of actions on fibers.

THEOREM. Let p : & — B and p' : & — B be coverings, choose a base
object b € B, and let G = w(A,b). If g: & — &' is a map of coverings, then g
restricts to a map F, — F} of G-sets, and restriction to fibers specifies a bijection
between Cov(&,&") and the set of G-maps F, — Fj.

PROOF. Let e € Fy, and f € n(%,b). By definition, fe is the target of the map
f € Ste(e) such that p(f) = f. Clearly g(fe) is the target of g(f) € Ster(g(e)) and
P (9(f)) = p(f) = f. Again by definition, this gives g(fe) = fg(e). The previous
theorem shows that restriction to fibers is an injection on Cov(&,&”"). To show
surjectivity, let o : F, — F] be a G-map. Choose e € Fj and let ¢/ = a(e).
Since a is a G-map, the isotropy group p(7(&, e)) of e is contained in the isotropy
group p'(w(&',€')) of €. Therefore the previous theorem ensures the existence of a
covering map ¢ that restricts to o on fibers. O

DEFINITION. Let Aut(&) C Cov(&, &) denote the group of automorphisms of
a cover &. Note that, since it is possible to have conjugate subgroups H and H’ of
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a group G such that H is a proper subgroup of H’, it is possible to have a map of
covers g : & — & such that g is not an isomorphism.

COROLLARY. Letp : & — A be a covering and choose objects b € A and
e € Fy. Write G = w(A,b) and H = p(w(&,e)). Then Aut(&) is isomorphic to
the group of automorphisms of the G-set Fy, and therefore to the group WH. If p
is reqular, then Aut(&) = G/H. If p is universal, then Aut(&) = G.

6. The construction of coverings of groupoids

We have given an algebraic classification of all possible covers of Z: there is
at most one isomorphism class of covers corresponding to each conjugacy class of
subgroups of w(4,b). We show that all of these possibilities are actually realized.
Since this algebraic result is not needed in the proof of its topological analogue, we
shall not give complete details.

THEOREM. Choose a base object b of B and let G = w(%,b). There is a functor
E(—): O(G) — Cov(AB)

that is an equivalence of categories. For each subgroup H of G, the covering p :
E(G/H) — B has a canonical base object e in its fiber over b such that

p(n(6(G/H),e)) = H.

Moreover, F, = G/H as a G-set and, for a G-map o : G/H — G/K in O(Q),
the restriction of &(a) : &(G/H) — &(G/K) to fibers over b coincides with «.

PROOF. The idea is that, up to bijection, St/ m)(e) must be the same set for
each H, but the nature of its points can differ with H. At one extreme, &(G/G) =
AB, p=1id, e = b, and the set of morphisms from b to any other object b’ is a copy
of m(#,b). At the other extreme, &(G/e) is a universal cover of & and there is
just one morphism from e to any other object e’. In general, the set of objects of
&(G/H) is defined to be Stg(b)/H, the coset of the identity morphism being e.
Here G and hence its subgroup H act from the right on Stx(b) by composition in
AB. We define p : &(G/H) — % on objects by letting p(fH) be the target of f,
which is independent of the coset representative f. We define morphism sets by

E(G/H)(fH, f'H)={f oho fT'he H} C B(p(fH),p(f' H)).

Again, this is independent of the choices of coset representatives f and f’. Compo-
sition and identities are inherited from those of &, and p is given on morphisms by
the displayed inclusions. It is easy to check that p : &(G/H) — % is a covering,
and it is clear that p(n(&(G/H),e)) = H.

This defines the object function of the functor & : €(G) — Cov(Z#). To define
& on morphisms, consider a : G/H — G/K. If a(eH) = gK, then g~ 'Hg C K
and a(fH) = fgK. The functor &(«) : £(G/H) — &(G/K) sends the object
fH to the object a(fH) = fgK and sends the morphism f’oho f~! to the same
morphism of % regarded as f'go g thgo g 'f~!. It is easily checked that each
&(a) is a well defined functor, and that & is functorial in «.

To show that the functor & (—) is an equivalence of categories, it suffices to show
that it maps the morphism set 0(G)(G/H,G/K) bijectively onto the morphism set
Cov(€(G/H),&(G/K)) and that every covering of # is isomorphic to one of the
coverings &(G/H). These statements are immediate from the results of the previous
section. (]
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The following remarks place the orbit category &'(w(4,b)) in perspective by
relating it to several other equivalent categories.

REMARK. Consider the category .#” of functors T : %8 — . and natural
transformations. Let G = 7(4%,b). Regarding G as a category with one object b,
it is a skeleton of %, hence the inclusion G C Z is an equivalence of categories.
Therefore, restriction of functors T to G-sets T'(b) gives an equivalence of categories
from % to the category of G-sets. This restricts to an equivalence between the
respective subcategories of transitive objects. We have chosen to focus on transitive
objects since we prefer to insist that coverings be connected. The inclusion of
the orbit category &'(G) in the category of transitive G-sets is an equivalence of
categories because O(G) is a full subcategory that contains a skeleton. We could
shrink @(G) to a skeleton by choosing one H in each conjugacy class of subgroups
of G, but the resulting equivalent subcategory is a less natural mathematical object.

7. The classification of coverings of spaces

In this section and the next, we shall classify covering spaces and their maps by
arguments precisely parallel to those for covering groupoids in the previous sections.
In fact, applied to the associated coverings of fundamental groupoids, some of the
algebraic results directly imply their topological analogues. We begin with the
following result, which deserves to be called the fundamental theorem of covering
space theory and has many other applications. It asserts that the fundamental
group gives the only “obstruction” to solving a certain lifting problem. Recall our
standing assumption that all given spaces are connected and locally path connected.

THEOREM. Letp: E — B be a covering and let f : X — B be a continuous
map. Choose © € X, let b = f(x), and choose e € F,. There exists a map
g: X — E such that g(x) =e and po g = f if and only if

fe(m (X, 2)) Cpu(mi(E,e€))
in m1(B,b). When this condition holds, there is a unique such map g.

PROOF. If g exists, its properties directly imply that im(f,) C im(p,). Thus
assume that im(f.) C im(p.). Applied to the covering II(p) : II(E) — II(B), the
analogue for groupoids gives a functor II(X) — TI(F) that restricts on objects to
the unique map g : X — FE of sets such that g(z) = e and pog = f. We need only
check that g is continuous, and this holds because p is a local homeomorphism. In
detail, if y € X and g(y) € U, where U is an open subset of E, then there is a
smaller open neighborhood U’ of ¢(y) that p maps homeomorphically onto an open
subset V of B. If W is any path connected neighborhood of y such that f(W) C V,
then g(W) C U’ by inspection of the definition of g. O

DEFINITION. A map g: E — FE’ of coverings over B is a map g such that the
following diagram is commutative:

E— g

N

Let Cov(B) denote the category of coverings of the space B; when B is understood,
we write Cov(E, E') for the set of maps £ — E’ of coverings of B.
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LEMMA. A map g: E — E’ of coverings is itself a covering.

PROOF. The map g is surjective by the algebraic analogue. The fundamental
neighborhoods for g are the components of the inverse images in E’ of the neigh-
borhoods of B which are fundamental for both p and p’. (I

The following remarkable theorem is an immediate consequence of the funda-
mental theorem of covering space theory.

THEOREM. Let p: E — B and p' : E' — B be coverings and choose b € B,
e€ FE, and ¢ € E' such that p(e) =b=p'(¢/). There exists a map g : E — E’ of
coverings with g(e) = €' if and only if

p*(ﬂl (E7 6)) C p;(ﬂl (Elv 6/)),

and there is then only one such g. In particular, two maps of covers g,g' : E — E'
coincide if g(e) = ¢g'(e) for any one e € E. Moreover, g is a homeomorphism if
and only if the displayed inclusion of subgroups of m1(B,b) is an equality. There-
fore E and E' are homeomorphic if and only if p.(m1(E,e)) and p, (w1 (E’,€’)) are
conjugate whenever p(e) = p'(e').

COROLLARY. If it exists, the universal cover of B is unique up to isomorphism
and covers any other cover.

Under a necessary additional hypothesis on B, we shall prove in the next section
that the universal cover does exist.

We hasten to add that the theorem above is atypical of algebraic topology. It
is not usually the case that algebraic invariants like the fundamental group totally
determine the existence and uniqueness of maps of topological spaces with pre-
scribed properties. The following immediate implication of the theorem gives one
explanation.

COROLLARY. The fundamental groupoid functor induces a bijection
Cov(E,E') — Cov(II(E),II(E")).

Just as for groupoids, we can recast the theorem in terms of fibers. In fact,
via the previous corollary, the following result is immediate from its analogue for
groupoids.

THEOREM. Letp: E — B and p’' : E' — B be coverings, choose a basepoint
be B, and let G = 71(B,b). If g: E — E’ is a map of coverings, then g restricts
to a map F, — F} of G-sets, and restriction to fibers specifies a bijection between
Cov(E,E') and the set of G-maps F, — FY,.

DEFINITION. Let Aut(E) C Cov(E, E) denote the group of automorphisms of
a cover F. Again, just as for groupoids, it is possible to have a map of covers
g : F — FE such that g is not an isomorphism.

COROLLARY. Let p: E — B be a covering and choose b € B and e € Fy.
Write G = 71 (B,b) and H = p.(m(FE,e)). Then Aut(E) is isomorphic to the
group of automorphisms of the G-set Fy and therefore to the group WH. If p is
regular, then Aut(F) =2 G/H. If p is universal, then Aut(F) = G.
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8. The construction of coverings of spaces

We have now given an algebraic classification of all possible covers of B: there
is at most one isomorphism class of covers corresponding to each conjugacy class
of subgroups of m1(B,b). We show here that all of these possibilities are actually
realized. We shall first construct universal covers and then show that the existence
of universal covers implies the existence of all other possible covers. Again, while
it suffices to think in terms of locally contractible spaces, appropriate generality
demands a weaker hypothesis. We say that a space B is semi-locally simply con-
nected if every point b € B has a neighborhood U such that 71 (U, b) — m1(B,b)
is the trivial homomorphism.

THEOREM. If B s connected, locally path connected, and semi-locally simply
connected, then B has a universal cover.

PrOOF. Fix a basepoint b € B. We turn the properties of paths that must
hold in a universal cover into a construction. Define F to be the set of equivalence
classes of paths f in B that start at b and define p : E — B by p[f] = f(1).
Of course, the equivalence relation is homotopy through paths from b to a given
endpoint, so that p is well defined. Thus, as a set, E is just Strp)(b), exactly
as in the construction of the universal cover of II(B). The topology of B has a
basis consisting of path connected open subsets U such that 71 (U, u) — 71 (B, u)
is trivial for all w € U. Since every loop in U is equivalent in B to the trivial loop,
any two paths © — o’ in such a U are equivalent in B. We shall topologize E so
that p is a cover with these U as fundamental neighborhoods. For a path f in B
that starts at b and ends in U, define a subset U[f] of E by

ULf] = {lglllg] = [e- f] for some ¢: I — U}

The set of all such U[f] is a basis for a topology on E since if U[f] and U'[f’] are
two such sets and [g] is in their intersection, then

Wlgl c UlfInU[f]

for any open set W of B such that p[g] € W C UNU’. For u € U, there is a unique
[g] in each U[f] such that p[g] = u. Thus p maps U[f] homeomorphically onto U
and, if we choose a basepoint u in U, then p~!(U) is the disjoint union of those
U[f] such that f ends at u. It only remains to show that E is connected, locally
path connected, and simply connected, and the second of these is clear. Give FE
the basepoint e = [¢,]. For [f] € F, define a path f : I — E by f(s) = [f], where
fs(t) = f(st); f is continuous since each f~1(U][g]) is open by the definition of Ulg]
and the continuity of f. Since f starts at e and ends at [f], E is path connected.
Since f4(1) = f(s), po f = f. Thus, by definition,

T[f](e) = [f(1)] = [f].

Restricting attention to loops f, we see that T[f](e) = e if and only if [f] = e as
an element of 71 (B,b). Thus the action of m1(B,b) on F is free and the isotropy
group p.(m1(E,e)) is trivial. O

We shall construct general covers by passage to orbit spaces from the universal
cover, and we need some preliminaries.
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DEFINITION. A G-space X is a space X that is a G-set with continuous action
map G x X — X. Define the orbit space X/G to be the set of orbits {Gz|z € X'}
with its topology as a quotient space of X.

The definition makes sense for general topological groups G. However, our
interest here is in discrete groups G, for which the continuity condition just means
that action by each element of G is a homeomorphism. The functoriality on €(G) of
our construction of general covers will be immediate from the following observation.

LEMMA. Let X be a G-space. Then passage to orbit spaces defines a functor
X/(—-):0G) — .

PRrROOF. The functor sends G/H to X/H and sends a map o : G/H — G/K
to the map X/H — X/K that sends the coset Hz to the coset Ky~ 'z, where a
is given by the subconjugacy relation y"'Hvy C K. (|

The starting point of the construction of general covers is the following descrip-
tion of regular covers and in particular of the universal cover.

PROPOSITION. Let p: E — B be a cover such that Aut(E) acts transitively
on Fy. Then the cover p is regular and E/ Aut(E) is homeomorphic to B.

PRrROOF. For any points e, e’ € Fp, there exists g € Aut(F) such that g(e) = ¢’
and thus p.(m(F,e)) = p«(m1(E,€’)). Therefore all conjugates of p.(m(F,e))
are equal to p.(m1(E,e)) and p.(m1(E,e)) is a normal subgroup of 71(B,b). The
homeomorphism is clear since, locally, both p and passage to orbits identify the
different components of the inverse images of fundamental neighborhoods. O

THEOREM. Choose a basepoint b € B and let G = m1(B,b). There is a functor
E(-): 0(G) — Cov(B)

that is an equivalence of categories. For each subgroup H of G, the covering p :
E(G/H) — B has a canonical basepoint e in its fiber over b such that

p«(m(E(G/H),e)) = H.

Moreover, F, 2 G/H as a G-set and, for a G-map o : G/H — G/K in O(G),
the restriction of E(a) : E(G/H) — E(G/K) to fibers over b coincides with a.

PrROOF. Let p : E — B be the universal cover of B and fix e € E such
that p(e) = b. We have the isomorphism Aut(FE) = m(B,b) given by mapping
g : E — E to the path class [f] € G such that g(e) = T'(f)(e), where T(f)(e) is
the endpoint of the path f that starts at e and lifts f. We identify subgroups of
G with subgroups of Aut(F) via this isomorphism. We define E(G/H) to be the
orbit space E/H and we let ¢ : E — E/H be the quotient map. We may identify
B with E/Aut(E), and inclusion of orbits specifies a map p’ : E/H — B such
that pog=p: E — B. If U C B is a fundamental neighborhood for p and V is
a component of p~}(U) C E, then

p_l(U) = HgEAut(E) gV

Passage to orbits over H simply identifies some of these components, and we see
immediately that both p’ and ¢ are covers. If ¢/ = ¢(e), then p’ maps 71 (E/H,¢’)
isomorphically onto H since, by construction, the isotropy group of ¢’ under the
action of 1 (B, b) is precisely H. Rewriting p’ = p and €’ = e generically, this gives
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the stated properties of the coverings E(G/H). The functoriality on &'(G) follows
directly from the previous lemma.

The functor E(—) is an equivalence of categories since the results of the previous
section imply that it maps the morphism set &(G)(G/H,G/K) bijectively onto the
morphism set Cov(E(G/H), E(G/K)) and that every covering of B is isomorphic
to one of the coverings E(G/H). O

The classification theorems for coverings of spaces and coverings of groupoids
are nicely related. In fact, the following diagram of functors commutes up to natural
isomorphism:

7T1Bb

Cov(B / \&v (B)).

COROLLARY. II: Cov(B) — Cov(II(B)) is an equivalence of categories.

PROBLEMS

In the following two problems, let G be a connected and locally path connected
topological group with identity element e, let p : H — G be a covering, and fix
f € H such that p(f) = e. Prove the following. (Hint: Make repeated use of the
fundamental theorem for covering spaces.)

(1) (a) H has a unique continuous product H x H — H with identity
element f such that p is a homomorphism.
(b) H is a topological group under this product, and H is Abelian if G
is.
(2) (a) The kernel K of p is a discrete normal subgroup of H.
(b) In general, any discrete normal subgroup K of a connected topolog-
ical group H is contained in the center of H.
(c) For k € K, define t(k) : H — H by t(k)(h) = kh. Then k — t(k)
specifies an isomorphism between K and the group Aut(H).

Let X and Y be connected, locally path connected, and Hausdorff. A map
f: X — Y is said to be a local homeomorphism if every point of X has an open
neighborhood that maps homeomorphically onto an open set in Y.

3. Give an example of a surjective local homeomorphism that is not a cov-
ering.

4. *Let f : X — Y be a local homeomorphism, where X is compact. Prove
that f is a (surjective!) covering with finite fibers.

Let X be a G-space, where G is a (discrete) group. For a subgroup H of G,
define
H —{z|hx ==z forall he H} C X;
X*H is the H-fixed point subspace of X. Topologize the set of functions G/H — X

as the product of copies of X indexed on the elements of G/H, and give the set of
G-maps G/H — X the subspace topology.

5. Show that the space of G-maps G/H — X is naturally homeomorphic
to X, In particular, 0(G/H,G/K) = (G/K)"
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6. Let X be a G-space. Show that passage to fixed point spaces, G/H —
XH is the object function of a contravariant functor X(=) : 0(G) — % .






CHAPTER 4

Graphs

We define graphs, describe their homotopy types, and use them to show that
a subgroup of a free group is free and that any group is the fundamental group of
some space.

1. The definition of graphs

We give the definition in a form that will later make it clear that a graph is
exactly a one-dimensional CW complex. Note that the zero-sphere S° is a discrete
space with two points. We think of S° as the boundary of I and so label the points
0 and 1.

DEFINITION. A graph X is a space that is obtained from a (discrete) set X°
of points, called vertices, and a (discrete) set J of functions j : S — X© as the
quotient space of the disjoint union X°II(.J x I) that is obtained by identifying (4,0)
with j(0) and (j,1) with j(1). The images of the intervals {j} x I are called edges.
A graph is finite if it has only finitely many vertices and edges or, equivalently, if
it is a compact space. A graph is locally finite if each vertex is a boundary point
of only finitely many edges or, equivalently, if it is a locally compact space. A
subgraph A of X is a graph A C X with A° ¢ X°. That is, A is the union of some
of the vertices and edges of X.

Observe that a graph is a locally contractible space: any neighborhood of any
point contains a contractible neighborhood of that point. Therefore a connected
graph has all possible covers.

2. Edge paths and trees

An oriented edge k : I — X in a graph X is the traversal of an edge in either
the forward or backward direction. An edge path is a finite composite of oriented
edges k,, with k,11(0) = k,(1). Such a path is reduced if it is never the case that
knt1 is k, with the opposite orientation. An edge path is closed if it starts and
ends at the same vertex (and is thus a loop).

DEFINITION. A tree is a connected graph with no closed reduced edge paths.

A subspace A of a space X is a deformation retract if there is a homotopy
h:X x I — X such that h(z,0) = z, h(a,t) = a, and h(z,1) € A for all x € X,
a € A, and t € I. Such a homotopy is called a deformation of X onto A.

LEMMA. Any vertex vo of a tree T is a deformation retract of T'.

Proor. This is true by induction on the number of edges when T’ is finite since
we can prune the last branch. For the general case, observe that each vertex v lies
in some finite connected subtree T'(v) that also contains vy. Choose an edge path
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a(v) : I — T'(v) connecting v to vg. For an edge j from v to v/, T(v) UT (V') U j
is a finite connected subtree of T. On the square j x I, we define

h:jxI—TUTW)Uj

by requiring h = a(v) on {v} x I, h = a(v’) on {v'} x I, h(x,0) = z and h(z,1) = vy
for all € j, and extending over the interior of the square by use of the simple
connectivity of T'(v) UT(v") U j. As j runs over the edges, these homotopies glue
together to specify a deformation h of T" onto vy. O

A subtree of a graph X is maximal if it is contained in no strictly larger tree.

LEMMA. If a tree T is a subgraph of a graph X, then T is contained in a
mazimal tree. If X is connected, then a tree in X is maximal if and only if it
contains all vertices of X.

PROOF. Since the union of an increasing family of trees in X is a tree, the
first statement holds by Zorn’s lemma. If X is connected, then a tree containing
all vertices is maximal since addition of an edge would result in a subgraph that
contains a closed reduced edge path and, conversely, a tree 1" that does not contain
all vertices is not maximal since a vertex not in 7' can be connected to a vertex in
T by a reduced edge path consisting of edges not in 7. O

3. The homotopy types of graphs

Graph theory is a branch of combinatorics. The homotopy theory of graphs is
essentially trivial, by the following result.

THEOREM. Let X be a connected graph with maximal tree T'. Then the quotient
space X /T is the wedge of one circle for each edge of X not in T, and the quotient
map q: X — X/T is a homotopy equivalence.

PROOF. The first clause is evident. The second is a direct consequence of a
later result (that will be left as an exercise): for a suitably nice inclusion, called a
“cofibration,” of a contractible space T in a space X, the quotient map X — X/T
is a homotopy equivalence. A direct proof in the present situation is longer and
uglier. With the notation in our proof that a vertex vy is a deformation retract
of T via a deformation h, define a loop b; = a(v') - j - a(v)~! at vy for each edge
jtv — v not in T. The b; together specify a map b from X/T =/, St to
X. The composite go b : X/T — X /T is the wedge over j of copies of the loop
Cop - 1d - c;ol : 81 — S' and is therefore homotopic to the identity. To prove that
boq is homotopic to the identity, observe that h is a homotopy id ~ bog on T'. This
homotopy extends to a homotopy H :id ~ bo ¢ on all of X. To see this, we need
only construct H on j x I for an edge j : v — v/ not in T'. The following schematic
description of the prescribed behavior on the boundary of the square makes it clear
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that H exists:

4. Covers of graphs and Euler characteristics

Define the Euler characteristic x(X) of a finite graph X to be V — E, where V
is the number of vertices of X and E is the number of edges. By induction on the
number of edges, x(T') = 1 for any finite tree. The determination of the homotopy
types of graphs has the following immediate implication.

COROLLARY. If X is a connected graph, then m (X) is a free group with one
generator for each edge not in a given mazimal tree. If X is finite, then m (X) is
free on 1 — x(X) generators; in particular, x(X) < 1, with equality if and only if
X is a tree.

THEOREM. If B is a connected graph with vertex set B andp: E — B is a
covering, then E is a connected graph with vertex set E° = p~1(B°) and with one
edge for each edge j of B and point e € Fjy. Therefore, if B is finite and p is a
finite cover whose fibers have cardinality n, then E is finite and x(F) = nx(B).

PRrROOF. Regard an edge j of B as a path ] — B and let k(e) : I — F be
the unique path such that pok = j and k(e)(0) = e, where e € Fj5). We claim
that E is a graph with E° as vertex set and the k(e) as edges. An easy path lifting
argument shows that each point of E — EY is an interior point of exactly one edge,
hence we have a continuous bijection from the graph E°II (K x I)/(~) to E, where
K is the evident set of “attaching maps” S° — E° for the specified edges. This
map is a homeomorphism since it is a local homeomorphism over B. O

5. Applications to groups
The following purely algebraic result is most simply proved by topology.

THEOREM. A subgroup H of a free group G is free. If G is free on k generators
and H has finite index n in G, then H is free on 1 —n + nk generators.

PROOF. Realize G as m1(B), where B is the wedge of one circle for each gen-
erator of G in a given free basis. Construct a covering p : £ — B such that
p«(m(F)) = H. Since E is a graph, H must be free. If G has k generators, then
x(B) =1—k. If [G: H| = n, then F} has cardinality n and x(E) = nx(B).
Therefore 1 — x(E) =1 —n + nk. O

We can extend the idea to realize any group as the fundamental group of some
connected space.

THEOREM. For any group G, there is a connected space X such that m1(X) is
isomorphic to G.
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PROOF. We may write G = F/N for some free group F' and normal subgroup
N. As above, we may realize the inclusion of N in F' by passage to fundamental
groups from a cover p : E — B. Define the (unreduced) cone on E to be CE =
(ExI)/(E x{1}) and define

X =BU,CE/(~),
where (e,0) ~ p(e). Let U and V be the images in X of BII (E x [0,3/4)) and
E x (1/4,1], respectively, and choose a basepoint in E x {1/2}. Since U and UNV

are homotopy equivalent to B and F via evident deformations and V' is contractible,
a consequence of the van Kampen theorem gives the conclusion. ([l

The space X constructed in the proof is called the “homotopy cofiber” of the
map p. It is an important general construction to which we shall return shortly.

PROBLEMS

(1) Let F be a free group on two generators a and b. How many subgroups
of F have index 27 Specify generators for each of these subgroups.

(2) Prove that a non-trivial normal subgroup N with infinite index in a free
group F' cannot be finitely generated.

(3) * Essay: Describe a necessary and sufficient condition for a graph to be
embeddable in the plane.



CHAPTER 5

Compactly generated spaces

We briefly describe the category of spaces in which algebraic topologists cus-
tomarily work. The ordinary category of spaces allows pathology that obstructs
a clean development of the foundations. The homotopy and homology groups of
spaces are supported on compact subspaces, and it turns out that if one assumes
a separation property that is a little weaker than the Hausdorff property, then one
can refine the point-set topology of spaces to eliminate such pathology without
changing these invariants. We shall leave the proofs to the reader, but the wise
reader will simply take our word for it, at least on a first reading: we do not want
to overemphasize this material, the importance of which can only become apparent
in retrospect.

1. The definition of compactly generated spaces

We shall understand compact spaces to be both compact and Hausdorff, fol-
lowing Bourbaki. A space X is said to be “weak Hausdorfl” if g(K) is closed in X
for every map g : K — X from a compact space K into X. When this holds, the
image g(K) is Hausdorff and is therefore a compact subspace of X. This separa-
tion property lies between T; (points are closed) and Hausdorff, but it is not much
weaker than the latter.

A subspace A of X is said to be “compactly closed” if g=1(A) is closed in K for
any map g : K — X from a compact space K into X. When X is weak Hausdorff,
this holds if and only if the intersection of A with each compact subset of X is
closed. A space X is a “k-space” if every compactly closed subspace is closed.

A space X is “compactly generated” if it is a weak Hausdorff k-space. For
example, any locally compact space and any weak Hausdorff space that satisfies
the first axiom of countability (every point has a countable neighborhood basis) is
compactly generated. We have expressed the definition in a form that should make
the following statement clear.

LEMMA. If X is a compactly generated space and 'Y is any space, then a func-
tion f : X — Y is continuous if and only if its restriction to each compact subspace
K of X is continuous.

We can make a space X into a k-space by giving it a new topology in which a
space is closed if and only if it is compactly closed in the original topology. We call
the resulting space kX. Clearly the identity function kX — X is continuous. If
X is weak Hausdorff, then so is kX, hence kX is compactly generated. Moreover,
X and kX then have exactly the same compact subsets.

Write X x.Y for the product of X and Y with its usual topology and write
X XY =kX x.Y). If X and Y are weak Hausdorff, then X x Y = kX x kY. If
X is locally compact and Y is compactly generated, then X xY = X x.Y.
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By definition, a space X is Hausdorff if the diagonal subspace AX = {(z,z)} is
closed in X x. X. The weak Hausdorff property admits a similar characterization.

LEMMA. If X is a k-space, then X is weak Hausdorff if and only if AX is
closed in X x X.

2. The category of compactly generated spaces

One major source of point-set level pathology can be passage to quotient spaces.
Use of compactly generated topologies alleviates this.

PROPOSITION. If X is compactly generated and m : X — Y is a quotient map,
then Y is compactly generated if and only if (m x ©)"Y(AY) is closed in X x X.

The interpretation is that a quotient space of a compactly generated space by a
“closed equivalence relation” is compactly generated. We are particularly interested
in the following consequence.

PROPOSITION. If X and Y are compactly generated spaces, A is a closed sub-
space of X, and f : A — Y is any continuous map, then the pushout Y Uy X is
compactly generated.

Another source of pathology is passage to colimits over sequences of maps
X; — X;4+1. When the given maps are inclusions, the colimit is the union of the
sets X; with the “topology of the union;” a set is closed if and only if its intersection
with each Xj; is closed.

PROPOSITION. If {X;} is a sequence of compactly generated spaces and inclu-
sions X; — X,;y1 with closed images, then colim X; is compactly generated.

We now adopt a more categorical point of view. We redefine % to be the
category of compactly generated spaces and continuous maps, and we redefine 7
to be its subcategory of based spaces and based maps.

Let w7 be the category of weak Hausdorff spaces. We have the functor & :
w% — % , and we have the forgetful functor j :  — w% , which embeds % as
a full subcategory of w% . Clearly

U (X, kY) 2w (jX,Y)

for X € % and Y € w% since the identity map kY — Y is continuous and
continuity of maps defined on compactly generated spaces is compactly determined.
Thus k is right adjoint to j.

We can construct colimits and limits of spaces by performing these construc-
tions on sets: they inherit topologies that give them the universal properties of
colimits and limits in the classical category of spaces. Limits of weak Hausdorff
spaces are weak Hausdorff, but limits of k-spaces need not be k-spaces. We con-
struct limits of compactly generated spaces by applying the functor k to their limits
as spaces. It is a categorical fact that functors which are right adjoints preserve
limits, so this does give categorical limits in %/. This is how we defined X x Y, for
example.

Point-set level colimits of weak Hausdorff spaces need not be weak Hausdorff.
However, if a point-set level colimit of compactly generated spaces is weak Haus-
dorff, then it is a k-space and therefore compactly generated. We shall only be
interested in colimits in those cases where this holds. The propositions above give
examples. In such cases, these constructions give categorical colimits in 7%/.
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From here on, we agree that all given spaces are to be compactly generated,
and we agree to redefine any construction on spaces by applying the functor £ to
it. For example, for spaces X and Y in %, we understand the function space
Map(X,Y) = Y to mean the set of continuous maps from X to Y with the k-
ification of the standard compact-open topology; the latter topology has as basis
the finite intersections of the subsets of the form {f|f(K) C U} for some compact
subset K of X and open subset U of Y. This leads to the following adjointness
homeomorphism, which holds without restriction when we work in the category of
compactly generated spaces.

PROPOSITION. For spaces X, Y, and Z in %, the canonical bijection

is a homeomorphism.

Observe in particular that a homotopy X x I — Y can equally well be viewed
as amap X — Y. These adjoint, or “dual,” points of view will play an important
role in the next two chapters.

PROBLEMS

(1) (a) Any subspace of a weak Hausdorff space is weak Hausdorff.

(b) Any closed subspace of a k-space is a k-space.

(¢) An open subset U of a compactly generated space X is compactly
generated if each point has an open neighborhood in X with closure
contained in U.

(2) * A Tychonoff (or completely regular) space X is a Tj-space (points are
closed) such that for each point € X and each closed subset A such that
x ¢ A, there is a function f : X — I such that f(z) =0 and f(a) =1 if
a € A. Prove the following (e.g., Kelley, General Topology).

(a) A space is Tychonoff if and only if it can be embedded in a cube (a
product of copies of I).

(b) There are Tychonoff spaces that are not k-spaces, but every cube is
a compact Hausdorff space.

(3) Brief essay: In view of Problems 1 and 2, what should we mean by a

“subspace” of a compactly generated space. (We do not want to restrict

the allowable set of subsets.)






CHAPTER 6

Cofibrations

Exact sequences that feature in the study of homotopy, homology, and coho-
mology groups all can be derived homotopically from the theory of cofiber and fiber
sequences that we present in this and the following two chapters. Abstractions of
these ideas are at the heart of modern axiomatic treatments of homotopical algebra
and of the foundations of algebraic K-theory.

The theories of cofiber and fiber sequences illustrate an important, but informal,
duality theory, known as Eckmann-Hilton duality. It is based on the adjunction
between Cartesian products and function spaces. Our standing hypothesis that all
spaces in sight are compactly generated allows the theory to be developed without
further restrictions on the given spaces. We discuss “cofibrations” here and the
“dual” notion of “fibrations” in the next chapter.

1. The definition of cofibrations

DEFINITION. A map i : A — X is a cofibration if it satisfies the homotopy
extension property (HEP). This means that if hoig = f o4 in the diagram

10

A Ax]T

% Y ixid

X—— X x1,
io

then there exists h that makes the diagram commute.

Here io(z) = (z,0). We do not require & to be unique, and it usually isn’t.
Using our alternative way of writing homotopies, we see that the “test diagram”
displayed in the definition can be rewritten in the equivalent form

A—Lsyr

4
[ 7 Po
s

X—=

\ s

where po (&) = £(0).
Pushouts of cofibrations are cofibrations, in the sense of the following result.

We generally write B U, X for the pushout of a given cofibration ¢ : A — X and
amapg:A— B.
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LEMMA. Ifi: A — X is a cofibration and g : A — B is any map, then the
induced map B — B Uy X is a cofibration.

PRrROOF. Notice that (BUg X) x I = (B X I)Ugxiqa (X xI) and consider a typical
test diagram for the HEP. The proof is a formal chase of the following diagram:

10

A AxT

<.

pushout Y pushout ixid
A
|
|

BU, X — '~ (BU, X)x 1

-
-
—
-

—

=

h —

-
—
—

X , X x 1.

0

We first use that A — X is a cofibration to obtain a homotopy h:XxI—Y and
then use the right-hand pushout to see that h and h induce the required homotopy
h. O

2. Mapping cylinders and cofibrations

Although the HEP is expressed in terms of general test diagrams, there is a
certain universal test diagram. Namely, we can let Y in our original test diagram
be the “mapping cylinder”

Mi=XU; (AxI),

which is the pushout of ¢ and iy. Indeed, suppose that we can construct a map r
that makes the following diagram commute:

A— " AxT
i Mi ixid

N
N or
~
~
~

X——Xx1.
)
By the universal property of pushouts, the given maps f and h in our original test
diagram induce a map Mi — Y, and its composite with r gives a homotopy h
that makes the test diagram commute.

A map r that makes the previous diagram commute satisfies r o j = id, where
j:Mi— X x I is the map that restricts to ip on X and toi xid on A x I. As a
matter of point-set topology, left as an exercise, it follows that a cofibration is an
inclusion with closed image.
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3. Replacing maps by cofibrations

We can use the mapping cylinder construction to decompose an arbitrary map
f: X — Y as the composite of a cofibration and a homotopy equivalence. That
is, up to homotopy, any map can be replaced by a cofibration. To see this, recall
that M f =Y Uy (X x I) and observe that f coincides with the composite

XL MfLy,

where j(z) = (x,1) and where r(y) = y on Y and r(x,s) = f(z) on X x I. If
i:Y — M f is the inclusion, then r o4 = id and id ~ i o r. In fact, we can define
a deformation h: M f x I — M f of M f onto i(Y") by setting

hy,t) =y and h((x,s),t) = (z,(1 —1)s).

It is not hard to check directly that j : X — M f satisfies the HEP, and this will
also follow from the general criterion for a map to be a cofibration to which we turn
next.

4. A criterion for a map to be a cofibration

We want a criterion that allows us to recognize cofibrations when we see them.
We shall often consider pairs (X, A) consisting of a space X and a subspace A.
Cofibration pairs will be those pairs that “behave homologically” just like the as-
sociated quotient spaces X/A.

DEFINITION. A pair (X, A) is an NDR-pair (= neighborhood deformation re-
tract pair) if there is a map u : X — I such that «=1(0) = A and a homotopy
h:X x I — X such that hg = id, h(a,t) =afora € Aand t € I, and h(z,1) € A
if u(z) < 1; (X,A) is a DR-pair if u(z) < 1 for all z € X, in which case A is a
deformation retract of X.

LEMMA. If (h,u) and (j,v) represent (X, A) and (Y, B) as NDR-pairs, then
(k,w) represents the “product pair” (X xY, X x BUAXY) as an NDR-pair, where
w(z,y) = min(u(z),v(y)) end

Koy t) = {(h(w,o,j(y,tu(x)/v(y))) if v(y) > u(x)
o (h(z, to(y)/u(2)),i(y, 1)) if uw(z) = v(y).
If (X, A) or (Y, B) is a DR-pair, then so is (X xY, X x BUAXY).

Proor. If v(y) = 0 and v(y) > u(z), then u(z) = 0 and both y € B and
x € A; therefore we can and must understand k(z,y,t) to be (x,y). It is easy to
check from this and the symmetric observation that k is a well defined continuous
homotopy as desired. O

THEOREM. Let A be a closed subspace of X. Then the following are equivalent:
(i) (X, A) is an NDR-pair.

(ii) (X xI,X x{0}UAx1I) is a DR-pair.

(i) X x {0} UA x I is a retract of X x I.

(iv) The inclusion i : A — X is a cofibration.

PROOF. The lemma gives that (i) implies (ii), (ii) trivially implies (iii), and
we have already seen that (iii) and (iv) are equivalent. Assume given a retraction
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r: XXl —Xx{0JUAXI Letm : X xI — X and my: X x I — I be the
projections and define u : X — I by

u(z) = sup{t — mar(x,t)|t € I'}

and h: X x I — X by
h(zx,t) = mr(z,t).

Then (h,u) represents (X, A) as an NDR-pair. Here u~1(0) = A since u(z) = 0
implies that r(z,t) € A x I for t > 0 and thus also for ¢ = 0 since A x I is closed
in X xI. O

5. Cofiber homotopy equivalence

It is often important to work in the category of spaces under a given space
A, and we shall later need a basic result about homotopy equivalences in this
category. We shall also need a generalization concerning homotopy equivalences of
pairs. The reader is warned that the results of this section, although easy enough
to understand, have