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Somos-4 sequence

Define (xn) by

xn =
xn−1xn−3 + x2

n−2
xn−4

,

initial terms x1 = x2 = x3 = x4 = 1.

(xn) = 1, 1, 1, 1, 2, 3, 7, 23, 59, 314, 1529, 8209, 83313, 620297, . . .

Claim
For all n, we have xn ∈ N.

For example,

1529 · 83313 + 82092

314 = 620297 (!)
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Somos-5 sequence

Define (xn) by
xn = xn−1xn−4 + xn−2xn−3

xn−5
,

initial terms x1 = x2 = x3 = x4 = x5 = 1.

(xn) = 1, 1, 1, 1, 1, 2, 3, 5, 11, 37, 83, 274, 1217, 6161, 22833, 165713, 1249441, . . .

Claim
For all n, we have xn ∈ N.

For example,

165713 · 1217 + 22833 · 6161
274 = 1249441 (!)
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Quiver mutation

Today, all quivers will have no loops, no directed cycles of length 2,
and vertices will be numbered 1, . . . , n.

Q a quiver, k a vertex. The mutated quiver µk(Q) is obtained by:

1 For every pair of arrows i → k → j , add an arrow i → j
2 Reverse all arrows i → k and k → j
3 Remove all directed 2-cycles
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Today, all quivers will have no loops, no directed cycles of length 2,
and vertices will be numbered 1, . . . , n.
Q a quiver, k a vertex. The mutated quiver µk(Q) is obtained by:
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Quivers and seeds

Start with a quiver Q0.
(no loops, no directed cycles of length 2.)
(number the vertices 1, . . . , n.)

Fix indeterminates x1, . . . , xn.
A seed is a tuple (Q, (φ1, . . . , φn)).

(Q is a quiver, and φi ∈ C(x1, . . . , xn))

The initial seed is (Q0, (x1, . . . , xn)).

1 2

34

Q0
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Seed mutation

(Q, φ) a seed. The mutated seed µk(Q, φ) is (µk(Q), φ′), where

φ′ is
obtained from φ by replacing φk with

φ′
k :=

 ∏
e∈E

e=i→k

φi +
∏
e∈E

e=k→j

φj

 · 1
φk

(The equation above is called the “exchange relation”.)
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Cluster algebras

Definition (Fomin–Zelevinsky)
The cluster algebra A(Q0) is the subalgebra of C(x1, . . . , xn) generated by
all φi appearing in some µsℓ

(. . . (µs1((Q0, x))) . . . ). (The φi are called cluster variables).

So A(Q0) ∋ x2x4+x2
3

x1
=: F , A(Q0) ∋

(
x2x4+x2

3
x1

)
x3+x2

4

x2
= Fx3+x2

4
x2

,
many others...
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Laurent phenomenon

Theorem ([FZ], Laurent phenomenon)
Let A(Q0) be a cluster algebra and fix (Q, φ) = µsℓ

(. . . (µs1((Q0, x))) . . . ).
Let F ∈ A be a cluster variable. Then F ∈ Z[φ±

1 , . . . , φ±
n ].

Exchange relation: φ′
k :=

( ∏
e∈E

e=i→k

φi +
∏
e∈E

e=k→j

φj

)
· 1

φk
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(where Q′ = 1← 2).

Then
x1+x2+1

x1x2
+ 1

x2+1
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= x1 + x2 + 1 + x1x2
x2(x2 + 1) = x1 + 1
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Laurent phenomenon, again

Theorem ([FZ], Laurent phenomenon)
Let A(Q0) be a cluster algebra and fix (Q, φ) = µsℓ

(. . . (µs1((Q0, x))) . . . ).
Let F ∈ A be a cluster variable. Then F ∈ Z[φ±

1 , . . . , φ±
n ].

Most often we will use it in the case (Q, φ) = (Q0, x), but...

Example
Take Q0 := 1 → 2. We saw earlier that

s :=
(

Q0,

(x2 + 1
x1

,
x1 + x2 + 1

x1x2

))
was a seed in A(Q0). Let’s verify Laurent phenomenon for s and F = x1:

x2+1
x1

+ x1+x2+1
x1x2

+ 1
x2+1

x1
· x1+x2+1

x1x2

= x2
2 + x2 + x1 + x2 + 1 + x1x2

(x2 + 1)(x1 + x2 + 1) · 1
x1

= x1
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s :=
(

Q0,

(x2 + 1
x1

,
x1 + x2 + 1

x1x2

))
was a seed in A(Q0). Let’s verify Laurent phenomenon for s and F = x1:

x2+1
x1

+ x1+x2+1
x1x2

+ 1
x2+1

x1
· x1+x2+1

x1x2

= x2
2 + x2 + x1 + x2 + 1 + x1x2

(x2 + 1)(x1 + x2 + 1) · 1
x1

= x1
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Somos-4, again

Theorem ([FZ], Laurent phenomenon)
Let A(Q0) be a cluster algebra and fix (Q, φ) = µsℓ

(. . . (µs1((Q0, x))) . . . ).
Let F ∈ A be a cluster variable. Then F ∈ Z[φ±

1 , . . . , φ±
n ].

Somos-4 sequence: xn = xn−1xn−3+x2
n−2

xn−4
. (Ignore initial terms for now)

Take Q0 as before.
Then µ1(Q0) is “Q0 but rotated”; x5 is “the new cluster variable”.
Similarly for µ2(µ1(Q0)). Now x6 is “the new cluster variable”.
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In particular if x1 = x2 = x3 = x4 = 1 then xn ∈ Z.

1 2

34

x1 x2

x3x4

Q0

1 2

34

x2

x3x4

1 2

34

x5

x3x4

µ2(µ1(Q0))µ1(Q0)

x5
x5x3+x2

4

x2
= x6

Cluster algebras and recurrence relations April 15, 2024 12 / 24



Somos-4, again again

Theorem ([FZ], Laurent phenomenon)
Let A(Q0) be a cluster algebra and fix (Q, φ) = µsℓ

(. . . (µs1((Q0, x))) . . . ).
Let F ∈ A be a cluster variable. Then F ∈ Z[φ±

1 , . . . , φ±
n ].

Each xn is a cluster variable in A(Q0):
(e.g., x5 ∈ µ1(Q0, x), and x6 ∈ µ2µ1(Q0, x), and x7 ∈ µ3µ2µ1(Q0, x), etc.)

Laurent phenomenon: xn ∈ Z[x±
1 , x±

2 , x±
3 , x±

4 ] for all n.
In particular if x1 = x2 = x3 = x4 = 1 then xn ∈ Z.

1 2

34

x1 x2

x3x4

Q0

1 2

34

x2

x3x4

1 2

34

x5

x3x4

µ2(µ1(Q0))µ1(Q0)

x5
x5x3+x2

4

x2
= x6

Cluster algebras and recurrence relations April 15, 2024 12 / 24



Somos-4, again again

Theorem ([FZ], Laurent phenomenon)
Let A(Q0) be a cluster algebra and fix (Q, φ) = µsℓ

(. . . (µs1((Q0, x))) . . . ).
Let F ∈ A be a cluster variable. Then F ∈ Z[φ±

1 , . . . , φ±
n ].

Each xn is a cluster variable in A(Q0):
(e.g., x5 ∈ µ1(Q0, x), and x6 ∈ µ2µ1(Q0, x), and x7 ∈ µ3µ2µ1(Q0, x), etc.)

Laurent phenomenon: xn ∈ Z[x±
1 , x±

2 , x±
3 , x±

4 ] for all n.

In particular if x1 = x2 = x3 = x4 = 1 then xn ∈ Z.

1 2

34

x1 x2

x3x4

Q0

1 2

34

x2

x3x4

1 2

34

x5

x3x4

µ2(µ1(Q0))µ1(Q0)

x5
x5x3+x2

4

x2
= x6

Cluster algebras and recurrence relations April 15, 2024 12 / 24



Somos-4, again again

Theorem ([FZ], Laurent phenomenon)
Let A(Q0) be a cluster algebra and fix (Q, φ) = µsℓ

(. . . (µs1((Q0, x))) . . . ).
Let F ∈ A be a cluster variable. Then F ∈ Z[φ±

1 , . . . , φ±
n ].

Each xn is a cluster variable in A(Q0):
(e.g., x5 ∈ µ1(Q0, x), and x6 ∈ µ2µ1(Q0, x), and x7 ∈ µ3µ2µ1(Q0, x), etc.)

Laurent phenomenon: xn ∈ Z[x±
1 , x±

2 , x±
3 , x±

4 ] for all n.
In particular if x1 = x2 = x3 = x4 = 1 then xn ∈ Z.

1 2

34

x1 x2

x3x4

Q0

1 2

34

x2

x3x4

1 2

34

x5

x3x4

µ2(µ1(Q0))µ1(Q0)

x5
x5x3+x2

4

x2
= x6

Cluster algebras and recurrence relations April 15, 2024 12 / 24



Somos-5, again

Theorem ([FZ], Laurent phenomenon)
Let A(Q0) be a cluster algebra and fix (Q, φ) = µsℓ

(. . . (µs1((Q0, x))) . . . ).
Let F ∈ A be a cluster variable. Then F ∈ Z[φ±

1 , . . . , φ±
n ].

Somos-5 sequence: xn = xn−1xn−4+xn−2xn−3
xn−5

Similar proof, with Q0 as below.
Each xn is a cluster variable in A(Q0)
Laurent phenomenon: xn ∈ Z[x±

1 , x±
2 , x±

3 , x±
4 , x±

5 ] for all n.
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Other sequences

Key ingredient: quiver Q0 and vertex v so that µv (Q0) is “Q0 but
rotated”.

Classified in Fordy+Marsh, “Cluster Mutation-Periodic Quivers and
Associated Laurent Sequences” (2009)

Some examples from their classification:
“Somos”: xn = x r

n−1x r
n−3+x s

n−2
xn−4

and xn = x r
n−1x r

n−4+x s
n−2x s

n−3
xn−5

“Gale-Robinson”: xn = xn−r xn−N+r +xn−sxn−N+s
xn−N

Fordy+Hone, “Discrete integrable systems and Poisson algebras from
cluster maps” (2012): Given a sequence as in [FM], when is
(xn, xn+1, . . . , xn+N) 7→ (xn+1, xn+2, . . . , xn+N+1) an integrable system?
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Coxeter friezes

A Coxeter frieze is an array of numbers arranged as below such that

any array like
b

a d
c

satisfies ad − bc = 1.

(This one has all integer entries, and satisfies a glide symmetry...)

. . .

1 1 1 1 1 1 1 1 1 1
2 1 4 3 1 2 3 2 2

3 1 3 11 2 1 5 5 3 1
1 2 8 7 1 2 8 7 1

2 1 5 5 3 1 3 11 2 1
1 2 3 2 2 1 4 3 1

1 1 1 1 1 1 1 1 1 1

. . .
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Coxeter friezes

Claim
Every Coxeter frieze with boundary = 1 satisfies a glide symmetry.
If a Coxeter frieze has boundary = 1 and a “path of 1’s”, then every
entry in the frieze is an integer.

. . .
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Coxeter friezes as recurrences

Can think of Coxeter friezes as recurrences, where

b
a ∗

c
⇝ ∗ = bc + 1

a
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b
a ∗

c
⇝ ∗ = bc + 1

a

. . .

1 1 1 1 1 1 1
∗ a1 ∗ ∗ ∗ ∗

∗ a2 ∗ ∗ ∗ ∗ ∗
a3 ∗ ∗ ∗ ∗ ∗

∗ a4 ∗ ∗ ∗ ∗ ∗
a5 ∗ ∗ ∗ ∗ ∗

1 1 1 1 1 1 1

. . .
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. . .
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a3

a2a4+1
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∗ ∗ ∗ ∗
∗ a4 ∗ ∗ ∗ ∗ ∗
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. . .

where F :=
a2a4+1

a3
a1+1

a2

Cluster algebras and recurrence relations April 15, 2024 17 / 24



Coxeter friezes as recurrences

Can think of Coxeter friezes as recurrences, where

b
a ∗

c
⇝ ∗ = bc + 1

a

. . .

1 1 1 1 1 1 1
∗ a1 ∗ ∗ ∗ ∗

∗ a2 F ∗ ∗ ∗ ∗
a3

a2a4+1
a3

∗ ∗ ∗ ∗
∗ a4 ∗ ∗ ∗ ∗ ∗

a5
a4+1

a5
∗ ∗ ∗ ∗

1 1 1 1 1 1 1

. . .

where F :=
a2a4+1

a3
a1+1

a2

Cluster algebras and recurrence relations April 15, 2024 17 / 24



Wavefronts as quivers
Let me index the entries like this:

. . .

1 1 1 1 1 1
x06 x17 x28 x39 x4,10

x05 x16 x27 x38 x49 x5,10
x15 x26 x37 x48 x59

x14 x25 x36 x47 x58 x69
x24 x35 x46 x57 x68

1 1 1 1 1 1

. . .
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x15 x26 x37 x48 x59

x14 x25 x36 x47 x58 x69
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1 1 1 1 1 1

. . .

Dictionary
“wavefront” ↭ triangulation of (n + 1)-gon ↭ quiver
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Dictionary
“wavefront” ↭ triangulation of (n + 1)-gon ↭ quiver
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(On each diagonal, add a vertex.
If two diagonals meet, draw arrow
oriented “wrt clockwise order”)
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Frieze propagation as diagonal flipping
Dictionary

“wavefront” ↭ triangulation ↭ quiver
propagate wavefront ↭ “flip diagonal” ↭ mutate vertex
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Frieze entries as cluster variables
Dictionary

“wavefront” ↭ triangulation ↭ quiver
propagate wavefront ↭ “flip diagonal” ↭ mutate vertex

new frieze entry ↭ ↭ new cluster variable
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Frieze entries as cluster variables
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Frieze entries as cluster variables
Dictionary

“wavefront” ↭ triangulation ↭ quiver
propagate wavefront ↭ “flip diagonal” ↭ mutate vertex
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Every frieze entry is a cluster variable in A(Q0).

Corollary
Every frieze entry is a Laurent polynomial in “initial wavefront quantities”.
(In particular, if there is a “wavefront of 1’s” then every entry is in Z.)

Cluster algebras and recurrence relations April 15, 2024 20 / 24



Glide symmetry

Theorem (Penner)
Given any “initial wavefront quantities” xij , there exists a hyperbolic
metric on H2 along with points p1, . . . , pn ∈ ∂H2 and horocycles around
each pi so that xij = λ(pi , pj).
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Theorem (Penner)
Given any “initial wavefront quantities” xij , there exists a hyperbolic
metric on H2 along with points p1, . . . , pn ∈ ∂H2 and horocycles around
each pi so that xij = λ(pi , pj).
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Dictionary
“wavefront” ↭ triangulation ↭ quiver

propagate wavefront ↭ “flip diagonal” ↭ mutate vertex
initial frieze entry ↭ λ-lengths ↭ initial cluster variable
new frieze entry ↭ ↭ new cluster variable
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Glide symmetry
Corollary
New frieze entries are equal to λ-lengths of the “new diagonal”.
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Glide symmetry
Corollary
New frieze entries are equal to λ-lengths of the “new diagonal”.
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Dictionary
“wavefront” ↭ triangulation ↭ quiver

propagate wavefront ↭ “flip diagonal” ↭ mutate vertex
initial frieze entry ↭ λ-lengths ↭ initial cluster variable
new frieze entry ↭ new λ-length ↭ new cluster variable

Corollary
We have xij = λ(pi mod n, pj mod n); thus every frieze with ∂ = 1 is periodic.
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Remarks on Laurent phenomenon

Theorem ([FZ], Laurent phenomenon)
Let A(Q0) be a cluster algebra and fix (Q, φ) = µsℓ

(. . . (µs1((Q0, x))) . . . ).
Let F ∈ A be a cluster variable. Then F ∈ Z[φ±

1 , . . . , φ±
n ].

Remark
Inclusion A(Q0) ↪→ C[φ±

1 , . . . , φ±
n ] induces embedding of “cluster torus”

Spec(C[φ±
1 , . . . , φ±

n ]) → Spec(A(Q0)). They are geometrically interesting.

Remark
Laurent phenomenon implies

A(Q0) ⊆
⋂

(Q,φ)
C[φ±

1 , . . . , φ±
n ].

The RHS is “upper cluster algebra”. They are algebraically interesting.
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Thank you!

Theorem ([FZ], Laurent phenomenon)
Let A(Q0) be a cluster algebra and fix (Q, φ) = µsℓ

(. . . (µs1((Q0, x))) . . . ).
Let F ∈ A be a cluster variable. Then F ∈ Z[φ±

1 , . . . , φ±
n ].
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