Cluster algebras and recurrence relations

Linus Setiabrata

University of Chicago

April 15, 2024

math.uchicago.edu/~linus/austin-apr-24.pdf

- Somos sequences,
 - and their surprising properties
- Cluster algebras and the Laurent phenomenon,
 - and how to use it to prove the properties above
- Coxeter friezes,
 - and their surprising properties

math.uchicago.edu/~linus/austin-apr-24.pdf

• Define (x_n) by

$$x_n = \frac{x_{n-1}x_{n-3} + x_{n-2}^2}{x_{n-4}},$$

initial terms $x_1 = x_2 = x_3 = x_4 = 1$.

æ

• Define (x_n) by

$$x_n = \frac{x_{n-1}x_{n-3} + x_{n-2}^2}{x_{n-4}},$$

initial terms $x_1 = x_2 = x_3 = x_4 = 1$.

• $(x_n) = 1, 1, 1, 1, 2, 3, 7, 23, 59, 314, 1529, 8209, 83313, 620297, \dots$

3

- 4 回 ト 4 三 ト - 4 三 ト - -

• Define (x_n) by

$$x_n = \frac{x_{n-1}x_{n-3} + x_{n-2}^2}{x_{n-4}},$$

initial terms $x_1 = x_2 = x_3 = x_4 = 1$.

• $(x_n) = 1, 1, 1, 1, 2, 3, 7, 23, 59, 314, 1529, 8209, 83313, 620297, \dots$

Claim

For all *n*, we have $x_n \in \mathbb{N}$.

э

く 何 ト く ヨ ト く ヨ ト

• Define (x_n) by

$$x_n = \frac{x_{n-1}x_{n-3} + x_{n-2}^2}{x_{n-4}},$$

initial terms $x_1 = x_2 = x_3 = x_4 = 1$.

• $(x_n) = 1, 1, 1, 1, 2, 3, 7, 23, 59, 314, 1529, 8209, 83313, 620297, \dots$

Claim

For all *n*, we have $x_n \in \mathbb{N}$.

• For example,

$$\frac{1529 \cdot 83313 + 8209^2}{314} = 620297 \quad (!)$$

3/24

• Define (x_n) by $x_n = \frac{x_{n-1}x_{n-4} + x_{n-2}x_{n-3}}{x_{n-5}},$

initial terms $x_1 = x_2 = x_3 = x_4 = x_5 = 1$.

Image: A matrix and a matrix

э

• Define (x_n) by $x_n = \frac{x_{n-1}x_{n-4} + x_{n-2}x_{n-3}}{x_{n-5}},$

initial terms $x_1 = x_2 = x_3 = x_4 = x_5 = 1$.

• $(x_n) = 1, 1, 1, 1, 1, 2, 3, 5, 11, 37, 83, 274, 1217, 6161, 22833, 165713, 1249441, \dots$

• Define (x_n) by $x_n = \frac{x_{n-1}x_{n-4} + x_{n-2}x_{n-3}}{x_{n-5}},$ initial terms $x_1 = x_2 = x_3 = x_4 = x_5 = 1.$

• $(x_n) = 1, 1, 1, 1, 1, 2, 3, 5, 11, 37, 83, 274, 1217, 6161, 22833, 165713, 1249441, \dots$

Claim

For all *n*, we have $x_n \in \mathbb{N}$.

(1) マン・ション (1) マン・シュ

• Define (x_n) by $x_n = \frac{x_{n-1}x_{n-4} + x_{n-2}x_{n-3}}{x_{n-5}},$ initial terms $x_1 = x_2 = x_3 = x_4 = x_5 = 1.$

• $(x_n) = 1, 1, 1, 1, 1, 2, 3, 5, 11, 37, 83, 274, 1217, 6161, 22833, 165713, 1249441, \dots$

Claim

For all *n*, we have $x_n \in \mathbb{N}$.

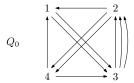
• For example,

$$\frac{165713 \cdot 1217 + 22833 \cdot 6161}{274} = 1249441 \quad (!)$$

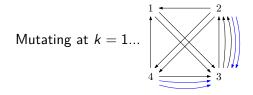
April 15, 2024

• Today, all quivers will have no loops, no directed cycles of length 2, and vertices will be numbered 1,..., n.

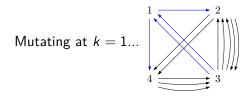
- Today, all quivers will have no loops, no directed cycles of length 2, and vertices will be numbered 1,..., n.
- Q a quiver, k a vertex. The mutated quiver $\mu_k(Q)$ is obtained by:



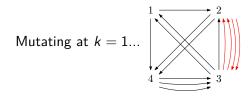
- Today, all quivers will have no loops, no directed cycles of length 2, and vertices will be numbered 1, ..., n.
- Q a quiver, k a vertex. The mutated quiver μk(Q) is obtained by:
 If or every pair of arrows i → k → j, add an arrow i → j



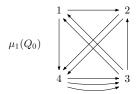
- Today, all quivers will have no loops, no directed cycles of length 2, and vertices will be numbered 1, ..., n.
- Q a quiver, k a vertex. The mutated quiver μ_k(Q) is obtained by:
 If or every pair of arrows i → k → j, add an arrow i → j
 - **2** Reverse all arrows $i \rightarrow k$ and $k \rightarrow j$



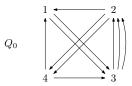
- Today, all quivers will have no loops, no directed cycles of length 2, and vertices will be numbered 1,..., n.
- Q a quiver, k a vertex. The *mutated quiver* $\mu_k(Q)$ is obtained by:
 - **(**) For every pair of arrows $i \rightarrow k \rightarrow j$, add an arrow $i \rightarrow j$
 - **2** Reverse all arrows $i \rightarrow k$ and $k \rightarrow j$
 - 8 Remove all directed 2-cycles



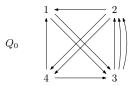
- Today, all quivers will have no loops, no directed cycles of length 2, and vertices will be numbered 1,..., n.
- Q a quiver, k a vertex. The mutated quiver $\mu_k(Q)$ is obtained by:
 - **(**) For every pair of arrows $i \rightarrow k \rightarrow j$, add an arrow $i \rightarrow j$
 - **2** Reverse all arrows $i \rightarrow k$ and $k \rightarrow j$
 - 8 Remove all directed 2-cycles



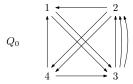
- Start with a quiver Q_0 .
 - (no loops, no directed cycles of length 2.)
 - (number the vertices 1, ..., *n*.)



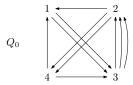
- Start with a quiver Q_0 .
 - (no loops, no directed cycles of length 2.)
 - (number the vertices 1, ..., *n*.)
- Fix indeterminates x_1, \ldots, x_n .



- Start with a quiver Q_0 .
 - (no loops, no directed cycles of length 2.)
 - (number the vertices 1, ..., *n*.)
- Fix indeterminates x_1, \ldots, x_n .
- A seed is a tuple $(Q, (\varphi_1, \ldots, \varphi_n))$.
 - (*Q* is a quiver, and $\varphi_i \in \mathbb{C}(x_1, \ldots, x_n)$)



- Start with a quiver Q₀.
 - (no loops, no directed cycles of length 2.)
 - (number the vertices 1, ..., *n*.)
- Fix indeterminates x_1, \ldots, x_n .
- A seed is a tuple $(Q, (\varphi_1, \ldots, \varphi_n))$.
 - (*Q* is a quiver, and $\varphi_i \in \mathbb{C}(x_1, \ldots, x_n)$)
- The initial seed is $(Q_0, (x_1, \ldots, x_n))$.



• (Q, φ) a seed. The mutated seed $\mu_k(Q, \varphi)$ is $(\mu_k(Q), \varphi')$, where

< A > <

æ

(Q, φ) a seed. The mutated seed μ_k(Q, φ) is (μ_k(Q), φ'), where φ' is obtained from φ by replacing φ_k with

$$\varphi'_k := \left(\prod_{\substack{e \in E \\ e=i \to k}} \varphi_i + \prod_{\substack{e \in E \\ e=k \to j}} \varphi_j\right) \cdot \frac{1}{\varphi_k}$$

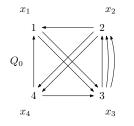
(The equation above is called the "exchange relation".)

< A > <

(Q, φ) a seed. The mutated seed μ_k(Q, φ) is (μ_k(Q), φ'), where φ' is obtained from φ by replacing φ_k with

$$\varphi'_k := \left(\prod_{\substack{e \in E \\ e=i \to k}} \varphi_i + \prod_{\substack{e \in E \\ e=k \to j}} \varphi_j\right) \cdot \frac{1}{\varphi_k}$$

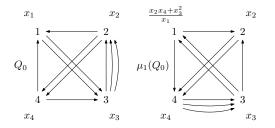
(The equation above is called the "exchange relation".)



(Q, φ) a seed. The mutated seed μ_k(Q, φ) is (μ_k(Q), φ'), where φ' is obtained from φ by replacing φ_k with

$$\varphi'_k := \left(\prod_{\substack{e \in E \\ e=i \to k}} \varphi_i + \prod_{\substack{e \in E \\ e=k \to j}} \varphi_j\right) \cdot \frac{1}{\varphi_k}$$

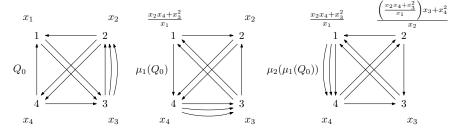
(The equation above is called the "exchange relation".)



(Q, φ) a seed. The mutated seed μ_k(Q, φ) is (μ_k(Q), φ'), where φ' is obtained from φ by replacing φ_k with

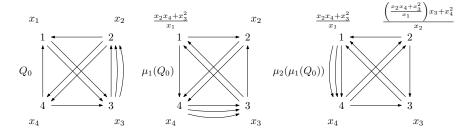
$$\varphi'_{k} := \left(\prod_{\substack{e \in E \\ e=i \to k}} \varphi_{i} + \prod_{\substack{e \in E \\ e=k \to j}} \varphi_{j}\right) \cdot \frac{1}{\varphi_{k}}$$

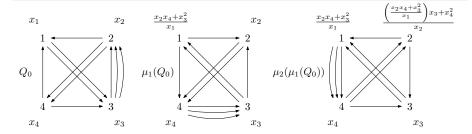
(The equation above is called the "exchange relation".)



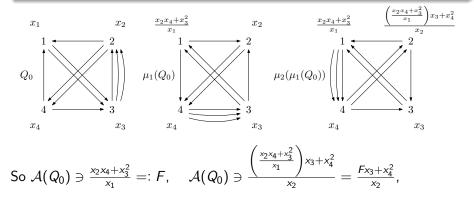
The *cluster algebra* $\mathcal{A}(Q_0)$ is the subalgebra of $\mathbb{C}(x_1, \ldots, x_n)$ generated by all φ_i appearing in some $\mu_{s_{\ell}}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. (The φ_i are called *cluster variables*).

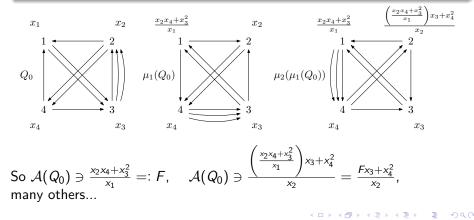
(A) → (A





So
$$\mathcal{A}(Q_0) \ni rac{x_2 x_4 + x_3^2}{x_1} \eqqcolon F$$
,





Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

Exchange relation:
$$\varphi'_k := \Big(\prod_{\substack{e \in E \\ e=i \to k}} \varphi_i + \prod_{\substack{e \in E \\ e=k \to j}} \varphi_j\Big) \cdot \frac{1}{\varphi_k}$$

Example (Miraculous cancellation)

Take $Q_0 := 1 \rightarrow 2$.

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

$$\mathsf{Exchange relation:} \quad \varphi'_k := \Big(\prod_{\substack{e \in E \\ e = i \to k}} \varphi_i + \prod_{\substack{e \in E \\ e = k \to j}} \varphi_j \Big) \cdot \frac{1}{\varphi_k}$$

Example (Miraculous cancellation)

Take
$$Q_0 := 1 \rightarrow 2$$
. A seed in $\mathcal{A}(Q_0)$:
 $\left(Q_0, \left(\frac{x_2+1}{x_1}, \frac{x_1+x_2+1}{x_1x_2}\right)\right) \xrightarrow{\mu_1}$

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

Exchange relation:
$$\varphi'_k := \left(\prod_{\substack{e \in E \\ e=i \to k}} \varphi_i + \prod_{\substack{e \in E \\ e=k \to j}} \varphi_j\right) \cdot \frac{1}{\varphi_k}$$

Example (Miraculous cancellation)

$$\begin{array}{l} \text{Take } Q_0 \mathrel{\mathop:}= 1 \to 2. \text{ A seed in } \mathcal{A}(Q_0) \mathrel{\mathop:}\\ \left(Q_0, \left(\frac{\textbf{x}_2 + 1}{\textbf{x}_1}, \frac{\textbf{x}_1 + \textbf{x}_2 + 1}{\textbf{x}_1\textbf{x}_2}\right)\right) \xrightarrow{\mu_1} \left(Q', \left(\frac{\frac{\textbf{x}_1 + \textbf{x}_2 + 1}{\textbf{x}_1\textbf{x}_2} + 1}{\frac{\textbf{x}_2 + 1}{\textbf{x}_1}}, \frac{\textbf{x}_1 + \textbf{x}_2 + 1}{\textbf{x}_1\textbf{x}_2}\right)\right)\\ \text{(where } Q' = 1 \leftarrow 2 \textrm{)}. \end{array}$$

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

Exchange relation:
$$\varphi'_k := \left(\prod_{\substack{e \in E \\ e=i \to k}} \varphi_i + \prod_{\substack{e \in E \\ e=k \to j}} \varphi_j\right) \cdot \frac{1}{\varphi_k}$$

Example (Miraculous cancellation)

Take
$$Q_0 := 1 \rightarrow 2$$
. A seed in $\mathcal{A}(Q_0)$:
 $\left(Q_0, \left(\frac{x_2+1}{x_1}, \frac{x_1+x_2+1}{x_1x_2}\right)\right) \xrightarrow{\mu_1} \left(Q', \left(\frac{\frac{x_1+x_2+1}{x_1x_2}+1}{\frac{x_2+1}{x_1}}, \frac{x_1+x_2+1}{x_1x_2}\right)\right)$
(where $Q' = 1 \leftarrow 2$).
Then

$$\frac{\frac{x_1+x_2+1}{x_1x_2}+1}{\frac{x_2+1}{x_1}} = \frac{x_1+x_2+1+x_1x_2}{x_2(x_2+1)} = \frac{x_1+1}{x_2} \in \mathbb{Z}[x_1^{\pm}, x_2^{\pm}].$$

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

Most often we will use it in the case $(Q, \varphi) = (Q_0, \mathbf{x})$,

10 / 24

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

Most often we will use it in the case $(Q, \varphi) = (Q_0, \mathbf{x})$, but...

Example

Take $Q_0 := 1 \rightarrow 2$.

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

Most often we will use it in the case $(Q, \varphi) = (Q_0, \mathbf{x})$, but...

Example

Take $Q_0 := 1 \rightarrow 2$. We saw earlier that

$$\mathbf{s} := \left(Q_0, \left(\frac{x_2+1}{x_1}, \frac{x_1+x_2+1}{x_1x_2}\right)\right)$$

was a seed in $\mathcal{A}(Q_0)$.

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

Most often we will use it in the case $(Q, \varphi) = (Q_0, \mathbf{x})$, but...

Example

Take $Q_0 := 1 \rightarrow 2$. We saw earlier that

$$\mathbf{s} := \left(Q_0, \left(\frac{x_2+1}{x_1}, \frac{x_1+x_2+1}{x_1x_2}\right)\right)$$

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

Most often we will use it in the case $(Q, \varphi) = (Q_0, \mathbf{x})$, but...

Example

Take $Q_0 := 1 \rightarrow 2$. We saw earlier that

$$\mathbf{s} := \left(Q_0, \left(\frac{x_2+1}{x_1}, \frac{x_1+x_2+1}{x_1x_2}\right)\right)$$

$$\frac{\frac{x_2+1}{x_1} + \frac{x_1+x_2+1}{x_1x_2} + 1}{\frac{x_2+1}{x_1} \cdot \frac{x_1+x_2+1}{x_1x_2}}$$

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

Most often we will use it in the case $(Q, \varphi) = (Q_0, \mathbf{x})$, but...

Example

Take $Q_0 := 1 \rightarrow 2$. We saw earlier that

$$\mathbf{s} := \left(Q_0, \left(\frac{x_2+1}{x_1}, \frac{x_1+x_2+1}{x_1x_2}\right)\right)$$

$$\frac{\frac{x_2+1}{x_1} + \frac{x_1+x_2+1}{x_1x_2} + 1}{\frac{x_2+1}{x_1} \cdot \frac{x_1+x_2+1}{x_1x_2}} = \frac{x_2^2 + x_2 + x_1 + x_2 + 1 + x_1x_2}{(x_2+1)(x_1+x_2+1) \cdot \frac{1}{x_1}}$$

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

Most often we will use it in the case $(Q, \varphi) = (Q_0, \mathbf{x})$, but...

Example

Take $Q_0 := 1 \rightarrow 2$. We saw earlier that

$$\mathbf{s} := \left(Q_0, \left(\frac{x_2+1}{x_1}, \frac{x_1+x_2+1}{x_1x_2}\right)\right)$$

$$\frac{\frac{x_2+1}{x_1} + \frac{x_1+x_2+1}{x_1x_2} + 1}{\frac{x_2+1}{x_1} \cdot \frac{x_1+x_2+1}{x_1x_2}} = \frac{x_2^2 + x_2 + x_1 + x_2 + 1 + x_1x_2}{(x_2+1)(x_1+x_2+1) \cdot \frac{1}{x_1}} = x_1$$

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

Image: A matrix and a matrix

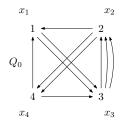
Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

• Somos-4 sequence:
$$x_n = \frac{x_{n-1}x_{n-3} + x_{n-2}^2}{x_{n-4}}$$
. (Ignore initial terms for now)

Image: A matrix and a matrix

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

Somos-4 sequence: x_n = x_{n-1}x_{n-3}+x_{n-2}²/x_{n-4}. (Ignore initial terms for now)
 Take Q₀ as before.

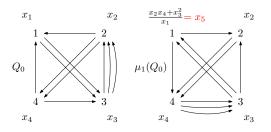


April 15, 2024

11 / 24

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

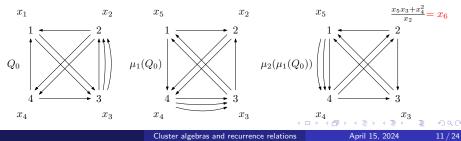
- Somos-4 sequence: x_n = x_{n-1}x_{n-3}+x_{n-2}²/x_{n-4}. (Ignore initial terms for now)
 Take Q₀ as before.
- Then $\mu_1(Q_0)$ is " Q_0 but rotated"; x_5 is "the new cluster variable".



11 / 24

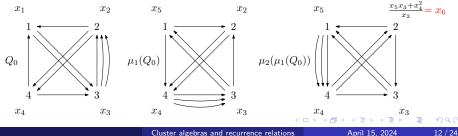
Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

- Somos-4 sequence: x_n = x_{n-1}x_{n-3}+x_{n-2}/x_{n-4}. (Ignore initial terms for now)
 Take Q₀ as before.
- Then $\mu_1(Q_0)$ is " Q_0 but rotated"; x_5 is "the new cluster variable".
- Similarly for $\mu_2(\mu_1(Q_0))$. Now x_6 is "the new cluster variable".



Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \ldots, \varphi_n^{\pm}]$.

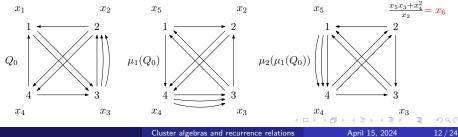
• Each x_n is a cluster variable in $\mathcal{A}(Q_0)$:



Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \ldots, \varphi_n^{\pm}]$.

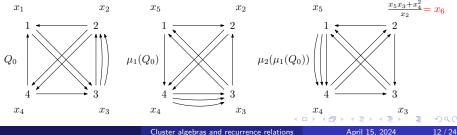
• Each x_n is a cluster variable in $\mathcal{A}(Q_0)$:

• (e.g., $x_5 \in \mu_1(Q_0, \mathbf{x})$, and $x_6 \in \mu_2 \mu_1(Q_0, \mathbf{x})$, and $x_7 \in \mu_3 \mu_2 \mu_1(Q_0, \mathbf{x})$, etc.)



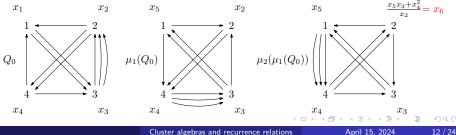
Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \ldots, \varphi_n^{\pm}]$.

- Each x_n is a cluster variable in $\mathcal{A}(Q_0)$:
 - (e.g., $x_5 \in \mu_1(Q_0, \mathbf{x})$, and $x_6 \in \mu_2 \mu_1(Q_0, \mathbf{x})$, and $x_7 \in \mu_3 \mu_2 \mu_1(Q_0, \mathbf{x})$, etc.)
- Laurent phenomenon: $x_n \in \mathbb{Z}[x_1^{\pm}, x_2^{\pm}, x_3^{\pm}, x_4^{\pm}]$ for all *n*.



Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \ldots, \varphi_n^{\pm}]$.

- Each x_n is a cluster variable in $\mathcal{A}(Q_0)$:
 - (e.g., $x_5 \in \mu_1(Q_0, \mathbf{x})$, and $x_6 \in \mu_2 \mu_1(Q_0, \mathbf{x})$, and $x_7 \in \mu_3 \mu_2 \mu_1(Q_0, \mathbf{x})$, etc.)
- Laurent phenomenon: $x_n \in \mathbb{Z}[x_1^{\pm}, x_2^{\pm}, x_3^{\pm}, x_4^{\pm}]$ for all *n*.
- In particular if $x_1 = x_2 = x_3 = x_4 = 1$ then $x_n \in \mathbb{Z}$.

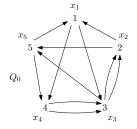


Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \ldots, \varphi_n^{\pm}]$.

• Somos-5 sequence:
$$x_n = \frac{x_{n-1}x_{n-4} + x_{n-2}x_{n-3}}{x_{n-5}}$$

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

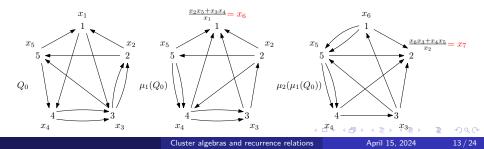
- Somos-5 sequence: $x_n = \frac{x_{n-1}x_{n-4} + x_{n-2}x_{n-3}}{x_{n-5}}$
- Similar proof, with Q_0 as below.



Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

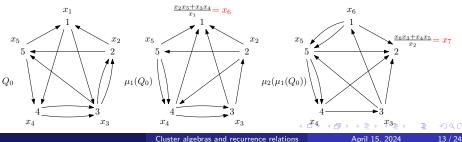
- Somos-5 sequence: $x_n = \frac{x_{n-1}x_{n-4} + x_{n-2}x_{n-3}}{x_{n-5}}$
- Similar proof, with Q_0 as below.

• Each x_n is a cluster variable in $\mathcal{A}(Q_0)$



Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

- Somos-5 sequence: $x_n = \frac{x_{n-1}x_{n-4} + x_{n-2}x_{n-3}}{x_{n-5}}$
- Similar proof, with Q_0 as below.
- Each x_n is a cluster variable in $\mathcal{A}(Q_0)$
- Laurent phenomenon: $x_n \in \mathbb{Z}[x_1^{\pm}, x_2^{\pm}, x_3^{\pm}, x_4^{\pm}, x_5^{\pm}]$ for all n.



• Key ingredient: quiver Q_0 and vertex v so that $\mu_v(Q_0)$ is " Q_0 but rotated".

< 47 ▶

э

- Key ingredient: quiver Q_0 and vertex v so that $\mu_v(Q_0)$ is " Q_0 but rotated".
- Classified in Fordy+Marsh, "Cluster Mutation-Periodic Quivers and Associated Laurent Sequences" (2009)

- Key ingredient: quiver Q₀ and vertex v so that μ_v(Q₀) is "Q₀ but rotated".
- Classified in Fordy+Marsh, "Cluster Mutation-Periodic Quivers and Associated Laurent Sequences" (2009)

Some examples from their classification:

• "Somos":
$$x_n = \frac{x_{n-1}^r x_{n-3}^r + x_{n-2}^s}{x_{n-4}}$$
 and $x_n = \frac{x_{n-1}^r x_{n-4}^r + x_{n-2}^s x_{n-3}^s}{x_{n-5}}$

• "Gale-Robinson": $x_n = \frac{x_{n-r}x_{n-N+r} + x_{n-s}x_{n-N+s}}{x_{n-N}}$

- Key ingredient: quiver Q₀ and vertex v so that μ_v(Q₀) is "Q₀ but rotated".
- Classified in Fordy+Marsh, "Cluster Mutation-Periodic Quivers and Associated Laurent Sequences" (2009)

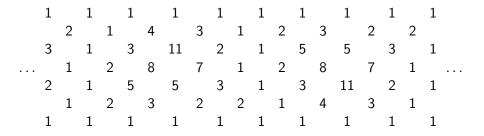
Some examples from their classification:

• "Somos":
$$x_n = \frac{x_{n-1}^r x_{n-3}^r + x_{n-2}^s}{x_{n-4}}$$
 and $x_n = \frac{x_{n-1}^r x_{n-4}^r + x_{n-2}^s x_{n-3}^s}{x_{n-5}}$

• "Gale-Robinson": $x_n = \frac{x_{n-r}x_{n-N+r} + x_{n-s}x_{n-N+s}}{x_{n-N}}$

Fordy+Hone, "Discrete integrable systems and Poisson algebras from cluster maps" (2012): Given a sequence as in [FM], when is $(x_n, x_{n+1}, \ldots, x_{n+N}) \mapsto (x_{n+1}, x_{n+2}, \ldots, x_{n+N+1})$ an integrable system?

• A Coxeter frieze is an array of numbers arranged as below such that bany array like a d satisfies ad - bc = 1. c

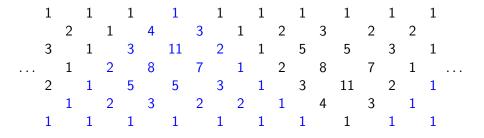


< 47 ▶

э

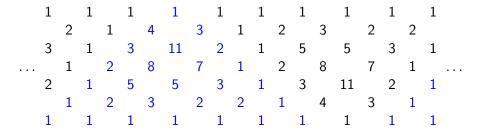
• A Coxeter frieze is an array of numbers arranged as below such that any array like a d satisfies ad - bc = 1. c

• (This one has all integer entries, and satisfies a glide symmetry...)



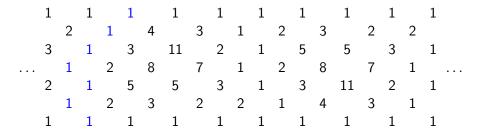
Claim

- Every Coxeter frieze with boundary = 1 satisfies a glide symmetry.
- If a Coxeter frieze has boundary = 1 and a "path of 1's", then every entry in the frieze is an integer.



Claim

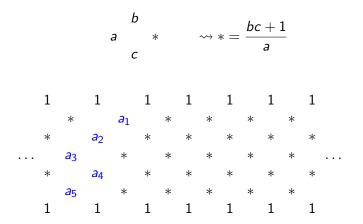
- Every Coxeter frieze with boundary = 1 satisfies a glide symmetry.
- If a Coxeter frieze has boundary = 1 and a "path of 1's", then every entry in the frieze is an integer.



• Can think of Coxeter friezes as recurrences, where

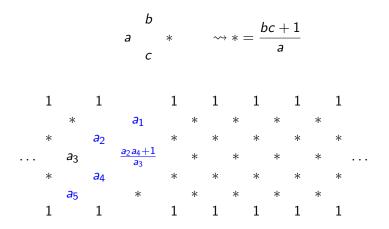
$$a \qquad b \\ a \qquad * \qquad \rightsquigarrow * = \frac{bc+1}{a}$$

• Can think of Coxeter friezes as recurrences, where



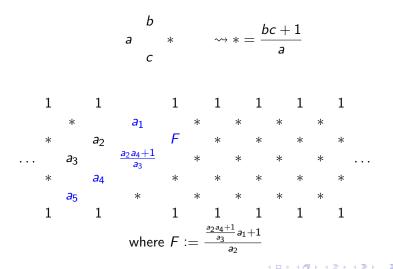
4 A b 4

• Can think of Coxeter friezes as recurrences, where

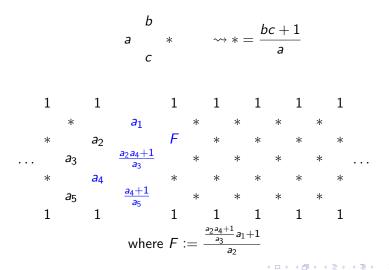


- T

• Can think of Coxeter friezes as recurrences, where



• Can think of Coxeter friezes as recurrences, where



Wavefronts as quivers

Let me index the entries like this:

	1		1		1		1		1		1	
		<i>x</i> 06		<i>x</i> 17		<i>x</i> ₂₈		<i>X</i> 39		<i>X</i> 4,10		
	x ₀₅		<i>x</i> ₁₆		<i>x</i> ₂₇		x ₃₈		<i>x</i> 49		<i>x</i> _{5,10}	
• • •		<i>x</i> ₁₅		<i>x</i> ₂₆		<i>x</i> 37		x ₄₈		<i>x</i> 59		• • •
	<i>x</i> ₁₄		<i>x</i> ₂₅		<i>x</i> 36		X47		<i>x</i> 58		<i>X</i> 69	
		<i>x</i> ₂₄		<i>X</i> 35		<i>x</i> 46		<i>X</i> 57		<i>x</i> 68		
	1		1		1		1		1		1	

Image: A marked bit is a standard st

æ

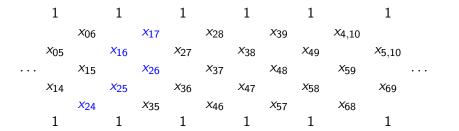
Wavefronts as quivers

Let me index the entries like this:

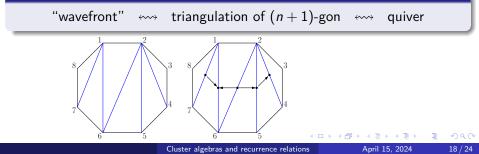
1		1		1		1		1		1	
	<i>x</i> 06		<i>x</i> ₁₇		<i>x</i> ₂₈		<i>X</i> 39		<i>x</i> 4,10		
x ₀₅		<i>x</i> ₁₆		x ₂₇		x ₃₈		<i>x</i> 49		x _{5,10}	
	<i>x</i> ₁₅		x ₂₆		<i>x</i> 37		x ₄₈		X59		
<i>x</i> ₁₄		<i>x</i> ₂₅		<i>x</i> 36		X47		<i>X</i> 58		<i>X</i> 69	
	<i>x</i> ₂₄		X35		<i>X</i> 46		<i>X</i> 57		<i>x</i> 68		
1		1		1		1		1		1	
Dictionary											
"wavefront" \longleftrightarrow triangulation of $(n+1)$ -gon \longleftrightarrow quiver											

Wavefronts as quivers

Let me index the entries like this:

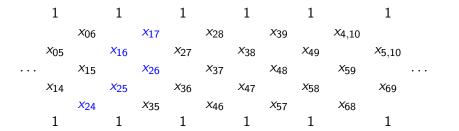


Dictionary

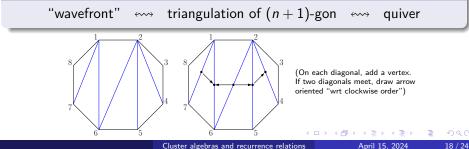


Wavefronts as quivers

Let me index the entries like this:



Dictionary



Cluster algebras and recurrence relations

Frieze propagation as diagonal flipping

Dictionary

"wavefront"	\longleftrightarrow	triangulation	\longleftrightarrow	quiver	
propagate wavefront	\longleftrightarrow	"flip diagonal"	\longleftrightarrow	mutate vertex	

э

Frieze propagation as diagonal flipping

Dictionary

	<u> </u>												
pro	"wavefront" propagate wavefront					-			-	uiver te vert	ex		
	1		1		1		1		1		1		
		<i>x</i> 06		<i>x</i> ₁₇		<i>x</i> ₂₈		<i>X</i> 39		<i>x</i> _{4,10}			
	X05		<i>x</i> ₁₆		<i>x</i> ₂₇		<i>x</i> 38		<i>X</i> 49		<i>x</i> 5,10		
• • •		<i>x</i> ₁₅		<i>x</i> ₂₆		X37		<i>X</i> 48		<i>X</i> 59		• • •	
	<i>x</i> ₁₄		<i>x</i> 25		<i>x</i> 36		X47		<i>X</i> 58		<i>x</i> 69		
		<i>x</i> ₂₄		<i>x</i> 35		x ₄₆		x ₅₇		x ₆₈			
	1		1		1		1		1		1		
			8		5	3			- 5	3 4 - ♂ ≻ ∢ ≥	→ < 至 >	(htt	୬ ୯ (
				Clu	uster algel	bras and	recurrence	e relation	s	April	15, 2024		19 / 24

Frieze propagation as diagonal flipping

Dictionary

				<pre>↔ triangulation ↔ "flip diagonal"</pre>				-	iiver e vertex	
1		1		1	1		1		1	
	x ₀₆		<i>x</i> 17	<i>x</i> ₂₈		<i>X</i> 39		<i>x</i> 4,10		
<i>x</i> 05		<i>x</i> ₁₆	X	27	<i>x</i> 38		<i>X</i> 49		<i>x</i> 5,10	
•••	<i>x</i> 15		x ₂₆	X37		<i>X</i> 48		<i>X</i> 59		•
<i>x</i> ₁₄		<i>x</i> 25	Х	⁽ 36	<i>X</i> 47		<i>x</i> 58		<i>x</i> 69	
	x ₂₄		X35	x ₄₆		<i>X</i> 57		x ₆₈		
1		1		1	1		1		1	
			Cluster	algebras and	recurrence	e relations	5	April 1	5, 2024	19 / 24

Frieze entries as cluster variables

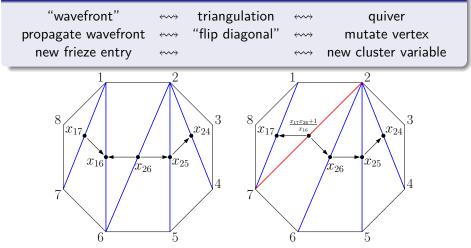
Dictionary

"wavefront"	\longleftrightarrow	triangulation	$\leftrightarrow \rightarrow$	quiver
propagate wavefront	\longleftrightarrow	"flip diagonal"	\longleftrightarrow	mutate vertex
new frieze entry	\longleftrightarrow		\longleftrightarrow	new cluster variable

æ

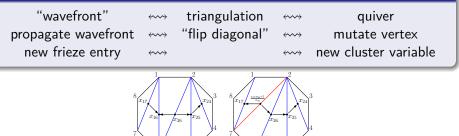
Frieze entries as cluster variables

Dictionary



Frieze entries as cluster variables

Dictionary



Every frieze entry is a cluster variable in $\mathcal{A}(Q_0)$.

Corollary

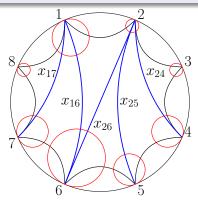
Every frieze entry is a Laurent polynomial in "initial wavefront quantities". (In particular, if there is a "wavefront of 1's" then every entry is in \mathbb{Z} .)

Theorem (Penner)

Given any "initial wavefront quantities" x_{ij} , there exists a hyperbolic metric on \mathbb{H}^2 along with points $p_1, \ldots, p_n \in \partial \mathbb{H}^2$ and horocycles around each p_i so that $x_{ij} = \lambda(p_i, p_j)$.

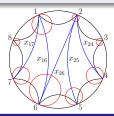
Theorem (Penner)

Given any "initial wavefront quantities" x_{ij} , there exists a hyperbolic metric on \mathbb{H}^2 along with points $p_1, \ldots, p_n \in \partial \mathbb{H}^2$ and horocycles around each p_i so that $x_{ij} = \lambda(p_i, p_j)$.



Theorem (Penner)

Given any "initial wavefront quantities" x_{ij} , there exists a hyperbolic metric on \mathbb{H}^2 along with points $p_1, \ldots, p_n \in \partial \mathbb{H}^2$ and horocycles around each p_i so that $x_{ij} = \lambda(p_i, p_j)$.



Dictionary

"wavefront" propagate wavefront initial frieze entry new frieze entry

\sim	triangulation	\longleftrightarrow
$\sim \rightarrow$	"flip diagonal"	\longleftrightarrow
\sim	λ -lengths	\longleftrightarrow
\sim		\longleftrightarrow

quiver mutate vertex initial cluster variable new cluster variable

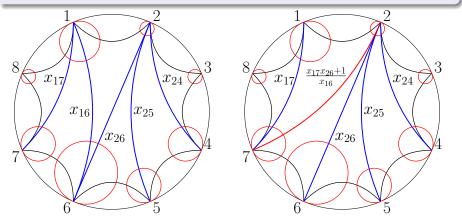
Corollary

New frieze entries are equal to λ -lengths of the "new diagonal".

æ

Corollary

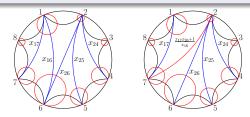
New frieze entries are equal to λ -lengths of the "new diagonal".



< 行

Corollary

New frieze entries are equal to λ -lengths of the "new diagonal".



Dictionary

"wavefront"	\longleftrightarrow	triangulation	\longleftrightarrow	quiver
propagate wavefront	\longleftrightarrow	"flip diagonal"	\longleftrightarrow	mutate vertex
initial frieze entry	\longleftrightarrow	λ -lengths	\longleftrightarrow	initial cluster variable
new frieze entry	\longleftrightarrow	new λ -length	\longleftrightarrow	new cluster variable

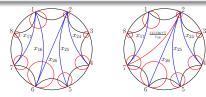
< 1 k

Corollary

New frieze entries are equal to λ -lengths of the "new diagonal".

 \longleftrightarrow

 \longleftrightarrow



Dictionary

"wavefront" propagate wavefront initial frieze entry new frieze entry \longleftrightarrow

triangulation \longleftrightarrow "flip diagonal" \longleftrightarrow $\leftrightarrow \rightarrow \lambda$ -lengths new λ -length

quiver mutate vertex $\leftrightarrow \rightarrow$ initial cluster variable new cluster variable \longleftrightarrow

Corollary

We have $x_{ij} = \lambda(p_{i \mod n}, p_{j \mod n})$; thus every frieze with $\partial = 1$ is periodic.

Theorem ([FZ], Laurent phenomenon)

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

Theorem ([FZ], Laurent phenomenon)

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

Remark

Inclusion $\mathcal{A}(Q_0) \hookrightarrow \mathbb{C}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$ induces embedding of "cluster torus" Spec $(\mathbb{C}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]) \to \text{Spec}(\mathcal{A}(Q_0))$. They are geometrically interesting.

Theorem ([FZ], Laurent phenomenon)

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

Remark

Inclusion $\mathcal{A}(Q_0) \hookrightarrow \mathbb{C}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$ induces embedding of "cluster torus" Spec $(\mathbb{C}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]) \to \text{Spec}(\mathcal{A}(Q_0))$. They are geometrically interesting.

Remark

Laurent phenomenon implies

$$\mathcal{A}(Q_0) \subseteq \bigcap_{(Q,\varphi)} \mathbb{C}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}].$$

The RHS is "upper cluster algebra". They are algebraically interesting.

Thank you!

Theorem ([FZ], Laurent phenomenon)

Let $\mathcal{A}(Q_0)$ be a cluster algebra and fix $(Q, \varphi) = \mu_{s_\ell}(\dots(\mu_{s_1}((Q_0, \mathbf{x})))\dots)$. Let $F \in \mathcal{A}$ be a cluster variable. Then $F \in \mathbb{Z}[\varphi_1^{\pm}, \dots, \varphi_n^{\pm}]$.

