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Chapter 1

Representations

1.1 Basic Definitions

Groups are intended to describe symmetries of geometric and other mathemat-
ical objects. Representations are symmetries of some of the most basic objects
in geometry and algebra, namely vector spaces.

Representations have three different aspects — geometric, numerical and
algebraic — and manifest themselves in corresponding form. We begin with
the numerical form.

In a general context we write groups G in multiplicative form. The group
structure (multiplication) is then a map G × G → G, (g, h) 7→ g · h = gh, the
unit element is e or 1, and g−1 is the inverse of g.

An n-dimensional matrix representation of the group G over the field
K is a homomorphism ϕ : G→ GLn(K) into the general linear group GLn(K)
of invertible (n, n)-matrices with entries in K. Two such representations ϕ,ψ
are said to be conjugate if there exists a matrix A ∈ GLn(K) such that the
relation Aϕ(g)A−1 = ψ(g) holds for all g ∈ G. The representation ϕ is called
faithful if ϕ is injective. If K = C,R,Q, we talk about complex, real, and
rational representations.

The group GL1(K) will be identified with the multiplicative group of non-
zero field elements K∗ = K r {0}. In this case we are just considering homo-
morphisms G→ K∗.

Next we come to the geometric form of a representation as a symmetry
group of a vector space. The field K will be fixed.

A representation of G on the K-vector space V , a KG-representation for
short, is a map

ρ : G× V → V, (g, v) 7→ ρ(g, v) = g · v = gv

with the properties:
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(1) g(hv) = (gh)v, ev = v for all g, h ∈ G and v ∈ V .
(2) The left translation lg : V → V, v 7→ gv is a K-linear map for each

g ∈ G.
We call V the representation space. Its dimension as a vector space is the
dimension dimV of the representation (sometimes called the degree of the
representation). The rules (1) are equivalent to lg ◦ lh = lgh and le = idV .
They express the fact that ρ is a group action – see the next section. From
lglg−1 = lgg−1 = le = id we see that lg is a linear isomorphism with inverse
lg−1 .

Occasionally it will be convenient to define a representation as a map

V ×G→ V, (v, g) 7→ vg

with the properties v(hg) = (vh)g and ve = v, and K-linear right translations
rg : v 7→ vg. These will be called right representations as opposed to left
representations defined above. The map rg : v 7→ vg is then the right trans-
lation by g. Note that now rg ◦ rh = rhg (contravariance). If V is a right
representation, then (g, v) 7→ vg−1 defines a left representation. We work with
left representations if nothing else is specified.

One can also use both notions simultaneously. A (G,H)-representation
is a vector space V with the structure of a left G-representation and a right
H-representation, and these structures are assumed to commute (gv)h = g(vh).

A morphism f : V →W between KG-representations is a K-linear map f
which is G-equivariant, i.e., which satisfies f(gv) = gf(v) for g ∈ G and v ∈
V . Morphisms are also called intertwining operators. A bijective morphism
is an isomorphism. The vector space of all morphisms V → W is denoted
HomG(V,W ) = HomKG(V,W ). Finite-dimensional KG-representations and
their morphisms form a category KG-Rep.

Let V be an n-dimensional representation of G over K. Let B be a basis
of V and denote by ϕB(g) ∈ GLn(K) the matrix of lg with respect to B.
Then g 7→ ϕB(g) is a matrix representation of G. Conversely, from a matrix
representation we get in this manner a representation.

(1.1.1) Proposition. Let V,W be representations of G, and B,C bases of
V,W . Then V,W are isomorphic if and only if the corresponding matrix rep-
resentations ϕB , ϕC are conjugate.

Proof. Let f : V → W be an isomorphism and A its matrix with respect to
B,C. The equivariance f ◦ lg = lg ◦ f then translates into AϕB(g) = ϕC(g)A;
and conversely. 2

Conjugate 1-dimensional representations are equal. Therefore the isomor-
phism classes of 1-dimensional representations correspond bijectively to homo-
morphisms G → K∗. The aim of representation theory is not to determine
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matrix representations. But certain concepts are easier to explain with the
help of matrices.

Let V be a representation of G. A sub-representation of V is a subspace
U which is G-invariant, i.e., gu ∈ U for g ∈ G and u ∈ U . A non-zero
representation V is called irreducible if it has no sub-representations other
than {0} and V . A representation which is not irreducible is called reducible.

(1.1.2) Schur’s Lemma. Let V and W be irreducible representations of G.
(1) A morphism f : V →W is either zero or an isomorphism.
(2) If K is algebraically closed then a morphism f : V → V is a scalar

multiple of the identity, f = λ · id.

Proof. (1) Kernel and image of f are sub-representations. If f 6= 0, then the
kernel is different from V hence equal to {0} and the image is different from
{0} hence equal to W .

(2) Algebraically closed means: Non-constant polynomials have a root.
Therefore f has an eigenvalue λ ∈ K (root of the characteristic polynomial).
Let V (λ) be the eigenspace and v ∈ V (λ). Then f(gv) = gf(v) = g(λv) = λgv.
Therefore gv ∈ V (λ), and V (λ) is a sub-representation. By irreducibility,
V = V (λ). 2

(1.1.3) Proposition. An irreducible representation of an abelian group G over
an algebraically closed field is one-dimensional.

Proof. Since G is abelian, the lg are morphisms and, by 1.1.2, multiples of the
identity. Hence each subspace is a sub-representation. 2

(1.1.4) Example. Let Sn be the symmetric group of permutations of
{1, . . . , n}. We obtain a right(!) representation of Sn on Kn by permutation
of coordinates

Kn × Sn → Kn, ((x1, . . . , xn), σ) 7→ (xσ(1), . . . , xσ(n)).

This representation is not irreducible if n > 1. It has the sub-representations
Tn = {(xi) |

∑n
i=1 xi = 0} and D = {(x, . . . , x) | x ∈ K}. 3

Schur’s lemma can be expressed in a different way. Recall that an alge-
bra A over K consists of a K-vector space together with a K-bilinear map
A × A → A, (a, b) 7→ ab (the multiplication of the algebra). The algebra is
called associative (commutative), if the multiplication is associative (commu-
tative). An associative algebra with unit element is therefore a ring with the
additional property that the multiplication is bilinear with respect to the scalar
multiplication in the vector space. In a division algebra (also called skew
field) any non-zero element has a multiplicative inverse. A typical example of
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an associative algebra is the endomorphism algebra HomG(V, V ) of a represen-
tation V ; multiplication is the composition of endomorphisms. Other examples
are the algebra Mn(K) of (n, n)-matrices with entries in K and the polynomial
algebra K[x]. The next proposition is a reformulation of Schur’s lemma.

(1.1.5) Proposition. Let V be an irreducible G-representation. Then the
endomorphism algebra A = HomG(V, V ) is a division algebra. If K is alge-
braically closed, then K → A, λ 7→ λ · id is an isomorphism of K-algebras. 2

Let V be an irreducible G-representation over R. A finite-dimensional divi-
sion algebra over R is one of the algebras R,C,H. We call V of real, complex,
quaternionic type according to the type of its endomorphism algebra.

The third form of a representation — namely a module over the group
algebra — will be introduced later.

(1.1.6) Cyclic groups. The cyclic group of order n is the additive group
Z/nZ = Z/n of integers modulo n. We also use a formal multiplicative notation
for this group Cn = 〈 a | an = 1 〉; this means: a is a generator and the n-th
power is the unit element.

Homomorphisms α : Cn → H into another group H correspond bijectively
to elements h ∈ H such that hn = 1, via a 7→ α(a). Hence there are n
different 1-dimensional representations over the complex numbers C, given by
a 7→ exp(2πit/n), 0 ≤ t < n.

The rotation matrices D(α)

D(α) =
(

cosα − sinα
sinα cosα

)
B =

(
1 0
0 −1

)
satisfy D(α)D(β) = D(α + β) and BD(α)B−1 = D(−α). We obtain a 2-
dimensional real representation ϕt : a 7→ D(2πt/n). The representations ϕt

and ϕ−t = ϕn−t are conjugate. 3

(1.1.7) Dihedral groups. Groups can be presented in terms of generators
and relations. We do not enter the theory of such presentations but consider
an example. Let

D2n = 〈 a, b | an = 1 = b2, bab−1 = a−1 〉.

This means: The group is generated by two elements a and b, and these
generators satisfy the specified relations. The universal property of this
presentation is: The homomorphisms α : D2n → H into any other group
H correspond bijectively to pairs (A = α(a), B = α(b)) in H such that
An = 1 = B2, BAB−1 = A−1.

Thus 1-dimensional representations over C correspond to complex numbers
A,B such that An = B2 = A2 = 1. If n is odd there are two pairs (1,±1); if n
is even there are four pairs (±1,±1).
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A 2-dimensional representation on the R-vector space C is specified by
a · z = λz, b · z = z where λn = 1. Complex conjugation shows that the
representations which correspond to λ and λ are isomorphic. Denote the rep-
resentation obtained from λ = exp(2πit/n) by Vt.

The group D2n has order 2n and is called the dihedral group of this
order. From a geometric viewpoint, D2n is the orthogonal symmetry group of
the regular n-gon in the plane. A faithful matrix representation D2n → O(2) is
obtained by choosing λ = exp(2πi/n). The powers of a correspond to rotations,
the elements atb to reflections. 3

(1.1.8) Example. The real representations ϕt, 1 ≤ t < n/2, of Cn in 1.1.6
are irreducible. A nontrivial sub-representation would be one-dimensional and
spanned by an eigenvector of ϕt(a).

If we consider ϕt as a complex representation, then it is no longer irre-
ducible, since eigenvectors exist. In terms of matrices

PD(α)P−1 =
(

exp(iα) 0
0 exp(−iα)

)
, P =

1√
2

(
1 i
i 1

)
.

The representations Vt, 1 ≤ t < n/2 of D2n in 1.1.7 are irreducible, since they
are already irreducible as representations of Cn. But this time they remain
irreducible when considered as complex representations. The reason is, that
PBP−1 does not preserve the eigenspaces. 3

Problems

1. The dihedral group D2n has the presentation 〈 s, t | s2 = t2 = (st)n = 1 〉.
2. Recall the notion of a semi-direct product of groups and show that D2n is the
semi-direct product of Cn by C2.
3. Let Q4n = 〈 a, b | an = b2, bab−1 = a−1 〉, n ≥ 2. Deduce from the relation
b4 = a2n = 1. Show that Q4n is a group of order 4n. Show that a 7→ exp(πi/n), b 7→ j
induces an isomorphism of Q4n with a subgroup of the multiplicative group of the
quaternions. The group Q4n is called a quaternion group. Show that Q4n has
also the presentation 〈 s, t | s2 = t2 = (st)n 〉. Construct a two-dimensional faithful
irreducible (matrix) representation over C.
4. Let A4 be the alternating group of order 12 (even permutations in S4). Show:
A4 has 3 elements of order 2, 8 elements of order 3. Show that A4 is the semi-direct
product of C2 ×C2 by C3. Show A4 = 〈 a, b | a3 = b3 = (ab)2 = 1 〉; show that s = ab
and t = ba are commuting elements of order 2 which generate a normal subgroup.
Show that the matrices

a =

0@0 0 1
1 0 0
0 1 0

1A b =

0@ 0 −1 0
0 0 1
−1 0 0

1A
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define a representation on R3 as a symmetry group of a regular tetrahedron.
5. A representation of C2 on V amounts to specifying an involution T : V → V , i.e.,
a linear map T with T 2 = id. If the field K has characteristic different from 2 show
that V is the direct sum of the ±1-eigenspaces of T . (Consider the operators 1

2
(1+T )

and 1
2
(1− T ).)

1.2 Group Actions and Permutation Represen-
tations

In this section we collect basic terminology about group actions. We use group
actions to construct the important class of permutation representations.

Let G be a multiplicative group with unit element e. A left action of a
group G on a set X is a map

ρ : G×X → X, (g, x) 7→ ρ(g, x) = g · x = gx

with the properties g(hx) = (gh)x and ex = x for g, h ∈ G and x ∈ X. The
pair (X, ρ) is called a (left) G-set. Each g ∈ G yields the left translation
lg : X → X, x 7→ gx by g. It is a bijection with inverse the left translation by
g−1. An action is called effective, if lg for g 6= e is never the identity. We also
use (right) actions X × G → X, (x, g) 7→ xg. They satisfy (xh)g = x(hg)
and xe = x. Usually we work with left G-actions.

A subset A of a G-set X is called G-stable or G-invariant, if g ∈ G and
a ∈ A implies ga ∈ A.

Recall that we defined a representation as a group action on a vector space
with the additional property that the left translations are linear maps. We now
use group actions to construct representations.

Let S be a finite (left) G-set and denote by KS the vector space with K-
basis S. Thus elements in KS are linear combinations

∑
s∈S λss with λs ∈ K.

The left action of G on S is extended linearly to KS

g · (
∑

s∈S λss) =
∑

s∈S λs(g · s) =
∑

x∈S λg−1xx.

The resulting representation is called the permutation representation of S.
An important example is obtained from the group G = S with left action by
group multiplication. The associated permutation representation is the left
regular representation of the finite group G. Right multiplication leads to
the right regular representation.

Let X be a G-set. Then R = {(x, gx) | x ∈ X, g ∈ G} is an equivalence
relation on X. Let X/G denote the set of equivalence classes. The class of
x is Gx = {gx | g ∈ G} and called the orbit through x. We call X/G the
orbit set or (orbit space) of the G-set X. An action is called transitive, if
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it consists of a single orbit. For systematic reasons it would be better to denote
the orbit set of a left action by G\X. If right and left actions occur, we use
both notations.

A group acts on itself by conjugation G×G→ G, (g, h) 7→ ghg−1. Elements
are conjugate if they are in the same orbit. The orbits are called conjugation
classes. A function on G is called a class function, if it is constant on
conjugacy classes.

Let H be a subgroup of G. We have the set G/H of right cosets gH with
left G-action by left translation

G×G/H → G/H, (k, gH) 7→ kgH.

G-sets of this form are called homogeneous G-sets. Similarly, we have the set
H\G of left cosets Hg with an action by right translation.

We write H ≤ G, if H is a subgroup of G, and H < G, if it is a proper
subgroup. On the set Sub(G) of subgroups of G the relation ≤ is a partial
order.

The group G acts on Sub(G) by conjugation (g,H) 7→ gHg−1 = gH. The
orbit through H consists of the subgroups H of G which are conjugate to H.
We write K ∼ L or K ∼G L, if there exists g ∈ G such that gKg−1 = L. We
denote by (H) the conjugacy class of H. Let Con(G) be the set of conjugacy
classes of subgroups of G. We say H is subconjugate to K in G, if H is
conjugate in G to a subgroup of K. We denote this fact by (H) ≤ (K); and by
(H) < (K), if equality is excluded.

The stabilizer or isotropy group of x ∈ X is the subgroup Gx = {g ∈
G | gx = x}. We have Ggx = gGxg

−1. An action is called free, if all isotropy
groups are trivial. The set of isotropy groups of X is denoted Iso(X).

A family F of subgroups is a subset of Sub(G) which consists of complete
conjugacy classes. If F and G are families, we write F ◦ G for the family of
intersections {K∩L | K ∈ F , L ∈ G}. We call F multiplicative, if F ◦F = F ,
and G is called F-modular, if F◦G ⊂ G. A family is called closed, if it contains
with a group all supergroups, and it is called open, if it contains with a group
all subgroups. Let (F) denote the set of conjugacy classes of F . Suppose
Iso(X) ⊂ F , then we call X an F-set. We denote by X(F) the subset of points
in X with isotropy groups in F .

A G-map f : X → Y between G-sets, also called a G-equivariant map, is
a map which satisfies f(gx) = gf(x) for all g ∈ G and x ∈ X. Left G-sets and
G-equivariant maps form the category G-SET. By passage to orbits, a G-map
f : X → Y induces f/G : X/G → Y/G. The category G-SET of G-sets and
G-maps has products: If (Xj | j ∈ J) is a family of G-sets, then the Cartesian
product

∏
j∈J Xj with so-called diagonal action g(xj) = (gxj) is a product

in this category.
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(1.2.1) Proposition. Let C be a transitive G-set and c ∈ C. Then G/Gc →
C, gGc 7→ gc is a well-defined isomorphism of G-sets (a simple algebraic verifi-
cation). The orbits of a G-set are transitive. Therefore each G-set is isomorphic
to a disjoint sum of homogeneous G-sets. 2

For a G-set X and a subgroup H of G we use the following notations

XH = {x ∈ X | Gx = H},
X(H) = {x ∈ X | (Gx) = (H)}
XH = {x ∈ X | hx = x, h ∈ H},
X>H = XH rXH

X(H) = GXH = {x ∈ X | (H) ≤ (Gx)},
X>(H) = X(H) rX(H).

We call XH the H-fixed point set of X. If f : X → Y is a G-map, then
f(XH) ⊂ Y H . The left translation lg : X → X induces a bijection XH → XK ,
K = gHg−1. The subset X(H) is G-stable; it is called the (H)-orbit bundle
of X.

(1.2.2) Example. The permutation representation KS is always reducible
(|S| > 1). The fixed point set is a non-zero proper sub-representation. The
dimension of (KS)G is |S/G|; a basis of (KS)G consists of the xC =

∑
s∈C s

where C runs through the orbits of S. 3

Suppose X is a right and Y a left H-set. Then X×H Y denotes the quotient
of X×Y with respect to the equivalence relation (xh, y) ∼ (x, hy), h ∈ H. This
is the orbit set of the action (h, (x, y)) 7→ (xh−1, hy) of H on X × Y .

Let G and H be groups. A (G,H)-set X is a set X together with a left G-
action and a right H-action which commute (gx)h = g(xh). If we form X×HY ,
then this set carries an induced G-action g · (x, y) = (gx, y). If f : Y1 → Y2 is
an H-map, then we obtain an induced G-map X ×H f : X ×H Y1 → X ×H Y2.
This construction yields a functor ρ(X) : H- SET → G- SET.

We apply this construction to the (G,H)-set G = X with action by left
G-translation and right H-translation for H ≤ G. The resulting functor is
called induction functor

indG
H : H- SET → G- SET .

It is left adjoint to the restriction functor

resG
H : G- SET → H- SET,

given by considering a G-set as an H-set. The adjointness means that there is
a natural bijection

HomG(indG
H X,Y ) ∼= HomH(X, resG

H Y ).
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It assigns to an H-map f : X → Y the G-map G×H X → Y, (g, x) 7→ gf(x).
One can obtain interesting group theoretic results by counting orbits and

fixed points. We give some examples.

(1.2.3) Proposition. Let P be a p-group and X a finite P -set; then |X| ≡
|XP | mod p. Let C be cyclic of order pt and D ≤ C the unique subgroup of
order p; then |X| ≡ |XD| mod pt.

Proof. Each orbit in X r XP has cardinality divisible by p. Each orbit in
X rXD has cardinality pt. 2

(1.2.4) Proposition. Let P 6= 1 be a p-group. Then P has a non-trivial
center Z(P ) = {x ∈ P | ∀y ∈ P, xy = yx}.

Proof. Let P act on itself by conjugation (x, y) 7→ xyx−1. The fixed point set
is the center. Since 1 ∈ Z(P ), we see from 1.2.3 that |Z(P )| is non-zero and
divisible by p. 2

(1.2.5) Proposition. Let P be a p-group. There exists a chain of normal
subgroups Pi � P

1 = P0 � P1 � . . .� Pr = P

such that |Pi/Pi−1| = p.

Proof. Induct on |P |. Since subgroups of the center are normal, there exists
by 1.2.4 a normal subgroup P1 of order p. Apply the induction hypothesis to
the factor group P/P1 and lift a normal series to P . 2

(1.2.6) Proposition. Let K be a field of characteristic p and V a KP -
representation for a p-group P . Then V P 6= {0}.

Proof. Let P have order p with generator x. Then lx : V → V has eigenvalues
a root of Xp − 1 = (X − 1)p. Hence 1 is the only eigenvalue. In the general
case choose a normal subgroup Q � P and observe that V Q is a K(P/Q)-
representation. 2

A group A is called elementary abelian of rank n if it is isomorphic to
the n-fold product (Cp)n of cyclic groups Cp of prime order p. We can view
this group as n-dimensional vector space over the prime field Fp.

(1.2.7) Proposition. Let the p-group P act on the elementary abelian p-group
A of rank n by automorphisms. Then there exists a chain 1 = A0 < . . . < An =
A of subgroups which are P -invariant and |Ai/Ai−1| = p. 2

(1.2.8) Counting lemma. Let G be a finite group, M a finite G-set, and
〈 g 〉 the cyclic subgroup generated by g ∈ G. Then |G| · |M/G| =

∑
g∈G |M 〈 g 〉|.
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Proof. Let X = {(g, x) ∈ G×M | gx = x}. Consider the maps

p : X → G, (g, x) 7→ g, q : X →M/G, (g, x) 7→ Gx.

Since p−1(g) = |{g}×M 〈 g 〉|, the right hand side is the sum of the cardinalities
of the fibres of p. Since |q−1(Gx)| = |Gx||Gx| = |G|, the left hand side is the
sum of the cardinalities of the fibres of q. 2

Problems

1. Let X and Y be G-sets. The set Hom(X, Y ) of all maps X → Y carries a left
G-action (g · f)(x) = gf(g−1x). The G-fixed point set Hom(X, Y )G is the subset
HomG(X, Y ) of G-maps X → Y .
2. Let X be a G-set and H ≤ G. Then G ×H X → G/H × X, (g, x) 7→ (gH, gx) is
a bijection of G-sets. If Y is a further H-set, then we have an isomorphism of G-sets
G×H (X × Y ) ∼= X × (G×H Y ).
3. Determine the conjugacy classes of D2n and Q4n.
4. The orbits of G/K×G/L correspond bijectively to the double cosets K\G/L; the
maps

G\(G/K ×G/L) → K\G/L, G · (uK, vL) 7→ Ku−1vL

K\G/L → G\(G/K ×G/L), v 7→ G · (eK, vL)

are inverse bijections.

1.3 The Orbit Category

The full subcategory of G-SET with object the homogeneous G-sets is called
the orbit category Or(G) of G.

(1.3.1) Proposition. Let H and K be subgroups of G.
(1) There exists a G-map G/H → G/K if and only if (H) is subconjugate

to (K).
(2) Each G-map G/H → G/K has the form Ra : gH 7→ gaK for an a ∈ G

such that a−1Ha ⊂ K.
(3) Ra = Rb if and only if a−1b ∈ K.
(4) G/H and G/K are G-isomorphic if and only if H and K are conjugate

in G.

Proof. Let f : G/H → G/K be equivariant and suppose f(eH) = aK. By
equivariance, we have for all h ∈ H the equalities aK = f(eH) = f(hH) =
hf(eH) = haK and hence a−1Ha ⊂ K. The other assertions are easily verified.

2
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We denote by NGH = NH = {n ∈ G | nHn−1 = H} the normalizer of
H in G and by WG(H) = WH the associated quotient group NH/H (Weyl-
group). Suppose G is finite. Then n−1Hn ⊂ H implies n−1Hn = H. Hence
each endomorphism of G/H is an automorphism. A G-map f : G/H → G/H
has the form gH 7→ gnfH for a uniquely determined coset nf ∈ WH. The
assignment f 7→ n−1

f is an isomorphism AutG(G/H) ∼= WH.

(1.3.2) Proposition. The right action of the automorphism group

G/H ×WH → G/H, (gH, nH) 7→ gnH

is free. Hence for each K ≤ G the set G/HK carries a free WH-action and
the cardinality |G/HK | is divisible by |WH|. We have G/HH = WH. 2

(1.3.3) Example. The assignment

ΨL : HomG(G/L,X) → XL, α 7→ α(eL)

is a bijection. The inverse sends x ∈ XL to gL 7→ gx. We have

G/LK = {sL | s−1Ks ≤ L}.

Given sL ∈ G/LK then Rs : G/K → G/L, gK 7→ gsL is the associated mor-
phism. The diagram

HomG(G/L,X)
ΨL //

R∗s��

XL

ls
��

HomG(G/K,X)
ΨK // XK

is commutative. We view the ΨL as a natural isomorphism from the Hom-
functor HomG(−, X) to the fixed point functor. The left translation by
n ∈ NK maps XK into itself. In this way, XK becomes a WK-set. 3

Let G be a finite group. The fixed point set G/LK is the set {sL | s−1Ks ≤
L}. Let A ≤ L be G-conjugate to K. Consider the subset

G/LK(A) = {tL | t−1Kt ∼L A}.

The set G/LK has a left NGK-action (n, sL) 7→ nsL. The subsets G/LK(A)
are NGK-invariant.

(1.3.4) Proposition. Suppose s−1Ks = A. The assignment

NG(A)/NL(A) → G/LK(A), nNL(A) 7→ snL

is a bijection.
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Proof. Since n−1s−1Ksn = n−1An = A ≤ L the element snL is contained in
G/LK . The map is well-defined, because NL(A) ≤ A. If snL = smL, then
m−1n ∈ L ∩NG(A) = NL(A), and we see that the map is injective.

Suppose A ∼L t−1Kt ≤ L. Then there exists l ∈ L such that t−1Kt =
l−1Al, hence s−1tl−1 ∈ NG(A), and tL = snL. We see that the map is surjec-
tive. 2

We can rewrite this result in terms of the NG(K)-action on G/LK . The sub-
set G/LK(A) is an NG(K)-orbit; and the isotropy group at sL is sNL(A)s−1.
The fixed point set G/LK is the disjoint union of the G/LK(A) where (A) runs
over the L-conjugacy classes of the subgroups A ≤ L which are G-conjugate to
K.

Since the homogeneous G-sets correspond to the subgroups of G we can
consider a modified orbit category: The objects are the subgroups of G and the
morphisms K → L are the G-maps G/K → G/L. Since we are working with
left actions we denote this category by •Or(G). There is a similar category
Or•(G) where the morphisms K → L are the G-maps K\G → L\G. If we
assign to Rs : G/K → G/L the map Ls−1 : K\G → L\G,Kg 7→ Ls−1g, then
we obtain an isomorphism •Or(G) → Or•(G).

The transport category Tra(G) of G has as object set the subgroups of G,
and the morphism set Tra(K,L) consists of the triples (K,L, s) with s ∈ G and
sKs−1 ⊂ L. We denote Tra(K,L) also as {s ∈ G | sKs−1 ≤ L} and pretend
that the morphism sets are disjoint. Composition is defined by multiplication
of group elements. In this context we work with the orbit category Or•(G) of
right homogeneous G-sets. We have a functor

q : Tra(G) → Or•(G).

It is the identity on objects and sends (K,L, s) to ls : K\G→ L\G, Kg 7→ Lsg.
The endomorphism sets in both categories are groups

Tra(K,K) = NK, Or•(K,K) = WK.

Via composition, Tra(K,L) carries a left action of NL = Tra(L,L) and a right
action of NK = Tra(K,K). These actions commute. Similarly for the category
Or•(G). The functor q is surjective on Hom-sets and induces a bijection

L\Tra(K,L) ∼= Or•(K,L).

Let

(K,L)∗ = {A | A ≤ L,A ∼G K} (1.1)
(K,L)∗ = {B | K ≤ B,B ∼G L}. (1.2)

(These sets can be empty.) We have bijections

Tra(K,L)/NK ∼= (K,L)∗, s ·NK 7→ sKs−1,
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NL\Tra(K,L) ∼= (K,L)∗, NL · s 7→ s−1Ls.

They imply the counting identities

|(K,L)∗| · |NK| = |(K,L)∗| · |NL| = |G/LK | · |L|. (1.3)

The integers ζ∗(K,L) = |(K,L)∗| and ζ∗(K,L) = |(K,L)∗| depend only on
the conjugacy classes of K and L. The Con(G) × Con(G)-matrices ζ∗ and ζ∗
have the property that their entries at (K), (L) are zero if (K) 6≤ (L), and the
diagonal entries are 1. They are therefore invertible over Z, and their respective
inverses µ∗ and µ∗ have similar properties. In order to see this, ones solves the
equation ∑

(A) ζ
∗(K,A)µ∗(A,L) = δ(K),(L) (1.4)

inductively for µ∗(K,L); the induction is over |{(A) | (K) ≤ (A) ≤ (L)}|. The
matrices µ∗ and µ∗ are called the Möbius-matrices of Con(G). Let N denote
the diagonal matrix with entry |NK| at (K), (K). Then (1.3) says

ζ∗N = Nζ∗, Nµ∗ = µ∗N.

Let G be abelian. Then

ζ∗(K,L) = ζ∗(K,L) = ζ(K,L) = 1, for (K) ≤ (L).

Hence also µ∗ = µ∗ = µ in this case.

(1.3.5) Proposition. Let G ∼= (Z/p)d be elementary abelian. Then µ(1, G) =
(−1)dpd(d−1)/2.

Proof. The direct proof from the definition is a classical q-identity. For an
indeterminate q we define the quantum number

[n]q =
qn − 1
q − 1

= 1 + q + q2 + · · ·+ qn−1,

and the q-binomial coefficient

[n]q! = [1]q[2]q · · · [nq],
(
n

a

)
q

=
[n]q!

[a]q![n− a]q!
.

With a further indeterminate z the following generalized binomial identity holds

n∑
j=0

(−1)j

(
n

j

)
q

qj(j−1)/2zj =
n−1∏
k=0

(1− qkz). (1.5)

A proof can be given by induction over n, as in the case of the classical binomial
identity. If q is a prime, then

(
n
j

)
q

is the number of j-dimensional subspaces of
Fn

q . For z = 1 the identity (1.5) yields inductively the values of the µ-function
as claimed. 2
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There are two more quotient categories of the transport category. The
homomorphism category Sc(G) has as morphism set the homomorphisms
K → L which are of the form k 7→ gkg−1 for some g ∈ G. Two elements of G
define the same homomorphism if they differ by an element of the centralizer
ZK of K in G. We can therefore identify the morphism set Sc(K,L) with
Tra(K,L)/ZK.

Finally we can combine the orbit category and the homomorphism cate-
gory. In the category Sci(G) we consider homomorphisms K → L up to inner
automorphisms of L; thus the morphism set Sci(K,L) can be identified with
the double coset L\Tra(K,L)/ZK.

Problems

1. S be a G-set and K ≤ G. We have a free left WK-action on SK via left translation.
The inclusion SK ⊂ S(K) induces a bijection SK/WK ∼= S(K)/G. The map

G/K ×WK SK → S(K), (gK, x) 7→ gx

is a bijection of G-sets.

2. Suppose D ≤ G is cyclic. Then |D||G/DA| = |NGA| if (A) ≤ (D). Hence

ζ∗(A, D) = 1 for (A) ≤ (D). If µ : N → Z denotes the classical Möbius-function, then

µ∗(A, D) = µ(|D/A|) and µ∗(A, D) = NA/NDµ(|D/A|). (The function µ is defined

inductively by µ(1) = 1 and
P
d|n µ(d) = 0 in the case that n > 1.)

1.4 Möbius Inversion

We discuss in this section the Möbius matrices from a combinatorial view point.
Let (S,≤) be a finite partially ordered set (= poset). The Möbius-function of
this poset is the function µ : S × S → Z with the properties

µ(x, x) = 1,
∑

y,x≤y≤z µ(x, y) = 0 for x < z, µ(x, y) = 0 for x 6≤ y.

These properties allow for an inductive computation of µ. We use the Möbius-
function for the Möbius-inversion: Let f, g : S → Z be functions such that

g(x) =
∑

y,x≤y f(y). (1.6)

Then

f(x) =
∑

y,x≤y µ(x, y)g(y). (1.7)
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A more general combinatorial formalism uses the associative incidence algebra
with unit I(S,≤) of a poset. It consists of all functions f : S × S → Z such
that f(x, y) = 0 if x 6≤ y with pointwise addition and multiplication

(f ∗ g)(x, y) =
∑

z,x≤z≤y f(x, z)g(z, y).

(One can, more generally, define a similar algebra for functions into a commu-
tative ring R.) The unit element of this algebra is the Kronecker-delta

δ(x, y) = 1, for x = y, δ(x, y) = 0, otherwise.

If we define the function ζ by ζ(x, y) = 1 for x ≤ y, then the Möbius-function is
the inverse of ζ in this algebra µ = ζ−1. The group of functions α : S → Z be-
comes a left module over the incidence algebra via (f ∗α)(x) =

∑
y f(x, y)α(y).

We can now write (1.6) and (1.7) in the form g = ζ ∗ f , f = ζ−1 ∗ g = µ ∗ g.
Let G be a finite group. We apply this to the poset (Sub(G),≤) and write

µ(1,H) = µ(H), with the trivial group 1. Conjugation of subgroups yields an
action of G on this poset by poset automorphisms. Let ICon(G) denote the
subalgebra of I(Sub(G),≤) of invariant functions f(K,L) = f(gKg−1, gLg−1).
We also have the poset (Con(G),≤) of conjugacy classes. For f ∈ ICon(G)
we define f∗(K,L) =

∑
{f(A,L) | A ∈ (K,L)∗} and f∗(K,L) =

∑
{f(K,B) |

B ∈ (K,L)∗}; see (1.1) and (1.2) for the notation. One verifies that f∗(K,L)
and f∗(K,L) only depend on the conjugacy classes of K and L. Moreover:

(1.4.1) Proposition. The assignments

c∗ : ICon(G) → I(Con(G)), f 7→ f∗, c∗ : ICon(G) → I(Con(G)), f 7→ f∗

are unital algebra homomorphisms. 2

With these notations c∗(ζ) = ζ∗, c∗(ζ) = ζ∗ In particular, since ζ ∈ ICon,
we have in I(Con(G)) the inverses µ∗ of ζ∗ and µ∗ of ζ∗. Recall that ζ∗(K,L) =
|(K,L)∗| and ζ∗(K,L) = |(K,L)∗|.

Let S be a finite G-set. Then we have SH =
∐

H≤K SK and hence

|SH | =
∑

K,H≤K µ(H,K)|SK |.

Since S(H)
∼= G/H ×WH SH , we see that the number mH(S) of orbits of type

H in S is given by

mH(S) = 1
|WH|

∑
K,H≤K µ(H,K)|SK |;

note that |S(H)/G| = |SH/WH|, and WH acts freely on SH . We rewrite this
in terms of conjugacy classes:

mH(S) = 1
|WH|

∑
(K),(H)≤(K) µ

∗(H,K)|SK |.
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1.5 The Möbius Function

In this section we investigate the Möbius-function by combinatorial methods.

(1.5.1) Lemma. Let 1 6= N�G and N ≤ K ≤ G. Then
∑

X,XN=K µ(X) = 0.

Proof. By definition of µ, this holds for K = N . We assume inductively, that
the assertion holds for all proper subgroups Y of K which do not contain N .
The computation

0 =
∑

X≤K

µ(K) =
∑

X,XN=K

µ(X) +
∑

N≤Y <K

( ∑
XN=Y

µ(X)
)

=
∑

X,XN=K

µ(X)

yields the claim. 2

(1.5.2) Proposition. Let N � G and let Co(G,N) = {K ≤ G | KN =
G,K ∩N = 1} be the set of complements of N in G. Then

µ(G) = µ(G/N) ·
∑

K∈Co(G,N)

µ(K,G).

Proof. (An empty sum yields zero.) The assertion is trivial in the case that
N = 1; hence assume N > 1. By 1.5.1,

µ(G) = −
∑

X<G,XN=G

µ(X).

We use induction over the order of G. This yields for the summand µ(X)

µ(X) = µ(X/X ∩N) ·
∑

K∈Co(X,X∩N)

µ(K,X).

Since XN = G we have G/N ∼= X/X ∩N . Therefore µ(G) equals

−µ(G/N) ·
∑

X<G,XN=G

( ∑
K∈Co(X,X∩N)

µ(K,X)

)
.

One verifies that the following conditions (1) and (2) on X,K are equivalent:
(1) X < G, XN = G, K ∈ Co(X,X ∩N)
(2) K ≤ X < G, K ∈ Co(G,N).

For (1) says K ≤ X < G,K ∩ N = 1;XN = G,K · (X ∩ N) = X, and (2)
says K ≤ X < G,K ∩ N = 1;K · N = G. In order to prove (1) ⇒ (2) we
multiply the last equation in (1) with N . In order to prove (2) ⇒ (1) we use
the modular property of the subgroup lattice which says in general terms: For
A,B,C ≤ G and A ≤ C the equality AB ∩C = A(B ∩C) holds. By definition
of µ we know ∑

X,K≤X<G

µ(K,X) = −µ(K,G).

Now we put everything together and obtain the claim. 2
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(1.5.3) Proposition. Let G be a group with µ(G) 6= 0. Let N ≤ M �G and
N �G. Then M/N has a complement in G/N .

Proof. By the previous note, µ(G/N) 6= 0. Therefore it suffices to treat the
case N = 1. But then, again by 1.5.2, Co(G,M) 6= ∅. 2

The Frattini-subgroup Φ(G) of G is the intersection of its maximal sub-
groups. The first assertion of the next note follows immediately from the def-
inition of Φ(G). For the second one we use the fact that a maximal subgroup
of a p-group is a normal subgroup of index p. See [?, III.3.2 and III.3.14].

(1.5.4) Proposition. (1) Let N �G. Then there exists H < G with G = NH
if and only if N is not contained in Φ(G).
(2) Let G be a p-group. Then G/Φ(G) is elementary abelian, and Φ(G) is the
smallest normal subgroup N such that G/N is elementary abelian. 2

(1.5.5) Corollary. 1.5.3 and 1.5.4 imply:
(1) Let µ(G) 6= 0. Then Φ(G) = 1.
(2) If G is a p-group and µ(G) 6= 0, then G is elementary abelian.

Proof. (1) Suppose µ(G) 6= 0. Then we know from 1.5.3 that Φ(G) has a
complement in G, and this is impossible, by 1.5.4(1), if Φ(G) 6= 1.

(2) If G is not elementary abelian, then Φ(G) 6= 1, by 1.5.4(2), and therefore
µ(G) = 0. 2

We now reprove 1.3.5.

(1.5.6) Proposition. Let P be a p-group. Then µ∗(1,H) 6= 0 if and only if
H ≤ P is elementary abelian. If H is elementary abelian of order |H| = pd,
then µ∗(1,H) = (−1)dpd(d−1)/2|P/NH|.

Proof. We have just seen a proof of the first assertion. It remains to determine
µ(G) for elementary abelian G. We induct over |G|. Suppose A ≤ G, |A| = p,
and |G| = pd. Among the (pd − 1)/(p − 1) = b maximal subgroups exactly
(pd−1 − 1)/(p− 1) = a contain the subgroup A. Therefore A has b− a = pd−1

complements. By 1.5.2, µ(G) = −pd−1µ(G/A), since µ(K,G) = −1 for a
maximal subgroup K. 2

Problems

1. The function H 7→ µ(H, A5) is displayed in the next table.

1 Z/2 Z/3 Z/5 D2 D3 D5 A4 A5

−60 4 2 0 0 −1 −1 −1 1
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1.6 One-dimensional Representations

We study in some detail the simplest type of representations, namely one-
dimensional representations of finite groups G over the complex numbers; these
are just the homomorphisms G→ C∗. These representations do not need much
theory, and they will be used at various occasions, e.g., as input for the con-
struction of more complicated representations (later called induced representa-
tions). The set X(G) = G∗ of these homomorphisms becomes an abelian group
with product (α · β)(g) = α(g)β(g). A homomorphism ϕ : A → B induces a
homomorphism X(ϕ) : X(B) → X(A), β 7→ β ◦ ϕ. In this manner X yields
a contravariant functor from finite groups to finite abelian groups. The group
X(G) will be called the character group of G, and α ∈ X(G) is a (linear)
character of G.

Since C∗ is abelian, a homomorphism α : G → C∗ maps the commutator
subgroup [G,G] = G′, generated by the commutators uvu−1v−1, to 1 and
induces α : G/[G,G] → C∗. The factor group G/[G,G] is abelian and it is
called the abelianized quotient Gab of G.

For the cyclic group Cm = 〈 c | cm = 1 〉 the character group X(Cm) is
the cyclic group of order m generated by ρ : c 7→ exp(2πi/m). Let G and
H be groups. Let α : G → C∗ and β : H → C∗ be homomorphisms. Then
α� β : G×H → C∗, (g, h) 7→ α(g)β(h) is again a homomorphism, and

� : G∗ ×H∗ −→ (G×H)∗, (α, β) 7−→ α� β

is a homomorphism between character groups. One verifies that � is an iso-
morphism1.

For a finite abelian group A the group A∗ is isomorphic to A. This fol-
lows from the previous remarks and the structure theorem about finite abelian
groups which says that each such group is isomorphic to a product of cyclic
groups.

Let H �G be a normal subgroup of G. Then the group G acts as a group
of automorphisms on X(H) by (g · γ)(h) = γ(ghg−1). If γ is the restriction
of a homomorphism α ∈ X(G), then g · γ = γ. Therefore the restriction
homomorphism X(G) → X(H) has an image in the fixed point group X(H)G;
its elements are called G-invariant. Note that the G-action on X(H) factors
over G/H.

Let G be the semi-direct product of the normal subgroup A and a group P ,
i.e. G = AP and A ∩ P = 1. Let

Γ: X(G) → X(A)P ×X(P )

be the product of the restriction homomorphisms.

1Recall the categorical notion: sum in the category of abelian groups.
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(1.6.1) Proposition. Γ is an isomorphism.

Proof. Since γ ∈ X(G) is determined by the restrictions to A and P , the map
Γ is injective. Given α ∈ X(A)P , i.e. α(a) = α(xax−1) for a ∈ A, x ∈ P , and
β ∈ X(P ). Define a map γ : G→ C∗ by γ(ax) = α(a)β(x). We verify that γ is
a homomorphism

γ(axa1x1) = γ(axa1x
−1xx1)

= α(axa1x
−1)β(xx1)

= α(a)α(xa1x
−1)β(x)β(x1)

= α(a)β(x)α(a1)β(x1)
= γ(ax)γ(a1x1).

By construction, Γ(γ) = (α, β). 2

A homomorphism α ∈ X(A) is P -invariant if and only if it vanishes on the
normal subgroup AP generated by the elements axa−1x−1 for a ∈ A and x ∈ P .
Thus the quotient map π : A → A/AP induces an isomorphism X(A/AP ) →
X(A)P .

(1.6.2) Proposition. Let the group P act on the abelian group A by automor-
phisms (x, a) 7→ x �a. Suppose (|A|, |P |) = 1. Let AP ≤ A denote the subgroup
generated by the elements a · (x � a)−1. Then the inclusion ι : AP 7→ A/AP is
an isomorphism.

Proof. For a ∈ A set µ(a) =
∏

x∈P (x � a). Then µ(a) ∈ AP , and for a ∈ AP

we have µ(a) = a|P |. Since |P | is prime to the order of A, the map a 7→ a|P | is
an automorphism of A and AP . The group AP is contained in the kernel of µ,
since, by construction, µ(y � a) = µ(a) for a ∈ A and x ∈ P . Hence we obtain
an induced map ν : A/AP → AP , and ν ◦ ι is an isomorphism. On the other
hand ιν(a) = a|P |

∏
((x � a)a−1), and this shows that ι ◦ ν is an isomorphism

too. 2

As a consequence of 1.6.1 and 1.6.2 we obtain the next result which will
later be used in the proof of the Brauer induction theorem 4.6.5.

(1.6.3) Proposition. Let G = AP be the semi-direct product of the abelian
subgroup A by P . Suppose (|A|, |P |) = 1. Then the restriction X(G) →
X(AP × P ) is an isomorphism. 2

We continue the study of one-dimensional representations and demonstrate
their use in group theory. Let H ≤ G and α ∈ X(H). We associate to α an
element mG

Hα ∈ X(G). For this purpose we choose a representative system
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g1, . . . , gr of G/H. For each g ∈ G we have ggi = gσ(i)hi with a permutation
σ ∈ Sr and certain hi ∈ H. We set

(mG
Hα)(g) =

r∏
i=1

α(g−1
σ(i)ggi) =

r∏
i=1

α(hi).

One verifies that mG
Hα is a well-defined homomorphism and that, moreover,

mG
H : X(H) → X(G) is a homomorphism. We call it multiplicative induc-

tion.
We use this construction to deal with the question: Given α ∈ X(H), when

does there exist an extension β ∈ X(G) such that β|H = α? Suppose it exists.
Then for h ∈ H, u ∈ G and g = uhu−1 we have β(g) = β(h). Thus a necessary
condition for the existence of β is that α is trivial on the subgroup H0 generated
by {xy−1 | x ∼G y, x, y ∈ H}.

(1.6.4) Proposition. Suppose H and G/H have coprime order. Then an
extension β exists if and only if α vanishes on H0.

Proof. Let α have the stated property. We compute mG
Hα(h) for h ∈ H. For

this purpose we make a special choice of the coset representatives: The cyclic
group 〈h 〉 acts on G/H; let gH, hgH, . . . , ht−1gH be an orbit, and suppose
htg = gh̃. Then this orbit contributes α(h̃) = α(g−1htg) = α(h)t to the
product in the definition of mG

Hα. Altogether we obtain resG
H mG

Hα = α|G/H|.
Hence if H and G/H have coprime order, then resG

H mG
H is an automorphism

because |X(H)| is coprime to |G/H|. Therefore there exists an extension. 2

(1.6.5) Proposition. Let H be a Sylow p-subgroup of G. Then H0 = H ∩G′.

Proof. If y = g−1xg, then xy−1 = xg−1x−1g, so that P ′ ≤ P0 ≤ P ∩ G′. It
remains to show P ∩ G′ ≤ P0. Given x ∈ P r P0, there exists λ ∈ X(P )
such that λ(x) 6= 1 with trivial λ|P0. By the previous proposition, λ has an
extension θ : G→ C∗. Since θ(x) 6= 1, we see that x 6∈ P ∩G′. 2

The previous considerations lead to a simple proof of the so-called normal
complement theorem.

(1.6.6) Proposition. Let G(p) be an abelian Sylow p-group of G and assume
that NG(p) = G(p). Then there exists a normal subgroup H � G such that
N ∩G(p) = 1.

Proof. The quotient G/G′ has Sylow group G(p) if G′ ∩ P = P0 = 1. This
means: Suppose x, y ∈ P are conjugate in G, then x = y. This is a consequence
of the next lemma. Since G/G′ is abelian, there exists a complement of G(p),
and the pre-image in G is the required complement. 2

(1.6.7) Lemma. Let G have abelian Sylow p-group P . Suppose x, y ∈ P are
conjugate in G. Then they are conjugate in NGP .
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Proof. Let y = gxg−1. Since P is abelian, P is a subgroup of the central-
izer CG(y) of y in G, moreover g(CG(x))g−1 = CG(y). Hence gPg−1 and
P are Sylow groups of CG(y). Therefore there exists n ∈ CG(y) such that
ngPg−1n−1 = P . Hence ng ∈ NG(P ) and y = ny−1 = ngxg−1n−1. 2

Problems

1. Let B be a subgroup of the finite abelian group A. Show that for each a ∈ A r B

there exists α ∈ X(A) with α(a) 6= 1.

2. The isomorphism between G and G∗ is not natural, but there exists a canonical

and natural isomorphism G → X(X(G)), G abelian. (This is analogous to the double

dual of finite dimensional vector spaces.)

3. Let 1 → A
ϕ→ B

ψ→ C → 1 be an exact sequence of finite abelian groups. Then

the functor X transforms it into an exact sequence. Exactness at X(B) and X(C)

is formal; for the exactness at X(A) one can use the knowledge of the order of this

group.

1.7 Representations as Modules

The vector space KG has more structure than just carrying the left and right
regular representation.

There is a bilinear map KG×KG→ KG which extends the group multi-
plication (g, h) 7→ gh of the basis elements. This bilinear map defines on KG
the structure of an associative algebra with unit. This algebra is called the
group algebra KG of G over K. The multiplication in the group algebra is
therefore defined by the formula

(
∑

g∈G λ(g)g) · (
∑

h∈G µ(h)h) =
∑

g,h λ(g)µ(h)gh =
∑

u∈G γ(u)u

with γ(u) =
∑

g∈G λ(g)µ(g−1u). Another model for the group algebra is the
vector space C(G,K) of functions G→ K with convolution product

(α ∗ β)(u) =
∑

g∈G α(g−1)β(u−1g).

The assignment C(G,K) → KG,ϕ 7→
∑

g ϕ(g−1)g is an isomorphism of alge-
bras. Under this isomorphism the natural left-right action on C(G,K), given
by

(g · ϕ · h)(x) = ϕ(hxg),

corresponds to the left-right action on KG.



24 1 Representations

(1.7.1) Example. The group algebra of the cyclic group Cn = 〈x | xn = 1 〉
is the quotient K[x]/(xn − 1) of the polynomial algebra K[x] by the principal
ideal (xn − 1). 3

We now come to the third form of a representation, that of a module over
the group algebra. Let V be a KG-representation. The bilinear map

KG× V → V, (
∑

g λ(g)g, v) 7→
∑

g λ(g)(g · v)

is the structure of a unital KG-module on the vector space V . The element∑
g λ(g)g ∈ KG acts on V as the linear combination

∑
g λ(g)g. A morphism

V → W of representations becomes a KG-linear map. Conversely, given a
KG-module M we obtain a representation on M by defining lg as the scalar
multiplication by g ∈ KG in the module. In this manner, the category KG-
Rep of finite-dimensional KG-representations becomes the category KG- Mod
of left KG-modules which are finite-dimensional as vector spaces. Direct sums
correspond in these categories. A module M over an algebra A is irreducible,
if it has no submodules different from 0 and M .

The view point of modules allows for an algebraic construction of repre-
sentations. Consider KG as a left module over itself. Then a left ideal is a
representation. A non-zero left ideal yields an irreducible module, if it is a min-
imal left ideal with respect to inclusion. Let M be an irreducible KG-module
and 0 6= x ∈ M . Then KG → M,λ 7→ λx is KG-linear; its kernel I is a left
ideal and the induced map KG/I →M an isomorphism, since M is irreducible;
the ideal I is then a maximal ideal.

(1.7.2) Example. The maximal ideals in the group algebra KCn =
K[x]/(xn − 1) correspond to principal ideals (q) ⊂ K[x] where q is an irre-
ducible factor of xn− 1. If K is a splitting field for xn− 1, then the irreducible
factors are linear, and irreducible representations one-dimensional. Over Q,
the polynomial is the product

∏
d|n Φd(x) of the irreducible cyclotomic poly-

nomials Φd. The complex roots of Φd are the primitive d-th roots of unity. As
an example

x6 − 1 = (x− 1)(x+ 1)(x2 + x+ 1)(x2 − x+ 1).

The representation on Q[x]/(x2−x+1) is given in the basis 1, x by the matrix(
0 −1
1 1

)
∈ SL2(Z).

Thus we know that this matrix has order 6; this can, of course, be checked by
a calculation. One the other hand, it is a nontrivial task to find matrices in
SL2(Z) of order 6. 3
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1.8 Linear Algebra of Representations

Standard constructions of linear algebra may be used to obtain new represen-
tations from old ones. We begin with direct sums.

Let V1, . . . Vr be vector spaces over K. Their (external) direct sum V1⊕· · ·⊕
Vr consists of all r-tuples (v1, . . . , vr), vj ∈ Vj with component-wise addition
and scalar multiplication. If the Vj are subspaces of a vector space V , we
say, V is the (internal) direct sum of these subspaces, if each v ∈ V has a
unique presentation of the form v =

∑r
j=1 vj with vj ∈ Vj . We also use the

notation V = ⊕r
j=1Vj , because V is canonically isomorphic to the external

direct sum of the Vj . A subspace U of W is a direct summand, if there exists
a complementary subspace V , i.e., a subspace V such that U ⊕ V = W .

Let (Vj | j ∈ J) be a family of subspaces of V . The sum
∑

j∈J Vj is the
subspace of V generated by the Vj . It is the smallest subspace containing the
Vj and consists of the elements which are sums of elements in the various Vj .
We use the following fact from linear algebra.

(1.8.1) Proposition. Let V1, . . . , Vn be subspaces of V . The following are
equivalent:

(1) V is the internal direct sum of the Vj.
(2) V is the sum of the Vj, and Vj ∩

∑
i 6=j Vi = {0} for all j. 2

We now apply these concepts to representations. We use two simple obser-
vations. If (Vj | j ∈ J) are sub-representations of V , then their sum is again a
sub-representation. The direct sum U ⊕ V of representations becomes a repre-
sentation with respect to the component-wise group action g·(u, v) = (g·u, g·v).
Similarly for an arbitrary number of summands. This defines the direct sum
of representations. If g 7→ A(g) and g 7→ B(g) are matrix representations
associated to U and V , then the block matrices(

A(g) 0
0 B(g)

)
yield a matrix representation for U ⊕ V . A representation is called inde-
composable, if it is not the direct sum of non-zero sub-representations. An
irreducible representation is clearly indecomposable, but the converse does not
hold in general.

(1.8.2) Example. In 1.1.4 we defined two sub-representations Tn, D of the
permutation representation of Sn on Kn. Given (x1, . . . , xn) ∈ Kn write x =
n−1

∑
j xj . Then (x1−x, . . . , xn−x) ∈ Tn and (x, . . . , x) ∈ D. Hence Tn+D =

Kn. The intersection Tn∩D consists of the (y, . . . , y) with ny = 0. This implies
y = 0. Hence Tn⊕D = Kn. But note: This argument requires that n−1 makes
sense in K, i.e., the characteristic of K does not divide n.
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If n = 2 and K = F2 is the field with two elements, then V = W ! The
regular representation is not irreducible, because it has a one-dimensional fixed
point set. If this fixed point set had a complement it would be a one-dimensional
representation, hence a trivial representation. Therefore the regular represen-
tation is indecomposable. 3

Here is another result from linear algebra.

(1.8.3) Proposition. A sub-representation W of V is a direct factor if and
only if there exists a projection morphism q : V → V with image W . A projec-
tion is a morphism q such that q ◦ q = q. If q is a projection, then V is the
direct sum of the image and the kernel of q. 2

Let V and W be representations of G. The tensor product representation
V ⊗K W has the action g(v ⊗ w) = gv ⊗ gw. If v1, . . . , vn is a basis of V and
w1, . . . , wm is a basis of W , then the vi ⊗wk form a basis of V ⊗W . The map
V ×W → V ⊗W, (v, w) 7→ v⊗w is bilinear. If g acts on V and W via matrices
(rij) and (skl), then g acts on V ⊗W via the matrix (rijskl) whose entry in the
(i, k)-th row and (j, l)-th column is rijskl. More explicitely, if gvj =

∑
i rijvi

and gwl =
∑

k sklwk, then

g(vj ⊗ wl) =
∑

i,k rijsklvi ⊗ wk.

If V is one-dimensional and given by a homomorphism α : G → K∗, then
we simply multiply the matrix (skl) with α(g) in order to obtain the tensor
product.

Let V and W be G-representations. We have a G-action on the vector space
Hom(V,W ) of K-linear maps, given by (g · ϕ)(v) = gϕ(g−1v). The fixed point
set is Hom(V,W )G = HomG(V,W ). When W = K is the trivial representation
we obtain the dual representation V ∗ = Hom(V,K) of V . If g 7→ A(g) is the
matrix representation of V with respect to a basis, then g 7→ tA(g)−1 (inverse
of the transpose) is the matrix representation of V ∗ with respect to the dual
basis.

(1.8.4) Note. There is a canonical isomorphism

V ∗ ⊗W
∼=−→ Hom(V,W ), ϕ⊗ w 7→ (u 7→ ϕ(u)w).

One verifies that it is a morphism of G-representations. 2

In some of the constructions one can also use representations for different
groups. Let V be a G-representation and W an H-representation. Then V ⊗W
becomes a G × H-representation via (g, h)(v ⊗ w) = gv ⊗ hw. Similarly, we
have a G×H-action on Hom(V,W ) defined as ((g, h) ·ψ)(v) = hψ(g−1v). With
these actions, 1.8.4 is an isomorphism of G×H-representations.
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(1.8.5) Example. Let S and T be finite G-sets. There are canonical isomor-
phisms

K(S q T ) ∼= K(S)⊕K(T ), K(S × T ) ∼= K(S)⊗K(T ), K(S)∗ ∼= K(S).

They are induced by a G-equivariant bijection of the canonical bases. We
combine with 1.8.4 and obtain

Hom(K(S),K(T )) ∼= K(S)∗ ⊗K(T ) ∼= K(S)⊗K(T ) ∼= K(S × T ).

Together with 1.2.2 we get

dimK HomG(K(S),K(T )) = |(S × T )/G|.

The representation 1.1.4 of Sn on Kn by permutation of coordinates (made
into a left representation by inversion) is isomorphic to K(Sn/Sn−1) where
Sn−1 is the subgroup of Sn which fixes 1 ∈ {1, . . . , n}. The action of Sn−1

on Sn/Sn−1 has two orbits, of length 1 and n − 1. Hence HomSn(Kn,Kn) is
two-dimensional. 3

1.9 Semi-simple Representations

The topic of this section is the decomposition of a representation into a direct
sum of sub-representations.

We begin with a simple and typical example. Let α : G → K∗ be a homo-
morphism. Consider xα =

∑
g∈G α(g−1)g ∈ KG. The computation

h · xα =
∑

g α(g−1)hg =
∑

g α(h)α(g−1h−1)hg = α(h)xα

shows that xα spans a one-dimensional sub-representation V (α) of the regular
representation. Let K = C and G = Cn = 〈 a | an = 1 〉 the cyclic group.
There are n different homomorphisms α(j) : Cn → C∗, 1 ≤ j ≤ n. The vec-
tors xα(j) are different eigenvectors of la. Therefore we have a decomposition
CCn = ⊕jV (α(j)) into one-dimensional representations. A similar decomposi-
tion exists for finite abelian groups G, since we still have |G| homomorphisms
G→ C∗. Our aim is to find analogous decompositions for general finite groups.

(1.9.1) Theorem. Let V be the sum of irreducible representations (Uj | j ∈ J)
and let U be a sub-representation. Then there exist a finite subset E ⊂ J such
that V is the direct sum of U and the Uj , j ∈ E.

Proof. If W 6= V is any sub-representation, then there exists k ∈ J such that
Vk 6⊂W , since V is the sum of the Vj . Then Vk∩W = 0, and W+Vk = W⊕Vk.
If now E ⊂ J is a maximal subset such that the sum W of U and the Vj , j ∈ E
is direct, then necessarily W = V . 2
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(1.9.2) Theorem. The following assertions about a representation M are
equivalent:

(1) M is a direct sum of irreducible sub-representations.
(2) M is a sum of irreducible sub-representations.
(3) Each sub-representation is a direct summand.

Proof. (1) ⇒ (2) as special case; and (2) ⇒ (3) is a special case of 1.9.1.
(3) ⇒ (1). Let {M1, . . . ,Mn} be a set of irreducible sub-representations

such that their sum N is the direct sum of the Mj . If N 6= M then, by
hypothesis, there exists a sub-representation L such that M = N ⊕ L. Each
sub-representation contains an irreducible one. If Mn+1 ⊂ L is irreducible,
then the sum of the {M1, . . . ,Mn+1} is direct. 2

A representation is called semi-simple or completely reducible if it has
one of the properties (1)-(3) in 1.9.2.

(1.9.3) Proposition. Sub-representations and quotient representations of
semi-simple representations are semi-simple.

Proof. Let M be semi-simple and F ⊂ N ⊂M sub-representations. A projec-
tion M → M with image F restricts to a projection N → N with image F .
Hence F is a direct summand in N .

Suppose N ⊕ P = M ; then the quotient M/N ∼= P is semi-simple. 2

(1.9.4) Proposition. Let V be the sum of irreducible sub-representations (Vj |
J). Then each irreducible sub-representation W is isomorphic to some Vj.

Proof. There exists a surjective homomorphism β : V →W , by 1.8.3 and 1.9.2.
If W were not isomorphic to some Vj , then the restriction of β to each Vj would
be zero, by Schur’s lemma, hence β would be the zero morphism. 2

We write
〈U, V 〉 = dimK HomG(U, V )

for G-representations U and V . This integer depends only on the isomorphism
classes of U and V . Note the additivity 〈U1 ⊕ U2, V 〉 = 〈U1, V 〉 + 〈U2, V 〉,
and similarly for the second argument.

(1.9.5) Proposition. Suppose V = V1⊕· · ·⊕Vr is a direct sum of irreducible
representations Vj. Let W be any irreducible representation and denote by
n(W,V ) the number of Vj which are isomorphic to W . Then

〈W,W 〉n(W,V ) = 〈W,V 〉 = 〈V,W 〉.

Therefore n(W,V ) is independent of the decomposition of V into irreducibles.
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Proof. For a direct sum as above, we have a canonical isomorphism

HomG(W,V ) ∼=
∏r

j=1 HomG(W,Vj).

This expresses the fact that a morphism W → V is nothing else but an r-
tuple of morphisms W → Vj . The assertion is now a direct consequence of
Schur’s lemma. For the second assertion we use the canonical isomorphism
HomG(V,W ) ∼=

∏
j HomG(Vj ,W ). (In conceptual terms: We are using the

fact that ⊕jVj is the sum and the product of the Vj in the category of repre-
sentations.) 2

We call the integer n(W,V ) in 1.9.5 the multiplicity of the irreducible
representation W in the semi-simple representation V . We say W occurs in
V or is contained in V if n(W,V ) 6= 0. In fact, if n(W,V ) 6= 0, then V
has a sub-representation which is isomorphic to W : take a non-zero morphism
W → V and apply Schur’s lemma. The irreducible representation W appears
in V if and only if HomG(W,V ) or HomG(V,W ) is non-zero.

Let W be irreducible and denote by V (W ) the sum of the irreducible
sub-representations of V which are isomorphic to W . We call V (W ) the W -
isotypical part of V , if V (W ) 6= 0, and the decomposition in 1.9.6 is the
isotypical decomposition of V . Let I = Irr(G;K) denote a complete set of
pairwise non-isomorphic irreducible representations of G over K.

(1.9.6) Theorem. A semi-simple representation V is the direct sum of its
isotypical parts.

Proof. Since V is semi-simple it is the direct sum of irreducible sub-
representations and therefore the sum of its isotypical parts. Let A ∈ I and
let Z be the sum of the V (B), B ∈ I,B 6= A. We refer to 1.8.1 and have to
show: V (A)∩Z = 0. Suppose this is not the case. Then the intersection would
contain an irreducible sub-representation, and by 1.9.4 it would be isomorphic
to A and to some B 6= A. Contradiction. 2

1.10 The Regular Representation

We now consider KG as left and right regular representation. For each repre-
sentation U the vector space HomG(KG,U) becomes a left G-representation
via (g · ϕ)(x) = ϕ(x · g).

(1.10.1) Lemma. The evaluation HomG(KG,U) → U, ϕ 7→ ϕ(e) is an iso-
morphism of representations.
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Proof. We use the fact that KG is a free KG-module with basis e. It is verified
from the definitions that the evaluation is a morphism. Clearly, a morphism
KG→ U is determined by its value at e, and this value can be any prescribed
element of U . 2

(1.10.2) Theorem. Suppose the left regular representation is semi-simple.
Then each irreducible representation U appears in KG with multiplicity nU =
〈U,U 〉−1 dimK U .

Proof. Since U ∼= HomG(KG,U) is non-zero, each irreducible representation
U appears in KG, see the remarks after 1.9.5. Suppose KG ∼=

⊕
W∈I nWW

where nWW denotes the direct sum of nW copies of W . Then

dimU = 〈KG,U 〉 =
∑

W∈I nW 〈W,U 〉 = nU 〈U,U 〉,

the latter by Schur’s lemma. 2

(1.10.3) Proposition. Suppose the left regular representation is semi-simple.
(1) The number of isomorphism classes of irreducible representations is

finite.
(2) |G| =

∑
V ∈I〈V, V 〉−1(dimV )2.

(3) If K is algebraically closed, then |G| =
∑

V ∈I(dimV )2.

Proof. (1) is a corollary of 1.10.2.
(2) Let KG ∼=

⊕
W∈I nWW . We insert the values of nW obtained in 1.10.2.

(3) If the field K is algebraically closed then, by Schur’s lemma, 〈V, V 〉 = 1
for an irreducible representation V . 2

Part (3) of 1.10.3 gives us a method to decide whether a given set of pairwise
non-isomorphic irreducible representations is complete. If G is abelian then
irreducible representations over C are 1-dimensional. By 1.10.3 we see that
there are |G| non-isomorphic such representations; we know this, of course,
from a direct elementary argument.

(1.10.4) Proposition. A finite group G is abelian if and only if the irreducible
complex representations are one-dimensional.

Proof. A one-dimensional complex representation is given by a homomorphism
G→ C∗. The regular representation is faithful. If the regular representation is
a sum of one-dimensional representations, then G has an injective homomor-
phism into an abelian group. The reversed implication was proved in 1.1.3. 2

There remains the question: When is KG semi-simple? Recall some ele-
mentary algebra. For n ∈ N and x ∈ K, an expression nx stands for an n-fold
sum x + · · · + x. A relation nx = 1 exists in K if and only if either K has
characteristic zero or the characteristic p > 0 of K does not divide n. In this
case we say, n is invertible in K. We denote this inverse as usual by n−1.
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(1.10.5) Proposition. If KG is semi-simple, then |G| is invertible in K.

Proof. Suppose KG is semi-simple. Then the fixed set F = {λΣ | λ ∈ K,Σ =∑
g∈G g} is a sub-representation. Hence there exists a projection p : KG→ F .

Since p is G-equivariant, it is determined by the value p(e), say p(e) = µΣ.
Since p is a projection we obtain Σ = p(Σ) =

∑
g∈G p(e) =

∑
g∈G µΣ = |G|µΣ.

Thus we have shown: If KG is semi-simple, then |G| is invertible in K. 2

(1.10.6) Theorem (Maschke). Suppose |G| is invertible in K. Then G-
representations are semi-simple.

Proof. We show that each sub-representation W of a representation V is a
direct summand (see 1.9.2). There certainly exists a K-linear projection
p : V → V with image W . We make it equivariant by an averaging process.
Namely we define

q(v) = 1
|G|
∑

g∈G g
−1p(gv).

At this point we use the fact that |G|−1 makes sense in K. By construction, q
is K-linear as a linear combination of linear maps. For h ∈ G we compute

q(hv) = 1
|G|
∑

g∈G g
−1p(ghv) = 1

|G|h
∑

g∈G h
−1g−1p(ghv) = hq(v),

and this verifies the equivariance. By hypothesis, p(w) = w for w ∈ W , hence
p(gw) = gw and therefore q(w) = w. The values q(v) are contained in W ,
hence W = q(V ) and q2 = q. 2

(1.10.7) Proposition. Suppose V is semi-simple. Then 〈V, V 〉 = 1 implies
that V is irreducible.

Proof. Decompose into irreducibles V =
∑
nWW . Then 1 = 〈V, V 〉 =∑

n2
W 〈W,W 〉, by Schur’s lemma. Hence one of the nW is 1 and the others are

0. 2

Assume that |G| is invertible in K. In order that 1.10.3 holds, it is necessary
to assume that 〈V, V 〉 = 1 for each V ∈ I. If K ⊂ L is a field extension,
then we can view a K-representation as an L-representation (just take the
same matrices). However, an irreducible representation over K may become
reducible over a larger field. This already happens for cyclic groups, as we have
seen in the first section. If KG is semi-simple, then also LG. If the relation
1.10.3 holds forK-representations, then it also holds for L-representations. The
relation 1.10.3 is equivalent to 〈V, V 〉 = 1 for all V ∈ I. If this is the case, we
call K a splitting field for G.

We now present the isotypical decomposition in a more canonical form.
Let V be semi-simple. For each U ∈ I we let D(U) be its endomorphism
algebra. Evaluation of endomorphisms makes U into a left D(U)-module. The
vector space HomG(U, V ) becomes a right D(U)-module via composition of
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endomorphisms. The evaluation HomG(U, V )⊗ U → V, ϕ⊗ u 7→ ϕ(u) induces
a linear map ιU : HomG(U, V )⊗D(U) U → V .

(1.10.8) Theorem. Let ι :
⊕

U∈I HomG(U, V )⊗D(U)U → V have components
ιU . Then ι is an isomorphism. The image of ιU is the U -isotypical component
of V .

Proof. The maps ι constitute, in the variable V , a natural transformation on the
category of semi-simple representations, and they are compatible with directs
sums. Thus it suffices to consider irreducible V . In that case, by Schur’s
lemma, only the summand HomG(V, V ) ⊗D(V ) V is non-zero, and evaluation
is the canonical isomorphism D(V )⊗D(V ) V ∼= V . By construction, ιU has an
image in the U -isotypical part. 2

Problems

1. Let U∗ = HomK(U, K) be the dual vector space. This becomes a right G-
representation via (g · ϕ)(u) = ϕ(gu). The vector space HomG(U, KG) becomes a
right representation via (ϕ · g)(u) = ϕ(u) · g. Show: The linear map

U∗ → HomG(U, KG), ϕ 7→ (u 7→
P
g∈G ϕ(g−1u)g)

is an isomorphism of right representations. An inverse morphism assigns to α ∈
HomG(U, KG) the linear form U → K which maps u to the coefficient of e in α(u).

Let KG be semi-simple. Then the isotypical decomposition ?? of KG assumes
the form L

U∈I U∗ ⊗D(U) U → KG, ϕ⊗ u 7→
P
g∈G ϕ(g−1u)g.

This is an isomorphism of left and right G-representations.

2. Use 1.10.3 in order to show that we found (in section 1) enough irreducible complex

representations of the dihedral group D2n. In the case that n is odd there are 2 one-

dimensional and (n − 1)/2 two-dimensional irreducibles. In the case that n is even

there are 4 one-dimensional and n/2− 1 two-dimensional irreducibles.

3. Use 1.10.7 in order to show that the representation of Sn on Tn = {(xi) ∈ Kn |P
i xi = 0} by permutation of coordinates is irreducible (K characteristic zero).

4. Let V be a KG-representation. Let VG denote the subrepresentation spanned by

the vectors v − gv, v ∈ V, g ∈ G. Consider α : V G → V/VG induced by the inclusion

V G ⊂ V . Show that α is an isomorphism if the characteristic of K does not divide

|G|, and give an example where α is not bijective.



Chapter 2

Characters

2.1 Characters

We assume in this chapter that K has characteristic zero. It is then no essential
restriction to assume moreover that Q is a subfield of K.

(2.1.1) Proposition. Let U be a G-representation. Then the linear map

p : U → U, u 7→ |G|−1∑
g∈G gu

is a G-equivariant projection onto the fixed point space UG.

Proof. The map p is the identity on UG, equivariant by construction, and the
image is contained in UG. 2

Let V be a G-representation. We denote the trace of lg : V → V by χV (g).
The character of V is the function χV : G → K, g 7→ χV (g). The character
of an irreducible representation is an irreducible character.

The trace of a projection operator is the dimension of its image. Therefore
2.1.1 yields the identity

dimUG = |G|−1∑
g∈G χU (g). (2.1)

Recall from linear algebra: The trace of a matrix is the sum of the diagonal
elements, and conjugate matrices have the same trace. If we express lg in matrix
form with respect to a basis, then the trace does not depend on the chosen basis.
Since conjugate matrices have the same trace, isomorphic representations have
the same character 1.1.1. Conjugation invariance also yields:

χV (ghg−1) = χV (h), g, h ∈ G.
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Thus characters are class functions. From the matrix form of representations
we derive some properties of characters:

χV⊕W = χV + χW , (2.2)
χV⊗W = χV χW , (2.3)

χV ∗(g) = χV (g−1). (2.4)

Let V and W be G-representations. In section 1.8 we introduced the represen-
tation HomK(V,W ) with fixed point set HomKG(V,W ).

(2.1.2) Proposition. The character of HomK(V,W ) is g 7→ χV (g−1)χW (g).

Proof. This is a consequence of 1.8.4, (2.3) and (2.4). We also prove it by a
direct calculation with matrices, thus avoiding 1.8.4. We express the necessary
data in matrix form. Let v1, . . . , vm be a basis of V and w1, . . . , wn a basis
of W . We set l−1

g (vi) =
∑

j ajivj and lg(wk) =
∑

l blkwl. Then a basis of
HomK(V,W ) is ers : vi 7→ δsiwr. We compute:

(g · ers)(vi) = gers(g−1vi) = gers(
∑

j ajivj) = g(
∑

j ajiδsjwr)
=

∑
j,l δsjajiblrwl =

∑
l asiblrwl =

∑
l asiblreli(vi).

The trace is the sum of the diagonal elements
∑

r,s assbrr = χV (g−1)χW (g). 2

We now combine 2.1.1 and 2.1.2 and obtain

〈V,W 〉 = dimK HomG(V,W ) = |G|−1
∑

g∈G χV (g−1)χW (g). (2.5)

This formula tells us that we can compute 〈V, V 〉 from the character. The
character does not change under field extensions. We know that 〈V, V 〉 = 1
implies that V is irreducible; it then remains irreducible under field extensions.
If this is the case, we call the representation absolutely irreducible. When
K is algebraically closed, Schur’s lemma says 〈V, V 〉 = 1. Therefore V is
absolutely irreducible if and only if 〈V, V 〉 = 1.

(2.1.3) Theorem. Two representations of G are isomorphic if and only if
they have the same character.

Proof. Let V and V ′ have the same character. Then, by (2.5), the values 〈W,V 〉
and 〈W,V ′〉 are equal for all W . From 1.9.5 we now see that the multiplicities
of W ∈ Irr(G,K) in V and V ′ are equal. 2

The previous theorem has an interesting consequence; it roughly says, that
cyclic subgroups detect representations. If V is a G-representation and H a
subgroup of G, we can view V as an H-representation by restriction of the
group action. Denote it resG

H V for emphasis. The character value ϕV (g) only
depends on the restriction to the cyclic subgroup generated by g. Therefore:
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(2.1.4) Theorem. G-representations V and W are isomorphic if and only if
resG

H V and resG
H W are isomorphic for each cyclic subgroup H of G. 2

(2.1.5) Proposition. Let V = KS be the permutation representation of the
finite G-set S. Then χV (g) = |Sg|. Here Sg = {s ∈ S | gs = s}.

Proof. Consider the matrix of lg with respect to the basis S. A basis element
s ∈ S yields a non-zero entry on the diagonal if and only if gs = s, and this
entry is 1. 2

(2.1.6) Proposition. Let K be a splitting field for G and H. Then

Irr(G;K)× Irr(H;K) → Irr(G×H;K), (V,W ) 7→ V ⊗W

is a well-defined bijection.

Proof. In the statement of the proposition we view V ⊗ W as G × H-
representation, as explained in section 1.8. From χV⊗W (g, h) = χV (g)χW (h)
and (2.5) we obtain

〈V1 ⊗W1, V2 ⊗W2 〉G×H = 〈V1, V2 〉G〈W1,W2 〉H .

This shows that V ⊗W is irreducible, if we start with irreducible representations
V and W . It also shows that the map in question is injective. We use 1.10.3
and see that we got the right number of irreducible G×H-representations. 2

Problems

1. Let H � G and V a G-representation. Then V H is a G/H-representation. Its
character is given by χVH (gH) = |H|−1 P

h∈H χV (gh).

2.2 Orthogonality

We derive orthogonality properties of characters and show that the irreducible
characters form an orthonormal basis in the ring of class functions. We assume
that K has characteristic zero and is a splitting field for G.

Let Cl(G,K) = Cl(G) be the ring of class functions G → K (pointwise
addition and multiplication). We define on Cl(G) a symmetric bilinear form

〈α, β 〉 =
1
|G|

∑
g∈G

α(g−1)β(g). (2.6)

Bilinearity is clear and the reason for symmetry is that we can replace summa-
tion over g by summation over g−1. By (2.5), 〈V,W 〉 = 〈χV , χW 〉. This gives
us together with Schur’s lemma the orthogonality properties of characters:
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(2.2.1) Proposition. The irreducible characters form an orthonormal system
with respect to the bilinear form (2.6). 2

The main result 2.2.5 of this section says that the irreducible characters are
a basis of the vector space Cl(G). We prepare for the proof.

(2.2.2) Proposition. The linear map qα =
∑

g∈G α(g)lg : V → V is a mor-
phism for each representation V if and only if α : G→ K is a class function.

Proof. Let α be a class function. We compute

qα(hv) =
∑
α(g)lg(hv) =

∑
α(g)ghv =

∑
α(h−1gh)h(h−1gh) = hqα(v).

For the converse we evaluate the equation qα(h) = hqα(e) in the regular repre-
sentation and compare coefficients. 2

(2.2.3) Proposition. Let α be a class function. Then pα =
∑

g∈G α(g−1)lg
acts on V as the multiplication by the scalar |G|(dimV )−1〈α, χV 〉.

Proof. By 2.2.2, pα is an endomorphism of V , and 〈V, V 〉 = 1 tells us that pα

is the multiplication with some scalar λ. The computation (Tr = Trace)

λ dimV = Tr(λ · id) = Tr
(∑

α(g−1)lg
)

=
∑
α(g−1) Tr(lg) =

∑
α(g−1)χV (g)

= |G|〈α, χV 〉.

determines λ. 2

(2.2.4) Lemma. Let α ∈ Cl(G) be orthogonal to the characters of irreducible
representations. Then α = 0.

Proof. The hypothesis of the lemma and 2.2.3 imply that pα acts as zero mor-
phism in each irreducible representation, hence in each representation. In the
regular representation we have 0 = pα(e) =

∑
g α(g−1)g. Hence α(g) = 0 for

all g ∈ G. 2

(2.2.5) Theorem. The irreducible characters of G are an orthonormal basis
of of Cl(G). The number of irreducible representations is equal to the number
of conjugacy classes of G.

Proof. Let U ⊂ Cl(G) be a linear subspace. If U 6= Cl(G) then the orthogonal
complement U⊥ with respect to 〈−,−〉 is different from zero, since U⊥ is the
kernel of the linear map Cl(G) → Hom(U,K), x 7→ (u 7→ 〈x, u 〉). For the
subspace U generated by characters, U⊥ = 0, by 2.2.4, hence U = Cl(G). Now
recall 2.2.1.

The dimension of Cl(G) is the number of conjugacy classes, because a basis
of Cl(G) consists of those functions which have value 1 on one class and value
0 on all the other classes. 2
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There exist more general orthogonality relations. They are concerned with
the entries of matrix representations and are consequences of the next result.

(2.2.6) Proposition. Let V be irreducible and suppose that 〈V, V 〉 = 1. Then
for each linear map f ∈ Hom(V, V )

1
|G|

∑
g∈G

lgfl
−1
g =

Tr(f)
dimV

· id .

Proof. The left hand side is contained in HomG(V, V ) and has the form λ · id,
since 〈V, V 〉 = 1. We apply the trace operator

λ dimV = Tr(λ · id) = |G|−1
∑

g∈G Tr(lgfl−1
g ) = |G|−1

∑
g∈G Tr(f) = Tr(f)

and determine λ. 2

For v ∈ V and ϕ ∈ V ∗ we obtain from 2.2.6∑
g∈G ϕ(gf(g−1v)) = (dimV )−1|G|Tr(f)ϕ(v).

We apply this to the linear map f : v 7→ ψ(v)w, w ∈ V , ψ ∈ V ∗ with trace
Tr(f) = ψ(w) and obtain

|G|−1
∑

g∈G ψ(g−1v)ϕ(gw) = (dimV )−1ϕ(v)ψ(w). (2.7)

Note that we can use the definition (2.6) of 〈α, β 〉 for arbitrary functions
α, β : G → K. This remark can be applied to the left hand side of (2.7).
Let v1, . . . , vn be a basis of V and ϕ1, . . . , ϕn the dual basis. In a matrix
representation gvi =

∑
j r

V
ji(g)vj we have ϕj(gvi) = rV

ji(g). We apply (2.7) to
this situation and arrive at the following:

(2.2.7) Orthogonality for matrix entries. Let V and W be irreducible
representations of G. Then

〈 rV
lk, r

W
ji 〉 =

1
dimV

δliδjkδV W . (2.8)

We have treated the case V = W . If V is not isomorphic to W and f ∈
Hom(V,W ), then the left hand side of the equality in (2.8) is zero. 2

Problems

1. Let V1, . . . Vr be a complete set of pairwise non-isomorphic irreducible KG-

representations. Let (ajrs) denote a matrix representation of Vj . Then the functions

ajrs are an orthogonal basis of the space of functions G → K with respect to the form

(2.6).
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2.3 Complex Representations

We begin with some special and useful properties of representations over the
complex numbers.

An (Hermitian) inner product V × V → C, (u, v) 7→ 〈u, v 〉 on a G-
representation V is called G-invariant if 〈 gu, gv 〉 = 〈u, v 〉 for g ∈ G and
u, v ∈ V . A representation together with a G-invariant inner product is a uni-
tary representation. A real representation together with a G-invariant inner
product is an orthogonal representation.

(2.3.1) Proposition. A complex representation V of a finite group possesses
a G-invariant inner product.

Proof. Let b : V × V → C be any inner product (conjugate-linear in the first
variable) and define

c(u, v) = 1
|G|

∑
g∈G

b(gu, gv).

Then c is linear in v, conjugate linear in u, and G-invariant because of the
averaging process. Also it is positive definite and c(u, v) = c(v, u). 2

Let U be a sub-representation of a unitary representation V . Then the
orthogonal complement U⊥ is again a sub-representation an V = U⊕U⊥. This
gives another proof that complex representations are semi-simple. Similarly
for orthogonal representations. If we choose an orthonormal basis in an n-
dimensional unitary representation, then the associated matrix representation
is a homomorphism into the unitary group G → U(n). In terms of matrix
representations, 2.3.1 has the interesting consequence that a homomorphism
G→ GLn(C) of a finite group G is conjugate to a homomorphism G→ U(n).

Let V be a complex representation. There is associated the complex-
conjugate representation G×V → V on the conjugate vector space V (the
same underlying set and vector addition, but λ ∈ C now acts as multiplication
with λ).

We consider a Hermitian form on V as a bilinear map V × V → C. Asso-
ciated is the adjoint V → V ∗, v 7→ (u 7→ 〈 v, u 〉) into the dual vector space.
It is an isomorphism of G-representations, in the case of a G-invariant inner
product. In terms of characters this means χV (g−1) = χV (g). For complex
class functions we define a Hermitian form on Cl(G) by

(α, β) = 1
|G|

∑
g∈G

α(g)β(g). (2.9)

The relation χV (g−1) = χV (g) shows (χV , χW ) = 〈V,W 〉. Therefore the
irreducible characters are also an orthonormal basis for this form. Recall the
notation I = Irr(G; C).
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Let C ⊂ G be a representing system for the conjugacy classes. From |C| =
|I| we see that X : C × I → K, (c, V ) 7→ χV (c) is a square matrix. It is called
the character table of G.

We express the orthogonality relations in terms of the character table. Let
X∗ : I×C → C, (V, c) 7→ χV (c) be the conjugate-transpose and D : C×C → C
the diagonal matrix (c, d) 7→ δc,d|c|, where |c| denotes the cardinality of the
conjugacy class of c. The orthogonality relation (χV , χW ) = δV,W then reads:

(2.3.2) First orthogonality relation. For irreducible complex representa-
tions V and W the relation∑

c∈C

|c|χV (c)χW (c) = |G|δV,W

holds. 2

In matrix form 2.3.2says X∗DX = |G|E (unit matrix E). This implies

XX∗D = XX∗DXX−1 = X(|G|E)X−1 = |G|E

and then XX∗ = |G|D−1. Let Z(c) = {g ∈ G | gcg−1 = c} denote the
centralizer of c in G. Then |c| = |G/Z(c)|. We write out the last matrix
equation:

(2.3.3) Second orthogonality relation. For c, d ∈ C the relation∑
V ∈I

χV (c)χV (d) = δc,d|Z(c)|

holds. 2

(2.3.4) Proposition. Let (V, 〈−,−〉V ) and (W, 〈−,−〉W ) be unitary repre-
sentations. Suppose V and W are isomorphic as complex representations. Then
they are isomorphic as unitary representations, i.e., there exists a G-morphism
f : V →W such that 〈 f(v1), f(v2) 〉W = 〈 v1, v2 〉V .

Proof. Let ϕ : V → W be a G-morphism. We use ϕ to pull 〈−,−〉W back
to V , i.e., we define a second inner product 〈−,−〉′ on V by 〈 v1, v2 〉′ =
〈ϕ(v1), ϕ(v2) 〉W . It suffices to produce a G-morphism γ : V → V such that
〈 γ(v1), γ(v2) 〉 = 〈 v1, v2 〉′. We choose an orthonormal basisB of V with respect
to 〈−,−〉 and express everything with respect to this basis. Then 〈−,−〉
becomes the standard inner product. There exists a positive definite Hermitian
matrix A such that 〈u, v 〉′ = 〈u,Av 〉 = utAv. Since 〈−,−〉′ is G-invariant,
lgA = Alg. Let C =

√
A be a positive definite Hermitian matrix. The matrix

C also commutes with lg, since it is a limit of polynomials in A. Then C defines
a morphism γ with the desired properties. 2
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(2.3.5) Corollary. Let α, β : G → U(n) be unitary representations which are
conjugate in GLn(C). Then they are conjugate in U(n). The conjugation
matrix can be chosen in SU(n), i.e., to have determinant one. 2

We list a few more properties of complex characters.

(2.3.6) Proposition. Let χ be the character of a complex representation V .
Then:

(1) χ(1) = dimV .
(2) |χ(g)| ≤ χ(1).
(3) |χ(g)| = χ(1) if and only if lg is the multiplication by a scalar.
(4) χ(g) = χ(1) if and only if g is contained in the kernel of V .

Proof. (1) The trace of the identity is dimV .
(2) Let λ1, . . . , λn be the eigenvalues of lg. They are roots of unity, and

χ(g) = λ1 + · · ·+ λn. Hence |χ(g)| = |
∑
λj | ≤

∑
|λj | = χ(1).

(3) If equality holds, then λ1 = · · · = λn = λ and lg is multiplication by λ.
(4) By (3), lg is the multiplication by 1, if χ(g) = χ(1). 2

(2.3.7) Remark. If G has a normal subgroup different from 1 and G, then
there exists a nontrivial irreducible character χ and 1 6= g ∈ G such that
χ(g) = χ(1). Conversely, from ?? we see, that if χ and g with these properties
exist, then G has a nontrivial normal subgroup. We see that one can obtain
group theoretic information from the character table. 3

The values of complex characters are very special complex numbers. The
value χV (g) is the sum of the eigenvalues of lg, and these eigenvalues are |g|-
roots of unity (|g| order of g). Let Z[ζ] be the subring of the field Q(ζ) generated
by ζ. The exponent of a group is the least common multiple of the orders
of its elements. Let ζ be a primitive n-root of unity, say ζ = exp(2πi/n), n
the exponent of G. Then χV has values in Z[ζ]. In number theory, the ring
Z[ζ] is the ring of algebraic integers in the cyclotomic field Q(ζ). (An algebraic
integer is the root of a monic polynomial with coefficients in Z.)

Problems

1. Express the orthogonality relations ?? for complex representations using the Her-

mitian form (2.9).

2. Let V, W be orthogonal representations of G which are isomorphic as real repre-

sentations. Then they are isomorphic as orthogonal representations.

3. Let V, W be real representations. If they are isomorphic, considered as complex

representations, then they are isomorphic as real representations. What does this

imply for matrix representations?

4. The character table is a square matrix. Determine the absolute value of its deter-

minant.
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2.4 Examples

We study in some detail the groups A4, S4, A5. The symmetric group Sn is
the permutation group of [n] = {1, . . . , n}. The alternating group is the nor-
mal subgroup of Sn of even permutations. The geometric significance of the
groups in question comes from Euclidean geometry: A4, S4, A5 are the symme-
try groups of the tetrahedron, octahedron (cube), icosahedron (dodecahedron),
respectively (as far as rotations are concerned , i.e., as subgroups of SO(3)).

We begin with some general remarks about permutations. Let π ∈ Sn. The
cyclic group generated by π acts on [n]. We decompose [n] into orbits under
this action. An orbit has the form

(x, π(x), π2(x), . . . , πt−1(x)), πt(x) = x

where t is the length of the orbit. We call an orbit a cycle of the permutation.
A permutation can be recovered from its cycles. Therefore we use the cycles
to denote the permutation. As an example, the permutation (318496527) ∈ S9

has the cycles
(1, 3, 8, 2), (4), (5, 9, 7).

This means, e.g., that 5 7→ 9, 9 7→ 7, 7 7→ 5. A cyclic permutation of the entries
in a cycle does not change its meaning; thus (5, 9, 7) = (9, 7, 5) = (7, 5, 9). In
practice it is not necessary to write cycles of length one, since they just describe
fixed points of the permutations. The conceptual significance of the cycles is:

(2.4.1) Proposition. Permutations in Sn are conjugate elements of the group
if and only if for each k ∈ N they have the same number of cycles of length
k. 2

A partition of n is a sequence of integers λ = (λ1, λ2, . . . , λr) with
λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 1 and

∑r
j=1 λj = n. A conjugacy class of Sn is de-

termined by its associated partition; the λj are the lengths of the cycles in
the permutation. Thus we have found a combinatorial method to determine
the number of irreducible complex representations of Sn; it is the number of
partitions of n. The partitions 3, 21, 111 of 3 tell us that S3 has 3 irreducible
representations.

(2.4.2) Proposition. Suppose π ∈ Sn has k(j) cycles of length j. The the
automorphism group of [n]π has order 1k(1) ·k(1)! ·2k(2) ·k(2)! · . . . ·nk(n) ·k(n)!.
This is the order of the centralizer; hence n!, divided by this number, is the size
of the conjugacy class of π. 2

(2.4.3) Representations of S4. There exist 5 partitions 1111, 211, 22, 31, 4.
We list representing elements of the conjugacy classes and the cardinality of
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the conjugacy class in the next table. The second row can be obtained from
2.4.2.

1 (12) (12)(34) (123) (1234)
1 6 3 8 6

We turn to the determination of the character table and to the construction of
irreducible representations. Names for the five representations and their char-
acters are Vj , 1 ≤ j ≤ 5. We already know 2 one-dimensional representations,
the trivial representation V1 and the sign-representation V2. Their characters
are easily computed.

Character table of S4

1 (12) (12)(34) (123) (1234)
V1 1 1 1 1 1
V2 1 −1 1 1 −1
V3 2 0 2 −1 0
V4 3 1 −1 0 −1
V5 3 −1 −1 0 1

We also know already a three-dimensional representation on the space V4 =
{(x1, x2, x3, x4) |

∑
xi = 0} by permutation of coordinates. We check again

that it is irreducible by computing its character. The character of the permu-
tation representation on C4 is easily determined by 2.1.5 to have the values
4, 2, 0, 1, 0. We have to subtract the character of the trivial representation; the
result is given in the table. The computation

〈V4, V4 〉 = 1
24

∑
g |χV4(g)|2 = 32 + 6 · 12 + 3 · (−1)2 + 8 · 02 + 6 · (−1)2 = 1

shows that V4 is irreducible. The character of V5 = V4 ⊗ V2 is seen to be as in
the table. Thus we found another irreducible representation. We know that the
remaining representation must be two-dimensional 1.10.3. It turns out that S4

has a quotient S3, the kernel contains (12)(34). We can lift a two-dimensional
representation of S3 to S4. We lift the analogue of V4 for S3. 3

(2.4.4) Representations of A5. We begin again with the determination of
the conjugacy classes. We use the cycle notation and have to start with even
permutations. But now it is only allowed to conjugate with even permutations,
and this has the effect that some of the conjugacy classes of S5 can split in A5

into two classes.

(2.4.5) Proposition. Let c ∈ An. Then the Sn-conjugacy class of c is con-
tained in An. The Sn-conjugacy class of c split into two An-conjugacy classes
if and only if the centralizers of c in An and Sn coincide. This happens if and
only if the partition associated to c consists of different odd numbers. 2
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Character table of A5

1 (12)(34) (123) (12345) (13524)
V1 1 1 1 1 1
V2 3 −1 0 α β
V3 3 −1 0 β α
V4 4 0 1 −1 −1
V5 5 1 −1 0 0

Let ζ be a primitive 5-th root of unity; then −α = ζ + ζ−1 and −β = ζ2 +
ζ−2. The representation V1 is trivial. V4 is the permutation representation
on {(x1, . . . , x5) |

∑
xj = 0}. The group A5 has a subgroup H ∼= D10. The

representation V5 is obtained from the permutation representation C(A5/H)
by subtracting the trivial representation. The remaining two representations
must be three-dimensional, since 60−12−42−52 = 18 = 32 +32. It is possible
to determine the characters without construction of the representations; one
uses the fact that the representations cannot have a kernel; and that zj and
z−j are conjugate, so that the character values are real and sums of 5-th roots
of unity. The group A5 has an outer automorphism which interchanges z =
(12345) and z2 = (13524); it is obtained by conjugation with (2354); one verifies
(2354) ◦ z ◦ (4532) = z2. The representation V3 is obtained from V2 by this
automorphism; and V2 has a realization over R as orthogonal symmetry group
of the icosahedron. 3

Problems

1. S4 acts by conjugation on the set of even permutations of order two. Show that

this induces a surjection S4 → S3.

2. Compute the number of elements in A5 of a given order.

3. Determine the irreducible representations and the character table for A4.

4. Decompose the tensor product of irreducible representations for G = A4, S4, A5.

5. Show that S5 has seven conjugacy classes and irreducible complex representations

of dimensions 1, 1, 4, 4, 5, 5, 6.

6. For a partition (λ1, . . . , λr) of n let S(λ) = S(λ1) × · · · × S(λr). Set V (λ) =

C(Sn/S(λ)). Decompose these permutation representations in the cases S4 and S5

into irreducibles.
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2.5 Real and Complex Representations

Let W be a KG-representation. The involution T : W ⊗W →W ⊗W,x⊗ y 7→
y ⊗ x is a morphism of representations. If K has characteristic different from
2, we split W ⊗W into the ±1-eigenspaces,

S2(W ) = (W ⊗W )+, Λ2(W ) = (W ⊗W )−.

S2(W ) is the second symmetric power of W and Λ2(W ) the second exterior
power. Suppose now that K = C. If w1, . . . , wn is a basis of W , then gij =
1
2 (wi⊗wj+wj⊗wi), i ≤ j is a basis of S2(W ) and wij = 1

2 (wi⊗wj−wj⊗wi), i <
j is a basis of Λ2(W ). From this information we compute the characters

χW⊗W (g) = χW (g)2

χS2W (g) =
1
2
(χW (g)2 + χW (g2))

χΛ2W (g) =
1
2
(χW (g)2 − χW (g2)).

Let W be irreducible. Then W ∗ ∼= W is irreducible too. Therefore
〈W ⊗W, 1 〉 = 〈W,W ∗ 〉 is 1 if W ∼= W ∗ and 0 otherwise. An isomorphism
W ∼= W exists if and only if χW is real-valued. In that case we call W self-
conjugate. Elements in HomG(S2W,C) are symmetric G-invariant bilinear
forms, and elements in HomG(Λ2W,C) are skew-symmetric G-invariant bilin-
ear forms. Hence W carries a non-zero G-invariant bilinear form if and only
if W is self-conjugate. Suppose W is self-conjugate. From 〈W ⊗ W, 1 〉 =
〈S2W, 1 〉 + 〈Λ2W, 1 〉 we see that there two cases: Either 〈S2W, 1 〉 = 1,
〈Λ2W, 1 〉 = 0 or 〈S2W, 1 〉 = 0, 〈Λ2W, 1 〉 = 1.

(2.5.1) Proposition. Let W be irreducible. Then

σ(W ) = 1
|G|

∑
g∈G

χW (g2) =

 0 W 6∼= W ∗

1 〈S2W, 1 〉 = 1
−1 〈Λ2W, 1 〉 = 1

Proof. By the computation above the sum on the left equals 〈S2W, 1 〉 −
〈Λ2W, 1 〉. 2

Suppose W is the complexification of a real representation U , i.e., W ∼=
C ⊗ U = UC. Then U is irreducible and carries a symmetric G-invariant R-
bilinear form. This form extends to a symmetric G-invariant C-bilinear form
on W . Hence in this case σ(W ) = 1. The converse is also true.

(2.5.2) Proposition. Suppose W ∈ Irr(G,C) carries a G-invariant symmetric
form. Then W is the complexification of a real representation.



Chapter 3

The Group Algebra

3.1 The Theorem of Wedderburn

Assume that the characteristic of K does not divide the order of G. Then the
group algebra A = KG, considered as a left KG-representation, is semi-simple
and hence a direct sum of its isotypical parts. Recall that sub-representations
of KG are the same thing as left ideals or as submodules.

(3.1.1) Proposition. Let A(V ) denote the V -isotypical part of A belonging
to V ∈ Irr(G;K). The A(V ) is a two-sided ideal, and every two-sided ideal is
a direct sum of isotypical parts.

Proof. Let V ⊂ A be irreducible and a ∈ A. Then W = V a is a left ideal, and
by Schur’s lemma ra : V →W,x 7→ xa is either zero or an isomorphism. Hence
W ⊂ A(V ).

Let V,W be isomorphic irreducible left ideals. Since A is semi-simple, there
exists a projection f : A → V . Let s : V → W be an isomorphism. Then
fs(x) = fs(x · 1) = x · sf(1) = x · a, a = sf(1). If x ∈ V , then f(x) = x and
hence sf(x) = s(x) = xa, i.e., W = V a.

Let B ⊂ A be a two-sided ideal. Let V ⊂ B be irreducible and also
W ⊂ A(V ). Then W = V a. Since B is a right ideal, W ⊂ B and hence
A(V ) ⊂ B. 2

The isotypical parts are therefore the minimal two-sided ideal. A two-sided
ideal is itself an associative algebra, with addition and multiplication inherited
from A.

(3.1.2) Proposition. Let A = A1 ⊕ · · · ⊕ Ar be the decomposition into the
minimal two-sided ideal. Then AiAj = 0 for i 6= j.
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Proof. Let I ⊂ Ai and J ⊂ Aj be irreducible left ideals. Then Ai ⊃ IJ ⊂ Aj ,
since Ai, Aj are two-sided. From Ai ∩Aj = 0 we see IJ = 0. 2

Let 1 = e1 + · · · + er, ej ∈ Aj be the decomposition of the unit element.
Then e2i = ei and eiej = 0 for i 6= j. This follows from∑

ej = 1 = 1 · 1 = (
∑
ej)(

∑
ek) =

∑
ejek =

∑
e2j .

A consequence: ej is the unit element of the algebra Aj .
Let B be a minimal two-sided ideal of A. A linear subspace V of B is a

B-submodule if and only if it is an A-submodule. The map

r : B → HomB(B,B), x 7→ rx

is because of rxry = ryx an anti-isomorphism of algebras. Let B ∼= V n, where
V is an irreducible submodule of B. Then HomB(B,B) ∼= HomB(V n, V n).
The latter is, by the rules of linear algebra, a matrix algebra. Let ij : V → V n

be the inclusion of the j-the summand and pk : V n → V be the projection
onto the k-summand. We associate to f ∈ HomB(V n, V n) the matrix (fjk),
fjk = pkfij ∈ EndB(V ) = D. Since V is irreducible, D is a division algebra.
Therefore HomB(V n, V n) is isomorphic to the matrix algebra Mn(D) of (n, n)-
matrices with entries in D. Passage to the transposed matrix is an isomorphism
Mn(D)◦ ∼= Mn(D◦). (Notation: C◦ the algebra opposite to C, i.e., order of
the multiplication interchanged.) Therefore we have shown in our context:

(3.1.3) Theorem (Theorem of Wedderburn). The minimal left ideals of the
group algebra are isomorphic to matrix-algebras Mn(D◦); here D = End(V ) if
B is the V -isotypical part, and n is the multiplicity of V in B. 2

If K = C, then the division algebras appearing are just the field C itself. In
the next section we describe the decomposition into matrix algebras in a more
explicit manner and relate it to character theory.

3.2 The Structure of the Group Algebra

We assume in this section that K is a splitting field for G of characteristic zero.
We write dimV = |V |.

(3.2.1) Proposition. Let V ∈ Irr(G;K). The assignment

tV : Hom(V, V ) → KG, α 7→ |V |
|G|
∑

g∈G Tr(l−1
g α)g

is a homomorphism of algebras.
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Proof. By comparing coefficients in KG we see that the statement amounts to
|V |
|G|
∑

g∈G Tr(l−1
g α) Tr(l−1

x lgβ) = Tr(l−1
x αβ)

for α, β ∈ Hom(V, V ) and x ∈ G. It suffices to prove this for x = e.
We use the relation 2.2.6

|V |
|G|
∑

g∈G lgβlg−1 = Tr(β) idV , β ∈ Hom(V, V ) (3.1)

and compute
σ = |V |2

|G|2
∑

g,u∈G lgβlulg−1 lu−1α

in two ways. We apply (3.1) to
∑

u lulg−1 lu−1 and use the definition of χV ; this
shows us that σ is equal to

|V |
|G|
∑

g χV (g−1)lgβα.

The endomorphism |V |
|G|
∑

g χV (g−1)lg is the identity on V . Hence σ = βα. We
now apply (3.1) to

∑
g lgβlulg−1 and obtain

σ = |V |
|G|
∑

u Tr(βlu)lu−1α.

Finally we apply the trace operator to this equation and arrive at

Tr(βα) = |V |
|G|
∑

u Tr(luβ) Tr(lu−1α),

and this was to be shown. 2

The homomorphism tV is moreover a morphism of (G,G)-representations,
i.e., one verifies directly from the definitions that tV (lgαlh) = gtV (α)h.

(3.2.2) Proposition. The image of tV is the V -isotypical part of KG. The
(G,G)-representation Hom(V, V ) is irreducible and the image of tV is the
Hom(V, V )-isotypical part of KG as a (G,G)-representation.

Proof. The canonical map V ∗⊗V → Hom(V, V ) is an isomorphism of represen-
tations. By 2.1.6, these representations are irreducible. Since tV is non-zero,
tV is injective. Certainly tV has an image in the V -isotypical part. We know
already that it has dimension |V |2 = dim Hom(V, V ). Therefore tV maps iso-
morphically onto the V -isotypical part. 2

The homomorphisms tV combine to an isomorphism of algebras

t :
⊕

V ∈I Hom(V, V ) → KG, (xV ) 7→
∑

V ∈I tV (xV ).

This isomorphism induces an isomorphism of the centers of the algebras. The
center of Hom(V, V ) consists of the multiples of the identity. Let Z(A) denote
the center of the algebra A. We obtain a homomorphism of algebras

τV = prV ◦t−1 : Z(KG) → Z(Hom(V, V )) ∼= {λ · id | λ ∈ K} ∼= K.
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(3.2.3) Proposition. τV (
∑

g∈G α(g)g) = |V |−1
∑

g∈G α(g)χV (g).

Proof. The elements tV (idV ) = eV are, by 3.2.2, a vector space basis of Z(KG).
Hence it suffices to verify the assertion for these elements. The verification
amounts to |W |

|G|
1
|V |
∑

g χW (g−1)χV (g) = δV W , and this we know by 2.2.6. 2

(3.2.4) Proposition. The element
∑

g∈G α(g)g ∈ KG is contained in the
center of KG if and only if α is a class function. 2

An element e ∈ A in an algebra A is called idempotent, if it satisfies
e2 = e. Idempotents e, f are orthogonal, if ef = fe = 0. The elements
eV ∈ KG,V ∈ I are pairwise orthogonal, central idempotents. A central
idempotent is called primitive if it is not the sum of two orthogonal (non-
zero) idempotents. Since the eV form a basis of the center of KG, it is easy to
verify that the eV are primitive.

(3.2.5) Proposition. The multiplication by eV is in each representation the
projection onto the V -isotypical part. 2

(3.2.6) Proposition. Suppose V,W ∈ I(G; C). Then the orthogonality rela-
tion

∑
g∈G χV (g−1)χW (xg) = |V |

|G| 〈V,W 〉χV (x) holds.

Proof. The relation eV eW = 〈V,W 〉eV says

|V ||W |
|G|2

∑
g,h χV (g−1)χW (h−1)gh = |V |

|G| 〈V,W 〉
∑

x∈G χV (x−1)x.

Now we compare the coefficients of x−1. 2
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Induced Representations

4.1 Basic Definitions and Properties

We compare representations of different groups. The ground field K is fixed.
Let H be a subgroup of G and V an H-representation. Recall the construc-

tion X ×H Y for a right H-set X and a left H-set Y ; it is the quotient of the
product X × Y under the equivalence relation (x, y) ∼ (xh−1, hy). We denote
equivalence classes by their representatives in X × Y . We apply this construc-
tion to the right cosets gH, considered as H-sets by right multiplication. We
use the bijection ig : V → gH ×H V, v 7→ (g, v) to transport the vector space
structure from V to gH ×H V . If we choose another representative gh ∈ gH
of the coset gH, then iglh = igh, and therefore the vector space structure is
well-defined. (Although this vector space is just a model of V , we want this
model to depend on the coset.) We define a G-action on

⊕
gH∈G/H gH ×H V ;

the element u ∈ G acts as follows

gH ×H V → ugH ×H V, (g, v) 7→ (ug, v).

We see that G permutes the summands gH ×H V transitively. The resulting
G-representation is called the induced representation, and is denoted by

indG
H V =

⊕
gH∈G/H gH ×H V. (4.1)

(4.1.1) Example. Suppose |G/H| = 2. Let h 7→ A(h) be a matrix represen-
tation of H. Fix an element g ∈ GrH. Then a matrix representation for indG

H

is

h 7→
(
A(h) 0

0 A(g−1hg)

)
, gh 7→

(
0 A(ghg)

A(h) 0

)
.

Verify this, using the bijections ie and ig. 3
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There exist other constructions of the induced representation, from the
view point of set-theory or algebra. Therefore we characterize it by a universal
property. The bijection ie : V → H ×H V, v 7→ (e, v) preserves the H-action.
We thus obtain an H-morphism

iGH : V → indG
H V.

IfW is a G-representation, we denote by resG
H W theH-representation obtained

from W by restricting the group action to H. The universal property is:

(4.1.2) Proposition. The assignment

HomG(indG
H V,W ) → HomH(V, resG

H W ), Φ 7→ Φ ◦ iGH

is a natural isomorphism of vector spaces. In terms of dimensions this implies
〈 indG

H V,W 〉G = 〈V, resG
H W 〉H .

Proof. From the construction of indG
H V we see that a G-morphism from indG

H V
is determined by its restriction to the summand H ×H V . Therefore the map
in question is injective.

Conversely, given ϕ : V → resG
H W , we define a G-morphism Φ: indG

H V →
W on the summand gH ×H V by (g, v) 7→ g · ϕ(v). Another representative
(gh−1, hv) leads to the same value gh−1ϕ(hv), because ϕ is an H-morphism.
Therefore Φ is well-defined, a G-morphism by construction, and Φ◦iGH = ϕ. 2

We refer to 4.1.2 as Frobenius reciprocity. Suppose jG
H : V → Ṽ is an H-

morphism into a G-representation Ṽ such that Φ 7→ Φ ◦ jG
H induces a bijection

HomG(Ṽ ,W ) ∼= HomH(V, resG
H W ). Then there exists a unique isomorphism

γ : indG
H V → Ṽ of G-representations such that jG

H = γ ◦ iGH . This expresses
the fact, that 4.1.2 determines the induced representation. One consequence of
this fact is the transitivity of induction:

(4.1.3) Proposition. Let A ⊂ B ⊂ C be groups. Then there exists a canonical
C-isomorphism indC

B indB
A V

∼= indC
A V for A-representations V , since iCBi

B
A has

the universal property. 2

Given a G-representation, we often ask whether it can be induced from a
subgroup H. From the construction of indG

H V we obtain the following answer.

(4.1.4) Proposition. Let V be an H-sub-representation of the G-
representation W . The subspace gV ⊂ W depends only on the coset gH. We
denote it therefore by gHV . Suppose W is the direct sum of the subspaces
gHV . Then the canonical map indG

H V → W associated by 4.1.3 to the inclu-
sion V ⊂W is an isomorphism. 2
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An H-morphism α : V1 → V2 induces a G-morphism

indG
H α : indG

H V1 → indG
H V2, (g, v) 7→ (g, α(v)).

In this manner indG
H becomes a functor from the category of KH-

representations to the category of KG-representations. The isomorphism 4.1.3
is compatible with induced morphisms in the variables V and W . In category
theory one says that the induction functor indG

H is left adjoint to the restriction
functor resG

H .
Induction preserves direct sums; we have a natural isomorphism

indG
H(V1 ⊕ V2) ∼= indG

H V1 ⊕ indG
H V2. (4.2)

Let W be a G-representation. Then the bijections

gH ×H (V ⊗ resG
H W ) → (gH ×H V )⊗W, (g, v ⊗ w) 7→ (g, v)⊗ gv

combine to a natural isomorphism of G-representations

indG
H(V ⊗ resG

H W ) ∼= (indG
H V )⊗W. (4.3)

(4.1.5) Example. Let 1H denote the trivial one-dimensional H-
representation. Then indG

H 1H is the permutation representationK(G/H). The
basis element gH ∈ K(G/H) corresponds to (g, 1) ∈ gH ×H K.

If V happens to be the restriction of a G-representation V = resG
H W , then

indG
H(V ) ∼= indG

H(1H ⊗ V ) ∼= (indG
H 1H)⊗W ∼= K(G/H)⊗W.

In general one can think of indG
H V as a kind of mixture of the permutation

representation K(G/H) with V . 3

We compute the character of an induced representation in the case that K
has characteristic zero.

(4.1.6) Proposition. Let W = indG
H V . Then the character of W is given by

the formula

χW (u) =
∑

gH∈F (u,G/H)

χV (g−1ug) =
1
|H|

∑
g∈C(u,H)

χV (g−1ug)

where C(u,H) = {g ∈ G | g−1ug ∈ H} and F (u,G/H) = G/Hu = {gH |
ugH = gH}. An empty sum is zero.

Proof. Since u ∈ G sends gH ×H V to ugH ×H V , we see that the direct
summand gH ×H V contributes to the trace if and only if ugH = gH; and
in that case lu is transformed via the canonical isomorphism ig into lh, h =
g−1ug. 2
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We define a linear map for class functions by the same formula

indG
H : Cl(H,K) → Cl(G,K), (indG

H α)(u) =
1
|H|

∑
g∈C(u,H)

α(g−1ug).

We leave it to the reader to verify the next proposition. We use the standard
bilinear form (2.6) on class functions. The restriction of β ∈ Cl(G) to H is
given by composition with H ⊂ G.

(4.1.7) Proposition. Class functions have the following properties:
〈 indG

H α, β 〉G = 〈α, resG
H β 〉H , indG

H(α · resG
H β) = (indG

H α) · β, indC
B indB

A =
indC

A. 2

Problems

1. The character of indGH V assumes the value 0 at g if g is not conjugate to an
element of H.
2. Verify directly that the assignment in 4.1.1 is a homomorphism and that different
choices of g lead to conjugate matrix representations.
3. Apply 4.1.1 to the dihedral and quaternion groups D2n and Q4n and compare the
result with our earlier constructions.
4. Verify 4.1.7. Verify that indGH α is a class function.
5. Here is another dual construction of the induced representation, that is also called
coinduction. The vector space MapH(G, V ) of H-equivariant maps G → V carries
a G-action (u · ϕ)(g) = ϕ(gu). The decomposition of G into H-orbits, G = qHg,
shows MapH(G, V ) ∼=

L
Hg MapH(Hg, V ). The assignment

α : MapH(G, V ) →
L

gH ×H V, ϕ 7→
P
gH(g, ϕ(g−1))

is an isomorphism of G-representations; it sends MapH(Hg, V ) to g−1H ×H V .
6. The induced representation has, of course, a description in terms of modules. The
regular representation KG is a left KG-module and a right KH-module. Let V be
a left KH-module. Then the tensor product KG ⊗KH V is a left KG-module. Re-
late this definition to our first definition of the induced representation; in particular
explain from this view point the direct sum decomposition (4.1)of the induced repre-
sentation.
7. Let A and B be groups. An (A, B)-set S is a set S with a left A-action and a
right B-action which commute (as)b = a(sb), (a, b) inA × B, s ∈ S. Given a finite
(A, B)-set S we associate to an A-representation V the vector space MapA(S, V ) of A-
equivariant maps ϕ : S → V . This vector space carries a B-action (b · ϕ)(s) = ϕ(sb).
A morphism α : V → W of A-representations yields a morphism MapA(S, V ) →
MapA(S, W ), ϕ 7→ α ◦ ϕ. Let A- Rep denote the category of finite-dimensional left
A-representations (over K). The construction above yields a functor

ρ(S) : A- Rep → B- Rep
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for each finite (A, B)-set S. Let γ : S1 → S2 be a morphism of (A, B)-sets. Composi-
tion with γ yields a morphism

ρ(γ) : MapA(S2, V ) → MapA(S1, V ),

and the family of these morphisms is a natural transformation ρ(γ) : ρ(S2) → ρ(S1).
Altogether we obtain a contravariant functor

ρ : A-Set-B → [A- Rep, B- Rep]

of the category A-Set-B of finite (A, B)-sets into the functor category.
The composition of functors ρ(S) is again a functor of the same type.

(4.1.8) Proposition. Let S be an (A, B)-set and T be a (B, C)-set. Then there
exists a canonical isomorphism of functors ρ(T ) ◦ ρ(S) ∼= ρ(S ×B T ).

One has to provide a natural isomorphism

MapA(S ×B T, V ) ∼= MapB(T, MapA(S, V ))

of C-representations. It will be induced by the adjunction isomorphism

Map(S × T, V ) → Map(T, Map(S, V )), ϕ 7→ ϕ̂, ϕ̂(t)(s) = ϕ(s, t).

4.2 Restriction to Normal Subgroups

Let H be a subgroup of G. The g-conjugate gV of the H-representation V is
a gHg−1-representation with the same underlying vector space and with action

gHg−1 × V → V, (x, v) 7→ x ·g v = (g−1xg) · v.

The representation gV is irreducible if and only if V is irreducible. For a, b ∈ G
the relation a(bV ) = abV holds, and g-conjugation is compatible with direct
sums and tensor products. For h ∈ H the map lh : V → V is an isomorphism
ghV → gV of gHg−1-representations. The bijections

gH ×H
uV → guH ×H V, (g, v) 7→ (gu, v)

combine to an isomorphism of G-representations

indG
H

uV ∼= indG
H V.

Now suppose that H is a normal subgroup of G, in symbols H �G. Then
gHg−1 = H, and gV is again an H-representation which only depends on
the coset gH, up to isomorphism. The group G acts on the set Irr(H,K)
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of isomorphism classes of KH-representations by (g, V ) 7→ gV . This action
factors over an action of G/H since gV only depends on the coset gH. Let

G(V ) = {g ∈ G | gV ∼= V }

be the isotropy group at V of this G-action; it contains H.
Let W be a G-representation and V ⊂ resG

H W be an H-sub-representation.
The left translation lg : gV → gV satisfies

lg(h ·g v) = g(g−1hgv) = hgv = h · lgv,

and this relation shows that gV is an H-sub-representation which is isomorphic
to gV by lg.

Assume, moreover, that W and V are irreducible. The sum of the gV is a
G-sub-representation of W , hence equal to W . Since gV ∼= gV is irreducible,
resG

H W is the sum of irreducible H-representations and therefore semi-simple.
Thus we have shown:

(4.2.1) Proposition. The restriction of a semi-simple G-representation to a
normal subgroup H is a semi-simple H-representation. 2

Let again W and V ⊂ resG
H W be irreducible. From our analysis of semi-

simple representations we know that resG
H W is the direct sum of its isotypical

parts, and each irreducible sub-representation of resG
H W is isomorphic to some

gV . Let W (V ) be the V -isotypical part of resG
H W . The gV, g ∈ G(V ) are

contained in W (V ), and W (V ) is the sum of these gV . Therefore W (V ) is a
G(V )-sub-representation of W . The inclusion W (V ) ⊂ resG

G(V )W gives us, by
the universal property 4.1.2 of induced representations, a G-morphism

ι : indG
G(V )W (V ) →W.

In our model of the induced representation, ι maps gG(V ) ×G(V ) W (V ) to
gW (V ). The subspace gW (V ) is another isotypical summand of resG

H W . From
4.1.4 we obtain:

(4.2.2) Proposition. ι is an isomorphism of G-representations. 2

Suppose W (V ) is isomorphic to r copies of V . Then

resG
H W ∼= r

⊕
gG(V )∈G/G(V )

gV.

The gV , gG(V ) ∈ G/G(V ) are pairwise non-isomorphic. The integer r is called
the ramification index of W with respect to the normal subgroup H.

Let V ∈ Irr(H;K). The summand gH ×H V of indG
H V is isomorphic

to gV ; the assignment gV → gH ×H V, v 7→ (g, v) is an isomorphism of H-
representations. This shows:

resG
H indG

H V ∼= |G(V )/H|
⊕

gV. (4.4)
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The summation is over gG(V ) ∈ G/G(V ). We apply Frobenius reciprocity and
Schur’s lemma to (4.4) and obtain

〈 indG
H V, indG

H V 〉G = |G(V )/H|
∑
〈V, gV 〉H = |G(V )/H|〈V, V 〉H . (4.5)

From this relation we deduce:

(4.2.3) Proposition. Let K be algebraically closed of characteristic not di-
viding |G|. Then indG

H V is irreducible if and only if G(V ) = H.

Proof. indG
H V = W is irreducible if and only if 〈W,W 〉G = 1, and this is, by

4.5, the case if and only if |G(V )/H| = 1 and 〈V, V 〉H = 1. 2

(4.2.4) Theorem. Let K be algebraically closed of characteristic zero. Let
H � G and V ∈ Irr(H;K). Suppose indG(V )

H V =
⊕k

j=1mjVj with pairwise
non-isomorphic G(V )-representations Vj. Then:

(1) indG
G(V ) Vj = Wj is irreducible.

(2) Let W ∈ Irr(G;K) and 〈V, resG
H W 〉 6= 0. Then W ∼= Wj for some j.

(3) The Wj are pairwise non-isomorphic.
(4) mj is the ramification index of Wj with respect to H.
(5) Let IG(V ) = {W1, . . . ,Wr} ⊂ Irr(G;K). Then IG(gV ) = IG(V ) and

Irr(G;K) is the disjoint union of the sets IG(V ) where V runs through
a representative system of conjugation orbits Irr(H;K)/G.

Proof. Restriction to H and (4.4) yields⊕k
j=1mj resG(V )

H Vj = resG(V )
H indG(V )

H V = |G(V )/H|V. (4.6)

Therefore resG(V )
H Vj = njV for some nj ∈ N. Frobenius reciprocity yields

nj = 〈njV, V 〉H = 〈V, resG(V )
H Vj 〉H

= 〈 indG(V )
H V, Vj 〉G(V )

= mj〈Vj , Vj 〉G(V ) = mj .

Therefore resG(V )
H Vj = mjV , and together with (4.6) we obtain

|G(V )/H| =
∑k

j=1m
2
j . (4.7)

Let now W ∈ Irr(G,K) be such that

〈 indG
G(V ) Vi,W 〉G 6 = 0. (4.8)

We want to show that W ∼= Wi = indG
G(V ) Vi; this shows in particular that

Wi is irreducible, since there exist W such that (4.8) holds. By Frobenius
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reciprocity 0 6= 〈 indG
G(V ) Vi,W 〉G = 〈Vi, resG

G(V )W 〉G(V ). Therefore Vi occurs
in resG

G(V )W and hence 〈U, Vi 〉 ≤ 〈U, resG
G(V )W 〉 for each G(V )-representation

U . In particular

〈V, resG
H W 〉 = 〈 indG(V )

H V, resG
G(V )W 〉

≥ 〈 indG(V )
H V, Vi 〉 = 〈V, resG(V )

H Vi 〉 = mi.

This implies, for each g ∈ G,

〈 resG
H W, gV 〉 = 〈 resG

H(g−1
W ), V 〉 = 〈 resG

H W,V 〉 ≥ mi.

Therefore each gV occurs in resG
H V at least with multiplicity mi. From (4.8)

we obtain

dimW ≤ dim indG
G(V ) Vi. (4.9)

Since gV occurs in resG
H V at least with multiplicity mi and since there exist

|G/G(V )| different gV , we see

dimW ≥ mi|G/G(V )|dimV = |G/G(V )|dimVi = dim indG
G(V ) Vi. (4.10)

From (4.9) and (4.10) we obtain equality of dimensions and therefore W ∼=
indG

G(V ) Vi, since W occurs in indG
G(V ) Vi. Frobenius reciprocity again yields

〈V, resG
H W 〉 = 〈 indG

H V,W 〉 =
∑

j mj〈 indG
G(V ) Vj ,W 〉.

Therefore W ∈ Irr(G,K) is of the form indG
G(V ) Vj for some j ∈ {1, . . . , k} if

and only if 〈V, resG
H W 〉 6= 0. There are exactly k G-representations of this

type if we show Wi 6∼= Wj for i 6= j. Suppose that W1
∼= W2. Then

indG
H V = (m1 +m2) indG

G(V ) V2 +m3 indG
G(V ) V3 + · · · (4.11)

and, together with (4.7) and 4.2.3, we arrive at the contradiction∑
j m

2
j = |G(V )/H| = 〈 indG

H V, indG
H V 〉 ≥ (m1 +m2)2 +m2

3 + · · ·+m2
k;

the inequality ≥ is a consequence of (4.11) and 〈Wi,Wi 〉 = 1.
The ramification index of Wj with respect to H is 〈V, resG

H Wj 〉. By Frobe-
nius reciprocity this is equal to 〈 indG

H V,Wj 〉 = 〈
∑

tmtWt,Wj 〉 = mj .
Suppose W ∈ IG(V1) ∩ IG(V2). Then

0 6= 〈 indG
H V1, indG

H V2 〉 = 〈V1, res indV2 〉.

Since resG
H indG

H V2 contains only conjugates of V2, we see that V1 and V2 are
conjugate. Part (2) and IG(V ) = IG(gV ) now shows that Irr(G;K) is the
disjoint union of the IG(V ) as stated. 2
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(4.2.5) Remark. Theorem 4.2.4 gives a kind of recipe for the construction of
irreducible G-representations starting from the irreducible representations of a
normal subgroup H.

The situation is easy to survey if V happens to be a restriction of a G(V )-
representation Ṽ . In that case indG(V )

H V = indG
H 1H ⊗ Ṽ , see ??. Since

H � G(V ), the representation indG(V )
H 1H is obtained from the regular rep-

resentation K(G(V )/H) by composition with the quotient homomorphism
G(V ) → G(V )/H. The decomposition of the regular representation now de-
termines the Vj in 4.2.4. 3

The next proposition gives conditions under which the lifting property holds
for all irreducible representations of H. For the proof go back to 1.6.1.

(4.2.6) Proposition. Let K be algebraically closed. Suppose H is an abelian
normal subgroup and G the semi-direct product of H and P , i.e. G = HP
and H ∩P = 1. Then each irreducible H-representation V has an extension to
G(V ). 2

(4.2.7) Remark. We now combine 4.2.4 - 4.2.6. The hypotheses are as in
4.2.6. The irreducible representations of G are obtained as follows. Start with
η ∈ Irr(H). Let Pη ≤ P be the isotropy group of η under the conjugation
action of P on Irr(H). Extend η to η̃ by 4.2.6. Let U ∈ Irr(Pη) and lift to a
representation Ũ of HPη. Then form W = indG

HPη
(η̃ ⊗ Ũ). The isomorphism

class of W uniquely determines the P -orbit of η and the isomorphism class of
the Pη-representation U . 3

4.3 Monomial Groups

The induced representation of a one-dimensional representation is called a
monomial representation. A group is called monomial if each V ∈
Irr(G; C) is monomial.

Let ρ : H → K∗ be a one-dimensional representation. A basis of indG
H ρ

consists of the (gj , 1) = xj where 1 = g1, . . . , gr is a representative system of
G/H. Suppose ggj = gσ(j)hj with σ ∈ Sr and hj ∈ H. The computation

gxj = (ggj , 1) = (gσ(j)hj , 1) = (gσ(j), ρ(hj)) = ρ(hj)xσ(j)

shows: The matrix representation of indG
H ρ with respect to the basis above

consists of matrices which have in each row and column exactly one non-zero
entry. Matrices of this type are called monomial.

A group G is said to be supersolvable if there exists a string of normal
subgroups 1 = G0 < G1 < . . . < Gr = G such hat Gj/Gj−1 is a group of
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prime order. Subgroups and factor groups of supersolvable groups are super-
solvable. Groups of prime power order are supersolvable. If H is cyclic and
G/H supersolvable, then G is supersolvable.

(4.3.1) Theorem. Supersolvable groups are monomial.

The proof needs some preparation and will be finished after 4.3.4.

(4.3.2) Proposition. Suppose G has an abelian normal subgroup A which is
not central. Then a faithful irreducible CG-representation is induced from a
proper subgroup.

Proof. Let W ∈ Irr(G; C) be faithful and suppose V ∈ Irr(H; C) is an H-
sub-representation of W . It suffices to show G(V ) 6= G; see 4.2.2. Suppose
G(V ) = G. Then resG

A W is a multiple of the one-dimensional representation
V . Therefore each a ∈ A acts on V as multiplication by a scalar, hence la
commutes with lg for each g ∈ G. Since W is faithful this fact implies that a
is contained in the center of G. 2

(4.3.3) Lemma. Let G be a non-abelian supersolvable group. Then G contains
a non-central normal abelian subgroup.

Proof. Let Z < G be the center of G. Since G is supersolvable, so is G/Z. Let
1 6= H/Z�G/Z be a cyclic normal subgroup. Then H is an abelian non-central
normal subgroup. 2

We need a formal property of induced representations. Let α : A→ B be a
homomorphism. We associate to a KB-representation V a KA representation
α∗V with the same underlying vector space V and with action

A× V → V, (a, v) 7→ α(a) · v.

In the case that α : A ⊂ B we have α∗V = resB
A V . If α is surjective, we say

that α∗V is obtained from V by lifting the group action along α. We show
that induction is compatible with lifting. Consider

α̃−1(A) = P

α
��

⊂ // Q

α̃
��

A
⊂ // B

α̃ surjective and α = α̃|P . Then

(4.3.4) Lemma. α̃∗(indB
A V ) ∼= indQ

P (α∗V ) for each A-representation V .

Proof. α induces a bijection Q/P → B/A by passing to quotients. The iso-
morphism is induced by qP ×P α∗V → α(q)A×A V, (q, v) 7→ (α(q), v). 2
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Proof. (Of 4.3.1.) Let W be a faithful irreducible CG-representation. If G is
abelian, then dimW = 1, and nothing is to prove. Otherwise W is, by 4.3.2
and 4.3.3, induced from a proper subgroup W = indG

H V . By induction we can
assume that V is monomial, and by transitivity of induction, W is monomial.

If W is not faithful, let L be its kernel, and consider W as G/L-
representation W . By induction again, W is monomial. Now use 4.3.4. 2

Problems

1. Consider the semi-direct product G of the quaternion group Q8 = 〈 a, b | a2 =
b2, bab−1 = a−1 〉 by C3 = 〈h 〉 with respect to the automorphism hah−1 = b, hbh−1 =
ab. The faithful representation G → SU(2)

a 7→
„

i 0
0 −i

«
, b 7→

„
0 −1
1 0

«
, h 7→ i− 1

2

„
1 −i
1 i

«
is not monomial: The group G has no subgroup of index 2. The group G has the

quotient A4 and is solvable. (G is called the binary tetrahedral group.)

4.4 The Character Ring and the Representation
Ring

Let K be a field of characteristic zero. Recall that the characters of the irre-
ducible KG-representations are linearly independent in the ring of class func-
tions Cl(G;K). The additive subgroup CH(G;K) of Cl(G;K) generated by
the characters of irreducible representations is therefore a free abelian group of
rank | Irr(G;K)|. The relation χV⊕W = χV +χW shows that each character is
contained in this group. And the relation χV⊗W = χV χW is used to show that
CH(G;K) is a subring of Cl(G;K). This ring is called the character ring of
KG-representations.

The character ring can be constructed formally. It is then called the repre-
sentation ring or Green ring. In this context K can be an arbitrary field.
Let R(G;K)+ denote the set of isomorphism classes of KG-representations.
Direct sum and tensor product induces on R(G;K)+ two composition laws
(addition and multiplication), and with these structures R(G;K)+ is almost a
commutative ring, except that inverses for the additive structure are missing.
In situations like this, there exists a universal ring R(G;K) together with a
homomorphism

ι : R(G;K)+ → R(G;K)

of semi-rings which is determined, up to a unique isomorphism, by a universal
property: Let ϕ : R(G;K)+ → A be a homomorphism into an abelian group.
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Then there exists a unique homomorphism of abelian groups Φ: R(G;K) → A
such that Φ ◦ ι = ϕ. If, moreover, A is a commutative ring and ϕ a homomor-
phism of semi-rings, then the universal homomorphism Φ is a homomorphism
of rings. The universal property is used to show that additive constructions
with representations extend to the representation ring. Elements in R(G;K)
are formal differences [V ]− [W ] of representations V,W , called virtual repre-
sentations, and [V ]−[W ] = [V ′]−[W ′] if and only if V ⊕W ′⊕Z ∼= V ′⊕W⊕Z
for some representation Z.

(4.4.1) Proposition. If K has characteristic zero, then the homomorphism
R(G;K)+ → CH(G;K), V 7→ χV is a model for the universal ring. If the
characteristic of K does not divide the order of the group, then R(G;K) has a
Z-basis of isomorphism classes of irreducible representations. 2

Typical additive constructions are restriction and induction.

(4.4.2) Proposition. Suppose H ≤ G. Restriction induces a ring homomor-
phism resG

H : R(G;K) → R(H;K). Induction induces an additive homomor-
phism indG

H : R(H;K) → R(G;K). The relation (4.3) shows indG
H(x · resG

H y) =
(indG

H x) · y. It implies that the image of indG
H is an ideal. 2

(4.4.3) Example. Let G = Cm = 〈 a | am = 1 〉 and ρ : a 7→ exp(2πi/m) the
standard representation. Then R(G; C) is the free abelian group with basis
1, ρ, ρ2, . . . , ρm−1. The multiplicative properties of the ρk, namely ρk ⊗ ρl ∼=
ρk+l, show that the ring R(G; C) is isomorphic to Z[ρ]/(ρm−1). More formally:
For a finite abelian group G with character group G∗ the representation ring
R(G; C) is isomorphic to the group ring Z[G∗]. 3

(4.4.4) Example. We determine R(Cm; Q) for Cm = 〈x | xm = 1 〉. De-
compose xm − 1 ∈ Q[x] into irreducible factors xm − 1 =

∏
d|m Φd(x). The

cyclotomic polynomial Φd(x) has the primitive d-th roots of unity as its roots.
The quotient Vd = Q[x]/(Φd(x), viewed as a module over the group ring
QCm = Q[x]/(xm − 1), is an irreducible QCm-representation. The Vd, d|m
form a Z-basis of R(Cm,Q). There is another Z-basis which consists of the
permutation representations Q(Cm/Cn) = Pm/n. The representation Pm/n

contains the irreducible representations which have Cn in its kernel. The ker-
nel of Vd is Cm/d. Hence Pk =

∑
d|k Vd. By Möbius-inversion one obtains

Vk =
∑

d|k µ(k/d)Pd. 3

(4.4.5) Example. Suppose the characteristic of K does not divide the order
of G. We describe R(Cm;K). Let L = K(ε) be the field extension, ε a
primitive m-th root of unity. Then, as in 4.4.3, R(Cm;L) ∼= Z[ρ]/(ρm − 1)
where ρ : Cm → L∗ is given by ρ(a) = ε. Field extension yields an injective
homomorphism ι : R(Cm;K) → R(Cm;L). Let Γ = Gal(L|K) be the Galois
group of L over K. An element γ ∈ Γ is determined by its value γ(ε) = εt; and
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t is determined modulo m; hence γ 7→ t yields an injection Γ ⊂ Z/m∗. The
group Γ acts on {1, ε, . . . , εm−1}. If C is an orbit, then qC =

∏
α∈C(X − α) is

an irreducible factor of xm − 1 ∈ K[x]. These irreducible factors correspond
to the irreducible KCm-representations. The group Γ acts on Irr(G;L) = {ρt |
t ∈ Z/m} by (γρ)(a) = γ(ρ(a)), and hence on R(G;L) by ring automorphisms.
The homomorphism ι induces an isomorphism ι : R(Cm;K) ∼= R(Cm;L)Γ with
the Γ-fixed subring. 3

Problems

1. Compute R(D2n; C) and study the restriction to R(Cn; C). Compare R(D2n; R)

via complexification with R(D2n; C).

2. Let x ∈ R(G; C) be a unit of finite order. Then the character values of x are roots

of unity. This implies that 〈x, x 〉 = 1. One concludes that x = ±χ, where χ is a

one-dimensional representation.

3. The group ring ZG of a finite abelian group G is isomorphic to the representation

ring R(G; C). Hence the units of finite order in ZG are precisely the elements ±g for

g ∈ G. ??

4. The complexifications of representations induces an injective homomorphism

c : R(G; R)∗ → R(G; C)∗. If x ∈ R(G; R) is a positive unit of finite order (posi-

tive: x(1) > 0), then c(x) is a one-dimensional character with real values, hence a

homomorphism G → Z∗ = {±1}. Hence: Hom(G, Z∗) is canonically isomorphic to

the group of positive units of finite order in R(G; R). Since these units are rational

representations, R(G; Q) has the same units of finite order as R(G; R).

4.5 Cyclic Induction

Let F be a set of subgroups of G. A general question of induction theory is:
For which sets F is the induction map

iF = 〈 indG
H | H ∈ F 〉 :

⊕
H∈F R(H;K) → R(G;K)

surjective? We know that the image of iF is an ideal. Therefore iF is surjective
if and only if the unit element 1G of R(G;K) is contained in the image of iF .
It is also interesting to look for integral multiples of 1G in the image of iF .

Let K be a field of characteristic zero. In this section we prove Artin’s
induction theorem which says that |G|1G is in the image of iC for the set C of
cyclic subgroups. The proof is based on a character calculation.

We rewrite the basic orthogonality relation

|G|dimV G =
∑

g∈G χV (g). (4.12)



62 4 Induced Representations

Let C# denote the set of generators of the cyclic group C. Since each element
generates a unique cyclic subgroup we can write the right hand side of (4.12)
as a sum over the cyclic subgroups C of G

|G|dimV G =
∑

C(
∑

g∈C# χV (g)). (4.13)

We apply this to the cyclic subgroup C itself.
Let µ : N → Z be the Möbius-function, defined inductively by1 µ(1) = 1

and
∑

d|n µ(d) = 0 for n > 1. Let f and g be functions from N into some
(additive) abelian group such that f(n) =

∑
d|n g(d); then Möbius inversion

tells us that g(n) =
∑

d|n µ(n/d)f(d).
Note that for each divisor d of |C| = n there exists a unique subgroup

D ≤ C with |D| = d. We obtain by Möbius inversion from (4.13)∑
c∈C# χV (c) =

∑
D≤C µ(|C/D|)(

∑
d∈D χV (d)). (4.14)

The inner sum in (4.14) equals |D|dimV D. Therefore we obtain altogether:

|G|dimV G =
∑

C(
∑

D≤C µ(|C/D|)|D|dimV D). (4.15)

This equality has the form |G|dimV G =
∑

C aC dimV C with suitable integers
aC . We use 〈K(G/H), V 〉G = dimV H in (4.15) and see that 〈 |G|K(G/G) −∑

C aCK(G/C), V 〉G = 0 for each representation V . This implies that the left
argument of the bracket is zero.

(4.5.1) Proposition. |G|[K(G/G)] =
∑

C aC [K(G/C)] in R(G;K). Note
that 1G = [K(G/G)] is the unit element in R(G;K). 2

We know that indG
C resG

C : R(G;K) → R(G;K) is multiplication by
[K(G/C)], see 4.1.5. Hence we obtain from 4.5.1:

(4.5.2) Theorem. For x ∈ R(G;K) the identity
∑

C aC indG
C resG

C x = |G|x
holds. This implies Artin’s induction theorem: |G|R(G;K) is contained in
the image of iC. 2

(4.5.3) Theorem. Let V and W be QG-representations. Suppose that for
each cyclic subgroup C ⊂ G we have dimV C = dimWC . Then V and W are
isomorphic.

Proof. It suffices to show resG
C V

∼= resG
C W for each cyclic subgroup C of G,

since we know that representations are determined by their restriction to cyclic
subgroups. From our analysis of irreducible QC-representations we conclude
that they are determined up to isomorphism by fixed point dimensions of sub-
groups. 2

1d|n means, d divides n.
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(4.5.4) Proposition. The rank of R(G; Q) equals the number of conjugacy
classes of cyclic subgroups of G.

Proof. Since conjugate subgroups have fixed points of equal dimension we con-
clude from 4.5.3 that the rank is at most the number of cyclic conjugacy classes.

We show that the permutations representations UC = Q(G/C), (C) cyclic
conjugacy class, are linearly independent. Suppose

∑
(C) aCUC = 0. Let C be

maximal such that aC 6= 0, and let g ∈ C be a generator. The character of∑
(C) aCUC at g is aC |G/CC | 6= 0; a contradiction. 2

(4.5.5) Proposition. Let α ∈ Cl(G;K). Suppose for each cyclic subgroup C
the restriction resG

C α ∈ R(C;K). Then |G|α ∈ R(G;K).

Proof. This is a direct consequence of 4.5.2. 2

Problems

1. Let G = A5. The virtual permutation representation associated to [G/C5] +

[G/C3] + [G/C2]− [G/C1] realizes 2 · 1G ∈ R(G; Q).

4.6 Induction Theorems

In order to state further induction theorems we have to specify suitable sets of
subgroups. Let p be a prime number. A p-group is a group of p-power order.
Let |G| = ptq with (p, q) = 1. Then there exists a subgroup G(p) ≤ G of
order pt, and all such groups are conjugate; they are called Sylow p-groups
of G. A p-hyperelementary group H is the semi-direct product of a cyclic
group and a p-group P of coprime order; S is a normal subgroup of H and
H/S ∼= P . Let H(p,G) denote the set of p-hyperelementary subgroups of G.
The set H(G) = ∪pH(p,G) is the set of hyperelementary subgroups of G.
Hyperelementary groups are monomial. A p-elementary group H is the direct
product S×P of a cyclic group S and a p-group P of coprime order. We denote
by E(p,G) the set of p-elementary subgroups of G and by E(G) = ∪pcalE(p,G)
the set of elementary subgroups of G.

As in the case of Artin’s induction theorem, the hyperelementary induction
theorem is a consequence of a result about permutation representations.

(4.6.1) Theorem. Let K be a field of characteristic zero. There exists in
R(G;K) a relation of the type |G/G(p)|1G =

∑
E∈H(p,G) hE [K(G/E)] with

suitable integers hE.
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We defer the proof to a later section where we deal systematically with such
results; see ??.

(4.6.2) Theorem (Hyperelementary induction). Let K be a field of charac-
teristic zero. Then |G/G(p)|R(G;K) is contained in the image of iH(p,G). The
induction map iH(G) is surjective.

Proof. The first assertion is a consequence of 4.6.1. The integers |G/G(p)|, p
a divisor of |G|, have no common divisor. Hence there exist integers np such
that

∑
p np|G/G(p)| = 1. We conclude that 1G is in the image of iH(G). 2

Hyperelementary groups are supersolvable. Therefore the next theorem is
a consequence of 4.6.2.

(4.6.3) Theorem (Monomial induction). R(G; C) is generated by monomial
representations, i.e., each element x ∈ R(G; C) is of the form x = [V ]−[W ] with
representations V and W which are direct sums of monomial representations.

2

(4.6.4) Proposition. Let H = SP be a p-hyperelementary group. Then
iE(p,H) is surjective (K = C).

Proof. By induction on |H| we can assume that irreducible representations of
dimension greater than one are in the image of the induction map. Let α ∈
X(H) be a one-dimensional representation. Consider the elementary subgroup
E = SP × P . We claim: If γ ∈ X(H) occurs in indG

E resG
E α, then α = γ and

α occurs with multiplicity one. By Frobenius reciprocity this is a consequence
of 1.6.3. Thus modulo representations of dimensions greater that one, each
element of X(H) is in the image of the induction map. 2

We combine 4.6.2 and 4.6.4 and obtain:

(4.6.5) Theorem (Brauer’s induction theorem). Let K = C. Then
|G/G(p)|R(G; C) is contained in the image of iE(p,G), and iE(G) is surjec-
tive. 2

We now derive an interesting consequence of the monomial induction the-
orem. The exponent e(G) of a group G is the least common multiple of the
order of its elements; it divides |G|.

(4.6.6) Theorem (Splitting field). Let ε be a primitive e(G)-th root of unity.
Then Q(ε) is a splitting field for G, i.e., each irreducible CG-representation
has a realization with matrices having entries in Q(ε).

Proof. One-dimensional representations of subgroups of G are certainly real-
izable over Q(ε) and therefore also monomial representations, being induced
from one-dimensional ones. From 4.6.3 we infer: LetM be a CG-representation.
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Then there exist representations U and V , which are realizable over Q(ε) and
such that U ∼= V ⊕M . It is now a general fact that this implies: M is realizable
over Q(ε). See the next proposition. 2

Let L be an extension field of K (of characteristic zero). We denote by
VL = L ⊗K V the extension of a KG-representation to an LG-representation.
From character theory we see 〈V,W 〉KG = 〈VL,WL 〉LG.

(4.6.7) Proposition. Let U and V be KG-representations and M an LG-
representation. Suppose UL

∼= VL⊕M . Then there exists a KG-representation
N such that NL

∼= M .

Proof. We fix M . Among all possible isomorphisms UL
∼= VL ⊕M choose one

with V of smallest dimension. We show V = 0. Suppose V 6= 0. Choose
W ∈ Irr(G;K) with 〈W,V 〉KG > 0. Then

〈U,W 〉KG = 〈UL,WL 〉LG = 〈VL ⊕M,WL 〉LG

= 〈V,W 〉KG + 〈M,WL 〉LG > 0.

Therefore W occurs in U , hence U ∼= U ′ ⊕W , V ∼= V ′ ⊕W by semi-simplicity.
We conclude U ′

L ⊕WL
∼= V ′

L ⊕WL ⊕M , cancel WL, and see that V was not of
minimal dimension. 2

(4.6.8) Proposition. The restriction ρ : R(G; C) →
∏

E R(G; C) is an injec-
tion as a direct summand (E elementary subgroups).

Proof. Suppose 1G =
∑

E indG
E xE . Define

λ : R(G) →
∏

E R(E), x 7→ (resG
Ex · xE | E).

Then
∑

E indG
E(resG

E ·xE) =
∑

E x · indG
E xE = x ·1G = x. Hence λ is a splitting

of the induction.
Dually, define

r :
⊕

E R(E) → R(G), (yE) 7→
∑

E indG
E(yE · xE).

Then rρ(x) =
∑

indG
E(resG

E x · xE = x ·
∑

E indG
E xE) = x. Thus r is a splitting

of ρ. 2

(4.6.9) Proposition. Let α ∈ Cl(G) be such that resG
E α ∈ R(E) for each

elementary subgroup E of G. Then α ∈ R(G).

Proof. This is a consequence of 4.6.7. 2

For arbitrary fields (of characteristic zero) we have results of the type 4.6.7
and 4.6.8, using hyperelementary groups. The proofs are the same.
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Problems

1. Verify the elementary induction theorem explicitly for G = A5.
2. The virtual permutation representation associated to [G/D5] + [G/D3]− [G/D2]
is the unit element, G = A5.

4.7 Elementary Abelian Groups

We assume that p does not divide the characteristic of K.

(4.7.1) Theorem. Let V be a faithful KG-representation and A � G an el-
ementary abelian group of rank n ≥ 2. Then there exists H ≤ A such that
|A/H| = p and V H 6= 0. The normalizer NGH is different from G and the
canonical map indG

NH V H → V is an isomorphism.

The proof needs some preparation. Let S(A) = {H ≤ A | |A/H| = p} be
the set of cocyclic subgroups. Consider the following elements in the group
algebra KA

xH = |A|−1(pΣH − ΣA), y = |A|−1ΣA

with ΣA =
∑

a∈A and ΣH =
∑

h∈H h for H ∈ S(A).

(4.7.2) Proposition. The elements xH and y have the following properties:
(1) x2

H = xH ; y2 = y
(2) xHxK = 0 for H 6= K; xHy = 0
(3) 1 = y +

∑
H∈S(A) xH .

Proof. The proof of (1) and (2) is a direct consequence of the relations Σ2
A =

|A|ΣA, ΣHΣA = |H|ΣA, Σ2
H = ΣH and ΣHΣK = p−2|A|ΣA for H 6= K. In

order to prove (3), one has to count the number of H ∈ S(A) which contain
1 6= a and the cardinality of S(A). The latter equals the number (pn−1)/(p−1)
of one-dimensional subspaces of A. The former is the number of subspaces of
A/〈 a 〉 of codimension one. From this information one verifies (3). 2

(4.7.3) Proposition. Let V be a KA-representation. Then yV = Y A and
xHV ⊕ V A = V H .

Proof. We already know that multiplication with y is a projection operator
onto the fixed point set. The second assertion follows from |H|−1ΣH = xh + y,
xHy = 0, and the fact that multiplication by |H|−1ΣH is the projection onto
V H . 2

(4.7.4) Proposition. V = yV ⊕
⊕

H∈S(A) xHV .
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Proof. 4.7.2 (3) shows that V is the sum of yV and the xHV , and 4.7.2 (2)
shows that the sum is direct. 2

(4.7.5) Corollary. Let S(A, V ) = {H ∈ S(A) | V H 6= 0} and suppose V G = 0.
Then V =

⊕
H∈S(A,V ) V

H . In particular S(A, V ) 6= ∅. 2

Proof. (Of 4.7.1). By 4.7.4, there exists H ∈ S(A) such that V H 6= 0. Since
gV H = V gHg−1, the group G acts on S(A, V ) by conjugation. Since

∑
gV H =

V , the action is transitive, and NH is the isotropy group of H ∈ S(A, V ). The
statement is now a special case of 4.2.1. 2

We report on group to which 4.7.1 applies.

(4.7.6) Theorem. Suppose each abelian normal subgroup of the p-group G is
cyclic. Then G is a group in the following list.

(1) G is cyclic.
(2) G is the dihedral group D(2n) of order 2n, n ≥ 4. It has the presenta-

tion 〈A,B | A2n−1
= 1 = B2, BAB−1 = A−1 〉.

(3) G is the semi-dihedral group SD(2n) of order 2n, n ≥ 4. It has the
presentation 〈A,B | A2n−1

= 1 = B2, BAB−1 = A2n−2−1 〉.
(4) G is the quaternion group Q(2n) of order 2n, n ≥ 3. It has the pre-

sentation 〈A,B | B2 = A2n−2
, BAB−1 = A−1 〉. 2

We have shown that complex representations of p-groups are induced from
one-dimensional representations. The virtue of 4.7.1 is that we do not need any
hypothesis about the field K, except that we are in the semi-simple case. Thus
4.7.1 applies, e.g., to real or rational representations. It then remains to study
the groups in the list 4.7.5. The situation is particularly simple for p 6= 2, since
then everything is reduced to the cyclic groups.
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