DEFINING SLE IN MULTIPLY CONNECTED DOMAINS WITH
THE BROWNIAN LOOP MEASURE

GREGORY F. LAWLER

ABSTRACT. We define the Schramm-Loewner evolution (SLE,) in multiply
connected domains for Kk < 4 using the loop measure. We show that in the
case of the annulus, this is the same as the measure obtained recently by
Dapeng Zhan. We use the loop formation to give a different derivation of the
partial differential equation for the partition function in the annulus.

1. INTRODUCTION

The Schramm-Loewner evolution (SLE) is a conformally invariant or confor-
mally covariant family of measures on curves in the plane. It was proposed by
Schramm [25] as a candidate for the scaling limit of loop-erased walk and per-
colation interfaces, and it has turned out to be the crucial tool in the rigorous
development of two-dimensional critical phenomenon. Before SLE, there had been
much theoretical, but mathematically nonrigorous, development using conformal
field theory.

In conformal field theory, the standard parameter to characterize a field is the
central charge c. There is a major difference between ¢ < 1 and ¢ > 1, and SLFE
appears in the former case which is all we consider in this paper. The parameter
for SLE is denoted s > 0. For each ¢ < 1, there are two values of k, one less than
four and one greater than four, given by
_ (6 —k)(3k —8)

N 2K '
The smaller value corresponds to the simple curve case, and we concentrate on this
in this paper. For ¢ = 1, kK = 4 is a double root which also corresponds to simple
curves. Important examples are k = 2,¢ = —2 (loop-erased walks), x = 8/3,¢ =0
(self-avoiding walks), x = 3,¢ = 1/2 (interfaces of Ising clusters), k = 4,c = 1
(interfaces of free fields). In all cases, but for self-avoiding walk, SLE has been
proved to be the scaling limits of the models [21, 29, 27]

& The letter ¢ is standard in the physics literature for central charge. Since we use ¢ for
arbitrary constants, it is not a good choice for a parameter. Our compromise is to use a
bold-face c.

Another conformally invariant measure on (in this case, nonsimple) curves in the
plane is given by Brownian motion. A variant of this measure, called the Brownian
loop measure, arises in the study of SLE [14, 24]. This is a o-finite measure on
nonsimple curves that arises as a scaling limit of a random walk loop measure, see
[23] and [20, Chapter 9]. It is closely related to the determinant of the Laplacian
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and the Gaussian free field, see, e.g., [6], but we will only need to view it as a
measure on paths. The key properties of the measure are conformal invariance and
the restriction property.

In this paper we view SLE,; as a (positive) measure pp(z, w) on curves (modulo
increasing reparametrization) in a domain D of total mass ¥p(z,w) connecting
two distinct points z,w. Here z,w can be interior points or boundary points but
in the latter case we make some smoothness assumptions on the boundary. We
expect these curves to arise as normalized limits of measures on lattice curves. If
0 < ¥p(z,w) < 0o, we can normalize the measure to produce a probability measure
that we denote by uﬁ (z,w). There are various assumptions we can make on the
measures. We will be more precise later, but let us discuss them now. The first is
conformal covariance:

e Conformal covariance. There exist boundary and interior scaling expo-
nents b, b such that if f: D — f(D) is a conformal transformation,

foup(z,w) = |f' ()" |f' (@)™ gy (f(2), f(w)),
where b = b if ¢ € 9D and b, = b if 2 € D.

This implies conformal invariance of the probability measures,

fo Mﬁ(sz) = :ujf(p)(f(z)a f(w))

If one is only considering the probability measures, then one does not need to make
smoothness assumptions at the boundary. The domain Markov property below uses
the probability measures for nonsmooth boundary points.

There are three other assumptions we will discuss. It turns out that they are
redundant, so we do not need to make all of them assumptions, but this is not
obvious.

e Reversibility. The measure pp(w,z) can be obtained from pp(z,w) by
reversing the paths.

e Domain Markov property. In the probability measure uﬁ(z,w), given
an initial segment of the curve v = (0, t], the conditional distribution of
the remainder of the curve is ,uﬁ\% (v(t), w).

e Boundary perturbation. Suppose D; C D and the domains agree in
neighborhods of z,w. Then up, (z,w) is absolutely continuous with respect
to pup(z,w). In fact, if v is a curve connecting z and w in D;, then the
Radon-Nikodym derivative is given by

exp{ng(V,D\Dl)},

where mp (v, D\ D) denotes the (Brownian) loop measure of loops in D
that intersect both v and D;.

Schramm [25] studied the probability measures uﬁ(z,w) where z € 0D and
w € D or w € dD. He showed that for simply connected D, there is only a
one-parameter family of measures satisfying conformal invariance and the domain
Markov property. He used x as the parameter and these are now called radial and
chordal SLE,; (in D from z to w), respectively. It is known [26, 4] that for x < 4, the
measure is supported on simple curves of Hausdorff dimension d =1+ § € (1, %]

The following has been proved for SLE,,0 < k < 4 in simply connected domains.
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o Let

b:6—m B:b(ﬁz—2):2b+c
2k 4 12
Let ¥y(0,1) = 1,¥p(1,0) = and define ¥p(z,w) for other simply con-
nected domains by the scaling rule
Up(z,w) = |f'(2)]" |f (W)™ W) (f (w), f(w)),

where b, = b if w € dD and b, = b if w € D. Then [14, 24, 19] if
up(z,w) = Up(z,w) uﬁ(z,w), the family {up(z,w)} restricted to simply
connected domains satisfies conformal covariance, domain Markov property,
and the boundary perturbation rule.

e If w € 9D, then [30] ,u%(w, z) is the same as the reversal of uﬁ(z,w).

In the chordal case, ¥ p(z,w) = Hypp(z,w)® where Hyp(z,w) denotes a multiple
of the boundary Poisson kernel. This follows from the scaling rule for the kernel,

Hap(z,w) =" (2)| |f' ()| Hopp)(f(2), f(w)).

If w € D, the Poisson kernel satisfies

Hp(w,z) = |f'(2)| Hyp)(f(w), f(2)),
and hence ¥ p(w, z) is not given by a power of the Poisson kernel. If k = 2, for which
b=1, b= 0, the partition function is given by the boundary Poisson kernel (chordal
case) or Poisson kernel (radial case). One can also see this from the relationship
with loop-erased random walk.

In his argument, Schramm uses the fact that if one slits a simply connected do-
main D at its boundary then the resulting domain D \ 7; is also simply connected
and hence by the Riemann mapping theorem is conformally equivalent to the orig-
inal domain. If D is not simply connected, or D is “slit on the inside”, this is no
longer true. For this reason, conformal invariance of the probability measures and
the domain Markov property are not sufficient to determine the measures yﬁ(z, w)
for nonsimply connected domains. In [18] it was suggested to use the boundary
perturbation rule to extend the definition. We continue this approach in this pa-
per. There have been other approaches, see, e.g., [2, 3, 9, 8], but none have directly
used the boundary perturbation rule.

We will show the following. (If z or w are boundary points, we implicitly assume
sufficient smoothness at the boundary.)

e There is a unique way (up to some arbitrary multiplicative constants) to
extend the measures pup(z,w) so that it satisfies conformal covariance and
the boundary perturbation rule.

o If Kk < 8/3 (c < 0), then ¥p(z,w) < oo, and the probability measures
satisfy the domain Markov property.

e If8/3 < k <4, and D is 1-connected, ¥p(z,w) < oo.

The key observation is that the restriction property for the Brownian loop measure
holds for multiply connected domains. We conjecture that ¥p(z,w) < oo for all
k < 4, but have not shown this. However, we prove a weaker fact.

e If K <4 and D, is a simply connected subdomain and pp(z,w; D1) denotes
the measure pp(z,w) restricted to curves staying in Dy, then

D (2, w; Dy)|| < oo.
e The probability measures /iﬁ(z, w; D) satisfy the domain Markov property.



4 GREGORY F. LAWLER

o If Up(z,w) < oo for all k-connected domains, then the measures uﬁ(z, w),
restricted to k-connected domains, satisfy the domain Markov property.

The next property will follow from the definition and Zhan’s result for simply
connected domains [30].

e The measure up(w,z) is the reversal of up(z,w).

Zhan [31] recently took a different approach to extending SLE, in the case of
an annulus. Roughly speaking, he shows that there is a unique way of defining
uﬁ (z,w) for conformal annuli so that it satisfies the domain Markov property and
reversibility. (Note that the combination of the two properties allows one to describe
conditional distributions given both an initial segment and a terminal segment of
the path.)

In this paper, we consider our process for 1-connected domains and show that it is
the same as that defined by Zhan. In particular, reversibility of the process follows.
We use the boundary perturbation rule to give an equation for the partition function
and give a somewhat more direct proof of existence of the solution. Although this
paper does not directly use the results in [31], it does use an idea from that paper.
In particular, the annulus Loewner equation is used to find PDEs and the Feynman-
Kac formula is used to analyze PDEs that arise.

We now summarize the contents of the paper. We describe in Section 2 a model
introduced in [13] called the A-SAW. It is a two-parameter family of lattice models
for which it is conjectured that there is a one-parameter subfamily of critical models.
One of the parameters in [13] was denoted A but we have chosen to set A = —c/2
here. It is a generalization of the loop-erased walk (c = —2) and self-avoiding walk
(c = 0). This model was created after studying SLE. While we cannot prove
that this has a limit at the moment (except for ¢ = —2 and a somewhat different
version for ¢ = 1 for which we can use current results), it is useful for heuristic
understanding of our definition of SLE in multiply connected domains.

Section 3 contains many results that are needed in the paper most of which have
been proved elsewhere. This can be skimmed at first reading and referred back
to as needed. Section 3.1 reviews facts about the Poisson kernel and sets some
notation; this is followed by discussion of the annulus version. The annulus Poisson
kernel is often written in terms of theta functions. We choose instead to write the
functions in terms of infinite sums which arise naturally when raising the annulus
to the covering space of an infinite strip. The next three subsections review the
important tools in this area: SLFE in H, the Brownian bubble measure, and the
Brownian loop measure. Section 3.6 reviews the methods to analyze SLFE in simply
connected domains in terms of the Brownian loop measure and extends this idea to
shrinking domains. This will allow us to view radial SLFE or annulus SLFE in terms
of chordal SLE in H where the domain is shrinking by all the translates of the path.
In the case of annulus SLE we get a process that we call locally chordal SLE,;. We
write this using an annulus parametrization and this leads to the annulus Loewner
equation which we write as an equation in the covering infinite strip.

The definiton of SLE is given in Section 4. In the boundary to boundary case,
this is essentially the same definition as in [18]. We extend this to boundary/bulk
and bulk/bulk cases. One nice thing about our definition is that reversibility is
immediate, given reversibility for chordal SLFE in simply connected domains. There
are some subtleties in defining the bulk/bulk measure in subdomains of C in terms
of the measure on C, see Proposition 4.8. The definitions make use of facts about
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annulus SLE that are discussed in the next section. The extension of the definition
to multiple paths with disjoint endpoints is immediate as in [13].

The next two sections discuss the results about annulus SLE,. Most of the
results in this section were proved in [31], but there are some differences in our
approach. We focus on the “crossing” case although the “chordal” case can be
done similarly as we point out. In Section 5 we study annulus SLFE, with a given
winding number. By taking its premage under the logarithm, we can consider it
as a measure on curves connecting points of an infinite strip, and we in turn can
compare this measure to chordal SLFE, in the strip. This requires comparing the
loop measures in the strip to the preimage of the loop measure in the annulus.
(Although the loop measure is conformally invariant, the logarithm is a multi-
valued function, so some care is needed.) At an intermediate step we consider the
locally chordal SLE, discused in Section 3. Although this latter process is not the
same as annulus SLE,, it turns out that the partition function for annulus SLF,
can be given in terms of a functional of this process. As in [31], we can then use the
Feynman-Kac theorem to write a PDE for the partition function and this allows us
to show that it gives the quantity we want.

Section 7 takes a different approach and derives the differential equation for the
partition function in the annulus by comparing annulus SLE, to radial SLFE,.
Smoothness of the partition function follows from the work of the previous section,
so only the It6 formula calculation is needed. The work here shows that the process
we get is the same as the process in [31]. Our approach gives a little more than what
is stated explicitly in [31]. The annulus partition function is of the form ¥(r,x),
which denotes the total mass of SLE, from 1 to e~""% in the annulus A4, = {e™" <
|z| < 1}. The probability measure is obtained by normalization. Multiplying the
partition function by a function of r» does not change the probability measure. Here
we get not only the probability measure but the correct r» dependence.

I would like to thank Dapeng Zhan for useful conversations.

2. THE LATTICE MODEL

Here we describe a lattice model for random walks called the A-SAW [13]. For
simplicity, we will start with the bulk/bulk version in a bounded domain D. For
convenience, we will use the integer lattice Z? = Z414Z, but the scaling limit should
be independent of the lattice.

A self-avoiding walk (SAW) w = [wo,...,wy,] of length n is a finite nearest
neighbor path in Z? such that w; # wy for j < k. Let |w| = n denote the length.

A rooted (random walk) loop n = [ng,...,n2,] of length 2n > 0 is a finite
nearest neighbor path (not necessarily self-avoiding) with 79 = 72,. Again we write
|n| = 2n for the length. An unrooted loop is an equivalence class of loops under
the equivalence relation

[7707' "a772n] ~ [T]janj-i-l)"' 57]2717771’""77]']

for each j. The rooted random walk loop measure is the measure on rooted loops,
which assigns measure 471" /|5|. to each loop 7 with |n| > 0. This induces a
measure m® on unrooted loops called the random walk loop measure by giving
each unrooted loop the sum of the weights of the different rooted loops that give
the unrooted loop.
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&One may think of the unrooted loop measure as assigning measure 4~ " to each unrooted
loop n with |n| = n. However, this is not exactly correct. For example, if n = 4 and
n = [z,y,x,y, x|, then there are only two different rooted loops that generate the unrooted
loop, and hence this unrooted loop has measure 47" /2.

Suppose D is a bounded domain in C and z,w are distinct points in D. Let
B, A be fixed constants which are the parameters of the model. For each n, let
L, =n"1Z?>ND and let z,,w, be points in L,, closest to z, w (if there is a tie for
“closest”, we can choose arbitrarily). Define the measure v, = vy p ;. on SAWSs
w in L, with endpoints z,,w, which gives w measure

€Xp {—ﬁ‘OJ| + AmRW(w’Dan)} )

where m®"W (w, D, n) denotes the total mf™" measure of (unrooted) loops 1 in L,

that intersect w. Let Z,(D) = Z,(D; 3, ) denote the total mass of the measure.
This is also called the partition function.

This model has two parameters but the conjecture is that there is a one-parameter
family of critical models. Let us write A = —c¢/2 and write 5 = S, for the corre-
sponding value of (.

& The value of the critical 3 is a lattice dependent quantity. The value A = —c/2 is not
lattice dependent as long as we define the random walk loop measure correctly. For a given
lattice, the rooted loop measure is defined to give measure p(n)/|n| to every loop 1 where
p(n) is the probability that simple random walk in the lattice starting at 1o produces the loop
7. The value c is the “central charge” but we can think of it as a free parameter.

Conjecture 2.1. For each ¢ < 1, there corresponds a (lattice dependent) 8 and

a (lattice independent) scaling exponent b such the measure v, has the following
properties.

e For each bounded D and distinct z,w in D there exists %, (z,w) € (0,00)
such that .
Zy ~ 72U (2,w), n— 0.
o There exists a limit measure on simple curves

vp(z,w) = lim n*v,.
n—oo
e The family of measures {vp(z,w)} satisfies the conformal covariance rela-
tion: if f: D — f(D) is a conformal transformation,

Fovp(z,w) = ()P |f ()P vy (f(2), F(w)).

There is also a boundary version of this conjecture. Suppose z is a boundary
point of D and let us assume that 0D is analytic near z. One can define the measure
v, as above, but there are lattice issues involved. We will not deal with them here
and just state the following rough conjecture; see [11] for a more precise statement
including lattice issues. We also assume smoothness near the appropriate boundary
points.

Conjecture 2.2. For each ¢ < 1, there corresponds a (lattice dependent) 8 and
(lattice independent) scaling exponents b,b such the measure v, has the following
properties.
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e For each bounded D and distinct z,w in D there exists U}, (z,w) such that
Zp ~n~GF) W (2 ), - oo,

e There exists a limit measure on simple curves

— T [
vp(z,w) = nh_}rrgon Vp.

o The family of measures {vp(z,w)} satisfies the conformal covariance rela-
tion:

fovp(z,w) = I (2)*= [ ()" vi(p)(f(2), f(w)).

Here be = b or b, respectively, if ¢ is a boundary point or an interior point.

The conjectures are open, but let us assume that the conjectures do hold. Let

v (2, w) = vp(z,w)
P = )

be the corresponding probability measures which are conformally invariant:
f o V§(37w) = VﬁD)(f(Z)7 f(’LU))

Schramm [25] showed that if D is simply connected and z € 9D, there is only a

one-parameter family of possible limit measures for Vg(z, w) which are now called

chordal (if w € D) or radial (if w € D) Schramm-Loewner evolution with param-
eter k (SLE, ). Analysis of SLE [26, 14] shows that 0 < k < 4 (if we want a
measure on simple curves) and the other parameters are given by

b(k — 2) -

_ b c=6b—b=>b(3k—8).

(1) b= b=

2k 4 ’

Suppose z,w € D and Dy C D, and let v,, v} be the corresponding measures as
above and L,, = DNn~'Z2, L1 = DyNn~1Z2. Then if w is a SAW in L,, connecting
zp and wy,,

1
223 = exp { £ ™ (@, D.m) —m™ (w, Dy )]}
As n — o0, the quantity on the right has a limit [23] in terms of the Brownian loop
measure

lim [mRW(w7D7n) 7mRW(w7Dlan)] = mD(va\D1)7
n—00

where the right-hand side denotes the Brownian loop measure [24] of loops in D
that intersect both w and D \ D;. Hence the limit measures should satisfy for

Y C Dl,

c

2 =e {f m ,D\ D } .

( ) dVD(Z, ’IU) (7) Xp 2 D(’y \ 1)

For simply connected D, Dy with z € D, this was established in [14, 24].
Schramm’s construction of SLE makes generalizations to nonsimply connected

domains difficult. The purpose of this paper is to show that one can use the relation

(2) to define it. This requires some work. While we do not prove the conjectures

stated in this section, it is helpful to remember that the definitions we give in this

paper are those of the conjectured scaling limit of the A-SAW with A = —c/2.

dvp, (z,w)
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3. PRELIMINARIES

In this paper, we assume that x € (0,4] and c,b,b are as in (1). We also set
a=—.
K
Constants throughout may depend implicitly on k.

3.1. Poisson kernel and related. We establish notation and review facts about
the Poisson kernel.

e H denotes the open upper half plane, D the open unit disk, and if r > 0,
Ar={zeD:e " <zl}, Sr={z€H:Im(z) <r},
D, =¢e "D, C,=09D,.
Under this notation A, = D\ D,,dA, = Cy U C,.. Throughout this paper
we fix .
P(z) = e

and note that ¢ maps S, (many-to-one) onto A,. We write +o00, —oo for
the two infinite points in 95,

e If D is a domain, then z is dD-analytic if z € 0D and there is a neighbor-
hood N of z and a conformal transformation

¢: N = ¢(N)

with ¢(z) = 0 and ¢(N N D) = ¢(N) NH. We say that z is D-analytic if
z € D or z is 0D-analytic.

e If v is a curve, we write ; for [0, ¢].

o If z,w € D and ~ : [0,fp] — D is a curve with v(0) = z,v(to) = w we
abuse notation by writing v C D if 4(0,t9) C D. If t < to, we write v4 C D
if 4(0,t] C D.

e If z € D and w is dD-analytic, let Hp(z,w) denote the Poisson kernel (that
is, the inward normal derivative of the Green’s function at w) normalized
so that

Hy(z +1y,0) = #‘*‘92
It satisfies the scaling rule
Hp(z,w) = |f'(w)| Hyp)(f(2), f(w)).

(When writing rules like this, it will be implicitly assumed that the quanti-

ties are well defined. For example, in this case z € D, w is d D-analytic, and

f(w) is 0f(D)-analytic.) Under our normalization, the probability that a

complex Brownian motion starting at z exits D at V C 9D is

1
f/ Hp (2, w) |duwl.
TJv
e If 2, w are distinct dD-analytic points, we write Hyp(z,w) for the boundary
or excursion Poisson kernel given by
Hyp(z,w) = OnHp(z,w) = Hyp(w, z),

where n = n, denotes the (inward) normal derivative at z. It satisfies the
scaling rule:

(3) Hap(z,w) =" (2)| |f' ()| Hopp)(f(2), f(w)).
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If D is simply connected, there is a complex form of the Poisson kernel
Hp(z,w) such that Hp(z,w) = ImH p(z,w). This is defined up to a real
translation, and we choose the translation so that
1
Hu(z,0) = ——.
m(z,0) = —~

The function f(z) = Hp(z,w) can be characterized as the unique conformal
transformation f : D — H such that

flwtemy) =L 4o(1), L0+,

The Poisson and boundary Poisson kernel for the strip S, can be computed
using conformal invariance,

Hygs, (2,0) = ~ T coth (T—Z) ,

2r 2r
2. T\ 2
Hos. (02) = 3.7 [sinh (57)]
. 2 mTr\] 2
Hys (0,2 +ir) = 2 [cosh (?ﬂ .

If z, w are distinct boundary points of D, Dy C D with dist(z, D\ D) > 0,
dist(w, D\ Dy) > 0, let

Qp(z,w; D1)
denote the probability that a Brownian excursion in D from z to w stays
in D;. (A Brownian excursion in D is a Brownian motion starting at z and
conditioned to go immediately into D and exit at w. It is not difficult to
make this precise.) We note that Qp(z, w; Dy) is invariant under conformal
transformations of D, and if z,w are dD-analytic,

Qp(z,w; Dy) = }IM'

If D C H is simply connected with H \ D bounded and dist(0,H \ D) > 0,
then [17, Proposition 5.15]
QH(O7 ;5 D) = (I)/D(O>7

where ®p : D — H is a conformal transformation with ®(z) ~ z as z — oc.

When studying SLFE it is useful to consider subdomains of H and the boundary
point infinity. In order to make a number of formulas work in this case, it is useful to
adapt the following “abuse of notation” about derivatives. This can be considered
a kind of normalization at infinity.

(7)

e When we consider the conformal transformation g : H — H given by g(z) =

—1/z, then we write

g(0) = g'(c0) = —L.

e If D C H and H \ D is bounded, then we say that oo is dD-analytic. If

D1, Dy are two such domains and f : D; — D5 is a conformal transforma-
tion with f(oc0) = 0o, we define f/(c0) by

f(z)wi zZ — 00.

f1(e0)’
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Equivalently, if F'(z) = —1/f(=1/z) = go f o g(z), then
f'(00) = F'(0).
e More generally, if F' : D — D’ is a conformal transformation with F'(z) = oo
or F'(c0) = z, we compute derivatives using the chain rule and (7).

The boundary Poisson kernel Hyp(z,w) can be defined if z or w equals infinity
using the scaling rule (3). Under our normalization Hay(z,00) = 1.

&If D, D’ are simply connected domains, z, w are distinct D-analytic points, and 2’, w’ are
distinct D’-analytic points, then there is a one parameter family of conformal transformations
f:D — D" with f(2) =2/, f(w) = w’. The quantity f'(2) f'(w) is invariant of the choice
of the transformation. Our definitions of derivatives at infinity are made so that this property
holds as well when w = oo or w’ = oo.

3.2. The annulus. The functions that arise from the Poisson kernel of the annulus
will be important. By considering different winding numbers, using the scaling rule,
and applying (6), we can see that

. > e”‘
Hya (1,e ") = ¢" Hyg, (0 ir)=—1J
()Ar( ) € ) € Z 3ST( ,.CE+ZT) 2 (’I",l‘),

k=—o0

where J(r, z) is defined by
2 & m(z + 2km)\]°
(8) J(T, l‘) = ﬁ Z |:COSh (27'):| .

k=—o00
We will view J(r,z) as a function on (0,00) x R satisfying J(r,z) = J(r,z + 2m).
Under our normalization of the Poisson kernel,

27
9) e [ Hpa (1,e "%y dzx =,
0 r
which implies
2m T o
/ J(r,x)de = 2/ J(r,x)de = —.
0 0 r
Indeed, (r/2m)J(r, x) has the interpretation as the density of the angle of the hitting
point of an h-process in A, started at 1 conditioned to leave A, at C,. (in other
words, the h-process associated to the harmonic function h(z) = —log|z|). Using
this interpretation, we can see that there exists p > 0 such that for all r sufficiently
small

(10) ﬂS/T.](T,gc)dacgw.
0

r r

&To see (9), recall that under our normalization of the Poisson kernel

27
e " Ha, (e e ") dx
0

is 7 times the probability that a Brownian motion starting at e™¢ = 1 — ¢ + O(¢?) leaves A,
at C,. A standard estimate for Brownian motion tells us that this probability equals ¢/r.
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Lemma 3.1. There exist ¢ < co such that if r > 1,z € R,

T

1
‘J(r,x) ——|<ce .

r

Proof. We will assume r > 2 (the case 1 < r < 2 is easy). Let V be a subset of
[0,27) which can also be viewed as a periodic subset of R. We need to show that
1 (V)

o J(r,x)de = - [14+O(re "),
v

where [ denotes length. By definition,
1 e "

— [ J(r,x)dx
2 Jyv T

/ Hya, (7", e da.
T Jv

/ HaAT(l, B_T—Hz) d.]?
%

e

Let B; denote a complex Brownian motion and Ts = inf{t : B; € Cs}. Let
p(z; V) =P{Brp, €V}, q(zV)=P{Br, € V[T <T.},
and let ¢4 (7; V) be the maximum and minimum of ¢(z,V) on C,_;. Then,

re” "

q-(r,V) <

/H(?Ar(eirvem) dx < Q+(T>V)'
T Jv

Hence it suffices to show that if z € C,._1,
q(z, V) =1(V)[1+O(re "),

where the error term is uniform in z. If z € C,_1, then P*{Ty < T,.} = 1/r, and
hence

p(z2,V)=r"tq(z,V)+ (1 —r Y)P*{Bp, €V | T, < Ty}

Using the strong Markov property and the exact form of the Poisson kernel in the
disk, we see that

p(z,V)=1V)1+0(]z)], PH{Bp €V |T. <To} =UV)[1+O(z])],
and hence if z € C,_1,
(V) = V)14 0(2)] = (1 =rHIUV) 1+ O(|z])]
IV)[rt +0(e™)]
= v HV)[1+0(re™)).

Another important function will be

Hino) =2+ [ 3ay= [ |36~ 7| an

”
which satisfies Hy(r, ) = Hy(r,x 4+ 27) and

1

H)(r,z) = J(r,x) — -

Here we are using the notation from [31], and the prime denotes an z-derivative.
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Lemma 3.2. Let K(r,xz) = rH;(r,z). Then for all v, K is an odd function of
period 27 satisfying K(r,m — ) = K(r,m+z), K(0) = K(w) =0, and
Kro)<m—z, 0<z<m.
Moreover, there exists € > 0 such that for all r sufficiently small and all x,
K(r,x) <m—er.

Proof. This is straightforward. The last estimate uses (10). O

&Although we will not need it for our main theorem, in a comment in Section 7.1 we will
use the fact that the function ®(r,z) = rJ(r,z) = rH}(r,z) + 1 satisfies the differential
equation
(11) b =9"+H;d+H; .

Here, as later in the paper, we use dots for r-derivatives and primes for x-derivatives. To see
this, we will need the following fact from [31]:

H; = H/ + H; H,.
Hence G = H) satisfies .
G=G"+H;/G +HG,
and
b = G+rG@" +rH;/G +rH;G
G+ +H;d +H(®—1)
o +H; ' +H; P

Lemma 3.3. There exists ¢ > 0 such that the following holds. Suppose r > 1 and
f: D — A, is a conformal transformation with f(Co) = Cy where D =D\ K and
K is a compact subset containing the origin. Then for |z| =1,

[ (2) =1 <ce™, |f"(2)] <ce .

Proof. Let ¢p be the harmonic function on D with boundary values 0 on Cy and
1 on K and let ¢, = ¢4,. By conformal invariance,

on(2) = 6n(f(2)) = —B /2]

r
Since f maps Cy to Cjy, this implies

rOadp(2) = |f'(2),

where n denotes the inward unit normal. Also, conformal invariance of excursion
measure gives

27
| onbn() el = [ duon()laz| = 7.
C() CO r
Hence to prove the first estimate, it suffices to show for z,w € Cy,
(12) Ondp(2) = Ondp(w)[1+O0(e™")].
Using Koebe estimates, we can find a universal s such that for r sufficiently large,

K C D,_,. Suppose we start Brownian motions at ez and e™ € w, respectively.
The probability that they reach C,._, without hitting Cy is €/(r — s). On Ci._g,
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¢p) =1—0(r=1). Using Lemma 3.1, we can see that the conditional distributions
on C,._, given that the Brownian motions reach C,._; are the same for z,w up to an
error of order O(re™"). Hence, if ¢(z) = q(z,r,€) denotes the probability that the
Brownian motion starting at z reaches C)._, before Cy but does not hit K before
Co, then

la(2) = q(w)] < e——r71O(re™") < S O(e™"),

r—S r

from which we conclude (12). Indeed, we conclude the stronger fact,

1
g(z) = —%‘Z'u +0(e ™), el<li <1,
This implies
[f) =11+ 0@™)], et <z <1
For the second estimate, fix z and assume without loss of generality that z =1
and f(1) = 1. By Schwarz reflection, we can extend f to a neighborhood of radius
1/2 about 1. Let ,L(z) = logz,g(z) = log f. where L(1) = g(1) = 0. We have
|[Reg(z)—ReL(z)| < e " and g(1) = L(1). From this we can use standard arguments
to conclude that |g(z) — L(z)] = O(e™"). Using the Cauchy integral formula, we
get |¢'(2) — L'(2)),¢"(2) — L”()] < cO(e™).
a

A computation that we will do a little later will give us a particular annulus
function A (r,z) which we now define. Suppose that D = S,.,z =0, w = x4+ ri and
let 4¢ be a curve starting at the origin parametrized so that hcap[y;] = t. Let Dy
be the domain obtained by splitting H by the nontrivial 27k translates of 7,

Dy =S, \ U [y + 27k],
keZ\{0}
and let
Q: = Qp(0,w; Dy).
Then (see the end of Section 3.8), one can check that as t — 0,

(13) Qr=1—A(r,z)t +o(t),

where

Hys, (0,27k) Hos, 27k, x + i)
A — T [
(ra)= ) Hos, (0,2 + ir)

kezZ\{0}
Using (5) and (6), we get
m cosh? (/2
(14) A(r,x):ﬁ Z — (2/ ) ,
™ o) sinh”(72k/r) cosh”(w(x — 2nk)/2r)

Proposition 3.4. For fized r, A(r,-) is a positive, even function, that is increasing
in |z|. There exists ¢ >0 such that If 0 <r <1 and 0 <z <,

(15) A<r,x)g:2exp{—2:(7r—x)}.
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Proof. The definition implies A(r,xz) = A(r,—z). For r < 1,0 <z < 7,
cosh? (wa/2r) =< e™/7
sinh?(7%k/r) cosh?(m(x — 2nk)/2r) = e2Iklm?* /1 gml2mk—al/r > 2lklx*/r gm(2m—2)/r

By summing over k, we get (15). The monotonicity in |z| will follow if we show
that that for each integer k,

cosh?(mz/2r) cosh?(mx /2r)
cosh?(mw(x — 27wk)/2r)  cosh?(w(x + 27k)/2r)

is an increasing function of |z|.
Indeed, we will now show that if y € R and

cosh? z n cosh? z
cosh?(z —y)  cosh®(z +y)’

fz) =

then f is increasing for x > 0. Since
flz) = cosh(2z) + 1 cosh(2z) + 1
= cosh(2z —2y) +1 = cosh(2z +2y) + 1’
it suffices to show for every y € R, that
coshz + 1 coshz + 1
F(Q’J) = )
cosh(z —y)+1  cosh(z+y)+1

is increasing for z > 0. Using the sum rule, we get

cosh(z —y) + 14 cosh(z + y) + 1 = 2coshz coshy + 2,

Letting » = coshy > 1, we get
[cosh(z — y) + 1] [cosh(z +y) +1] = (coshzcoshy + 1)? — sinh? zsinh? y
= (rcoshz +1)2 — (r2 = 1)(cosh® z — 1)
= cosh?z + 2r coshz 4 2

= (coshz + )%

Therefore,
Flr) = 2r (coshz +r~1) (coshz + 1) _ gy (Gleosha),
(coshz + )2
where )
G(t) = log(t + ;) + log(t + 1) — 2log (t + 7).
Since r > 1, G’'(t) > 0 for ¢t > 0 and hence G and F' are increasing. O

3.3. SLE, in H. If K = 2/a € (0,4], then chordal SLE, (in H from 0 to co) is the
solution to the chordal Loewner equation
a
16 Bygr(2) = ——
( ) tgt( ) gt(z)fUt
where U, = —B, is a standard Brownian motion. With probability one [26], this
generates a random path 7 : (0,00) — H such that the domain of g; is H \ 7. The
curve is parametrized so that hcap[y:] = at (see [17, Chapter 3] for definitions); in
other words,

gO(Z) =2

at
gi(2) = 2 + ~+ O(|z|72), 2z — oo
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For every r > 0, let
T =inf{t >0:~(t) € S} =inf{t > 0: Imy(¢t) =r}.

&SLE, for k > 4 is also very interesting, but the paths are not simple. We restrict in
this paper to k < 4.

Chordal SLE, produces a probability measure on curves, modulo (increasing)
reparametrization, from 0 to co. By conformal transformation, we get a probability
measure on curves connecting distinct boundary points z,w of simply connected
domains D. We will denote this measure by uﬁ (z,w).

& To get a measure on parametrized curves, one should use the natural parametrization as
described in [22]. This parametrization satisfies a conformal covariance rule under conformal
transformations. We would extend our definitions in this paper to parametrized curves, but it
would not add anything to our arguments here. For this reason we will consider curves modulo
reparametrization as in [25].

Radial SLE, from 1 to 0 in D is defined by the transformations on the disk
i) = )
where h; satisfies

(17) Biha(2) = g cota(he(2) — Uy),

where, as in [31], we write cote(z) = cot(z/2), and Uy is a standard Brownian mo-
tion. By conformal invariance, this gives a probability measure on curves u# (2, w)
connecting one boundary point z and one interior point w.

3.4. Brownian bubble measure. Our main interest is the Brownian loop mea-
sure. However, computations of the measure lead to considering excursions and the
boundary bubble measure.

Suppose D is a domain with smooth (not necessarily connected) boundary. For
each z € 9D, V,V; C D, we define (Brownian) excursion measures by

SD(Z,V):/ Hyp(z,w) |dw],
v

Ep(11,V) :/ Ep(z, V) |dz| :/ / Hyp(z,w) |dz| |dw|.
Vl \4 Vl
They satisfy the scaling rules

Ep(2,V) = 11" (2)€ppy (f(2), F(V)),
Ep(V1,V) = Eppy(V1, V).
In particular £p(V7, V) is a conformal invariant and hence is well defined even if
the boundaries are not smooth. The quantity £p(z, V) needs local smoothness at
z to be defined.

Boundary bubbles in D are loops rooted at z € D and otherwise staying in D.
We review the definitions (see [17, Section 5.5]). The bubble measure is a o-finite
measure on bubbles. In H we can define the measure, by specifying for each simply
connected domain D C H with dist(0, H\ D) > 0, the measure of the set of bubbles
at 0 that do not lie in D.
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Definition If D C H is a subdomain, z € R, and dist(z,H\ D) > 0, then
I'(z; D) = T'u(z; D) = 0y[Hu(z, ) — Hp(z,2)] |2=2 -

The quantity I'(z; D) is the bubble measure (in H rooted at ) of bubbles that
intersect H \ D. Alternatively, we can write

(18) I'(z; D) = 11%1 e ' E*TH(B,, x)],

where B is a complex Brownian motion and 7 = 7p = inf{¢ : B; ¢ D}. Note that
I'(z; D1) — I'(z; D2) = 0y[Hp,(2,2) — Hp, (2,2)] |22 -

We can similarly define T'p(z; D) if z is @ D-analytic, D’ C D, and dist(z, D\ D’) >
0. It is defined as in (18), which we can also write as

I'p(z:D') = / Hp(w, =) d€p (=, w).
DnNoD’

It satisfies the following scaling rule: if f : D — f(D) is a conformal transformation,
then

Ip(zD") = |f (2)*Tspy(f(2), f(D")).
If D C H is simply connected, this quantity can be computed [17, Proposition 5.22]:
if f: D — H is a conformal transformation with f(z) = z, then

(19) Ne; D) = —5 Sf(),

where S denotes the Schwarzian derivative. Particular cases of importance to us
are considered in the following proposition.

Proposition 3.5.
2

™

F M r) = /=,

al0:50) = g3
IfT(r) =Tp(1; Ay), then as r — oo,
1100
(20) I(r) = —
Moreover,
2 5

F(T) - ?7“2 + (T)v
where
(21) 6(r)= > [Hou(0,27k)—Hys, (0,2 k)]—i_ﬁi inh km? -

r)= oH\Y, 4T 8s,.\Y, 27 = 2 2,2 sin "
kezZ\{0} po

In particular,
_14+0(e™) w2

5 - :
) 2r 1272
Proof. Since S, is simply connected, we can use (19) with f(z) = e™/" — 1 to get
Sf(0) 72
F N )= —— = .
H(07 S7) 6 1272

The second equality follows from (18). Indeed, as noted previously

1%16—1 P¢{B, € C,} =1/r,
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and the exact form of Poisson kernel in D shows that
1 .
Hp(z,1) = 5t Oe™), zeC,.

To each Brownian bubble in D rooted at 1 that intersects C,., there is a corre-
sponding path in H that starts at 0, ends at 27k for some integer k, and does not
stay in S;.. Only those paths that end at 0 are Brownian bubbles in H rooted at 0.
Therefore, to compute I'gr(1; S;-) we can subtract the measure of the other bubbles.
To get the measures of the bubbles to be subtracted we consider the measure of
excursions in H minus the measure of excursions in .S,. We therefore get

Pu(0;S,) = Tp(L;4)— Y [Hou(0,2nk) — Hps, (0,27k)]
kezZ\{0}
= FD(1§AT)_5(T)~

Using (5) and Hag(0,z) = 272, we see that

o(r) = 22 ((27rlk)2 — Z—; {sinh (lﬁjﬂrz)]2>
9 00 2 -2
= 112—27;2; {Sinh (T)} .

O

3.5. Brownian loop measure. In order to describe SLE, in other domains, we
introduce the Brownian loop measure as first introduced in [24].

Definition The rooted Brownian loop measure on C is the measure on loops given
by

1
(22) py) dt x area x V5P

where vBE denotes the probability measure induced by a Brownian bridge of time
duration one at the origin.

To be more precise, a rooted loop is a continuous function 7 : [0,t,] = C with
n(0) = n(t,). Such a loop can be described by a triple (¢, z,7) where ¢ > 0 is the
time duration, z = n(0) is the root, and 7 : [0,1] — C is a loop of time duration
one starting at the origin. The rooted loop measure is obtained by choosing (¢, z, 7)
according to the measure (22). If D C C, the the rooted loop measure in D is the
rooted loop measure in C restricted to loops that lie in D.

Definition The rooted loop measure on a domain D induces a measure on unrooted
loops which we denote by mp. We consider this as a measure on unrooted loops
modulo reparametrization. (However, the proof of conformal invariance requires
considering the parametrized loops.)

For the purposes of this paper, we do not need to worry about the time parametriza-
tion of the loops. The fundamental fact that explains the importance of the loop
measure is the following. We do this to emphasize that we do not need to assume
that D is simply connected.

Proposition 3.6 (Conformal invariance). If f : D — f(D) is a conformal trans-
formation, then
fomp =myp).
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&We have stated the proposition for loops, modulo reparametrization. One can get a
similar result for parametrized loops but then one must change the parametrization as in the
conformal invariance of Brownian motion.

Sketch of proof. Let p(z, z;t) be the measure on paths associated to Brownian loops
at z of time duration ¢. It is a measure of total mass p;(z,z) = (27t)~! that can
be defined using standard Brownian bridge techniques. Let

plz,2) = / ple, 25 0) dt,
0

which is an infinite measure. For any D, we define pp(z, 2;t), pp(z, z) by restriction.
If f: D — f(D) is a conformal transformation, and 7 is a loop in D, we write
f on for the corresponding loop in f(D) obtained using Brownian scaling on the
parametrization. In other words, if n has time duration ¢,,, then f o7 has time
duration

/0 "1 (s)) 2 ds.

The measure pp(z,z) induces a measure f o pp(z,z) by considering f o 7. Using
the conformal invariance of Brownian motion, one can check that

(23) fopp(z,2)=prp)(f(2), f(2)).
Suppose h is a continuous, nonnegative function on D. Then /& induces a measure
on (rooted) loops by

pD,h:/DpD(z,z)h(z)alA(z)7

where A denotes area. We can also consider this as a measure on unrooted loops
by forgetting the root. We write pp for pp p with h = 1. Another way to define
the Brownian loop measure pp on unrooted loops is

d/LD 1

dpp v= ty
where ¢, denotes the time duration of . More generally,
-1
dpp [ / tn ]
= h(n(s))ds .
dprh(n) ; (n(s))
Suppose h(z) = |f'(2)|?>. Then (23) implies that

Fopon = /D o1y (), F) 1 ()P dA(2)

)

= / pr(p)(w,w) dA(w) = py(py-
f(D)

Also,
1

tfon.

K n(s)) ds = T s))[?ds =
/Ohm)d /Olf(n())\d

By construction, mp also satisfies the restriction property.
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o If V1, V5 are subsets, we write either m(Vy, Va; D) or mp(Vi, V3) for the mp
measure of the set of loops in D that intersect both V; and V5.

e Suppose D C H is a domain (not necessarily simply connected) with

dist(0, H\ D) > 0. Suppose v satisfies (16) and ¢t < T := inf{¢ : dist(y(¢), H\
D) =0}. Then

(24) m( B\ D) = a [ T(Usig,(D))ds.

If D is simply connected, we can use (19) to write

(25) m(%,H\D;H):—%/O St,(Us) ds,

where f is a conformal transformation of g,(D) onto H with f(Uy) € R.

&The only functionals of the Brownian loop measure that we will need are of the type
on the left-hand side of (24). We might consider using the right-hand side of (24) as the
definition of m(~v:, H \ D;H). However, it is not so easy to see from this formulation to see
that if 7y is a curve in H connecting boundary points 0, z, then

m(ye, H\ D;H) = m(y", H\ D; H),

where 4 denotes the reversal of the path. This is immediate from the loop measure description
of the quantity.

&The formula (24) comes from a Brownian bubble analysis of the Brownian loop measure.
Suppose v is a simple curve from 0 to oo in H. If [ is a loop in H that intersects 7, we can
consider the first time (using the time scale of «) that the loop intersects . If [ intersects ~y
first at time ¢, then [ is a “boundary bubble” in H \ 7 rooted at v(¢). We therefore can write
the Brownian loop measure, restricted to loops intersecting -, as an integral of the Brownian
bubble measure in decreasing family of domains H \ v¢. We can think of v as an “exploration
process’ for the Brownian loop measure. This idea is used in the construction of conformal
loop ensembles by Sheffield and Werner [28]. This exploration idea is important in our analysis
of SLE, in an annulus.

Although the Brownian loop measure is a measure on unrooted loops, it is often
convenient to choose roots of the loops. For example, if 7 is an unrooted loop, we
can choose the root to be the closest point to the origin, say e~"+%. (Except for a
set of measure zero, this point will be unique). The rooted loop is then a Brownian
bubble in the domain O,. := C \E This is the basis for the following computation.

Proposition 3.7. Suppose D C D is a simply connected domain with dist(0,0D) >
e~ ". Then,

- 1 o) 2 )
m(D,,D\ D;D) = ;/ / To, (e=*+; D) ds df.,
r 0

where Og =D \ Ds.



20 GREGORY F. LAWLER

Lemma 3.8. There exists ¢ < oo such that the following is true. Suppose D C D
is a simply connected domain containing the origin and g : D — D is the conformal
transformation with g(0) = 0,¢’(0) > 0. Suppose that v > logg’'(0) + 2. Let
¢ : g(A- N D) — A be a conformal transformation sending Coy to Cy and let
h = ¢ o g which maps A, N D onto As. Then if u =1r —logg’(0), z € C,,w € Cy,

ls—ul <ce™, [¢'(w) =1 <ce™, [W(2) =g (0)] <cg'(0)e™™,
’mD(ﬁT,]D)\D) — log(r/u)| <ce ™.

Proof. The Koebe-1/4 theorem applied to g~* shows that dist(0,0D) > [4¢’(0)] L.
Applying the distortion theorem to g restricted to D, , 3, We see that there exists

¢ < oo such that if |w| <e™",
l9(w) —¢'(0)w| < e,
lg'(w) —g'(0)] < ce™™.
In particular, if |w| = e™", then
(26) lg(w)[ = e [1+0(e™)].
Using this and monotonicity, we see that
(27) s=u+0(e™").

Let U denote the conformal annulus g(A4,ND) so that ¢ maps U onto the annulus
As. By conformal invariance we see that log|g(z)|/s equals the probability that a
Brownian motion starting at z exits U at g(C.). However, we know that the inner
boundary of U lies within distance O(e=2%) of C,. If the Brownian motion gets
that close to C,,, the probability that it does not exit at C,, is O(e™*/u). Therefore,

loglg(z)| _ log|| [1+ O0(e /).

S

Hence, from (27), we get
log |g(z)| = log|z| [1+ O(e™)],

which implies |¢'(e?)] = 1 4+ O(e™*). The argument to show that |h’(e”"+¥)| =
g (0)[1 + O(e )] is similar.
By conformal invariance and symmetry,
gATﬁD(CT, 8D) = SAS (Cs, Co) = 5,45 (Cg, CS) = 271'571.

Similarly, if
1
0(2) =P*{Bs € Cp} =1 — %'Z'

where 6 = inf{t: By € A, }, then
2t = &4 (C, Co) = / On0(2) |dz].
Cr
By the strong Markov property, we can write

e, (CnCo) = [

{1 _ log|z|
DNOD r

} d€a, (Cy,dz).
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The term 1 — logT\z\ is the probability that a Brownian motion starting at z exits
A, at Cy. Therefore, using (27),

1
/ log |2 déa (Co,dz) =2 s —r Y =2n[ut —r P+ O(e™"/u?)].
pnop T

Lemma 3.1 implies that if V C 0D and z,w € C,.,
Ea (2, V)=E4, (w,V)[1+0(e™™)],
and hence 1
Ea(2,V) = o Ea. (Co, V)14 0(e™™)].
Lemma 3.1 can also be used to see that if w e DNID, z € C,.,

1 log |w
Ha, (,.C,) = grl |

[1+0(e™)].

Therefore, using (27),
w1l — 1
2
From Proposition 3.7 we know that the quantity we are interested in can be
written as

27 00 00
l/ / FAt(eiter;AtﬂD)dtd@:/ [ 1 _ 1 } [1+O(€7u7t)]dt.
™ Jo r 0

Ta (z,A-ND)= / Ha, (w,z)dEa.np(z,w) = 14 O(e™)].
DNOD

u+t 1T+t
By computing the integral we see that this quantity equals
log(r/u) + O(e™").

O
We will need to consider the Brownian loop measure in an annulus. If we fix
the origin as a marked point, we can divide loops into two sets: those with nonzero
winding number around zero and those with zero winding number. If A is a confor-
mal annulus such that 0 and oo lie in different components of A¢, then the measure

of the set of loops in A with nonzero winding number is finite. It is a conformal
invariant which we calculate in the next proposition.

Proposition 3.9. Let m*(r) denote the Brownian loop measure of loops in A, that
have nonzero winding number. Then

m*(r) = i 2/0 d(s) ds,

where 6(s) is defined as in (21). In particular, there exists C > 0 such that as
r— 00,
(28) e ) = Crte /S [1 4+ 0(rY).

Proof. By focusing on the point of the loop of largest radius (see the appendix of
[18]), we can give the expression

= >o= Hs (0,27k) = é —20(r).
0 wezvqoy "

Proposition 3.5 implies that there exists ¢ such that

m*(r) = g —logr+c+0O(r™ Y, r— o,
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from which (28) follows with C' = e°.

Corollary 3.10.

e Suppose D C D is a simply connected domain containing the origin and
suppose that dist(0,0D) > e™". Let 0 < s < r be defined by saying that the
annulus D \ D, is conformally equivalent to As. Then the Brownian loop
measure of loops in A, of nonzero winding number that intersect D\ D is
m*(r) — m*(s).

e Under the same assumptions, the Brownian loop measure of loops in D of
nonzero winding number that intersect D\ D is log ¢’(0)/6 where g : D — D
is the conformal transformation with g(0) =0, ¢’(0) > 0.

Proof. The first assertion follows immediately and the second is obtained by con-
sidering comparing D\ 4, and D \ A, as r — oo. |

We ill use the following estimate in the discussion in the next section but it will
not figure in our main results. See [15] for a proof.

Proposition 3.11. Let k(r) denote the mp_, measure of loops that intersect both
A_\NA_,.11 and D. Let K'(r) be the measure of such loops that do not separate the
origin from Cy. Then as r — 0o,

E(ry=r"'+0(r72), K(r)=0("?).

In particular, if V1,Va are disjoint compact sets, then there exists A(V1,Va) such
that as r — 00,

mp_, (V1,Va) =logr — A(V1,V2) 4+ o(1).

3.6. Chordal SLFE, in simply connected domains. We will review two equiv-
alent ways to construct SLE, in simply connected domains for kK = 2/a < 4. See
[14, 24, 17, 19] for more details. Suppose D is a simply connected subdomain of H
with dist(0,H \ D) > 0. Let w be a nonzero dD-analytic point; we allow w = oo
as a possibility. Let ® : D — H be the unique conformal transformation with
®(0) =0, P(w) = oo, |P'(w)| = 1. Here we are using the conventions about deriva-
tives as discussed in Section 3.1. The most important example for this paper is
D =S, and w = x + ir for some x € R.
Let g¢ be the solution of the Loewner equation
a

dgi(z) = mv g90(2) = z,

where U; = —B; is a standard Brownian motion defined on the probability space
(Q,F,P). Then the corresponding curve v is SLE, in H from 0 to oo which with
P-probability one is a simple curve with (0, 00) C H.

Let

T=Tp=inf{t >0:~(t) & D}.
For t < T, let
wy = gi(w), v =Poy,
and let §; be the unique conformal transformation of H \ ~; onto H with §:(z) =
z+0(1) as z — oo. Let

Dy =grodog .
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Then g; satisfies the Loewner equation

a®,(U;)?
Oigi(z) = —=——,  go(2) = 2,
gi(2) — Uy
where Uy = g, (v*(t)) = ®,(U;). Then ®, is the unique conformal transformaton of
g+(D \ 7¢) onto H with ®,(U;) = Uy, @4 (w;) = 00, |®}(wy)| = |g;(w)| . Moreover,
using only the Loewner equation, one can show that

. 3b . a®!(U,)2  2a0(U,)
) 1) — 2" P’ — t _ t
( 9) t(Ut) t (Ut)’ t(Ut) 4®;(Ut) 3

2

where ét(Ut), @;(Ut) denote 0;P;(z), 0;P}(x) evaluated at x = Uy.
Let

(30) Hy = Hpg,(p\yo) (@, wr), Ky =|g,(w)|” Hy(Uy)" = @,(Uy)".

The second equality for K; follows from the scaling rule for the Poisson kernel. A
straightforward It6’s formula calculation using (29) shows that
b H(Ut)

ac
K,=K; | —=S5P —_—
d t t |:12S t(Ut)dt+ Ht(Ut) dUt:|,

where S denotes the Schwarzian derivative. Let

t
M, = exp{‘l‘;/ SfI)s(Us)ds} K,
0

= e {Smati, H\ D)} lgj(w)” H(U)".

(To check the second equality, recall that we have parametrized so that heap(y;) =
at.) Then M; is a local martingale satisfying
b H;(Uy) b @Y (Uy)
dM; = (0 M, dU; = () M; dUy.

We can use Girsanov theorem to define a new probability measure P* obtained
by weighting by the local martingale M;. (The Girsanov theorem is stated for
nonnegative martingales; since we only have a local martingale, we need to use
stopping times. However, as long as ¢ < T, there is no problem.) The Girsanov
theorem states that

_ bH{(UY)

31 AUy = ————=dt +dW;, t<T,
( ) t Ht(Ut) t

where W; is a standard Brownian motion with respect to P*.

Another application of Itd’s formula using (29) shows that if U, satisfies (31),
then U; = ®,(U;) satisfies

dU, = ®,(Uy) dW.

The upshot is that, with respect to the measure P*, 1, has the distribution of (a
time change of) SLE, from 0 to oo in H. Since ; = ® ! o, this implies that with
respect to P*, 4, has the distribution of SLFE, from 0 to w in D. The Girsanov
transformation (31) is sufficent for understanding the probability measure ,uﬁ (0, w).
Note that it is determined by the logarithmic derivative of Hy; the “compensator”
terms do not need to be computed.

The example of importance in this paper is D = S, and w = = + ir. It will
suffice for us to consider the probability measure ,u?r (0, w). The drift term in (31)
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is somewhat complicated to write down; however, at time ¢t = 0, we can use (6) to
see that it equals bL(r, z) where
y .

(32) L(r,z) = w =T tanh (E) ,

Haps (0,2 +dr) 7 2r
where the prime denotes derivative in the first component. This measure is the
same (modulo time change) as the conformal image of SLE, from 0 to co in Hj; in
particular, with probability one, the path leaves S, at w.

In analyzing annulus SLE, we will be studying measures that will turn out to be
absolutely continuous with respect to ,u?r (0, z + ir). To review the issues that we
need to address, let us recall the case of SLE,; from 0 to oo in a simply connected
domain D with H\ D bounded and dist(0, H\ D) > 0. In this case, when we weight
by the appropriate local martingale M;, then with P*-probability one, T"= oo and
¥(t) = oo. If T'= oo and 7(t) — oo, then a deterministic estiamte gives

c
Mo = exp {2 ma(y,H\ %)} 1{y C D},
and since this happens with P*-probability one,
(33) E[My] = My = @'(0)°.

&The argument we will use for the annulus is similar to the proof for simply connected

domains, so it is worth reviewing the main steps. Suppose D is a simply connected domain
with H \ D bounded and w = co. Here we were able to guess the exact form for the partition
function for up (0, 00), 5, (0)®. Direct It8's formula calculation shows that M; as above gives
a local martingale. However, to justify (33), we need that fact that the curve weighted by
the local martingale goes to infinity without leaving the domain. This gives the necessary
“uniform integrability” .
In the annulus case, we will consider two measures on curves from 0 to w = x +ir in S.. We
will use the Feynman-Kac theorem applied to a slightly different process to give a candidate
for the partition function. Although we will not have an explicit form of it, we will know that
it satisfies a certain PDE and hence gives us a local martingale. Having a local martingale
is not sufficient; we will also need to show that the process weighted by the local martingale
leaves the domain at w. This will give the analogue of (33). The argument for the annulus,
as well as the argument here, will require k < 4.

3.7. Shrinking domains. We will need a generalization of this where the domain
D is replaced with a decreasing family of domains {D; : ¢t > 0}. Although what
we describe can be done more generally, we will restrict to the case that we need
in this paper. This will lead to a process that we call locally chordal SLE, in an
annulus.

Let D = S, and w € 95, \ {0}. (The case S = H, w = oo corresponds to radial
SLE and is discussed in the next subsection.) Let

(34) o= (u+2r7k), D,=D\A.
keZ\{0}

and
Dy =D\ (% Uy)=¢ ' [D\n],
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where 7; = 1 o ;. In other words, when we slit the domain D = S,. by ; we also
add slits at the 27k translates of ;.

Let T' denote the first ¢ > 0 such that either v(t) € 95, or n; disconnects the
origin from the unit circle,

T =inf{t >0:v ¢ D;}.

Let D, = g,(D,), and, as before, U; = g;(v(t)). We want to study the process that
evolves at time ¢ like chordal SLE from v(t) to w in the domain D;. Equivalently,
the process after conformal transformation by g; evolves like chordal SLFE, from
U; to wy = gi(w) in D,. The latter process can be defined in two equivalent ways.
Let Hi(z) = Hpg,(D\~,) (2, ws) as in the previous section and let

_ H,y(z)
Hy(z)
The process can be considered as either of the following.

e SLE, in H from 0 to co weighted by fNIt(Ut)b.
e SLE, in S, from 0 to w weighted by Q;(U;)’.

Hy(z) = Hyp, (z,we), Qi)

&If J; is a positive process, then “weighting by J;" is in the sense of the Girsanov thoerem.
If J; satisfies
th = Jt [Rt dt + At dUt] .

t
Ny := exp{—/ R ds} Jt,
0
is a local martingale satisfying
dNt == At Nt dUt

When we use the Girsanov theorem (using stopping times so that the local martingale is a
martingale), then

then

dUy = A¢ dt + dWy,

where W, is a Brownian motion in the new measure.

Let

Q-

+(U)
Qi(Ur)’

where Qt(Ut) denotes 0;Q(x) evaluated at x = U;. Our assumptions allow us to
conclude that A; is well defined and continuous for ¢ < T'.
As in (30), we define

Ky = |gi(w)|” Hy(Uy)" = |gi(w)|” Hy(U) Qu(Ur)".
Using the previous calculation and the chain rule, we see that K; satisfies

b H(U,
dK, = K, l(—bAt + % SfIJt(Ut)> at + LHHUY)

Hy(Uy)
t
Cy :exp{/ Asds},
0

(35) Ay =

dU;

If
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then M, is a local martingale satisfying
b H(U,
= M M, dU,.
Hy(Uy)

The term
a [t
77/ S®,(Us)ds
6 Jo

can be interpreted in terms of Brownian loops, but we need to be careful. At time
s, —=S®4(Us)/6 represents the measure of Brownian bubbles in H rooted at Uy that
intersect gs(Ds). For every Brownian loop [, let s(I) be the smallest s such that
s(l) N7ys # 0. Then

a t
—7/ S®,(U,) ds = 1y,
6 Jo

where m; = log A; is the Brownian loop measure of [ in D with s(I) < ¢ and
IND\ Dy # 0. Then the local martingale is

M, = CP A Hy(U,)® Qb = CP AS? Hy(U,)°.

Note that the only term in M, that has nontrivial quadratic variation is Hy(U;)®.
Therefore, when we weight by the local martingale, the process looks locally like
SLE,, from ~y(t) to w in D;. We call it locally chordal SLE,; (we have defined it only
for k < 4.) This gives a probability measure on paths starting at 0 in S,. We will
use k < 4 to show that with probability one the paths leave S, at w. We can also
view the paths as living in the annulus A, and going from 1 to e~" 7% with a known
total winding number. In Section 3.9 we will use an annulus reparametrization of
the curve.

3.8. Radial SLF, raised to H. Suppose D is a simply connected domain, z € 0D,
w € D, and 0D is locally analtyic at z. Radial SLE,, in D from z to w is a measure
on paths
MD(sz) = \IID(Z7w) M%(va)v
that satisfies the conformal covariance rule
7o mp(z.w) = |F ()P | () 1, (1), Flw)).

The conformal covariance rule determine the total mass up to a multiplicative
constant and for convenience we choose the constant so that ¥p(1,0) = 1.

To obtain the probability measure pﬁ(o,w) where w € H, we weight chordal

SLE, by a particular local martingale. Let g; be the conformal maps for chordal
SLE, from 0 to oo, and let w € H. Let Z; = g4(w) — Uy and

M; = |g)(w)|> Hu(Zs, Uy),

where b, b are the boundary and interior scaling exponents, respectively, as in (1).
Then M; is a local martingale and the measure on the paths obtained by weighting
by this local martingale is that of radial SLE,. In the weighted measure, the path
stops at finite (half plane capacity) time T, at which v(T},) = w. This determines
the probability measure ,ug (0, w) and conformal invariance determines the measure
for all simply connected D. Although this is not the same definition as originally
given by Schramm [25], the Girsanov theorem shows that it is equivalent.

One can also understand the relationship between radial and chordal SLE,, using
the Brownian loop measure. Suppose that 7, is a simple curve in H starting at the
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origin and let 1, = ¥ o ;. We will assume that ¢ is small so that 7, is also simple.
Let

iLtID\T]t%D

be the conformal transformation with iL;(O) > 0 and suppose the curve has been
parametrized so that h}(0) = e’. Let g; : H\ y; be the usual conformal transforma-
tion with driving function Uy; one can show that

O¢hcap[ys] |1=0= 2,

which is why this is a standard choice of parametrization for chordal SLE. Let
¢,%¢ be as in the previous subsection and let h; be a conformal transformation
hy : H\ 4 — H such that ¢ (h(2)) = he((z)). This transformation is determined
uniquely by requiring that

hi(iy) = ily —t] +o(1), y — oc.
We define ¢; by
he = @1 0 gs.

Let p1,p2 denote pp(0,00) and pup(1,0). The latter measure can be viewed
as a measure on curves vy; by pulling back by ¢. (Note that [¢'(0)] = 1 so the
derivative factor in the scaling rule equals one.) We view these measures on the
initial segment ;. The measure pg is supported on curves such that v; Ny # 0.
Note that ps < p1, and let Y;(7y¢) denote the Radon-Nikodym derivative so that
dps = Y dpy. Let U* denote the partition function for the raised radial SLFE; in
particular, ¥} (0,00) = 1.

Although the loop measure is conformally invariant, we must be careful here
because 1) : H — D is not one-to-one. Indeed, each loop I’ in D has an infinite
number of preimages in H. If I’ is a loop in D that intersects 7;, we can specify a
unique preimage by considering the smallest s such that 7, € I’ and then rooting I’
at ns. We associate to I’ the corresponding loop ! in H rooted at 5.

Also, the loops of nonzero winding number in D have preimages that are not
loops in H. Since the paths have been parametrized so that n (0) = et, Corollary
3.10 implies that the measure of such loops is deterministic and equal to ¢/6. Using
this idea, we get the formal expression

U, (1), 0)
T, (7(0,0)°

Here C is a normalization to make this a probability measure and m(7:) denotes
the measure of loops [ in H that intersect +; with the following property.

Y () = Ci exp {5 i) - (¢/6)]}

e Let s be the smallest time with 4 € [. Then
IN7s #0.

In other words, the loop hits a translate of +; before it hits 7; where time
is measured on the curve ;.

The ratio of partition functions is only formal but we can make sense of it by writing

Wl{fﬂ\% (v(t), 00) \IIIEI\% (v(t), 00) Wi 5, ((t), 00)

Uiy, (7(2),00) — Wanyg, (Y(£),00) Wy q, (Y(t),00)°
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The first term on the right equals one since, formally,
P, (V(1),20) i (3(1))[* Uy (he(3(2)), o0)
Wi g, (V(£),00) [ (v(8)[® Wr(he (v(2)), 00)
For the second term, we use the formal computation
Vg, (1(8),00) _ gt (v(®)I° Py, g (92 (7(1)), 0)
Wi\, (7(t), 00) |9:(v())|* Wi (U, 00)

and conformal covariance,

=1

= Uy, m\5,) (U, 00),

Uy, \5,) (Ut 00) = ¢4(U)".
Therefore,
C A~
Yi(y) = Cre /12 exp {5 m(%)} oL (U)".

This is a local martingale (and a martingale for x < 4) for chordal SLE,, and
when we weight by the martingale we get locally chordal SLE, from v(t) to oo
in H\ 4. Although we are considering chordal SLE,, we are using the radial
parametrization. This is the same as radial SLFE, viewed on the covering space H.
It remains to find the normalization factor C}. Since the weighted measure locally
looks like chordal SLE, in the infinitely slit domain and hence after mapping by h;
looks like chordal SLE,, we get that C; = €% for some b. To find the exponent we
need only differentiate at 0. The measure of loops that hit both 7; and a translate
of ~y; is of order t? and hence

atm(’)/t) |t:0 = 0
We claim that
1
(36) (U |,_ = e
and hence
joc . 0
12 6

Let us sketch the proof of (36). We write “small error” for errors that are o(t)
as ¢t | 0. The quantity ¢}(U;) is the probability that a Brownian excursion in H\ 4;
from ~(¢) to oo does not hit 4;. Up to small error, it is the probability that an
excursion in H from 0 to co does not hit 4;. The set 4; is a union of curves of
half-plane capacity 2¢ rooted at the points 27k, k € Z \ {0}. The probability that
an excursion hits the translate ; + 27k is exactly

dyq(iy)
where ¢(z) = E*[Im[B,]], B is a standard Brownian motion and 7 is the first time
that it leaves H \ [y + 27k]. As t ] 0, up to small error this equals

1 t
(271']{?)2 hcaph/t] - ﬁ

The probability of hitting more than one translate is O(¢?), and hence, up to small
error, the probability that the excursion hits 4; is

t t
2. g

kez\{0}




SLE IN MULTIPLY CONNECTED DOMAINS 29

&In the last computation we use the fact that for a small curve rooted at z € R, the
expected value of Im(B-) is given by the half-plane capacity times a multiplicative constant
of the Poisson kernel. In order to keep track of constants (perhaps made especially confusing
by our definition of H), it is useful to remember that for large y if D = H\ D,

B Im(B)] ~ + = Ha(s.0).

Hence, we get the general relation,
E*[Im(B-)] ~ Hu(z,x) hcap|y:].

The estimate (13) is done similarly. In this case, the probability that an excursion
from 0 to « + 4r in S, hits the translate v, + 27k is exactly, 0yq(y) where
E?*|Hg, (Br,x +ir
o) — EHs (B i)
H@s,,,(o, T+ Z’I“)
Here 7 is the first time that the Brownian motion leaves S, \ [y: +27k]. Up to small
error, if B, & 0S,.,

Hg (B;,x +ir) = Im[B,| Hs, 27k, x + ir).

Also, as y } 0,
9,E" [Im(B,)] |y=0= heap[y:] Hs, (0, 27k) [L + o(1)].

3.9. Annulus Loewner equation. We will need to consider the annulus Loewner
equation which is similar to the chordal equation (16). We will need to define the
annulus equation in the covering space S,.. We start with some defintions. Assume
U : [0,00) — R is continuous with Uy = 0 and such that the chordal equation (16)
produces a simple curve. Recall that 1(z) = €, 7. = inf{t : Im7y(t) = r}, and let
ne = oy Let
Y = U (e +2mk), A =7 U,
keZ\{0}
T =inf{t:v N3y # 0}

Equivalently, T is the first time that the curve 7; is not simple. Note that T # 7,
for each r; indeed, by the definition of T, there must be an s < T with Im~y(s) =
Imv(T). Let

Sr,t - Sr \ Yt Sr,t - Sr \'-A}/t
If t < T A 7, there is a unique r(t) = r(t,7:) € (0,r] such that there is a
conformal transformation
et A, \ e — Arr,
with ﬁt(Co) = Cj. The transformation h, is unique up to a rotation. This transfor-
mation can be raised to the covering space S, to give a conformal transformation

hy : 57-7,5 — Sr(t)
with hy(d00) = £oo. This transformation is unique up to a real translation, and
we specify it uniquely by requiring
he(Uy) = Uy
We define ¢; by
hi = ¢1 0 gr.
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Note that ¢; is the unique conformal transformation of g:(S; ;) onto S, with
¢¢(o0) = oo and ¢¢(U;) = Uy. Although r(t) depends on the curve ~, the next
lemma shows that its derivative at 0 is independent of v assuming v has the capacity
parametrization.

Lemma 3.12. If vy is a curve with hcap[y:] = at, then 7(0) = —a/2 = —1/k.

Proof. We will consider excursion measure defined by

ep(ViVa) = 505 [ [ Ho(sw)dz)fdul,
™ Jv IV,

This definition assumes V7, V5 are nice boundaries, but this is a conformal invariant
(see [17, Chapter 5]) and hence is defined for rough boundaries as well. In this
normalization, &, := £4,(Co,C,) = 1/r. Consider Dy = A, \ n; where n = ¢ o
~v. We only need to consider small ¢ for which 7 is a simple curve in A,. Let
E(t) = Ep,(Cr,CoUn;). By definition of r(¢) and conformal invariance of excursion
measure, £(t) = 1/r(t). Therefore, by the chain rule
(37) £(0) = @

Suppose r > 1 and ¢ is sufficiently small so that D; C D;. Then using the strong
Markov property,

EAT (Cra Cl) - SD(C’I“a Dt) = E]DhﬂAr(CT? Cl) E [Q(Bﬂ,)] =

1 E {_10g|Bn|} .
r—1 T
Here B is a Brownian motion started uniformly on Cj, 73 is the first time that it
leaves D; and ¢(z) denotes the probability that a Brownian motion starting at z
hits C,. before Cy,
—log |2|
Z)= ——.
q(2) .

Therefore,

. 1 r
£(0) = e 9E[log | By, e, |] =0 -

where p; is the first time to leave D; and o, is the first time to hit C,.. We claim
that

(38) O E[log | By, no || li—o= —

1
0iEllog | By, |] [t=o0 -

To see this, we first note that the probability starting at Cy of hitting C,. before
Cyp is 1/r. Also, given p; < o,., the probability of hitting C, before Cy is O(d/r)
where d; = diam(y:) = o(1). Also, since we start with the uniform distribution on
C1, the distribution of o, given that o, < o is also uniform. Therefore,

1
Ellog|By,|; or < pe] = — Ellog|B,, [ [1 + O(dy)].

and hence 1
OEllog |By,| 5 0r < pi]li=0 = " o Ellog | B, []|t=o-

from which (38) follows. Note that the right-hand side of (38) is the same if we
start the Brownian motion at the origin.

By comparison with (37), we see that 7(0) is independent of r(0), and we can
compute 7(0) by letting r | 0. In this case, we get the comparison of the chordal
Loewner equation to the radial Loewner equation. [
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We define
os = inf{t : r(t) = s}.
Let v* be v with the “annulus parametrization”
Y (s)=7(0s), 0<s<m,
and let
U; =Urs), h;=ho,.

The direction of “time” is reversed so one must be careful with minus signs.

&ln the annulus parametrization, the radius takes the place of time. However, the direction
of “time” is reversed, so one must take some care with minus signs.

We will just state the annulus Loewner equation (see, e.g., [1, 12]). It can also
be described in terms of excursion reflection Brownian motion (this helps motivate
the formulas), see [5, 16]. We review the facts here. Let Hg (z,2) = Hs, (2 — x)
denote the complexification of the Poisson kernel in S, which recall by (4) is given
by

i Tz
Hs, (z) = ~5 coth (;) ,
and satisfies

Hs, () = +0(e), =0,
and if x € R,
ReHtgs, (x) = 7217" coth (g) ., ReHg, (r+ir) = 7217” tanh (g) .
There exists a unique holomorphic function with period 27
H,: S, — H,,
such that

1
He(2) =——+40(1), z—0,

z

and such that the induced map
H, () = H,(2)

is a conformal transformation of A, onto a domain of the form H \ L for some
horizontal line segment L. One can find this using excursion reflected Brownian
motion (ERBM) as we now sketch. The imaginary part H, = ImH, will be the

Poisson kernel for ERBM in the annulus. We can write

(39) H(2) = () +Ha, (e%,1) = ImE,Z) - % > Imcoth (g) ‘
keZ

2r 2

In this formula, the infinite sum represents the contribution to the ERBM Poisson
kernel by paths that do not hit the “hole” D\ A,. The first term gives the contri-
bution of paths that hit the hole first. The probability of hitting the hole before
hitting Cy is Im(z)/r. Given that it hits the hole, the distribution of the first visit
to Cp is uniform on the circle and hence the value of the kernel is 1/2 (recall that
in our normalization, Hp(0,1) = 1/2.)
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One can check that the sum in (39) absolutely convergent. However, the real
parts are not absolutely convergent so we must take a little care in the definition
of H,. We write

z ™ zZT

He(z) = 5 " o coth (5)

_% { <z+2rk7r) )+Coth((z—22rk7r)7r)]

PP
_ 2T Coth((zwkw)w)’
r—k 2r

where we write

Lemma 3.13. As z — 0,
1 1 1
(40) Hr(z):—z+z<—F(r)+ ) +0(]z*),

where T'(r) is as defined in (20).

Proof. We use the first expression for the definition of H,. Note that as z — 0,

1
cothz = 2 +i4 O(|z®),

3
and hence
= coth(zi) == [27“+”+0( 2| )} ! +ﬁ+0(|z|3)
2r 2r 2r |zm 6 1272

Also the derivative at z = 0 of

- i {Coth ((z +22Tk:7r)7r) © ot ((z —22Tkw>7r>}

k=1
is 15— d(r).
O
Note that
. + + 2k H, (r, :
My (z+ir) = z W——Z (Z Tﬂ) ):_ 1(27‘@_’_%7

where Hy is as defined in Section 3.2.
The chordal equation (16) can be written as

Org91(2) = —aHu(g:(2) — Uy).
The annulus Loewner equation is similar,
Othi(z) = 27(t) Hyry(he(2) — Un),
or equivalently,

(41) Orhy(2) = 2 My (hy(2) — UY).



SLE IN MULTIPLY CONNECTED DOMAINS 33

An important observation is that if #(0) = r, then for small ¢, the functions g, h,
and hy_ .. are very close near the origin. For future reference, we also note that
2

(42) s log(hl) (x +ir) |s=r=2H.(z +ir) = —H}(r,z).

&There may appear to be some arbitrariness in the choice of the real translation for the
complex kernel Hp(g:(z) — Ut). It turns out that this choice is not so important. We will write

dlhi(z) = US] = 2, (hi(2) = UF) — dUS.

If we had chosen a different real translation of H,, it would cancel here when we took the
difference.

&We have written the annulus equation in the covering space S,.. We would also consider
the function given by
fs(eiw) _ eihs(w)’ 0 <s<r
There is a curve i : (0,7) — A, with n(04+) = 1 such that f; is a conformal transformation of
A, \vs onto A,_s. Such a transformation is defined up to a rotation, but specifying continuity
and fs(n(r — s)) = U; determines the rotation.

We will need to compare the chordal and annulus equations at time ¢ = 0. Recall
that ¢, is defined by
hi(z) = du(g:(2)),
and that ¢:(Uy) = Ur = g(y(t)). Although g; is not smooth at ~(¢), it is not
difficult to show that ¢, is analytic in a neighborhood of U; and we can give the
derivatives. We summarize the facts we need in this lemma whose simple prove we
omit.

Lemma 3.14. Suppose K;(z),j =1,2,t € [0, €] are analytic functions in a punc-
tured neighborhood of the origin and are continuous int. Suppose U is a continuous
function with Uy = 0 and gy, hy satisfy

5tgt(2) = Klﬁt(gt(z) - Ut); 3tht(2) = KQ,t(ht(z) - Ut)7

with go(z) = ho(z). Suppose that for all t, K1 — Koy is analytic in the (unpunc-
tured) neighborhood. If ¢, is defined by hi(z) = ¢(g1(2)), then

(43) bo(2) = [Ka0 — K1,0(2),  4(2) = [K2,0 — K1,0] ().

We now return to the locally chordal SLFE, from 0 to zg = z + ir in S,.. Given
the path ~, the process is moving infinitesimally like SLE,, in S, from ~(t) to

zp. By conformal invariance we can also view it in g;(S,;) from Uy to g+(zo) or in
ht(g,.,t) = Sy from Uy to hi(z0). Using the last perspective and (31) and (32), we
see that

dU; = bL(r(t), Ry) dt — dWy,
where R; = Re[ht(20)] — Us and W; is a standard Brownian motion. We choose a
time parametrization so that the radius evolves linearly. If U = U, (4) as above,

AU} = be L(r — t, Rf) dt — /K dB.
Using (42), we see that if f; = h'_,,
Oi[Refi(z0)] = Hi(r — t, Ry),
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and hence
(44) dR; = [H;(r —t,R}) — bs L(r — t, R})] dt + V/k dB;.

We have written locally chordal SLE, in the annulus as a one-dimensional SDE
stopped at a finite time r. The next lemma shows that the process leaves S,. at zg.
The equivalent statement is the following.

Lemma 3.15. If X; satisfies
dXy = [Hi(r —t, X;) —baL(r —t, X3)] dt + VkdBy, 0<t<r,
then with probability one X,_ = 0.

& This lemma should not be surprising. If we considered chordal SLE, from 0 to = + ir
in S, we know that (for k < 4) the path leaves the domain at x + ir. This lemma stays that
the same thing for locally chordal SLE,. Since for r near zero, locally chordal and chordal
SLE, are almost the same, the lemma has to be true. One should expect k < 4 to come into
the proof, and this is the case.

Proof. We discuss the most delicate case, kK = 4 for which bk = 1; if kK < 4, then
bk > 1 and the argument is easier. Our equation is

dX; = [Hy(r—t,X;) — L(r —t,X)] dt + 2dBs.
IfY, = X,_.-s, then Y, satisfies
dY, = m(s,Ys)ds +2e~ /2 dW,,
where
m(s,y) =e* [Hr(e™*,y) — L(e™",y)],
and Wy is a standard Brownian motion. It suffices to show that for every ¢ > 0,

with probability one, |Y;| < e for all s sufficiently large. By symmetry it suffices to
show that that limsup Y, < 0. Let

Zs = / 2e "2 AW, ,
0

and note that with probability one Z,, exists and is finite.
Using Lemma 3.2, we can see that there exists s. such that m(s,y) < 0 for
$ > 8¢,y > €/2. Therefore, if Yy > € and s > s,

Y, <e+max|Z; — Zs_|.
t>se

Therefore, it suffices to show that with probability one liminfY,, < 0. In other
words, for every € > 0,s < oo,y > 0, the probability that the process reaches ¢
given Y, = y equals one.

Although the drift m(s,y) is negative, the absolute value is very small at y
slightly larger than an integer multiple of 2. However, we also know from Lemma
3.2 that for all y, m(s,y) < —ce*. Given this, we can see that if we start near 27k,
there is at least a positive probability that there will exist s with Yy < 27k —cye™".
Given this, there is a positive probability that the process will never return to
{y > 27k — (¢1/2) e~ *} and since the drift is negative, this will imply that it will
get near 27(k — 1). This happens with positive probability, but if it fails and we
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are near 2wk at a larger time s’ we can find s” > s’ for which Y,» < 27k — 1 e=s"

Eventually we will succeed and get to 2w(k — 1). We can iterate this argument.
O

4. DEFINITION OF pp(z,w)

4.1. Definition of boundary SLE, for x < 4. We fix x € (0,4]. In this sec-
tion, we will define boundary SLE, as proposed in [18]. It is a (positive) measure
wp(z,w) on simple curves 7 in a domain D connecting distinct dD-analytic bound-

ary points z and w. If D is simply connected, then the definition is the same as
that of chordal SLE,. We write

Up(z,w) = |[up(z,w)|

for the total mass of the measure. We conjecture that Wp(z,w) < oo for all D, z,w.
In the case of simply connected domains, we know this is true, and in this paper
we will show it for 1-connected domains for x < 4. From the construction it will
follow that ¥ p(z,w) < oo for all domains if Kk < 8/3 (c < 0).

Suppose Dy C D is a subdomain of D that agrees with D in neighborhoods of z
and w. We let up(z,w; D1) be up restricted to curves v C D;. Let

Vp(z,w; D1) = [ (2, w; Di)].

We will show that pup(z,w; D1) < oo for all such simply connected D; for k < 4.
The measure /ﬂg(z,w;Dl) is defined to be the probability measure obtained by
normalization

_ pp(z,w; Dy)

a \I/D(Z,U);Dl).

If Up(z,w) < oo, we write u# (z,w) for the probability measure.

1 (z,w; Dy)

&What we call boundary SLE should really be called boundary/boundary SLE, but
this terminology is a bit cumbersome. In later subsections, we also discuss boundary/bulk,
bulk/boundary, and bulk/bulk cases.

In this definition and later on we use the convention as described below equa-
tion (3) that if formulas are written with derivatives, then sufficient smoothness is
assumed.

Definition If k < 4 and b,c are as in (1), boundary SLE, is the unique family
of measures (modulo reparametrization) {up(z,w)}, where D C C and z,w are
distinct dD-analytic points, satisfying the following.
e For each D, z,w, up(z,w) is a positive measure on curves 7 : [0,t,] — D
with v(0) = z,7v(t,) = w,y C D. The total mass is denoted by

Up(z,w) = [[pp(z,w)|-

The normalization is chosen so that ¥g(0,1) = 1.
e Conformal covariance If f : D — f(D) is a conformal transformation,
then

(45) foup(z,w) = |f () |f' (w)I° p(py (2, w).
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e It follows from (45) that the probability measures are conformally invariant,

fouh(zw; D1) = i ) (f(2), f(w); f(D1)),

and if Up(z,w) < oo,
(46) foph(zw) = php) (2, 0).

In particular, u%(z,w;Dl) (resp., ,uﬁ(z,w)) can be defined for nonan-
alytic boundary points provided that there is a conformal transforma-
tion f : D — f(D) such that f(z), f(w) are 0f(D)-analytic (resp., with
W) ((2), F(w)) < o0).

e Domain Markov property. If ¥p(z,w) < oo, then for the probability
measure ug(z, w), the conditional probability measure of the remainder of
a curve 7y given an initial segment =y, is that of uﬁ\% (y(t),w). If Dy C Dis

simply connected, for the probability measure /ﬂg (z,w; Dy), the conditional
probability measure of the remainder of a curve « given an initial segment
Ve, is that of pf,  ((t),w; D1 \ 7).

e Boundary perturbation. Suppose D’ C D are domains that agree in
neighborhoods of dD’-analytic boundary points z,w. Then pup:(z,w) is
absolutely continuous with respect to pp(z,w) with Radon-Nikodym de-
rivative Y = Yp pr , . given by

_ dup(z,w)

(7) = 1{y € D'} exp {5 mp(7. D\ D)}

We will now construct the measure and in the process show uniqueness. For
simply connected domains, we set ¥p(z,w) = Hyp(z,w)? and ,uﬁ(z,w) to be the
conformal image of Wy (0,00) under a conformal transformation. The discussion
in Section 3.6 shows that this is the unique family of measures that satisfy the
conditions above for simply connected D.

Definition Suppose D is a domain and z,w are distinct dD-analytic boundary
points. Let D; be a simply connected subdomain of D that agrees with D in
neighborhoods of z,w. Then fip(z,w; Dy) is the measure absolutely continuous
with respect to up, (z, w) with Radon-Nikodym derivative

diip(z,w; Dy)

(48) dir (2, 0)

(7) = {y € D1} exp{~S mp(7. D\ D)}

&A minus sign appears on the right-hand side above. This is because we are writing the
derivative of the measure on the larger domain with respect to that on the smaller domain.

The next proposition establishes a necessary consistency condition for the mea-
sures fip(z, w; D;) in order to define pup(z, w).

Proposition 4.1. Suppose D is a domain and z,w are distinct 0D-analytic bound-
ary points. Let Dy, Do be simply connected subdomains of D that agree with D in
neighborhoods of z,w. For j = 1,2, let v; be ip(z,w;D;) restricted to curves -y
with v C Dy N Dy. Then vy = vs.
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Proof. Suppose v C Dy N Dy. Then there exists simply connected D c DyN Dy
that agrees locally with D near z,w such that v C D. Hence it suffices to show
that for every simply connected domain D, vy and vs, restricted to curves in D,
agree. Suppose v C D. Since D;, D are simply connected,

dup, (2,w) c :
7‘7 = - . D y D .
dﬂﬁ(z, w) (,Y) €xXp { 2 mDJ (77 7 \ )}
Combining this with (48), we get
diip(z,w; Dj) c

- _¢ D\ D } .
ey ) =exp{ =5 mp(. D\ D)
Here we use the fact that the loops in D that intersect v and D\D can be partitioned
into two sets: those that intersect D\ D; and those that are contained in D;. O

Given Proposition 4.1 we can make the following definition.

Definition Suppose D is a domain and z,w are distinct dD-analytic boundary
points. Then up(z,w) is the measure on simple paths (modulo parametrization)
such that for each simply connected Dy C D, pup(z,w) restricted to curves v C Dy
is ﬂD(Za wj Dl)

In other words, up(z,w; D1) = fip(z,w; D1) for simply connected D;. It follows
immediately from the definition that the family of measures {up(z,w)} satisfies
(47). Suppose D is a domain and z,w are distinct dD-analytic points and D
is a simply connected domain as above. Suppose f : D — f(D) is a conformal
transformation. Then f : Dy — f(D;) is also a conformal transformation, and
hence

foup,(z,0) = |f )" |f (w)I° wp(py) (f(2), f(w)).

Conformal invariance of the loop measure then implies that

foup(z,w; D) = [ ()" [/ (w)|" s 0y (2, w; f(Dr).
Since this is true for every simply connected D;, the family {up(z,w)} satisfies
(45).
In this paper, we will show the following. (While we prove it in this paper, we
could also derive this from [31].)

Proposition 4.2. If D is a conformal annulus, then ¥p(z,w) < oo and the family
{pp(z,w)} restricted to conformal annuli satisfies the domain Markov property.

When considering the measure pp(z,w) for multiply connected domains, there
are two cases.
e The chordal case: z,w in the same component of dD. Then there exists
simply connected D such that D c D.
e The crossing case: z,w in different components of 9D. Then there exists
1-connected D such that D C D.

Proposition 4.3.  Suppose D is a domain and z,w are distinct 0D-analytic
points.
o Ifr <8/3, then ¥p(z,w) < 0.
o If8/3 < k < 4, then for every simply connected Dy C D that agrees with
D near z,w, ¥p(z,w; D1) < 0o.
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Proof. If k < 8/3, we can consider D as a subdomain of a simply connected or 1-
connected domain D and since ¢ < 0, (47) implies that Vp(z,w) < ¥y (2, w) < .
If 8/3 < k < 4, then ¢ > 0, and (48) implies that ¥p(z,w; D) < ¥Up, (z,w) <
00. (]

Proposition 4.4. The family {up(z,w)} satisfies the domain Markov property.

Proof. Without loss of generality we may assume that D is a subdomain of H whose
boundary includes R and z = 0. Let D; be a simply connected domain as above
for which we know Wp(z,w; D1) < oo and let v be an initial segment. To be more
precise, let t be a finite stopping time for chordal SLE, in D;. Let F; be the
corresponding o-algebra generated by ;. For v C Dy, let

pot o) = e (St D\ D)}

1o
Y(y) = PR ERT
Let P, [E denote probability and expectation with respect to the probability measure
uﬁl (z,w). Then,

\IJD(Z7’IU; Dl) = \IJDI(Z,U)) E [Y] .
By the domain Markov property for SLFE, is simply connected domains,

E[Y | Fi) = exp {5 (v, D\ D1) } E{[Y),

where Ef denotes expectation with respect to uﬁl\% (v(t), w).

We will do the chordal case comparing to simple connected domains. The cross-
ing case is similar using conformal annuli. Suppose z, w are in the same component
of dD. Without loss of generality, we may assume that D is a subdomain of H and

z,w € R. We know that
dup(z,w), | c
mﬁ) =1{ye D} eXp{Q mH(%H\D)}~

Let P, E denote probabilities and expectations with respect to the measure ug (z,w).
Let

Y, = 1{y, C D} exp {g mH(%,H\D)} .Y =Y.
Suppose we are given an initial segment +; and let H; = H \ ;. Here ¢ can be
a stopping time and we assume that ¢ < T = inf{s > 0 : v(s) € R} = inf{s >
0 : v(s) = w}. (The equality is true with P probability one.) Let g, denote the
corresponding map and let F = F; denote the o-algebra generated by ¢. By the
domain Markov property of SLE, in simply connected domains,

E[Y | F) = YiBf [exp {Gme, (v, He\ D)}

where E} denotes expectations with respect to ,uﬁt (v(t), w). More generally if F is
an event depending on the path ~\ ¢,

E[Y 15 | F] = Y, E! [1,; exp{gmHt(%Ht\D)H ,

If ¥p(z,w) < oo, the proof for u%(zgw) is similar and we omit it.
(]

Proposition 4.5. If z,w are dD-analytic, then pup(w, z) is the same as the reversal
of up(z,w).
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Proof. In the case of simply connected domains, this was proved by Zhan [30].
Given this, the general case follows. ([

We end this section with a number of remarks.

e In our definition we have started with the parameter x and defined the
quantities b, ¢ in terms of k. We could have made b, c free parameters, but
then we would find out that there was only a one-dimensional family of
pairs (b, ¢) for which we could define such measures. To establish this fact,
we would use Schramm’s argument and x (as a function of b or ¢) would
be introduced.

e Implicit in the domain Markov property is the assumption that the the
initial segment may be chosen using a stopping time. This makes it a
condition on curves modulo reparametrization. Perhaps this should be
called the strong domain Markov property.

e It is also useful to have the measures pp(x,00) where D C H with H\ D
bounded and dist(z, H\ D) > 0. To get this we find a conformal transfor-
mation

f:D'—=D
with f(z) = 0, f(w) = oo and use the conventions about derivatives as in
Section 3.1. Under this convention, we see that Ug(0,00) = 1. If D C H
is simply connected with H \ D bounded and dist(0,H \ D) > 0, then
Up(0,00) = & (0)® where ®p : D — H is a conformal transformation
with @ p(00) = 00, P (c0) = 1.

4.2. Definition of boundary/bulk and bulk/bulk SLE, for x < 4. The
boundary SLFE, is a measure on curves connecting two boundary points in a do-
main D. We extend this definition to allow one boundary point and one interior
point (the radial or reverse radial case) or two interior points (the bulk case). In all
the cases we will write up(z,w) for the measure, ¥ p(z,w) for the total mass, and if
Up(z,w) < oo ,uﬁ(z, w) for the corresponding probability measure. The definition
will be the same as the first definition in Section 4.1 except that (45) is replaced
with the following more general formula. Note that this definition subsumes the
previous one.

e Conformal covariance If f : D — f(D) is a conformal transformation,
z,w are D-analytic, and f(z), f(w) are f(D)-analytic, then

(49) fonp(zw) =f(2)]" |f (w)

where bs = b if  is a boundary point and b¢ = b if ( is an interior point.

b oy (2, w),

&We are writing pup(z,w) for all the cases in order not to add more notation. It is
important to remember that the definitions of these measures are different (although related,
of course) depending on whether z,w are boundary or interior points.

If D is simply connected, z is dD-analytic and w € D, then we define pp(z, w)
by
pp(z,w) = Up(z,w) pfh(z,w),
where uﬁ(z, w) is radial SLE,; as in Section 3.3. The partition function ¥p(z,w)
is determined up to a multiplicative constant by the rule (49), and we choose



40 GREGORY F. LAWLER

the constant so that ¥p(1,0) = 1. Using the relationship in Section 3.8, one
can check that this satisfies the necessary conditions. In particular, the boundary
perturbation rule (47) holds for simply connected domains.

It was essentially shown in [31], and we will reprove it here, that radial SLE,; can
be given as a limit of boundadry/boundary SLE, in the annulus. The following
theorem makes a more precise estimate.

Theorem 4.6. There exists ¢ < 00,q > 0 such that the following holds. Let t > 0
and let ¢ denote an initial segment of a path in D starting at 1 such that if g :
D\ v — D is a conformal transformation with g(0) = 0,¢’(0) > 0, then ¢'(0) = €.
Suppose that r > t+2,0 < 6 < 2w, and let p; = up(1,0), u2 = ,uﬁT(l, e ") both
considered as probability measures on initial segments ;. Let Y = dus/dpq. Then

(50) Y () — 1] < celt=n,
Moreover, there exists co € (0,00) such that
(51) U(1,e ") = ¢ e(b=b)r pe/2 14+ O(e™ ).
We will write
pa, (1,e7") = ¢ e(b=b)r pe/2 pn(1,0) [14 O (e )],
as shorthand for (50) and (51).

&We can see the interior scaling exponent as coming from a computation from the annulus
partition function. Suppose D is a bounded domain, 0 € D and w € 9D is D-analytic.
Suppose that € is small and |z| = €. Let D. denote the conformal annulus obtained by
removing the closed disk of radius €. Then by analysis of the annulus partition function which
is a boundary/boundary quantity, we see as € — 0,

o, (1,2) ~ e’ [log(1/€)]*%,
and hence we can define ¥ p(1,0) (up to an arbitrary multiplicative constant) by
W (1,0) ~ " flog(1/)] "> p, (1, ¢),

If f: D — f(D) is a conformal transformation with f(0) = 0, then f(D.) is approximately
the disk of radius f'(0) ¢, and

Up.(Lz) ~ |f O EF ¥, (f(1), f(2))
~ I OP IO Us,, (FL), £(2)
Therefore, if u = |f'(0)

Up(1,0) ~ & Pllog(1/e) 2 Wp,(1,2)
~ P (u0)" " log(1/)] 2 Wy py... (F(1), f(u2))

Note that the logarithmic term which includes the central charge does not contribute to the
scaling exponent.

We now define boundary /bulk and bulk/boundary SLE. The consistency of this
definition follows from the fact that (47) holds for simply connected domains.

Definition If z € D and w is a dD-analytic boundary point, then up(w,z) and
up(z,w) are defined as follows.
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e If D is simply connected,

pp(w,z) = |f' (W)™ [f'(2)| 7" f o un(1,0),
where f : D — D is the conformal transformation with f(1) = w, f(0) = z.

o If D C Dy where D, is simply connected and agrees with D near z and w,
then
ol02) () 145 € DY exp { Smp (3. D1\ D))
= X — .
d//LDl (w, Z) Y 0 p 9 D7, Y1

e up(z,w) is defined to be the measure obtained from up(w, z) by reversing
the paths.

We can define bulk/bulk SLE, similarly. There is technical issue if D is all of
C. Let us define D to be regular if with probability one a Brownian motion exits
the domain D.

Definition If z,w are distinct points of a regular domain D, then up(z,w) is
defined by

pp(z,w) =cy* lim 2(0=b)r /2 up.(z+e Tw+e "),
T—00

where
D.={CeD:|(—z>e ", |C—w|>e"}.
We could also have defined
up(z,w) = 061 lim e2(0=0)7 pe/2 up, (z+ e w4 e*rﬂlel),
r—00
for any 6,6’. Alternatively, we could define
up(z,w) = ¢ lim e(b=b)r ip. (2 + e 0 4y 4 e—r+i9/)’
7—00 ’
where
D,,={(eD:|(—z>e "}
Our choice of definition has the advantage that it follows immediately that pp(w, z)
is the reversal of up(z,w). If we want to let D = C, we have to renormalize.
Proposition 4.7. If z,w € D, then There exists ¥(z,w) € (0,00) such that
Up_ (z,w) = U(z,w)r 2 [1+ 0@ Y)].
Proof. This essentially follows from Proposition 3.11. O
Using this as a guide, we define
pw(z,w) = ¢ lim /2 py (z,w).
T—00

This satisfies the conformal covariance rule

fou(zw)=1f )" (w)]* u(f(w), f(w)),

where f is a linear fractional transformation (conformal transformation of the Rie-
mann sphere). Conformal covariance implies that there exists ¢’/ € (0, 00) such that
for all z,w, i

U(z,w) =" |z —w|~2.
The probability measure u# (z,w), which is invariant under linear fractional trans-
formations, is called whole plane SLE,. While we have defined p(z,w) as a limit,
we could also imagine being able to define it directly. In this case, we get up(z, w)
by a (normalized) boundary perturbation rule.
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Proposition 4.8. If D is a domain and z,w € D are distinct, then
dup(z,w) c
o) ) by ey { a0}
FERT) (7v) = 1{y € D} exp | —5 A(,9D)
where A(v,0D) is as defined in Proposition 3.11.

Proof. For r sufficiently large so that v C D_,.,

dup(z,w) c
m('y) = Xp {5 ma_, (v, Aop \ D)} .

Proposition 3.11 implies that as r — oo,
ma_, (v, A—r \ D) =logr — A(v,0D) + o(1).

Therefore,

duip (2, w) c
~ —=A D .
rc/2 d/J/A,T.(Z,w) (’Y) eXp{ ) (’Y:a )}7 rT— 00

O

&While it might seem natural to define u(z,w) using whole plane SLE and then the
proposition to define up(z,w), there is a disadvantage in this approach. The reason is that
it is not so easy to prove that up(z,w) satisfies the conformal covariance relation for con-
formal transformations of D since the quantity A(~,dD) is not conformally invariant under
transformations of D.

Example If k = 2, then Up(z,w) is proportional to the usual Green’s function
for Brownian motion with Dirichlet boundary conditions. For this, it is well known
that

\IJA,,,.(O7 1) ~T,

which agrees with the formula since ¢ = —2. Also, b = 0 which implies that
Up(z,w) is a conformal invariant. This is well known for the Green’s function.

4.3. Multiple paths. Extending the definition of SLE, to multiple is straightfor-
ward as in [13]. Suppose z = (2!,...,2%),w = (w!,...,w¥) are distinct analytic
points in a domain D. The points can be bulk or boundary points. The measure
up(z,w) is defined by giving its Radon-Nikodym derivative Y with respect to the
product measure
pp (zh,wh) x - x pup (2, wh).

Let ¥ = (v',...,~%) be a k-tuple of paths (modulo reparametrization) in D where
+7 goes from 27 to w’. Then

k

> mp(y At U Uy
=2

(52) Y =1{y' Ny =0,j#1} exp

&One can consider the measure on multiple paths in the context of the A-SAW. On the

discrete level, the measure on a k-tuple of paths @ = (wl, . ,wk) is

exp{—ﬁ(|wl| +oF WAV W U ka,D,n)}.

The exponential factor on the right hand side of (52) compensates for overcounting of loops
that intersect #.



SLE IN MULTIPLY CONNECTED DOMAINS 43

5. CROSSING SLE, IN AN ANNULUS

In this section we study the measure (1, e~ "7%) which is a measure on simple
paths (modulo reparametrization) 7 from 1 to e "% in A,. Let us recall the
definition. Suppose D’ is a simply connected subdomain of A, that agrees with A,
in neighborhoods of 1 and w = e~ "% Then if 1 is a curve in D’ connecting 1 and
w,

dpa, (1, w) { c
st St = _= A\ D }
d/JJD’(]-, w) (77) exp 2 mAr (777 T \ )
We can write
(53) ma, (0, Ay \ D) = 1, (n, Ar \ D) + m" (),

where m*(r) denotes the measure of the set of loops in A, of nonzero winding
number and 7y, (0, A, \ D) is the measure of the set of loops of zero winding
number that intersect both n and A, \ D’. Here we use the fact that every loop of
nonzero winding number intersects both 7 and A,.\ D’. (This construction assumes
that there is a unique point on the Brownian loop that goes through the point 7(¢).
For each curve 7 this is true up to a set of loops of measure zero. See the discussion
after Theorem 12 in [24].)

Let v be the continuous preimage under ¥ of n with v(0) = 0, and let D be the
simply connected domain containing ~ such that (D) = D’. Each loop ¢ in A,
has an infinite number of preimages under 1. For each loop ¢ in A, that intersects
7, we choose a unique such preimage as follows. Consider the first time ¢ such that
n(t) € ¢’. We make ¢ a rooted loop by choosing the root to be 7(t). Then we
choose ¢ to be the (rooted) preimage of ¢’ that is rooted at -y(¢). The definition of
¢ implies that if it is rooted at ~(t), then

where, as before,
o= J (u+2rh)
keZ\{0}
We will call a loop £ y-good if it intersects v and satisfies (54). Then £ <> ¢’ gives a
bijection between ~-good loops in S, and loops in A, of zero winding number that

intersect 7).
If r > 0, x € R, we define the measure vg, (0,2 + ir) by the relation

dvg, (0, + ir)

(¢
= — W\ D) b D
Do = g me (8D}, C

where mg, (7, S \ D;*) denotes the Brownian loop measure of «-good loops in S,
that intersect both v and S, \ D. Recall that

dps, (0, +ir)

dpp (0, z + ir) (7) = exp {77 ms, (7, 5\ D)} )

2

This leads to an alternative, equivalent definition of vg, (0, + ir). Note that ¢ o~y
is a simple curve if and only if vy N5 = (.
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Definition The measure vg, (0, + ir) is the measure absolutely continuous with
respect to pg, (0,2 + ir) with Radon-Nikodym derivative

ww) =1{yn4 =0} exp{gmsr(w}a

dps, (07 x+ i’l‘)
where mg, () is the measure of loops in S, that intersect v but are not y-good.
We call this annulus SLE, in S, from 0 to x + ir.

We can relate annulus SLFE, in S, to SLE, in A, by conformal covariance. We
define vy (1,z) by

(55)

va, (L) = W) (@+ir) e ™ O yovs (0,2 +ir)
(56) = e ™ M2y 0pg (0,2 +ir),
We think of this as annulus SLE, from 1 to e "1 restricted to curves of a partic-

ular winding number. The term e~°™ (")/2 is discussed in Proposition 3.9. Annulus
SLE, is obtained by summing over all winding numbers

(57) pa, (1,e™ ) =3 "vy (1,0 + 2rk).
keZ

5.1. Main result. We will show that the partition function for annulus SLE on S,
can be given in terms of a functional of locally chordal SLE,,. Recall the functions
H; from Section 3.2, A from (14), and L from (32).

Theorem 5.1. If U(r,z) = ||vs, (0,2 +7i)||, then

U(r,x) =V(r,z) Vg, (0,2 + 7).
Here
(58) V(r,z) =E" [exp {—2b/ A(r—s,Xs) dsH ,
0
where X;,0 <t < r satisifes
(59) dXt = [H[(T — t,Xt) — bk L(’I“ — t,Xt)] dt + \/EdBt,

and By is a standard Brownian motion. In particular, \I~l(r, x) is Cl inr, C% in x
and ¥(r,x) < Vg (0,2 + ri).

We used the functional in (58) as our definition, but as we show now, it is the
solution of a PDE. Let us define V(0,z) = 1.

Proposition 5.2. The function V (r,z) satisifes 0 < V(r,z) <1, is conlinuous on
[0,00) X (=m,m) and for r > 0 satisfies the equation

(60) V=—20AV +[H; — bx L] V’+gv“,

where dot refers to r-derivatives and primes refer to x-derivatives.
Moreover, for fized r, x — V(r,x) is an odd function that is decreasing in |z|.

Proof. For r > 0, the function H;, L are smooth and A > 0. Hence (60) follows
from the Feynman-Kac formula, see, e.g, [7, Section 6.5] or [10, Section 5.7.b].
Combining (15) with Lemma 3.15, we see that V(0+,z) = 1 for |z| < 27. For
the last assertion, we use Proposition 3.4 which states that A(r,z) is an increasing
function of |z|. It is not difficult to see that if 0 < 1 < x93 < 00, then we can couple
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process X}, X? on the same probability space, each satisfying (74) with X} = z;
and such that | X}| < |X?| for all t. In this coupling, we have

/A(rfs,XSl)dsg/ A(r —s,X2?)ds.
0 0

O

5.2. Radon-Nikodym derivative. Similarly to the approach for simply con-
nected domains as in Section 3.6, we will find an appropriate nonnegative local
martingale and use the Girsanov theorem to analyze the process weighted by the
local martingale. Suppose (2, F, I@’) is a probability space under which U; = —By is
a standard Brownian motion. Let g; be the solution to the Loewner equation (16)
producing the random curve . Let v, 3¢, 4 be as above and fix r, zg = x +ir. The
following proposition is the particular case of Section 3.6 for D = D,.,w = = + ir..

Proposition 5.3. If

(¢
Je = 191 (20) " Hog, (5,70 (Uss 90(20))" exp { S ma(ye, H\ ) }

then J; is a local martingale for t < 7.. Moreover, if one uses Girsanov, then under
the weighted measure v has the distribution of SLE, from 0 to x + ir.

Let P,[E denote expectations in the weighted measure under which ~ has the
distribution of uﬁr 0,z + ir).
If ¢ is an (unrooted) loop in S, let
5(0) = min{t : £ N7 # 0},
s(0) = min{t : LN~y # 0}
It is not hard to show, using the fact that two-dimensional Brownian motion does
not hit points, that the loop measure of the set of loops with s(¢) = §(¢) < oo is
zero. Let
Ay = Ae(ye,r) = {T > t} exp{m:},
where m; = my () denotes the measure of the set of loops in S, that satisfy
5(0) < s(e) < t.

Theorem 5.1 can be rephrased as follows.

Theorem 5.4. If v has distribution u?r (0, +ir), then
(61) E[A%2] = V(r,2)

We will prove (61) in a series of propositions. Recall the definition of A from
(14). Let
Ry = Relhi(20)] = U, Vi =V(r(t),Re),

Qi = QST\% (V(t)a 20; S \ ’A)’t)v Ky =exp {2/0 T(S) A(T(S)v RS) ds} .

(62) N, = AQVK™, 0, =K, "V,
M, = N, 0, = A2 Qb V.

By conformal invariance,

Hag, (s,\4) (Ut 9¢(20)) = Qv Hog, (5,\~,) (Ut 9¢(20)).-



46 GREGORY F. LAWLER

Therefore,
¢t (Ur) 164 (9¢(20))| Hon, (s,0\50) (U5 he(20)) = Q¢ Hag, (5,\+) (Ut g¢(20)),
and hence
¢4 (Ut) |hi(20)| Hon, (s,\3.) (U7 he(20)) = |g1(20)| Q¢ Hag, (5,\,) (Ut: 9¢(20))-
Therefore, we can write
Ji Nt = Ci(20) Hon,(s,\50) (Us' b (20))",

where
— Cc a
Cu(z0) = 64(U) ™" 11 (z0) " exp {5 mua(y, H\ S,) } A7 K7,
Important observations are that Cy(z0) is C! in t and Cy(29) = Cy(20 + 27).

Lemma 5.5. Suppose 7 is a parametrized with hecap[y(0,t]] = at. Let A be as
above and Q = Qg,\~, (V(t),x +1r; S, \ 4t). Then

0 Q1 |t:0: —aA(r,x).
Proof. See (13). O

Proposition 5.6.

o N, is a local martingale with respect to P for t < T A 7.. In particular,
Jiy Ny is a P-local martingale.

o With respect to P*, the curve v at time t grows like SLE, from ~(t) to zo
m Stﬂﬂ.

Proof. This is a particular case of Section 3.7. O

Let P*,E* denote the probabilities and expectations obtained from P by weight-
ing by the local martingale N;. This is the same as the measure obtained from P
by weighting by J; N;. We have seen that this is locally chordal SLE,, and we can
consider the path in the annulus parametrization.

Proposition 5.7. Suppose V is as defined in (58). Then

t
M = exp {—2b/ A(r—s,RY) ds} V(r—t,Ry),
0
1s a local martingale satisfying
V'(r—t,Ry)
63 dM} = — -t
) CEVR VLR
Moreover, if we weight by the local martingale using Girsanov theorem then with
probability one in the weighted measure, R:_ = 0.

M; dB,.

Proof. The relation (63) follows immediately from It6’s formula. For the second

claim, we note that in the unweighted measure we have R}_ = 0. Since V is
decreasing in |z|, the additional drift given by the weighting points toward the
origin. ([l

Proposition 5.8. Suppose v is a simple curve in S, from 0 to zo with T > T,.
Then,

M._ = A:/_2 € (0, 00).
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Proof. Easy estimates show that under the assumptions, @Q,_ = 1, r(7—) = 0,
R,_ = 0. Proposition 5.2, then gives V,_ = 1. The assumptions also imply that
dist(yr,9-) > 0, which implies 0 < A,_ < oc. O

Proposition 5.9. Ot < 7. AT s a local martingale with respect to P*. In
particular, My = Ny Oy, t < 7. AT is a local martingale with respect to P, and J; M,
is a local martingale with respect to P.

Proof. This is a restatement of the previous proposition in terms of the original
parametrization. ([l

Let P’ denote the probability measure obtained from weighting by the local
martingale M;.

Proposition 5.10. With P’ probability one, 7. < T and
(64) My=V(rz), M, =AY
In particular,

Vir,z)=My=E[M,]=E [Aﬁrp} .

Proof. The drift given by weighting by this martingale has a stronger drift to the
origin than for locally chordal SLE, and we know that that the latter one is good.
O

& There is a general principle that is being used here that is worth stressing. Suppose
M; is a positive local martingale for ¢ < 7. The martingale convergence theorem implies
that with probability one the limit M, = lim¢—,,— M; exists. However, one cannot conclude
E[My] = E[M] without more assumptions. One way to establish this equality is to consider
the paths weighted by the local martingale. If M, exists and is finite with probability one in
the new measure, then we have uniform integrability and E[My] = E[M,]. In our case we
establish that in the new measure we have R;_ = 0. If the latter fact holds, then we use an
easy deterministic estimate about curves to see that M, < oco.

SALt this point of the paper, the argument went very quickly, so it is a good idea to explain
what has happened. The goal was to estimate the expectation (with respect to chordal SLE,
in S, from 0 to zo) of a random variable which is the exponential of the measure of a certain
set of bad loops. For a curve « and a loop I, we say that [ is bad if [ intersects ~, say at
first time s, but also intersects 7 at first time s < s’. Suppose we have seen ;. Then we
can split the bad loops into three sets: those with s < s’ < t; those with s < t < s’; and
those with t < s < s’. When we weight only by the first two sets of loops, we get the local
martingale N, and the probability measure is locally chordal SLE,. Lemma 3.15 shows that
this is supported simple curves with vy N4 = (). We then weight again to include the third set
of loops and this leads to the function V. Since we can show directly that V is decreasing
in |z| (and here we were lucky with the monotonicity proved in Proposition 3.4), we can see
that the extra drift given by weighting by these loops points towards the origin and hence this
measure is also supported simple curves with yN4 = (). This allows us to justify the equation
E[Mo] = E[M,].
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6. ANNULUS SLE, FROM 0 TO z IN S,

The same ideas can be used to analyze vg (0, z) where 0 < |z| < 27. For ease,
we will assume x > 0, but the z < 0 case is done the same way. We will only sketch
the ideas, since this case is also considered in [31]. Topological constraints restrict
the values of x; if |x| > 27 and v connects 0 and x, then 7 = 1) o is not simple. As
before, we define the measure by giving the Radon-Nikodym derivative as in (55)

dvg, (0,x)
m(v)—if 7)=Hyny= ®}exp{2 (7)}-

The relevant functions are the following.

) 2 sinh? (7 /2r)
65 A(r,e) = 2 inh? ’
( ) ( ) 2 kezz\{o} sinh (7r2k/7') sinh (7T($ — 27Tk)/27“)

(66)

H;(r,z) = o coth( ) % i [coth <xt2)) + coth (W)] .

k=1
(67) L(r,z) = ié{éo)) = ; coth (g) .
Lemma 6.1. If y € R and
sinh? sinh?
sinh?(z — y) * sinh?(z 4 y)’
then f is increasing for 0 < x < y.

fz) =

Proof. Since
f(x) cosh(2z) — 1 cosh(2z) — 1
xTr) =
cosh(2z —2y) —1 = cosh(2z +2y) — 1’
it suffices to show for every y € R, that

Flz) = coshz — 1 n coshx — 1
~ cosh(z —y)—1  cosh(z +y)—1’

is increasing for 0 < x < y. Using the sum rule, we get

cosh(z —y) — 14 cosh(z +y) — 1 = 2coshz coshy — 2,
Letting » = coshy > 1, we get
[cosh(z — y) — 1] [cosh(z +y) —1] = (coshzcoshy — 1) —sinh? zsinh?y
= (rcoshz —1)2 — (r2 = 1)(cosh? z — 1)

= cosh?z — 2rcoshz + 12

= (coshzx — )%
Therefore,
2r (coshz — r~1) (coshz — 1) G(coshz
F(z) = (coshz —r)? =2r ¢t ),
where

G(t) =log(t — %) +log(t+1) — 2log (t — 7).
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Since r > 1, G'(t) > 0 for 0 < t < r and hence G and F are increasing.

Definition The function V(r,z),0 < r < 00,0 < z < 27 is defined by

(68) V(r,z) =E® [exp {Qb/oa A(r— s, X,) ds}] ,
where X;,0 <t < o satisifes
(69) dX, = [2ﬂ,(r X)) — beL(r —t, Xt)] dt +/r dB,,
with By is a standard Brownian motion and
o =inf{t: X; = 0}.
We define V(r,0) = 1.
An important observation is that if X; satisfies (69) with Xy € [0, 27), then with

probability one o < r and X; € [0,27) for 0 < t < 0. Hence this is well defined.
The function V,0 < r < 00,0 < z < 27

(70) ‘L/(r, x) = =20 A(r,z) V(r,z)+ |2H (r,2) — be L(r,z)| V'(r, x)—|—g V" (r, z),

where dot refers to r-derivatives and primes refer to x-derivatives.
The definition of p4, (1,e) for 0 < 6 < 27 takes a little more thought. We

write

pa,(1,e%) = pa, (1,e; R) + pa, (1,¢; L)
where 14, (1,e%; R) denotes pa, (1,e) restricted to curves n such that the origin
lies in the component of I \ 7 whose boundary includes (¢?,1). Then similarly to
(56) we write

d:uAT(l’eim) br { C 4 }
d[’(/) o VST (0’ IE)] (77) =e €xXp 2m (Tv 77) ’

where m*(r,n) denotes the measure of the set of loops in A, of nonzero winding
number that intersect 7. Unlike the crossing case, the quantity on the right hand
side depends on 7. It is not hard to give an expression for this. Let A denote the
component of A, \ n that contains C, on its boundary. let 7, = 7., be such that
A is conformally equivalent to A, . Then m*(r,) denotes the measure of loops of

nonzero winding number in A and hence
m*(r,n) = m*(r) —m*(ry).
We could have also defined pa, (1,e) by
d:U'AT (1v ei@)
dup(1, )

Since these both satisfy (48), they must give the same measure.

There is a subtlety that is worth mentioning. Let J denotes the closed disk
about 0 of radius e™" so that A, = D\ J and f : A, — D C D is a conformal
transformation that sends 0D to dD. Informally we can write f(J) = K where
D =D\ K, but the conformal map f is not defined on J. If z,w € 9D, then

fopa,(z,0) =11 () |f' ()" up(f(2), f(w)).

(1) = 1{y € A} exp {S mo(v. D\ 4,) .
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This gives one way to construct pp(f(2), f(w)). But we also define it by the
Radon-Nikodym derivative. Suppose v C A, then f o~y C D and

dpa, (2, w) c
du;(Z’ ) (7) = exp {7@(% J)} ;

dup(f(2).f(w) oo ge
() Ty U oV e {Gma(fon )

However, since f is not a conformal transformation of the disk, we have no reason
to believe that mp(y, JJ) = mp(f o, K).

7. ANNULUS SLE, IN A,

In the last section we considered the measure vg (0,2 + i¢r) which we called
annulus SLFE, in the strip S,. This was analyzed by comparing the measure to
chordal SLE,; in S,. Recall from (56) that the measure on paths given by annulus
SLE, restricted to a particular winding number is

VAT(L'T) _ ebr e—cm*(r)/2 w ovg, (O,x + ir).

The term e’ = [¢)'(x + ir)|” comes from conformal covariance and m*(r) is the

Brownian loop measure of loops in A, of nonzero winding number. Annulus SLF,
in A, from 1 to e~"t% is obtained from summing over all winding numbers

:uAr(l’ 67T+i0) = Z va, (17 0+ 27Tk)
keZ

In this section we will compare v4, (1,2) and ua, (1,e7"+?) to to radial SLE,
in order to derive PDEs for the annulus partition functions. We will rederive an
equation from [31].

7.1. The differential equation. Let ¥(r,z) = |vg, (0,2 + ir)| be as in the pre-
vious section, and let F'(r, ) and F(r, z) denote the partition functions associated
to annulus SLFE, and annulus SLE, restricted to a particular winding number,
respectively. In other words,

F(r,z) = |va, (0,2)] = B(r) ¥(r,),

where
ﬂ(?‘) — exp {b’l“ _ cm;(T)} _ ebr e—CT/12 exp {C/Or 5(8) ds} s
and
F(ra)=Wa (1,e" ™) = Y F(r,z+2rk).
k=—oc0
Since
(71)  F(r,z) = B(r) U(r,z) < B(r) s, (0,e"T7) < B(r)r=2 [cosh (%)} — ,

we see that F(r,z) < co. Recall the functions J and H; from Section 3.2. As
before, we will use dot for r-derivatives and primes for x-derivatives.
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Proposition 7.1. F satisfies the differential equation
b

(72) F:%F”+H1F’+ bH’I+b+5(6F(7«)_1)_; F

Moreover, F satisfies the same equation.

&As in [31], we check that this is consistent with what we know about x = 2 for which
b= 1,l~> = 0. For k = 2, from arguments based on the loop-erased walk we know that the
SLE, partition function for any domain D should be given by a multiple of the excursion
Poisson kernel, Hop(z, w). Hence a solution to (72) should be

F(rz) = Hoa,(1,e”""")
= erZHasr(OJ—&—?wk—i—i)

keZ

= %eTJ(r, z).
If this is so, then Proposition 7.1 implies that if ®(r,z) = 2re "F(r,z) = rJ(r,z), then

& =" + H; ' + H} . But we noted this relation in (11).

We set ) .
alr)=b+b[60(r)—1]=b—>b+ (2b+¢) I'(r),
O(r,z) = Ox(r,z) = H(r,z) + @ — 1,
which allows us to write (72) as '
(73) F=CpF" i H,F 1bOF

2
We will establish (73) for F. We note that F(r,z) is C! in r and C? in x. Indeed,
in the previous section we showed the same for U(r, ), and it is easy to show that
m*(r) is continuous in r and hence S(r) is differentiable. Hene we can use Itd’s
formula freely. Before proceeding, let us show that this will also imply the result
for F. Let Xt(T), 0 <t < r, denote a solution to the SDE

(74) dX" =H;(r —t, X")dt + /r dB,.
Then (73) and the Feynman-Kac formula implies that for r >t > 0,

¢
F(r,z) =E" |:F(T —t,Xt(T)) exp {b/ @(T—S,Xgr))ds}:| ,
0

where E* denotes expectations assuming X(gr) = z. (We do not need to consider
the delicate case t = r so the conditions for the Feynman-Kac formula are easily
verified.) Using this and (71), we can see that

t
F(r,z) =E® {F(r - t,Xt(r)) exp {b/ O(r — s, X[M) dsH ,
0

and by invoking the Feynman-Kac theorem again, we see that F also satisfies (73).

To prove the proposition for F' we compare radial SLE, (from 1 to 0 in D)

and annulus SLE, (from 1 to e+ in A,) for k = 2/a < 4. These measures,

restricted to an initial segment of the path which has not reached C)., are absolutely
continuous.
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It is useful to view radial SLE,; raised onto the covering space H as we now
describe. We describe radial SLFE, as a periodic function on H. We return to the
radial Loewner equation (17) which we write as

(75) 9G4 (2) = gcotQ(Gt(z) —U), Golz) = 2,

and view as an equation on H. Here Uy is a standard Brownian motion with Uy = 0
and cotg(z) = cot(z/2). There is a corresponding curve « in H such that with
probability one, for all ¢, v, N4, = (). Let n; = 1) o v, and define g; by

gt<eiz) — eiGt(z).

Then §; is the unique conformal transformation of D \ n; onto D with §(0) =
0,3.(0) > 0. In fact, §,(0) = e*/2. Radial SLF is usually described in terms of the
differential equation for g;.

We now relate the equation (75) to the annulus Loewner equation described in
Section 3.9. We fix an “initial radius” r. As in that section, we define r(t) and h;
by saying that

ht : Sr \’S/t — Sr(t)

is a conformal transformation satisfying h¢(z+2m) = hy(2)+27 with hy(£o0) = £oo
and h¢(v(t)) = U;. Recall that

8tht(2’) = 27’(t) Hr(t) (ht(Z) - Ut)
We define ®; by
hy = ®; 0 Gy,
and define ﬁt, P, by
Et(eiZ) — eiht(z)7 ggt(eiz) — 6i<I>t(z)’
so that iLt = qNSt o~§t. Note that iLt is the unique conformal transformation of A, \ 7
onto A,y with hy(n(t)) = e'Vt. Also, for real z,

[94(e)] = P} (x).
We note that (12) implies that for 7(¢) > 2 and = € R,
[@4(2)] = 1+0(e™Y), |&](x)| = O(e™" ™).
As in that section, we let

os =inf{t:r(t) =s}, h}

S

= hO‘sv

and we set
hy=ho,, &5=00s = Jo.-

Lemma 7.2. Under the assumptions above,

U o= D:2(0) o= [P(r) - ]

1
0s|(¢7—s) (D] fs=0=21'(r) = —.
Here T'(r) is as defined in (20).
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Proof. Note that

a 1z 3
3 cota(z) =a [z — 12] + O(|z]°).
Recall that 7(0) = —a/2 and from (40) we have

~ato) =a |t s (100 - - )| 00

Therefore, the first result follows from (43) and the second from by = é:( O

t)"

Let p1, pt2, 3 denote pup(1, —1), up(1,0), and v4, (1, z), respectively, and let w =
e " He Tet zp = eVt = §(n(), ¢ = Gi(—=1),wy = Gi(w),xy = argw,, where
x; is chosen to be continuous in ¢t with xg = x. If ¢ < 7., these three measures
are absolutely continuous with respect to each other and we can write down the
Radon-Nikodym derivatives. Recall from Section 3.8 that

dpa 3O (a0, 0) g1(0)°
dpy ‘

g DP (e G) gD Tz, G)
Using similar reasoning for annulus SLE with respect to chordal SLE, we get

%( - 194 (w)[" [vg,(a,) (26, 70| exp {§ mp(Dr,ne) }

dpiy 194 (—=1)[° ¥p (21, G) '
We have not actually defined the measure v, (4,)(2¢, 2¢), so let us describe it now.
Since §:(A:) is a conformal annulus whose outer boundary is the unit circle, we can
define vg,(a,)(2t,7¢) in the same way that v4, (1,2) was defined. In other words,
it is annulus SLE between z; and w; in the conformal annulus §;(A,) restricted to
curves of a particular winding number. The choice of winding number is determined
by continuity in t.

Let

i

M, =
' dpia

~/ b~ C
(1) = G4(0) " ()" .4, (1,20)| exp {§ mo(Drm)

We see that M; is a local martingale for radial SLE,. Let hy = ta o g;. Conformal
covariance implies that

V3.0 G 20| = 917 61 (Ge(w) P Wt (€7, B1(G1 ().
Therefore,
My = G1(0) 7 61V exp {5 mo(Dyme) b IRy () F(r(t), R,

where
Rt = Re[ht(Z) — Ut]

We have shown the following.
Proposition 7.3. If U; is a standard Brownian motion, then
My = J(t) F(r(t), Ry),
s a local martingale where
J(t) = G0 164" exp {5 mp(@r,mo) | 1hi(w)]",
and Ry = Re[hy(z +ir) — Uy].
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Using this proposition, we can write down a differential equation for F(s,x).
It is convenient to write the local martingale in the annulus parametrization. Let
U; = U,,_,. Then U} is a martingale with quadratic variation o,_,. Let R} =
hl_.(z) = UZ. Then
dR; = Oshy_ (z)dt +dU}
Note that
Oshry_(2) =Hi(r,z), 0s0r—s |s=r=2/a = k.

The last proposition becomes the following.

Proposition 7.4. For fizedr >0, if R = h’_.(z) — UF and
M =J"(r—s)F(r—s,R.),

where

* ~ % —b 7 % i Cc T x
T (s) = (@) (0) 7 161) (V)| exp {5 mo(y,m0,) } 1052 (),
then MY is a martingale.

If we write dots for r-derivatives, then by considering the martingale at time
s = 0 and using It6’s formula, we get the equation

P = gF”+HIF’—jF,
where
—J(r)=0sJ(r —s) |s=o -
All the remains for proving Proposition 7.1 is to calculate —J (r).
Lemma 7.5. )
—J(r) = a(r) + bH) (r,2) — =.
r
Proof. We have parametrized radial SLE, such that
9:3:(0) = (a/2) g;(0),

and hence _
i —b _ ab_b(l-—a)
9 log [gt(O) }It:o— 5 =1
dslog |(G;_,)(0)*]  =—b.
og (307"

The relationship between the Brownian loop measure and the bubble measure im-
plies

0,5 mo(Dy, i) lomo= 20,5 mu(Dr w0 = eTo(1, 4,) = eT(r).
Lemma 7.2 shows that
0,108 (85—, (U |ozo= —© + 200().
Recall that if z = x + ir,w = ¢'* = "7 h*(w) = ¢:(*)  and hence
|(h7_y)' ()] = e" e ™ =GN |(nr_ ) (2)] = e*|(hi_,)' ().
Therefore, using (42), we have

0. log | (hy

r—S

) (w)[* [s=0= b+ bH} (r, 2).
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Adding all the terms, gives

b—b+ (c+2b) T(r) + bH (r, ) — b_ or) + bH, (r, ) — b
T T

O

7.2. Comparing annulus SLE with radial SLE large r. We now have an
essentially complete description of annulus SLE,. In our framework, this is a
measure ji4, (1,e” ") of total mass F'(r,z). In the next subsection, we will prove
the following.

Theorem 7.6. There exist c.,q € (0,00) such that uniformly in x,

E(r,x) = c,re/? e(b=br 1+0(e )], r—o0.

Let po = pp(1,0) as before and let puy = pa, (1,e7 ") with corresponding
probability measure pj . Suppose ¢ is sufficiently small so that a curve starting at
the unit disk cannot reach C,. by time ¢. Then, similarly to the previous section, if
w=e " and = §:(7y(t)), we can write

d ~/ b ~
d—z;l( i) = |£;2((1(1)]))Z! exp{ng(Dmnt)} g, \n) (Ges Ge ().

Proposition 7.7. There exists ¢ > 0 such that uniformly overt > 0, r > %“ + 2,
and all initial segments ¢,

d ~
Tt m) = v D 1214 O,

where u =1 — %“ In particular, there exists ¢ < co such that

—‘;(m) — 1| <ce

Proof. Let ¢y : gi(Ar \ nt) = As be a conformal transformation sending Cy to Cy
and let hy = ¢; o g¢. Using conformal covariance, we write

dua ) _ @) 6" re
1) = = exp {Gma (e i, (h(w), @)

Suppose t is given, r > %‘1 +2andlet u =r— %1 Recall that in our normalization
3,(0) = /2. Using the deterministic estimates from Lemma ??, we get

|y (w)|> = ™2 [1 4+ O(e™")],
64(C)° =1+ O0(e™),
exp { Smn(Dr,m) } = (r/u)*/2 1+ O],
s=u+0(e"),
la, (he(w), ¢¢(¢))] = cxu/ O=D [1 4 O(e™)].

Combining these estimates gives the first equality and since the dominant factor
does not depend on the initial segment, the second equality follows. (I
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7.3. Proof of Theorem 7.6. Let

s = e~ [ ats)as}.

Ki(r,x) = A(r) F(r,z),

K(r,x) = A1) Uy, (1,e77%) = \(r) F(r,z) = Z F(r,z + 2nk).
kEZ
Proposition 3.5 gives

a(r)zb—5+(2b+c)r(r):%hw,

and hence )
AMr) = Moo 772007 [1 4+ O(r~te™)).

Therefore, to prove Theorem 7.6, it suffices to show that there exists Ko, € (0, 00)
and ¢ < oo such that

|K(r,z) — Koo < ce™".
Since
‘ b
)= 20) |7 = ).
it follows from Proposition 7.1 that Ki, K satisfy

K, = gK{’ +H K| +bH, K,

(76) K= g K"+ H;K' +bH| K.

The Feynman-Kac representation tells us that if r > ¢ > 0,

(77) K(r,x) =E" [K(r —t,X") exp {/tJ(r — 5, X)) dsH ,

0
where Xt(r) satisfies (74). Recall that
(78) [H;(r, )|, [J(r,z)| <coe™, r>1,

which implies

r—t
/ H,(z, X" ds
0
and for r > 1,
K(ryz) < E* [K(X,-1)] < cE* [exp{—2bX,_1}],

r—1
(79) <ce ™ exp {b/ H(z, X)) ds} =1,
0

where X, = X{".

& Those experienced with PDEs can probably skip the rest of this section. Since |Hy| +
|H7| = O(e™"), for large r the equation (76) is well approximated by the standard heat
equation K = £ K"”. One just needs to keep track of the error terms. | have taken a
probabilistic approach using coupling, but this is just personal preference.

We will use standard coupling techniques to analyze the equation. Here is the
basic estimate. We write z =y if (y — x)/27 € Z.
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Lemma 7.8. There exist u > 0, ¢ < 0o such that the following holds. Supposer > 2
and X; = Xt(r), 7y = Zt(r) are independent solutions to (74) with Xo = x,Zy =y
with x <y < x+ 2mw. Let

T=inf{t: X, = Z;}.

Then,
P{T >t} <ce ",
and if t <1,
P{T > t*} < ct ! (y — ).
If we define

v, — Zy t<T
T Zr+ (X —Xp) t>t

Then Y satisfies (74) with Yo =y and Yy = Xy fort > T.

Proposition 7.9.
e There exist 0 < ¢; < ¢ < 00 such that

(80) 1 <K(rz)<co, r>1,zeR.
e There exists Ko € (0,00) and u > 0 and ¢ < oo such that
|K(r,z) — Koo| < ce ™.

Proof. For fixed r, x < y < x4 2w, let X;,Y;, T be as in Lemma 7.8 and let
m_(r), m4(r) be the minimum and maximum, respectively, of K (r,z) for 0 < z <
2. From (77) and (79), we see that ¢y m_ (1) < K(r,z) < cam(1). Using (79),

K(r,2) = B [F(r/2, K,p2)] [1+O(e~?)].
This gives (80). Combining this with the coupling, we see that
K(r,z) = K(r,y) [1+0(e™")].
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