Double orthodontia formulas and Lascoux positivity

Linus Setiabrata (joint with Avery St. Dizier)

University of Chicago

October 30, 2024

arXiv:2410.08038

Outline

- Schubert polynomials and flagged Weyl modules
- Orthodontia formula for flagged Weyl modules
 - and key positivity of their dual characters
- Orthodontia formula for double Grothendieck polynomials
 - and a curious Lascoux positivity result

Goal: Analogue of flagged Weyl module for Grothendieck polynomials.

Schubert polynomials

Schubert polynomials \mathfrak{S}_w are certain lifts of Schubert cycles $[X_w] \in H^*(\mathcal{F}\ell_n)$.

э

イロト 不得 トイヨト イヨト

Schubert polynomials

Schubert polynomials \mathfrak{S}_w are certain lifts of Schubert cycles $[X_w] \in H^*(\mathcal{F}\ell_n)$.

Definition

The *i-th divided difference operator* is

$$\partial_i(f) := rac{f-s_i \cdot f}{x_i-x_{i+1}},$$

for
$$i \in [n-1]$$
. $(s_i \cdot f := f(x_1, ..., x_{i+1}, x_i, ..., x_n))$

Definition

For $w \in S_n$, recursively define *Schubert polynomials*:

$$\mathfrak{S}_w(\mathbf{x}) = \begin{cases} x_1^{n-1} x_2^{n-2} \dots x_{n-1} & \text{if } w = w_0 \\ \partial_i(\mathfrak{S}_{ws_i}(\mathbf{x})) & \text{if } \ell(w) < \ell(ws_i). \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Schur polynomials

Example

Schur polynomials $s_{\lambda} := \operatorname{ch}(V_{\lambda})$ are \mathfrak{S}_w for "Grassmannian w".

(The GL_n -irreps V_λ are "representation-theoretic avatars" of Grassmannian \mathfrak{S}_{w} .)

	<u> </u>			
Linuc	50	+++-	hra	t n
LIIIUS	00	ua	Dia	La

э

Schur polynomials

Example

Schur polynomials $s_{\lambda} := ch(V_{\lambda})$ are \mathfrak{S}_w for "Grassmannian w".

(The GL_n -irreps V_λ are "representation-theoretic avatars" of Grassmannian \mathfrak{S}_{w} .)

$$[X_{u}] \cdot [X_{v}] = \sum_{w} c_{uv}^{w} [X_{w}] \quad \iff \quad V_{\lambda} \otimes V_{\mu} = \bigoplus_{\nu} V_{\nu}^{\oplus c_{\lambda\mu}^{\nu}}$$

intersection nos. \iff multiplicities of irreps

 c_{uv}^{w} : "Littlewood–Richardson coefficients"

Central problem: Combinatorial formula for c_{uv}^w ?

く 伺 ト く ヨ ト く ヨ ト

Rothe diagrams

(Towards representation-theoretic avatars of general \mathfrak{S}_w)

 $w \rightsquigarrow D(w)$ "Rothe diagram"

12

・ロト ・ 四ト ・ ヨト ・ ヨト …

Rothe diagrams

(Towards representation-theoretic avatars of general \mathfrak{S}_w)

 $w \rightsquigarrow D(w)$ "Rothe diagram"

Definition

- Draw $n \times n$ grid with dots in *i*-th row and w(i)-th column
- Draw "death rays" emanating east and south of each dot
- Remaining squares are D(w).

Flagged Weyl modules

$D \rightsquigarrow \mathcal{M}_D$ "flagged Weyl module"

(representation of $B := \{ upper triangular matrices \} \subseteq GL_n \}$

Flagged Weyl modules

$D \rightsquigarrow \mathcal{M}_D$ "flagged Weyl module"

(representation of $B := \{\text{upper triangular matrices}\} \subseteq GL_n$)

Theorem (Kraśkiewicz–Pragacz '87)

The dual character $ch^*(\mathcal{M}_{D(w)})$ is the Schubert polynomial \mathfrak{S}_w .

(Dual character of V is $ch^*(V)(x_1, \ldots, x_n) = tr(diag(x_1^{-1}, \ldots, x_n^{-1}): V \to V).)$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

(What does \mathcal{M}_D buy us?)

Question

Assume that $\mathbf{x}^{\alpha-\beta}$ and $\mathbf{x}^{\alpha+\beta}$ appear in \mathfrak{S}_w . Does \mathbf{x}^{α} appear?

1.1.1		C					
LIN	us	<u>э</u>	eτ	a	Dr	a	τa

э

7/31

(日)

(What does \mathcal{M}_D buy us?)

Question

Assume that $\mathbf{x}^{\alpha-\beta}$ and $\mathbf{x}^{\alpha+\beta}$ appear in \mathfrak{S}_w . Does \mathbf{x}^{α} appear?

Conjecture (Monical–Tokcan–Yong '19)

 $\mathcal{N}(w) := \{ \operatorname{wt}(C) \colon \mathbf{x}^{\operatorname{wt}(C)} \text{ appears in } \mathfrak{S}_w \}$ is saturated.

(Saturated: $S = \operatorname{conv}(S) \cap \mathbb{Z}^n$.)

イロト イヨト イヨト ・

Theorem (Fink–Mészáros–St. Dizier '18) $\mathcal{N}(D) := \{ \operatorname{wt}(C) : \mathbf{x}^{\operatorname{wt}(C)} \text{ appears in } \operatorname{ch}^*(\mathcal{M}_D) \} \text{ is saturated.}$

Idea: use rep theory description of monomials in $ch^*(\mathcal{M}_D)$.

イロト 不得 トイラト イラト 一日

Theorem (Fink–Mészáros–St. Dizier '18) $\mathcal{N}(D) := \{ \operatorname{wt}(C) : \mathbf{x}^{\operatorname{wt}(C)} \text{ appears in } \operatorname{ch}^*(\mathcal{M}_D) \} \text{ is saturated.} \}$

Idea: use rep theory description of monomials in ch*(M_D).
S(D) := {"diagrams obtained by bubbling boxes of D upwards"}

8/31

Theorem (Fink–Mészáros–St. Dizier '18) $\mathcal{N}(D) := \{ wt(C) : \mathbf{x}^{wt(C)} \text{ appears in } ch^*(\mathcal{M}_D) \} \text{ is saturated.}$

Idea: use rep theory description of monomials in $ch^*(\mathcal{M}_D)$.

- $S(D) := \{$ "diagrams obtained by bubbling boxes of D upwards" $\}$
- Rep theory: monomials appearing in ch^{*}(M_D) is {x^{wt(C)}: C ∈ S(D)} (→ can check "in one go" if x^α appears.)

8/31

Theorem (Fink–Mészáros–St. Dizier '18) $\mathcal{N}(D) := \{ wt(C) : \mathbf{x}^{wt(C)} \text{ appears in } ch^*(\mathcal{M}_D) \} \text{ is saturated.}$

Idea: use rep theory description of monomials in $ch^*(\mathcal{M}_D)$.

- $S(D) := \{$ "diagrams obtained by bubbling boxes of D upwards" $\}$
- Rep theory: monomials appearing in ch^{*}(M_D) is {x^{wt(C)}: C ∈ S(D)} (→ can check "in one go" if x^α appears.)

Also in Fink–Mészáros–St. Dizier: $conv(\mathcal{N}(D))$ is a generalized permutahedron.

イロト 不得 トイラト イラト 一日

%-avoiding diagrams

(Towards the *orthodontia formula* computing $ch^*(\mathcal{M}_D)$)

%-avoiding diagrams

(Towards the orthodontia formula computing $ch^*(\mathcal{M}_D)$)

Proposition

The Rothe diagram D(w) is %-avoiding for all $w \in S_n$.

Orthodontic sequence

$$D_j := j$$
-th column of a diagram D

Proposition (Reiner-Shimozono '98)

If D is %-avoiding, it can be reduced to the empty diagram via:

- Remove columns: $D \mapsto D \setminus D_j$ when $D_j = [i]$
- Swap rows i and i + 1: $D \mapsto s_i D$ when $i \in D_k \Longrightarrow i + 1 \in D_k$ for all k.

- 4 同 ト 4 三 ト - 4 三 ト - -

Orthodontic sequence

$$D_j := j$$
-th column of a diagram D

Proposition (Reiner-Shimozono '98)

If D is %-avoiding, it can be reduced to the empty diagram via:

- Remove columns: $D \mapsto D \setminus D_j$ when $D_j = [i]$
- Swap rows i and i + 1: $D \mapsto s_i D$ when $i \in D_k \Longrightarrow i + 1 \in D_k$ for all k.

< □ > < □ > < □ > < □ > < □ > < □ >

Orthodontia for flagged Weyl modules $\pi_i(f) := \partial_i(x_i f).$

Theorem (Magyar '98, "orthodontia formula")

Let D be a %-avoiding diagram. Then:

- $\operatorname{ch}^*(\mathcal{M}_D) = x_1 \dots x_i \cdot \operatorname{ch}^*(\mathcal{M}_{D \setminus D_j})$ if $D_j = [i]$.
- $ch^*(\mathcal{M}_D) = \pi_i(ch^*(\mathcal{M}_{s_iD}))$ when $i \in D_k$ implies $i + 1 \in D_k$ for all k.

Orthodontia for flagged Weyl modules $\pi_i(f) := \partial_i(x_i f).$

Theorem (Magyar '98, "orthodontia formula")

Let D be a %-avoiding diagram. Then:

- $\operatorname{ch}^*(\mathcal{M}_D) = x_1 \dots x_i \cdot \operatorname{ch}^*(\mathcal{M}_{D \setminus D_j})$ if $D_j = [i]$.
- $ch^*(\mathcal{M}_D) = \pi_i(ch^*(\mathcal{M}_{s_iD}))$ when $i \in D_k$ implies $i + 1 \in D_k$ for all k.

Proof involves: $\mathcal{M}_D \cong \{ \text{sections of a line bundle on a variety} \}.$

Uses comb. of chamber sets (Leclerc–Zelevinsky), geom. of Frobenius splitting (Van der Kallen).

Linus Setiabrata

11/31

Orthodontia for flagged Weyl modules, II

Theorem (Magyar '98, "orthodontia formula") Let D be a %-avoiding diagram. Then: • $ch^*(\mathcal{M}_D) = x_1 \dots x_i \cdot ch^*(\mathcal{M}_{D \setminus D_j})$ if $D_j = [i]$. • $ch^*(\mathcal{M}_D) = \pi_i(ch^*(\mathcal{M}_{s_iD}))$ when $i \in D_k$ implies $i + 1 \in D_k$ for all k.

Corollary (Magyar '98)

For any %-avoiding diagram D, the dual character $ch^*(\mathcal{M}_D)$ can be obtained from $1 \in \mathbb{C}[\mathbf{x}]$ by applying various $\cdot x_1 \dots x_i$ and π_i .

12/31

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Key polynomials

Key polynomials κ_{α} were first defined as characters of *Demazure modules*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

Key polynomials

Key polynomials κ_{α} were first defined as characters of *Demazure modules*.

Definition

For $\alpha \in \mathbb{Z}_{\geq 0}^{n}$, recursively define *key polynomials*:

$$\kappa_{\alpha}(\mathbf{x}) = \begin{cases} x_1^{\alpha_1} \dots x_n^{\alpha_n} & \text{if } \alpha_1 \ge \dots \ge \alpha_n \\ \pi_i(\kappa_{s_i\alpha}(\mathbf{x})) & \text{if } \alpha_i < \alpha_{i+1}. \end{cases}$$

(日)

э

Key polynomials

Key polynomials κ_{α} were first defined as characters of *Demazure modules*.

Definition

For $\alpha \in \mathbb{Z}_{\geq 0}^{n}$, recursively define *key polynomials*:

$$\kappa_{\alpha}(\mathbf{x}) = \begin{cases} x_1^{\alpha_1} \dots x_n^{\alpha_n} & \text{if } \alpha_1 \ge \dots \ge \alpha_n \\ \pi_i(\kappa_{s_i\alpha}(\mathbf{x})) & \text{if } \alpha_i < \alpha_{i+1}. \end{cases}$$

Lemma (Reiner-Shimozono '98)

For any k and α , the polynomial $x_1 \dots x_k \cdot \kappa_{\alpha}$ is a $\mathbb{Z}_{\geq 0}$ -linear combination of key polynomials.

イロト イポト イヨト イヨト 二日

Proposition

For %-avoiding D, the dual character $ch^*(\mathcal{M}_D)$ is a $\mathbb{Z}_{\geq 0}$ -linear combination of key polynomials.

	~		
Linuc	50	t 12	brata
LIIIUS	20	ua	Diata

< 1 k

э

Proposition

Linus S

For %-avoiding D, the dual character $ch^*(\mathcal{M}_D)$ is a $\mathbb{Z}_{\geq 0}$ -linear combination of key polynomials.

Proof.

Orthodontia: $ch^*(\mathcal{M}_D)$ can be obtained from $1 \in \mathbb{C}[\mathbf{x}]$ by applying various π_i and $\cdot x_1 \dots x_i$.

etiabrata	Double orthodontia	October 30, 2024	14 / 31
	4		

Proposition

For %-avoiding D, the dual character $ch^*(\mathcal{M}_D)$ is a $\mathbb{Z}_{\geq 0}$ -linear combination of key polynomials.

Proof.

Orthodontia: $ch^*(\mathcal{M}_D)$ can be obtained from $1 \in \mathbb{C}[\mathbf{x}]$ by applying various π_i and $\cdot x_1 \dots x_i$.

Since $\pi_i(\kappa_\alpha) = \kappa_{\alpha'}$ for some α' , the operator π_i preserves key positivity.

Proposition

For %-avoiding D, the dual character $ch^*(\mathcal{M}_D)$ is a $\mathbb{Z}_{\geq 0}$ -linear combination of key polynomials.

Proof.

Orthodontia: $ch^*(\mathcal{M}_D)$ can be obtained from $1 \in \mathbb{C}[\mathbf{x}]$ by applying various π_i and $\cdot x_1 \dots x_i$.

Since $\pi_i(\kappa_\alpha) = \kappa_{\alpha'}$ for some α' , the operator π_i preserves key positivity.

Since $x_1 \ldots x_i \cdot \kappa_{\alpha}$ is key positive, the operator $\cdot x_1 \ldots x_i$ preserves key positivity.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Double Grothendieck polynomials

Double Grothendieck polynomials $\mathfrak{G}_w(\mathbf{x}; \mathbf{y})$ are lifts of structure sheaves of Schubert varieties $[\mathcal{O}_{X_w}] \in K_T^*(\mathcal{F}\ell_n)$.

Double Grothendieck polynomials

Double Grothendieck polynomials $\mathfrak{G}_w(\mathbf{x}; \mathbf{y})$ are lifts of structure sheaves of Schubert varieties $[\mathcal{O}_{X_w}] \in K_T^*(\mathcal{F}\ell_n)$.

Definition

For $w \in S_n$, recursively define *double Grothendieck polynomials*:

$$\mathfrak{G}_w(\mathbf{x};\mathbf{y}) = \begin{cases} \prod_{i+j \leq n} (x_i + y_j - x_i y_j) & \text{if } w = w_0 \\ \overline{\partial}_i (\mathfrak{G}_{ws_i}(\mathbf{x};\mathbf{y})) & \text{if } \ell(w) < \ell(ws_i), \end{cases}$$

where $\overline{\partial}_i(f) := \partial_i((1 - x_{i+1})f)$.

Lowest degree part of $\mathfrak{G}_w(\mathbf{x}; \mathbf{0})$ is \mathfrak{S}_w .

Combinatorics of \mathfrak{S}_w often extends to $\mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Linus Setiabrata

Double orthodontia

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Combinatorics of \mathfrak{S}_w often extends to $\mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Goal

What is the analogue of \mathcal{M}_D for \mathfrak{G}_w ?

Linus	Setia	brata

< A > < E

э

Combinatorics of \mathfrak{S}_w often extends to $\mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Goal

What is the analogue of $\mathcal{M}_{\mathcal{D}}$ for \mathfrak{G}_{w} ?

• Want {monomials in \mathfrak{G}_w }:

Pechenik-Speyer-Weigandt '24:

- $\deg(\mathfrak{G}_w) = \operatorname{raj}(w)$
- $\mathfrak{G}_{W}^{\mathrm{top}}(\mathbf{x};\mathbf{y}) = f(\mathbf{x})g(\mathbf{y})$

э

Combinatorics of \mathfrak{S}_w often extends to $\mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Goal

What is the analogue of \mathcal{M}_D for \mathfrak{G}_w ?

Want {monomials in 𝔅_w}:
 𝔅^{top}_w: Pechenik-Speyer-Weigandt '24

Hafner–Mészáros–S.–St. Dizier '24: {monomials in vexillary $\mathfrak{G}_w(\mathbf{x}; \mathbf{0})$ }.

(What is the rep-theoretic meaning of this?)

< □ > < □ > < □ > < □ >

Combinatorics of \mathfrak{S}_w often extends to $\mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Goal

What is the analogue of \mathcal{M}_D for \mathfrak{G}_w ?

Want {monomials in 𝔅_W}:
 𝔅^{top}_w: Pechenik–Speyer–Weigandt '24
 Vexillary 𝔅_W(x; 0): HMSS '24

- Want to "access" \mathfrak{G}_D for %-avoiding D:
 - To use for induction purposes

- 4 回 ト 4 三 ト 4 三 ト

Combinatorics of \mathfrak{S}_w often extends to $\mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Goal

What is the analogue of \mathcal{M}_D for \mathfrak{G}_w ?

 Want {monomials in 𝔅_W}:
 𝔅^{top}_w: Pechenik–Speyer–Weigandt '24 Vexillary 𝔅_W(x; 0): HMSS '24

 $x_1 x_2$

- Want to "access" \mathfrak{G}_D for %-avoiding D:
 - To use for induction purposes
 - To collect certain \mathfrak{G}_D together into generating functions

$$\sum_{\mathbf{m}} \mathfrak{G}_{D(\mathbf{m})} \cdot \mathbf{t}^{\mathbf{m}}$$

cf. generating function $\sum_\lambda s_\lambda({f x}){f t}^\lambda = {
m ch}({\Bbb C}[{\it G}/{\it U}])$

Orthodontia for double Grothendieck polynomials

Schubert story:

Theorem (Magyar '98, "orthodontia formula")

Let D be a %-avoiding diagram. Then:

- $\operatorname{ch}^*(\mathcal{M}_D) = x_1 \dots x_i \cdot \operatorname{ch}^*(\mathcal{M}_{D \setminus D_j})$ if $D_j = [i]$.
- $ch^*(\mathcal{M}_D) = \pi_i(ch^*(\mathcal{M}_{s_iD}))$ when $i \in D_k$ implies $i + 1 \in D_k$ for all k.

Theorem (Kraśkiewicz–Pragacz '87)

The dual character $ch^*(\mathcal{M}_{D(w)})$ is the Schubert polynomial \mathfrak{S}_w .

- 本間下 本臣下 本臣下 三臣

Orthodontia for double Grothendieck polynomials

Schubert story:

Theorem (Magyar '98, "orthodontia formula")

Let D be a %-avoiding diagram. Then:

- $\operatorname{ch}^*(\mathcal{M}_D) = x_1 \dots x_i \cdot \operatorname{ch}^*(\mathcal{M}_{D \setminus D_j})$ if $D_j = [i]$.
- $ch^*(\mathcal{M}_D) = \pi_i(ch^*(\mathcal{M}_{s_iD}))$ when $i \in D_k$ implies $i + 1 \in D_k$ for all k.

Theorem (Kraśkiewicz–Pragacz '87)

The dual character $ch^*(\mathcal{M}_{D(w)})$ is the Schubert polynomial \mathfrak{S}_w .

Goal

For %-avoiding D, define
$$\mathscr{G}_D \in \mathbb{C}[\mathbf{x}, \mathbf{y}]$$
 so that $\mathscr{G}_{D(w)} = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Easier goal: Define $\mathcal{G}_D \in \mathbb{C}[\mathbf{x}]$ so that $\mathcal{G}_{D(w)} = \mathfrak{G}_w(\mathbf{x}; \mathbf{0})$.

17/31

Orthodontia algorithm

Definition

Let *C* be the leftmost nonempty, non-up-aligned column of *D*. The *first missing tooth* is the minimal *i* so that $i \notin C$ and $i + 1 \in C$.

э

18/31

イロト イボト イヨト イヨト

Orthodontia algorithm

Definition

Let *C* be the leftmost nonempty, non-up-aligned column of *D*. The *first missing tooth* is the minimal *i* so that $i \notin C$ and $i + 1 \in C$.

Algorithm (Magyar '98, "orthodontia algorithm")

- Remove any columns $D_j = [i]$
- **2** Swap rows i and i + 1, for i := first missing tooth
- Repeat steps 1 & 2 until empty

イロト イヨト イヨト イヨト

э

Orthodontia for ordinary Grothendieck polynomials

Algorithm (Magyar '98, "orthodontia algorithm")

- Remove any columns $D_j = [i]$
- **2** Swap rows i and i + 1, for i := first missing tooth
- Repeat steps 1 & 2 until empty

Orthodontia for ordinary Grothendieck polynomials

Algorithm (Magyar '98, "orthodontia algorithm")

1 Remove any columns
$$D_j = [i]$$

2 Swap rows i and i + 1, for i := first missing tooth

Repeat steps 1 & 2 until empty

$$\overline{\pi}_i := \pi_i ((1 - x_{i+1})f)$$

Definition (Mészáros–S.–St. Dizier '22)

For %-avoiding D, define $\mathcal{G}_D \in \mathbb{C}[\mathbf{x}]$ recursively:

- $\mathcal{G}_D = x_1 \dots x_i \cdot \mathcal{G}_{D \setminus D_i}$ if some $D_j = [i]$,
- $\mathcal{G}_D = \overline{\pi}_i(\mathcal{G}_{s_iD})$ otherwise, where i = first missing tooth.

Theorem (Mészáros–S.–St. Dizier '22) When D = D(w) is a Rothe diagram, $\mathcal{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{0})$.

19/31

Orthodontia for ordinary Grothendieck polynomials

Theorem (Mészáros–S.–St. Dizier '22) When D = D(w) is a Rothe diagram, $\mathcal{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{0})$.

(日)

3

Orthodontia algorithm, II

Definition

Let D_k be the leftmost nonempty column of D. Let i be the first missing tooth and $j := k - \#\{a \le i : a \notin D_k\}$. The first missing double-tooth is (i, j).

linus	50	tia	hra	it a
Linus	20	uu	010	

3

Double orthodontic polynomials

Goal

For %-avoiding D, define $\mathscr{G}_D \in \mathbb{C}[\mathbf{x}, \mathbf{y}]$ so that $\mathscr{G}_{D(w)} = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

$$egin{aligned} \overline{\omega}_i^{\{j\}} &\coloneqq \prod_{k=1}^i (x_k+y_j-x_ky_j) \ \overline{\pi}_{i,j} &\coloneqq \overline{\partial}_i ((x_i+y_j-x_iy_j)f) \end{aligned}$$

	<u> </u>	
Innie	S 61	brata
LIIIUS	00	 Diala

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Double orthodontic polynomials

Goal

For %-avoiding D, define $\mathscr{G}_D \in \mathbb{C}[\mathbf{x}, \mathbf{y}]$ so that $\mathscr{G}_{D(w)} = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

$$egin{aligned} \overline{\omega}_i^{\{j\}} &\coloneqq \prod_{k=1}^i (x_k+y_j-x_ky_j) \ \overline{\pi}_{i,j} &\coloneqq \overline{\partial}_i ((x_i+y_j-x_iy_j)f) \end{aligned}$$

Definition (S.–St. Dizier)

For %-avoiding D, define $\mathscr{G}_D \in \mathbb{C}[\mathbf{x}, \mathbf{y}]$ recursively:

•
$$\mathscr{G}_D = \overline{\omega}_i^{\{j\}} \cdot \mathscr{G}_{D \setminus D_i}$$
 if some $D_j = [i]$,

• $\mathscr{G}_D = \overline{\pi}_{i,j}(\mathscr{G}_{s_iD})$ otherwise, where (i,j) = first missing double-tooth

Theorem (S.–St. Dizier)

When D = D(w) is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

イロト 不得 トイヨト イヨト

э

Orthodontia for double Grothendieck polynomials

Theorem (S.–St. Dizier) When D = D(w) is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

23/31

Orthodontia for double Grothendieck polynomials, II

Theorem (S.–St. Dizier)

When D = D(w) is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

 $ch^*(\mathcal{M}_D)$ is invariant under reordering columns, but \mathscr{G}_D is not.

Linus Setiabrata		~		
Linus Seciabiaca	inuc	50	t 10	hrata
	LIIIUS	26	ua	Diata

Orthodontia for double Grothendieck polynomials, II

Theorem (S.–St. Dizier)

When D = D(w) is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

 $ch^*(\mathcal{M}_D)$ is invariant under reordering columns, but \mathscr{G}_D is not.

Example

$$\begin{split} \mathfrak{S}_{2413}(\mathbf{x}) &= x_1 x_2 \mathfrak{S}_{132}(\mathbf{x}) \\ \mathfrak{G}_{2413}(\mathbf{x}; \mathbf{0}) &= x_1 x_2 \mathfrak{G}_{132}(\mathbf{x}; \mathbf{0}) \\ \mathfrak{G}_{2413}(\mathbf{x}; \mathbf{y}) &\neq g(\mathbf{x}, \mathbf{y}) \cdot \mathfrak{G}_{132}(\mathbf{x}; \mathbf{y}) \quad \text{for any } g \end{split}$$

linus	Setu	abrata
2	0000	abraca

< □ > < □ > < □ > < □ > < □ > < □ >

Orthodontia for double Grothendieck polynomials, III

Theorem (S.-St. Dizier)

When D = D(w) is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Proof idea: "Find almost-Rothe-diagrams in reduction sequence for D(w)"

A 回 > A 回 > A 回 >

Orthodontia for double Grothendieck polynomials, III

Theorem (S.-St. Dizier)

When D = D(w) is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Proof idea: "Find almost-Rothe-diagrams in reduction sequence for D(w)"

(what's the geometric meaning of this?)

inus	Se	tia	brata
	00		Diata

Lascoux polynomials

Lascoux polynomials are "K-theoretic analogues" of key polynomials:

Definition

For $\alpha \in \mathbb{Z}_{\geq 0}^{n}$, recursively define *Lascoux polynomials*:

$$\mathfrak{L}_{\alpha}(\mathbf{x}) = \begin{cases} x_1^{\alpha_1} \dots x_n^{\alpha_n} & \text{ if } \alpha_1 \ge \dots \ge \alpha_n \\ \overline{\pi}_i(\mathfrak{L}_{\mathbf{s}_i\alpha}(\mathbf{x})) & \text{ if } \alpha_i < \alpha_{i+1}, \end{cases}$$

where $\overline{\pi}_i(f) := \pi_i((1 - x_{i+1})f)$.

э

イロト イボト イヨト イヨト

Double Lascoux polynomials ...?

$$\alpha \rightsquigarrow D(\alpha)$$
 "skyline diagram"

Observation (Mészáros–S.–St. Dizier, '22)

When $D = D(\alpha)$ is a skyline diagram, $\mathcal{G}_D = \mathfrak{L}_{\alpha}(\mathbf{x})$.

Who is $\mathscr{G}_{D(\alpha)}(\mathbf{x}; \mathbf{y})$? And what about reordered-column $D(\alpha)$'s?

・ロト ・四ト ・ヨト ・ヨト ・ヨ

 $\mathscr{G}_D^{\text{bot}} := \text{lowest degree part of } \mathscr{G}_D.$

 $(\mathscr{G}_{D(w)}^{\text{bot}}(\mathbf{x}; -\mathbf{y})$ is the double Schubert polynomial.)

3

く 目 ト く ヨ ト く ヨ ト

 $\mathscr{G}_{D}^{\text{bot}} := \text{lowest degree part of } \mathscr{G}_{D}.$

 $(\mathscr{G}_{D(w)}^{\text{bot}}(\mathbf{x}; -\mathbf{y})$ is the double Schubert polynomial.)

Conjecture (S.–St. Dizier)

If D is %-avoiding, $x_1^n \dots x_n^n \mathscr{G}_D^{\text{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

Example

The polynomial $x_1^4 x_2^4 x_3^4 x_4^4 \mathscr{G}_{D(2143)}^{\text{bot}}(x_4^{-1}, x_3^{-1}, x_2^{-2}, x_1^{-1}; -1, -1, -1, -1)$ is

 $x_{1}^{4}x_{2}^{3}x_{2}^{4}x_{4}^{3} + x_{1}^{4}x_{2}^{4}x_{2}^{2}x_{4}^{2} + x_{1}^{4}x_{2}^{3}x_{3}^{3} - x_{1}^{4}x_{2}^{3}x_{3}^{4} - x_{1}^{4}x_{2}^{3}x_{3}^{4} - 4x_{1}^{4}x_{2}^{4}x_{3}^{4}x_{4}^{4} + 3x_{1}^{4}x_{2}^{4}x_{3}^{4} + 3x_{1}^{4}x_{2}^{4} + 3x_{1}^{4} + 3x_{1}$

which is

$$(\mathfrak{L}_{(4,3,4,3)} + \mathfrak{L}_{(4,4,4,2)}) - (\mathfrak{L}_{(4,3,4,4)} + 2\mathfrak{L}_{(4,4,4,3)}) + \mathfrak{L}_{(4,4,4,4)}$$

Conjecture (S.-St. Dizier)

If D is %-avoiding, $x_1^n \dots x_n^n \mathscr{G}_D^{\text{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

Proof??

Linus Setiabra	
Linus Jeliabia	ιа

Conjecture (S.-St. Dizier)

If D is %-avoiding, $x_1^n \dots x_n^n \mathscr{G}_D^{\text{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

Proof??

Orthodontia: $x_1^n \dots x_n^n \mathscr{G}_D^{bot}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is obtained from the polynomial 1 by applying

•
$$f \mapsto \overline{\pi}_i(f)$$
,
• $f \mapsto x_1 \dots x_i(1 - x_{i+1}) \dots (1 - x_n)f$

Conjecture (S.-St. Dizier)

If D is %-avoiding, $x_1^n \dots x_n^n \mathscr{G}_D^{bot}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

Proof??

Orthodontia: $x_1^n \dots x_n^n \mathscr{G}_D^{bot}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is obtained from the polynomial 1 by applying

•
$$f \mapsto \overline{\pi}_i(f)$$
,
• $f \mapsto x_1 \dots x_i(1 - x_{i+1}) \dots (1 - x_n)f$.

Since $\overline{\pi}_i(\mathfrak{L}_{\alpha}) = \mathfrak{L}_{\alpha'}$, $\overline{\pi}_i$ preserves graded Lascoux positivity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Conjecture (S.-St. Dizier)

If D is %-avoiding, $x_1^n \dots x_n^n \mathscr{G}_D^{bot}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

Proof??

Orthodontia: $x_1^n \dots x_n^n \mathscr{G}_D^{bot}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is obtained from the polynomial 1 by applying

•
$$f \mapsto \overline{\pi}_i(f)$$
,
• $f \mapsto x_1 \dots x_i(1-x_{i+1}) \dots (1-x_n)f$

Since $\overline{\pi}_i(\mathfrak{L}_\alpha) = \mathfrak{L}_{\alpha'}$, $\overline{\pi}_i$ preserves graded Lascoux positivity.

Conjecture: The product $\mathfrak{L}_{\alpha} \cdot x_1 \dots x_i (1 - x_{i+1}) \dots (1 - x_n)$ is graded Lascoux positive. (cf. key positivity of $\kappa_{\alpha} \cdot x_1 \dots x_i$.)

Corollary (S.-St. Dizier)

When the columns of D can be ordered by inclusion, the polynomial $x_1^n \dots x_n^n \mathscr{G}_D^{\text{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

 $(D(w) \text{ ordered by inclusion } \iff w \text{ vexillary.})$

Corollary (S.-St. Dizier)

When the columns of D can be ordered by inclusion, the polynomial $x_1^n \dots x_n^n \mathscr{G}_D^{\text{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

 $(D(w) \text{ ordered by inclusion } \iff w \text{ vexillary.})$

Sketch.

In this case, $x_1^n \dots x_n^n \mathscr{G}_D^{\text{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ can be obtained from $f \mapsto x_1 \dots x_i(1 - x_{i+1}) \dots (1 - x_n)f$, followed by $f \mapsto \overline{\pi}_i(f)$.

Corollary (S.-St. Dizier)

When the columns of D can be ordered by inclusion, the polynomial $x_1^n \dots x_n^n \mathscr{G}_D^{\text{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

 $(D(w) \text{ ordered by inclusion } \iff w \text{ vexillary.})$

Sketch.

In this case, $x_1^n \dots x_n^n \mathscr{G}_D^{\text{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ can be obtained from $f \mapsto x_1 \dots x_i(1 - x_{i+1}) \dots (1 - x_n)f$, followed by $f \mapsto \overline{\pi}_i(f)$.

 \rightsquigarrow Suffices to show products of $x_1 \dots x_i(1 - x_{i+1}) \dots (1 - x_n)$ are graded Lascoux positive.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Corollary (S.-St. Dizier)

When the columns of D can be ordered by inclusion, the polynomial $x_1^n \dots x_n^n \mathscr{G}_D^{\text{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

 $(D(w) \text{ ordered by inclusion } \iff w \text{ vexillary.})$

Sketch.

In this case, $x_1^n \dots x_n^n \mathscr{G}_D^{\text{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ can be obtained from $f \mapsto x_1 \dots x_i(1 - x_{i+1}) \dots (1 - x_n)f$, followed by $f \mapsto \overline{\pi}_i(f)$.

 \rightsquigarrow Suffices to show products of $x_1 \dots x_i(1 - x_{i+1}) \dots (1 - x_n)$ are graded Lascoux positive.

Follows from Orelowitz–Yu '23: $G_w \cdot \mathfrak{L}_\alpha$ is graded Lascoux positive. ($G_w := stable Grothendieck$)

Thank you!

Goal

Find analogue of \mathcal{M}_D for Grothendieck polynomials.

Theorem (S.–St. Dizier)

When D = D(w) is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Linus Setiabrata			-					
	l ini	IIC.	5	at i		hr	2	-
		us	5		a		a	LC

イロト イボト イヨト イヨト

э