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Abstract. We define the Schramm-Loewner evolution (SLEκ) in multiply

connected domains for κ ≤ 4 using the loop measure. We show that in the
case of the annulus, this is the same as the measure obtained recently by

Dapeng Zhan. We use the loop formation to give a different derivation of the
partial differential equation for the partition function in the annulus.

1. Introduction

The Schramm-Loewner evolution (SLE) is a conformally invariant or confor-
mally covariant family of measures on curves in the plane. It was proposed by
Schramm [25] as a candidate for the scaling limit of loop-erased walk and per-
colation interfaces, and it has turned out to be the crucial tool in the rigorous
development of two-dimensional critical phenomenon. Before SLE, there had been
much theoretical, but mathematically nonrigorous, development using conformal
field theory.

In conformal field theory, the standard parameter to characterize a field is the
central charge c. There is a major difference between c ≤ 1 and c > 1, and SLE
appears in the former case which is all we consider in this paper. The parameter
for SLE is denoted κ > 0. For each c < 1, there are two values of κ, one less than
four and one greater than four, given by

c =
(6− κ)(3κ− 8)

2κ
.

The smaller value corresponds to the simple curve case, and we concentrate on this
in this paper. For c = 1, κ = 4 is a double root which also corresponds to simple
curves. Important examples are κ = 2, c = −2 (loop-erased walks), κ = 8/3, c = 0
(self-avoiding walks), κ = 3, c = 1/2 (interfaces of Ising clusters), κ = 4, c = 1
(interfaces of free fields). In all cases, but for self-avoiding walk, SLE has been
proved to be the scaling limits of the models [21, 29, 27]

♣The letter c is standard in the physics literature for central charge. Since we use c for

arbitrary constants, it is not a good choice for a parameter. Our compromise is to use a

bold-face c.

Another conformally invariant measure on (in this case, nonsimple) curves in the
plane is given by Brownian motion. A variant of this measure, called the Brownian
loop measure, arises in the study of SLE [14, 24]. This is a σ-finite measure on
nonsimple curves that arises as a scaling limit of a random walk loop measure, see
[23] and [20, Chapter 9]. It is closely related to the determinant of the Laplacian
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and the Gaussian free field, see, e.g., [6], but we will only need to view it as a
measure on paths. The key properties of the measure are conformal invariance and
the restriction property.

In this paper we view SLEκ as a (positive) measure µD(z, w) on curves (modulo
increasing reparametrization) in a domain D of total mass ΨD(z, w) connecting
two distinct points z, w. Here z, w can be interior points or boundary points but
in the latter case we make some smoothness assumptions on the boundary. We
expect these curves to arise as normalized limits of measures on lattice curves. If
0 < ΨD(z, w) <∞, we can normalize the measure to produce a probability measure

that we denote by µ#
D(z, w). There are various assumptions we can make on the

measures. We will be more precise later, but let us discuss them now. The first is
conformal covariance:

• Conformal covariance. There exist boundary and interior scaling expo-
nents b, b̃ such that if f : D → f(D) is a conformal transformation,

f ◦ µD(z, w) = |f ′(z)|bz |f ′(w)|bw µf(D)(f(z), f(w)),

where bζ = b if ζ ∈ ∂D and bζ = b̃ if z ∈ D.

This implies conformal invariance of the probability measures,

f ◦ µ#
D(z, w) = µ#

f(D)(f(z), f(w)).

If one is only considering the probability measures, then one does not need to make
smoothness assumptions at the boundary. The domain Markov property below uses
the probability measures for nonsmooth boundary points.

There are three other assumptions we will discuss. It turns out that they are
redundant, so we do not need to make all of them assumptions, but this is not
obvious.

• Reversibility. The measure µD(w, z) can be obtained from µD(z, w) by
reversing the paths.

• Domain Markov property. In the probability measure µ#
D(z, w), given

an initial segment of the curve γt = γ(0, t], the conditional distribution of

the remainder of the curve is µ#
D\γt(γ(t), w).

• Boundary perturbation. Suppose D1 ⊂ D and the domains agree in
neighborhods of z, w. Then µD1

(z, w) is absolutely continuous with respect
to µD(z, w). In fact, if γ is a curve connecting z and w in D1, then the
Radon-Nikodym derivative is given by

exp
{c

2
mD(γ,D \D1)

}
,

where mD(γ,D \D1) denotes the (Brownian) loop measure of loops in D
that intersect both γ and D1.

Schramm [25] studied the probability measures µ#
D(z, w) where z ∈ ∂D and

w ∈ D or w ∈ ∂D. He showed that for simply connected D, there is only a
one-parameter family of measures satisfying conformal invariance and the domain
Markov property. He used κ as the parameter and these are now called radial and
chordal SLEκ (in D from z to w), respectively. It is known [26, 4] that for κ ≤ 4, the
measure is supported on simple curves of Hausdorff dimension d = 1 + κ

8 ∈ (1, 3
2 ].

The following has been proved for SLEκ, 0 < κ ≤ 4 in simply connected domains.
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• Let

b =
6− κ

2κ
, b̃ =

b(κ− 2)

4
=

2b+ c

12
.

Let ΨH(0, 1) = 1,ΨD(1, 0) = and define ΨD(z, w) for other simply con-
nected domains by the scaling rule

ΨD(z, w) = |f ′(z)|b |f ′(w)|bw Ψf(D)(f(w), f(w)),

where bw = b if w ∈ ∂D and bw = b̃ if w ∈ D. Then [14, 24, 19] if

µD(z, w) = ΨD(z, w)µ#
D(z, w), the family {µD(z, w)} restricted to simply

connected domains satisfies conformal covariance, domain Markov property,
and the boundary perturbation rule.

• If w ∈ ∂D, then [30] µ#
D(w, z) is the same as the reversal of µ#

D(z, w).

In the chordal case, ΨD(z, w) = H∂D(z, w)b where H∂D(z, w) denotes a multiple
of the boundary Poisson kernel. This follows from the scaling rule for the kernel,

H∂D(z, w) = |f ′(z)| |f ′(w)|H∂f(D)(f(z), f(w)).

If w ∈ D, the Poisson kernel satisfies

HD(w, z) = |f ′(z)|Hf(D)(f(w), f(z)),

and hence ΨD(w, z) is not given by a power of the Poisson kernel. If κ = 2, for which

b = 1, b̃ = 0, the partition function is given by the boundary Poisson kernel (chordal
case) or Poisson kernel (radial case). One can also see this from the relationship
with loop-erased random walk.

In his argument, Schramm uses the fact that if one slits a simply connected do-
main D at its boundary then the resulting domain D \ γt is also simply connected
and hence by the Riemann mapping theorem is conformally equivalent to the orig-
inal domain. If D is not simply connected, or D is “slit on the inside”, this is no
longer true. For this reason, conformal invariance of the probability measures and

the domain Markov property are not sufficient to determine the measures µ#
D(z, w)

for nonsimply connected domains. In [18] it was suggested to use the boundary
perturbation rule to extend the definition. We continue this approach in this pa-
per. There have been other approaches, see, e.g., [2, 3, 9, 8], but none have directly
used the boundary perturbation rule.

We will show the following. (If z or w are boundary points, we implicitly assume
sufficient smoothness at the boundary.)

• There is a unique way (up to some arbitrary multiplicative constants) to
extend the measures µD(z, w) so that it satisfies conformal covariance and
the boundary perturbation rule.

• If κ ≤ 8/3 (c ≤ 0), then ΨD(z, w) < ∞, and the probability measures
satisfy the domain Markov property.

• If 8/3 < κ ≤ 4, and D is 1-connected, ΨD(z, w) <∞.

The key observation is that the restriction property for the Brownian loop measure
holds for multiply connected domains. We conjecture that ΨD(z, w) < ∞ for all
κ ≤ 4, but have not shown this. However, we prove a weaker fact.

• If κ ≤ 4 and D1 is a simply connected subdomain and µD(z, w;D1) denotes
the measure µD(z, w) restricted to curves staying in D1, then

‖µD(z, w;D1)‖ <∞.

• The probability measures µ#
D(z, w;D1) satisfy the domain Markov property.
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• If ΨD(z, w) <∞ for all k-connected domains, then the measures µ#
D(z, w),

restricted to k-connected domains, satisfy the domain Markov property.

The next property will follow from the definition and Zhan’s result for simply
connected domains [30].

• The measure µD(w, z) is the reversal of µD(z, w).

Zhan [31] recently took a different approach to extending SLEκ in the case of
an annulus. Roughly speaking, he shows that there is a unique way of defining

µ#
D(z, w) for conformal annuli so that it satisfies the domain Markov property and

reversibility. (Note that the combination of the two properties allows one to describe
conditional distributions given both an initial segment and a terminal segment of
the path.)

In this paper, we consider our process for 1-connected domains and show that it is
the same as that defined by Zhan. In particular, reversibility of the process follows.
We use the boundary perturbation rule to give an equation for the partition function
and give a somewhat more direct proof of existence of the solution. Although this
paper does not directly use the results in [31], it does use an idea from that paper.
In particular, the annulus Loewner equation is used to find PDEs and the Feynman-
Kac formula is used to analyze PDEs that arise.

We now summarize the contents of the paper. We describe in Section 2 a model
introduced in [13] called the λ-SAW. It is a two-parameter family of lattice models
for which it is conjectured that there is a one-parameter subfamily of critical models.
One of the parameters in [13] was denoted λ but we have chosen to set λ = −c/2
here. It is a generalization of the loop-erased walk (c = −2) and self-avoiding walk
(c = 0). This model was created after studying SLE. While we cannot prove
that this has a limit at the moment (except for c = −2 and a somewhat different
version for c = 1 for which we can use current results), it is useful for heuristic
understanding of our definition of SLE in multiply connected domains.

Section 3 contains many results that are needed in the paper most of which have
been proved elsewhere. This can be skimmed at first reading and referred back
to as needed. Section 3.1 reviews facts about the Poisson kernel and sets some
notation; this is followed by discussion of the annulus version. The annulus Poisson
kernel is often written in terms of theta functions. We choose instead to write the
functions in terms of infinite sums which arise naturally when raising the annulus
to the covering space of an infinite strip. The next three subsections review the
important tools in this area: SLE in H, the Brownian bubble measure, and the
Brownian loop measure. Section 3.6 reviews the methods to analyze SLE in simply
connected domains in terms of the Brownian loop measure and extends this idea to
shrinking domains. This will allow us to view radial SLE or annulus SLE in terms
of chordal SLE in H where the domain is shrinking by all the translates of the path.
In the case of annulus SLE we get a process that we call locally chordal SLEκ. We
write this using an annulus parametrization and this leads to the annulus Loewner
equation which we write as an equation in the covering infinite strip.

The definiton of SLE is given in Section 4. In the boundary to boundary case,
this is essentially the same definition as in [18]. We extend this to boundary/bulk
and bulk/bulk cases. One nice thing about our definition is that reversibility is
immediate, given reversibility for chordal SLE in simply connected domains. There
are some subtleties in defining the bulk/bulk measure in subdomains of C in terms
of the measure on C, see Proposition 4.8. The definitions make use of facts about
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annulus SLE that are discussed in the next section. The extension of the definition
to multiple paths with disjoint endpoints is immediate as in [13].

The next two sections discuss the results about annulus SLEκ. Most of the
results in this section were proved in [31], but there are some differences in our
approach. We focus on the “crossing” case although the “chordal” case can be
done similarly as we point out. In Section 5 we study annulus SLEκ with a given
winding number. By taking its premage under the logarithm, we can consider it
as a measure on curves connecting points of an infinite strip, and we in turn can
compare this measure to chordal SLEκ in the strip. This requires comparing the
loop measures in the strip to the preimage of the loop measure in the annulus.
(Although the loop measure is conformally invariant, the logarithm is a multi-
valued function, so some care is needed.) At an intermediate step we consider the
locally chordal SLEκ discused in Section 3. Although this latter process is not the
same as annulus SLEκ, it turns out that the partition function for annulus SLEκ
can be given in terms of a functional of this process. As in [31], we can then use the
Feynman-Kac theorem to write a PDE for the partition function and this allows us
to show that it gives the quantity we want.

Section 7 takes a different approach and derives the differential equation for the
partition function in the annulus by comparing annulus SLEκ to radial SLEκ.
Smoothness of the partition function follows from the work of the previous section,
so only the Itô formula calculation is needed. The work here shows that the process
we get is the same as the process in [31]. Our approach gives a little more than what
is stated explicitly in [31]. The annulus partition function is of the form Ψ(r, x),
which denotes the total mass of SLEκ from 1 to e−r+ix in the annulus Ar = {e−r <
|z| < 1}. The probability measure is obtained by normalization. Multiplying the
partition function by a function of r does not change the probability measure. Here
we get not only the probability measure but the correct r dependence.

I would like to thank Dapeng Zhan for useful conversations.

2. The lattice model

Here we describe a lattice model for random walks called the λ-SAW [13]. For
simplicity, we will start with the bulk/bulk version in a bounded domain D. For
convenience, we will use the integer lattice Z2 = Z+iZ, but the scaling limit should
be independent of the lattice.

A self-avoiding walk (SAW) ω = [ω0, . . . , ωn] of length n is a finite nearest
neighbor path in Z2 such that ωj 6= ωk for j < k. Let |ω| = n denote the length.

A rooted (random walk) loop η = [η0, . . . , η2n] of length 2n > 0 is a finite
nearest neighbor path (not necessarily self-avoiding) with η0 = η2n. Again we write
|η| = 2n for the length. An unrooted loop is an equivalence class of loops under
the equivalence relation

[η0, . . . , η2n] ∼ [ηj , ηj+1, . . . , η2n, η1, . . . , ηj ]

for each j. The rooted random walk loop measure is the measure on rooted loops,
which assigns measure 4−|η|/|η|. to each loop η with |η| > 0. This induces a
measure mRW on unrooted loops called the random walk loop measure by giving
each unrooted loop the sum of the weights of the different rooted loops that give
the unrooted loop.
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♣One may think of the unrooted loop measure as assigning measure 4−n to each unrooted

loop η with |η| = n. However, this is not exactly correct. For example, if n = 4 and

η = [x, y, x, y, x], then there are only two different rooted loops that generate the unrooted

loop, and hence this unrooted loop has measure 4−n/2.

Suppose D is a bounded domain in C and z, w are distinct points in D. Let
β, λ be fixed constants which are the parameters of the model. For each n, let
Ln = n−1 Z2 ∩D and let zn, wn be points in Ln closest to z, w (if there is a tie for
“closest”, we can choose arbitrarily). Define the measure νn = νn,D,z,w on SAWs
ω in Ln with endpoints zn, wn which gives ω measure

exp
{
−β|ω|+ λmRW (ω,D, n)

}
,

where mRW (ω,D, n) denotes the total mRW measure of (unrooted) loops η in Ln
that intersect ω. Let Zn(D) = Zn(D;β, λ) denote the total mass of the measure.
This is also called the partition function.

This model has two parameters but the conjecture is that there is a one-parameter
family of critical models. Let us write λ = −c/2 and write β = βc for the corre-
sponding value of β.

♣The value of the critical β is a lattice dependent quantity. The value λ = −c/2 is not

lattice dependent as long as we define the random walk loop measure correctly. For a given

lattice, the rooted loop measure is defined to give measure p(η)/|η| to every loop η where

p(η) is the probability that simple random walk in the lattice starting at η0 produces the loop

η. The value c is the “central charge” but we can think of it as a free parameter.

Conjecture 2.1. For each c ≤ 1, there corresponds a (lattice dependent) β and

a (lattice independent) scaling exponent b̃ such the measure νn has the following
properties.

• For each bounded D and distinct z, w in D there exists Ψ∗D(z, w) ∈ (0,∞)
such that

Zn ∼ n−2b̃ Ψ∗D(z, w), n→∞.
• There exists a limit measure on simple curves

νD(z, w) = lim
n→∞

n2b̃ νn.

• The family of measures {νD(z, w)} satisfies the conformal covariance rela-
tion: if f : D → f(D) is a conformal transformation,

f ◦ νD(z, w) = |f ′(z)|b̃ |f ′(w)|b̃ νf(D)(f(z), f(w)).

There is also a boundary version of this conjecture. Suppose z is a boundary
point of D and let us assume that ∂D is analytic near z. One can define the measure
νn as above, but there are lattice issues involved. We will not deal with them here
and just state the following rough conjecture; see [11] for a more precise statement
including lattice issues. We also assume smoothness near the appropriate boundary
points.

Conjecture 2.2. For each c ≤ 1, there corresponds a (lattice dependent) β and

(lattice independent) scaling exponents b, b̃ such the measure νn has the following
properties.
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• For each bounded D and distinct z, w in D there exists Ψ∗D(z, w) such that

Zn ∼ n−(bz+bw) Ψ∗D(z, w), n→∞.

• There exists a limit measure on simple curves

νD(z, w) = lim
n→∞

nbz+bw νn.

• The family of measures {νD(z, w)} satisfies the conformal covariance rela-
tion:

f ◦ νD(z, w) = |f ′(z)|bz |f ′(w)|bw νf(D)(f(z), f(w)).

Here bζ = b or b̃, respectively, if ζ is a boundary point or an interior point.

The conjectures are open, but let us assume that the conjectures do hold. Let

ν#
D (z, w) =

νD(z, w)

Ψ∗D(z, w)

be the corresponding probability measures which are conformally invariant:

f ◦ ν#
D (z, w) = ν#

f(D)(f(z), f(w)).

Schramm [25] showed that if D is simply connected and z ∈ ∂D, there is only a

one-parameter family of possible limit measures for ν#
D (z, w) which are now called

chordal (if w ∈ ∂D) or radial (if w ∈ D) Schramm-Loewner evolution with param-
eter κ (SLEκ). Analysis of SLE [26, 14] shows that 0 < κ ≤ 4 (if we want a
measure on simple curves) and the other parameters are given by

(1) b =
6− κ

2κ
, b̃ =

b(κ− 2)

4
, c = 6b̃− b = b (3κ− 8).

Suppose z, w ∈ D and D1 ⊂ D, and let νn, ν
1
n be the corresponding measures as

above and Ln = D∩n−1Z2, L1
n = D1∩n−1Z2. Then if ω is a SAW in Ln connecting

zn and wn,

ν1
n(ω)

νn(ω)
= exp

{c

2
[mRW (ω,D, n)−mRW (ω,D1, n)]

}
.

As n→∞, the quantity on the right has a limit [23] in terms of the Brownian loop
measure

lim
n→∞

[mRW (ω,D, n)−mRW (ω,D1, n)] = mD(ω,D \D1),

where the right-hand side denotes the Brownian loop measure [24] of loops in D
that intersect both ω and D \ D1. Hence the limit measures should satisfy for
γ ⊂ D1,

(2)
dνD1

(z, w)

dνD(z, w)
(γ) = exp

{c

2
mD(γ,D \D1)

}
.

For simply connected D,D1 with z ∈ ∂D, this was established in [14, 24].
Schramm’s construction of SLE makes generalizations to nonsimply connected

domains difficult. The purpose of this paper is to show that one can use the relation
(2) to define it. This requires some work. While we do not prove the conjectures
stated in this section, it is helpful to remember that the definitions we give in this
paper are those of the conjectured scaling limit of the λ-SAW with λ = −c/2.
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3. Preliminaries

In this paper, we assume that κ ∈ (0, 4] and c, b, b̃ are as in (1). We also set

a =
2

κ
.

Constants throughout may depend implicitly on κ.

3.1. Poisson kernel and related. We establish notation and review facts about
the Poisson kernel.

• H denotes the open upper half plane, D the open unit disk, and if r > 0,

Ar = {z ∈ D : e−r < |z|}, Sr = {z ∈ H : Im(z) < r},
Dr = e−rD, Cr = ∂Dr.

Under this notation Ar = D \ Dr, ∂Ar = C0 ∪ Cr. Throughout this paper
we fix

ψ(z) = eiz

and note that ψ maps Sr (many-to-one) onto Ar. We write +∞,−∞ for
the two infinite points in ∂Sr.
• If D is a domain, then z is ∂D-analytic if z ∈ ∂D and there is a neighbor-

hood N of z and a conformal transformation

φ : N → φ(N)

with φ(z) = 0 and φ(N ∩D) = φ(N) ∩ H. We say that z is D-analytic if
z ∈ D or z is ∂D-analytic.
• If γ is a curve, we write γt for γ[0, t].
• If z, w ∈ ∂D and γ : [0, t0] → D is a curve with γ(0) = z, γ(t0) = w we

abuse notation by writing γ ⊂ D if γ(0, t0) ⊂ D. If t < t0, we write γt ⊂ D
if γ(0, t] ⊂ D.
• If z ∈ D and w is ∂D-analytic, let HD(z, w) denote the Poisson kernel (that

is, the inward normal derivative of the Green’s function at w) normalized
so that

HH(x+ iy, 0) =
y

x2 + y2
.

It satisfies the scaling rule

HD(z, w) = |f ′(w)|Hf(D)(f(z), f(w)).

(When writing rules like this, it will be implicitly assumed that the quanti-
ties are well defined. For example, in this case z ∈ D, w is ∂D-analytic, and
f(w) is ∂f(D)-analytic.) Under our normalization, the probability that a
complex Brownian motion starting at z exits D at V ⊂ ∂D is

1

π

∫
V

HD(z, w) |dw|.

• If z, w are distinct ∂D-analytic points, we write H∂D(z, w) for the boundary
or excursion Poisson kernel given by

H∂D(z, w) = ∂nHD(z, w) = H∂D(w, z),

where n = nz denotes the (inward) normal derivative at z. It satisfies the
scaling rule:

(3) H∂D(z, w) = |f ′(z)| |f ′(w)|H∂f(D)(f(z), f(w)).
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• If D is simply connected, there is a complex form of the Poisson kernel
HD(z, w) such that HD(z, w) = ImHD(z, w). This is defined up to a real
translation, and we choose the translation so that

HH(z, 0) = −1

z
.

The function f(z) = HD(z, w) can be characterized as the unique conformal
transformation f : D → H such that

f(w + εnw) =
i

ε
+ o(1), ε ↓ 0 + .

• The Poisson and boundary Poisson kernel for the strip Sr can be computed
using conformal invariance,

(4) H∂Sr (z, 0) = − π

2r
coth

(πz
2r

)
,

(5) H∂Sr (0, x) =
π2

4 r2

[
sinh

(πx
2r

)]−2

,

(6) H∂Sr (0, x+ ir) =
π2

4 r2

[
cosh

(πx
2r

)]−2

.

• If z, w are distinct boundary points of D, D1 ⊂ D with dist(z,D \D1) > 0,
dist(w,D \D1) > 0, let

QD(z, w;D1)

denote the probability that a Brownian excursion in D from z to w stays
in D1. (A Brownian excursion in D is a Brownian motion starting at z and
conditioned to go immediately into D and exit at w. It is not difficult to
make this precise.) We note that QD(z, w;D1) is invariant under conformal
transformations of D, and if z, w are ∂D-analytic,

QD(z, w;D1) =
H∂D1

(z, w)

H∂D(z, w)
.

If D ⊂ H is simply connected with H \D bounded and dist(0,H \D) > 0,
then [17, Proposition 5.15]

QH(0,∞;D) = Φ′D(0),

where ΦD : D → H is a conformal transformation with Φ(z) ∼ z as z →∞.

When studying SLE it is useful to consider subdomains of H and the boundary
point infinity. In order to make a number of formulas work in this case, it is useful to
adapt the following “abuse of notation” about derivatives. This can be considered
a kind of normalization at infinity.

• When we consider the conformal transformation g : H→ H given by g(z) =
−1/z, then we write

(7) g′(0) = g′(∞) = −1.

• If D ⊂ H and H \ D is bounded, then we say that ∞ is ∂D-analytic. If
D1, D2 are two such domains and f : D1 → D2 is a conformal transforma-
tion with f(∞) =∞, we define f ′(∞) by

f(z) ∼ z

f ′(∞)
, z →∞.
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Equivalently, if F (z) = −1/f(−1/z) = g ◦ f ◦ g(z), then

f ′(∞) = F ′(0).

• More generally, if F : D → D′ is a conformal transformation with F (z) =∞
or F (∞) = z, we compute derivatives using the chain rule and (7).

The boundary Poisson kernel H∂D(z, w) can be defined if z or w equals infinity
using the scaling rule (3). Under our normalization H∂H(x,∞) = 1.

♣If D,D′ are simply connected domains, z, w are distinct ∂D-analytic points, and z′, w′ are

distinct ∂D′-analytic points, then there is a one parameter family of conformal transformations

f : D → D′ with f(z) = z′, f(w) = w′. The quantity f ′(z) f ′(w) is invariant of the choice

of the transformation. Our definitions of derivatives at infinity are made so that this property

holds as well when w =∞ or w′ =∞.

3.2. The annulus. The functions that arise from the Poisson kernel of the annulus
will be important. By considering different winding numbers, using the scaling rule,
and applying (6), we can see that

H∂Ar (1, e
−r+ix) = er

∞∑
k=−∞

H∂Sr (0, x+ ir) =
er

2
J(r, x),

where J(r, x) is defined by

(8) J(r, x) =
π2

2r2

∞∑
k=−∞

[
cosh

(
π(x+ 2kπ)

2r

)]−2

.

We will view J(r, x) as a function on (0,∞) × R satisfying J(r, x) = J(r, x + 2π).
Under our normalization of the Poisson kernel,

(9) e−r
∫ 2π

0

H∂Ar (1, e
−r+ix) dx =

π

r
,

which implies ∫ 2π

0

J(r, x) dx = 2

∫ π

0

J(r, x) dx =
2π

r
.

Indeed, (r/2π)J(r, x) has the interpretation as the density of the angle of the hitting
point of an h-process in Ar started at 1 conditioned to leave Ar at Cr (in other
words, the h-process associated to the harmonic function h(z) = − log |z|). Using
this interpretation, we can see that there exists ρ > 0 such that for all r sufficiently
small

(10)
ρ π

r
≤
∫ r

0

J(r, x) dx ≤ (1− ρ)π

r
.

♣To see (9), recall that under our normalization of the Poisson kernel

e−r
∫ 2π

0

HAr (e−ε, e−r+ix) dx

is π times the probability that a Brownian motion starting at e−ε = 1− ε+ O(ε2) leaves Ar
at Cr. A standard estimate for Brownian motion tells us that this probability equals ε/r.
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Lemma 3.1. There exist c <∞ such that if r ≥ 1, x ∈ R,∣∣∣∣J(r, x)− 1

r

∣∣∣∣ ≤ c e−r.
Proof. We will assume r ≥ 2 (the case 1 ≤ r ≤ 2 is easy). Let V be a subset of
[0, 2π) which can also be viewed as a periodic subset of R. We need to show that

1

2π

∫
V

J(r, x) dx =
l(V )

r
[1 +O(re−r)],

where l denotes length. By definition,

1

2π

∫
V

J(r, x) dx =
e−r

π

∫
V

H∂Ar (1, e
−r+ix) dx

=
e−r

π

∫
V

H∂Ar (e
−r, eix) dx.

Let Bt denote a complex Brownian motion and Ts = inf{t : Bt ∈ Cs}. Let

p(z;V ) = Pz{BT0
∈ V }, q(z;V ) = Pz{BT0

∈ V | T0 < Tr},

and let q±(r;V ) be the maximum and minimum of q(z, V ) on Cr−1. Then,

q−(r, V ) ≤ re−r

π

∫
V

H∂Ar (e
−r, eix) dx ≤ q+(r, V ).

Hence it suffices to show that if z ∈ Cr−1,

q(z, V ) = l(V ) [1 +O(r e−r)],

where the error term is uniform in z. If z ∈ Cr−1, then Pz{T0 < Tr} = 1/r, and
hence

p(z, V ) = r−1 q(z, V ) + (1− r−1)Pz{BT0
∈ V | Tr < T0}.

Using the strong Markov property and the exact form of the Poisson kernel in the
disk, we see that

p(z, V ) = l(V ) [1 +O(|z|)], Pz{BT0 ∈ V | Tr < T0} = l(V ) [1 +O(|z|)],

and hence if z ∈ Cr−1,

r−1 q(r, V ) = l(V ) [1 +O(|z|)]− (1− r−1) l(V ) [1 +O(|z|)]
= l(V ) [r−1 +O(e−r)]

= r−1 l(V ) [1 +O(re−r)].

�

Another important function will be

HI(r, x) = −x
r

+

∫ x

0

J(r, y) dy =

∫ x

0

[
J(r, y)− 1

r

]
dy,

which satisfies HI(r, x) = HI(r, x+ 2π) and

H′I(r, x) = J(r, x)− 1

r
.

Here we are using the notation from [31], and the prime denotes an x-derivative.
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Lemma 3.2. Let K(r, x) = rHI(r, x). Then for all r, K is an odd function of
period 2π satisfying K(r, π − x) = K(r, π + x), K(0) = K(π) = 0, and

K(r, x) ≤ π − x, 0 ≤ x ≤ π.
Moreover, there exists ε > 0 such that for all r sufficiently small and all x,

K(r, x) ≤ π − εr.

Proof. This is straightforward. The last estimate uses (10). �

♣Although we will not need it for our main theorem, in a comment in Section 7.1 we will
use the fact that the function Φ(r, x) = r J(r, x) = rH′I(r, x) + 1 satisfies the differential
equation

(11) Φ̇ = Φ′′ + HI Φ + H′I Φ.

Here, as later in the paper, we use dots for r-derivatives and primes for x-derivatives. To see
this, we will need the following fact from [31]:

ḢI = H′′I + H′I HI .

Hence G = H′I satisfies
Ġ = G′′ + HI G

′ + H′I G,

and

Φ̇ = G+ r G′′ + rHI G
′ + rH′I G

= G+ Φ′′ + HI Φ′ + H′I (Φ− 1)

= Φ′′ + HI Φ′ + H′I Φ

Lemma 3.3. There exists c > 0 such that the following holds. Suppose r ≥ 1 and
f : D → Ar is a conformal transformation with f(C0) = C0 where D = D \K and
K is a compact subset containing the origin. Then for |z| = 1,

| |f ′(z)| − 1 | ≤ c e−r, |f ′′(z)| ≤ ce−r.

Proof. Let φD be the harmonic function on D with boundary values 0 on C0 and
1 on K and let φr = φAr . By conformal invariance,

φD(z) = φr(f(z)) =
− log |f(z)|

r
.

Since f maps C0 to C0, this implies

r ∂nφD(z) = |f ′(z)|,
where n denotes the inward unit normal. Also, conformal invariance of excursion
measure gives ∫

C0

∂nφD(z) |dz| =
∫
C0

∂nφr(z) |dz| =
2π

r
.

Hence to prove the first estimate, it suffices to show for z, w ∈ C0,

(12) ∂nφD(z) = ∂nφD(w) [1 +O(e−r)].

Using Koebe estimates, we can find a universal s such that for r sufficiently large,
K ⊂ Dr−s. Suppose we start Brownian motions at e−ε z and e−ε w, respectively.
The probability that they reach Cr−s without hitting C0 is ε/(r − s). On Cr−s,
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φD) = 1−O(r−1). Using Lemma 3.1, we can see that the conditional distributions
on Cr−s given that the Brownian motions reach Cr−s are the same for z, w up to an
error of order O(re−r). Hence, if q(z) = q(z, r, ε) denotes the probability that the
Brownian motion starting at z reaches Cr−s before C0 but does not hit K before
C0, then

|q(z)− q(w)| ≤ c ε

r − s
r−1O(re−r) ≤ ε

r
O(e−r),

from which we conclude (12). Indeed, we conclude the stronger fact,

q(z) = − log |z|
r

[1 +O(e−r)], e−1 < |z| < 1.

This implies

|f(z)| = |z| [[1 +O(e−r)], e−1 < |z| < 1.

For the second estimate, fix z and assume without loss of generality that z = 1
and f(1) = 1. By Schwarz reflection, we can extend f to a neighborhood of radius
1/2 about 1. Let , L(z) = log z, g(z) = log f . where L(1) = g(1) = 0. We have
|Reg(z)−ReL(z)| ≤ e−r and g(1) = L(1). From this we can use standard arguments
to conclude that |g(z) − L(z)| = O(e−r). Using the Cauchy integral formula, we
get |g′(z)− L′(z)|, |g′′(z)− L′′(z)| ≤ cO(e−r).

�

A computation that we will do a little later will give us a particular annulus
function A(r, x) which we now define. Suppose that D = Sr, z = 0, w = x+ ri and
let γt be a curve starting at the origin parametrized so that hcap[γt] = t. Let Dt

be the domain obtained by splitting H by the nontrivial 2πk translates of γt,

Dt = Sr \
⋃

k∈Z\{0}

[γt + 2πk],

and let

Qt = QD(0, w;Dt).

Then (see the end of Section 3.8), one can check that as t→ 0,

(13) Qt = 1−A(r, x) t+ o(t),

where

A(r, x) =
∑

k∈Z\{0}

H∂Sr (0, 2πk)H∂Sr (2πk, x+ ir)

H∂Sr (0, x+ ir)
.

Using (5) and (6), we get

(14) A(r, x) =
π2

4r2

∑
k∈Z\{0}

cosh2(πx/2r)

sinh2(π2k/r) cosh2(π(x− 2πk)/2r)
,

Proposition 3.4. For fixed r, A(r, ·) is a positive, even function, that is increasing
in |x|. There exists c > 0 such that If 0 < r ≤ 1 and 0 ≤ x ≤ π,

(15) A(r, x) ≤ c

r2
exp

{
−2π

r
(π − x)

}
.
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Proof. The definition implies A(r, x) = A(r,−x). For r ≤ 1, 0 ≤ x < π,

cosh2(πx/2r) � eπx/r,

sinh2(π2k/r) cosh2(π(x− 2πk)/2r) � e2|k|π2/r eπ|2πk−x|/r ≥ e2|k|π2/r eπ(2π−x)/r.

By summing over k, we get (15). The monotonicity in |x| will follow if we show
that that for each integer k,

cosh2(πx/2r)

cosh2(π(x− 2πk)/2r)
+

cosh2(πx/2r)

cosh2(π(x+ 2πk)/2r)

is an increasing function of |x|.
Indeed, we will now show that if y ∈ R and

f(x) =
cosh2 x

cosh2(x− y)
+

cosh2 x

cosh2(x+ y)
,

then f is increasing for x ≥ 0. Since

f(x) =
cosh(2x) + 1

cosh(2x− 2y) + 1
+

cosh(2x) + 1

cosh(2x+ 2y) + 1
,

it suffices to show for every y ∈ R, that

F (x) =
coshx+ 1

cosh(x− y) + 1
+

coshx+ 1

cosh(x+ y) + 1
,

is increasing for x ≥ 0. Using the sum rule, we get

cosh(x− y) + 1 + cosh(x+ y) + 1 = 2 coshx cosh y + 2,

Letting r = cosh y ≥ 1, we get

[cosh(x− y) + 1] [cosh(x+ y) + 1] = (coshx cosh y + 1)2 − sinh2 x sinh2 y

= (r coshx+ 1)2 − (r2 − 1)(cosh2 x− 1)

= cosh2 x+ 2r coshx+ r2

= (coshx+ r)2.

Therefore,

F (x) =
2r (coshx+ r−1) (coshx+ 1)

(coshx+ r)2
= 2r eG(cosh x),

where

G(t) = log(t+
1

r
) + log(t+ 1)− 2 log (t+ r).

Since r ≥ 1, G′(t) > 0 for t > 0 and hence G and F are increasing. �

3.3. SLEκ in H. If κ = 2/a ∈ (0, 4], then chordal SLEκ (in H from 0 to ∞) is the
solution to the chordal Loewner equation

(16) ∂tgt(z) =
a

gt(z)− Ut
, g0(z) = z,

where Ut = −Bt is a standard Brownian motion. With probability one [26], this
generates a random path γ : (0,∞)→ H such that the domain of gt is H \ γt. The
curve is parametrized so that hcap[γt] = at (see [17, Chapter 3] for definitions); in
other words,

gt(z) = z +
at

z
+O(|z|−2), z →∞.
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For every r > 0, let

τr = inf{t > 0 : γ(t) 6∈ Sr} = inf{t > 0 : Imγ(t) = r}.

♣SLEκ for κ > 4 is also very interesting, but the paths are not simple. We restrict in

this paper to κ ≤ 4.

Chordal SLEκ produces a probability measure on curves, modulo (increasing)
reparametrization, from 0 to∞. By conformal transformation, we get a probability
measure on curves connecting distinct boundary points z, w of simply connected

domains D. We will denote this measure by µ#
D(z, w).

♣To get a measure on parametrized curves, one should use the natural parametrization as

described in [22]. This parametrization satisfies a conformal covariance rule under conformal

transformations. We would extend our definitions in this paper to parametrized curves, but it

would not add anything to our arguments here. For this reason we will consider curves modulo

reparametrization as in [25].

Radial SLEκ from 1 to 0 in D is defined by the transformations on the disk

g̃t(e
iz) = eht(e

iz)

where ht satisfies

(17) ∂tht(z) =
a

2
cot2(ht(z)− Ut),

where, as in [31], we write cot2(z) = cot(z/2), and Ut is a standard Brownian mo-
tion. By conformal invariance, this gives a probability measure on curves µ#(z, w)
connecting one boundary point z and one interior point w.

3.4. Brownian bubble measure. Our main interest is the Brownian loop mea-
sure. However, computations of the measure lead to considering excursions and the
boundary bubble measure.

Suppose D is a domain with smooth (not necessarily connected) boundary. For
each z ∈ ∂D, V, V1 ⊂ ∂D, we define (Brownian) excursion measures by

ED(z, V ) =

∫
V

H∂D(z, w) |dw|,

ED(V1, V ) =

∫
V1

ED(z, V ) |dz| =
∫
V

∫
V1

H∂D(z, w) |dz| |dw|.

They satisfy the scaling rules

ED(z, V ) = |f ′(z)| Ef(D)(f(z), f(V )),

ED(V1, V ) = Ef(D)(V1, V ).

In particular ED(V1, V ) is a conformal invariant and hence is well defined even if
the boundaries are not smooth. The quantity ED(z, V ) needs local smoothness at
z to be defined.

Boundary bubbles in D are loops rooted at z ∈ ∂D and otherwise staying in D.
We review the definitions (see [17, Section 5.5]). The bubble measure is a σ-finite
measure on bubbles. In H we can define the measure, by specifying for each simply
connected domain D ⊂ H with dist(0,H\D) > 0, the measure of the set of bubbles
at 0 that do not lie in D.
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Definition If D ⊂ H is a subdomain, x ∈ R, and dist(x,H \D) > 0, then

Γ(x;D) = ΓH(x;D) = ∂y[HH(z, x)−HD(z, x)] |z=x .
The quantity Γ(x;D) is the bubble measure (in H rooted at x) of bubbles that

intersect H \D. Alternatively, we can write

(18) Γ(x;D) = lim
ε↓0

ε−1 Ex+iε[H(Bτ , x)],

where B is a complex Brownian motion and τ = τD = inf{t : Bt 6∈ D}. Note that

Γ(x;D1)− Γ(x;D2) = ∂y[HD2
(z, x)−HD1

(z, x)] |z=x .
We can similarly define ΓD(z;D′) if z is ∂D-analytic, D′ ⊂ D, and dist(z,D\D′) >
0. It is defined as in (18), which we can also write as

ΓD(z;D′) =

∫
D∩∂D′

HD(w, z) dED(z, w).

It satisfies the following scaling rule: if f : D → f(D) is a conformal transformation,
then

ΓD(z;D′) = |f ′(z)|2 Γf(D)(f(z), f(D′)).

If D ⊂ H is simply connected, this quantity can be computed [17, Proposition 5.22]:
if f : D → H is a conformal transformation with f(x) = x, then

(19) Γ(x;D) = −1

6
Sf(x),

where S denotes the Schwarzian derivative. Particular cases of importance to us
are considered in the following proposition.

Proposition 3.5.

ΓH(0;Sr) =
π2

12r2
,

If Γ(r) = ΓD(1;Ar), then as r →∞,

(20) Γ(r) =
1 +O(e−r)

2r
.

Moreover,

Γ(r) =
π2

12r2
+ δ(r),

where

(21) δ(r) =
∑

k∈Z\{0}

[H∂H(0, 2πk)−H∂Sr (0, 2πk)] =
1

12
− π2

2r2

∞∑
k=1

[
sinh

(
kπ2

r

)]−2

.

In particular,

δ(r) =
1 +O(e−r)

2r
− π2

12r2
.

Proof. Since Sr is simply connected, we can use (19) with f(z) = eπz/r − 1 to get

ΓH(0;Sr) = −Sf(0)

6
=

π2

12r2
.

The second equality follows from (18). Indeed, as noted previously

lim
ε↓0

ε−1 P1−ε{Bτ ∈ Cr} = 1/r,
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and the exact form of Poisson kernel in D shows that

HD(z, 1) =
1

2
+O(e−r), z ∈ Cr.

To each Brownian bubble in D rooted at 1 that intersects Cr, there is a corre-
sponding path in H that starts at 0, ends at 2πk for some integer k, and does not
stay in Sr. Only those paths that end at 0 are Brownian bubbles in H rooted at 0.
Therefore, to compute ΓH(1;Sr) we can subtract the measure of the other bubbles.
To get the measures of the bubbles to be subtracted we consider the measure of
excursions in H minus the measure of excursions in Sr. We therefore get

ΓH(0;Sr) = ΓD(1;Ar)−
∑

k∈Z\{0}

[H∂H(0, 2πk)−H∂Sr (0, 2πk)]

= ΓD(1;Ar)− δ(r).
Using (5) and H∂H(0, x) = x−2, we see that

δ(r) = 2

∞∑
k=1

(
1

(2πk)2
− π2

4r2

[
sinh

(
kπ2

r

)]−2
)

=
1

12
− π2

2r2

∞∑
k=1

[
sinh

(
kπ2

r

)]−2

.

�

3.5. Brownian loop measure. In order to describe SLEκ in other domains, we
introduce the Brownian loop measure as first introduced in [24].

Definition The rooted Brownian loop measure on C is the measure on loops given
by

(22)
1

2πt2
dt× area× νBB ,

where νBB denotes the probability measure induced by a Brownian bridge of time
duration one at the origin.

To be more precise, a rooted loop is a continuous function η : [0, tη] → C with
η(0) = η(tη). Such a loop can be described by a triple (t, z, η̄) where t > 0 is the
time duration, z = η(0) is the root, and η̄ : [0, 1] → C is a loop of time duration
one starting at the origin. The rooted loop measure is obtained by choosing (t, z, η̄)
according to the measure (22). If D ⊂ C, the the rooted loop measure in D is the
rooted loop measure in C restricted to loops that lie in D.

Definition The rooted loop measure on a domain D induces a measure on unrooted
loops which we denote by mD. We consider this as a measure on unrooted loops
modulo reparametrization. (However, the proof of conformal invariance requires
considering the parametrized loops.)

For the purposes of this paper, we do not need to worry about the time parametriza-
tion of the loops. The fundamental fact that explains the importance of the loop
measure is the following. We do this to emphasize that we do not need to assume
that D is simply connected.

Proposition 3.6 (Conformal invariance). If f : D → f(D) is a conformal trans-
formation, then

f ◦mD = mf(D).
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♣We have stated the proposition for loops, modulo reparametrization. One can get a

similar result for parametrized loops but then one must change the parametrization as in the

conformal invariance of Brownian motion.

Sketch of proof. Let ρ(z, z; t) be the measure on paths associated to Brownian loops
at z of time duration t. It is a measure of total mass pt(z, z) = (2πt)−1 that can
be defined using standard Brownian bridge techniques. Let

ρ(z, z) =

∫ ∞
0

ρ(z, z; t) dt,

which is an infinite measure. For any D, we define ρD(z, z; t), ρD(z, z) by restriction.
If f : D → f(D) is a conformal transformation, and η is a loop in D, we write
f ◦ η for the corresponding loop in f(D) obtained using Brownian scaling on the
parametrization. In other words, if η has time duration tη, then f ◦ η has time
duration ∫ tη

0

|f ′(η(s))|2 ds.

The measure ρD(z, z) induces a measure f ◦ ρD(z, z) by considering f ◦ η. Using
the conformal invariance of Brownian motion, one can check that

(23) f ◦ ρD(z, z) = ρf(D)(f(z), f(z)).

Suppose h is a continuous, nonnegative function on D. Then h induces a measure
on (rooted) loops by

ρD,h =

∫
D

ρD(z, z)h(z) dA(z),

where A denotes area. We can also consider this as a measure on unrooted loops
by forgetting the root. We write ρD for ρD,h with h ≡ 1. Another way to define
the Brownian loop measure µD on unrooted loops is

dµD
dρD

(η) =
1

tη
,

where tγ denotes the time duration of γ. More generally,

dµD
dρD,h

(η) =

[∫ tη

0

h(η(s)) ds

]−1

.

Suppose h(z) = |f ′(z)|2. Then (23) implies that

f ◦ ρD,h =

∫
D

ρf(D)(f(z), f(z)) |f ′(z)|2 dA(z)

=

∫
f(D)

ρf(D)(w,w) dA(w) = ρf(D).

Also, ∫ tη

0

h(η(s)) ds =

∫ tη

0

|f ′(η(s))|2 ds =
1

tf◦η
.

�

By construction, mD also satisfies the restriction property.
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• If V1, V2 are subsets, we write either m(V1, V2;D) or mD(V1, V2) for the mD

measure of the set of loops in D that intersect both V1 and V2.
• Suppose D ⊂ H is a domain (not necessarily simply connected) with

dist(0,H\D) > 0. Suppose γ satisfies (16) and t < T := inf{t : dist(γ(t),H\
D) = 0}. Then

(24) m(γt,H \D;H) = a

∫ t

0

Γ(Us; gs(D)) ds.

If D is simply connected, we can use (19) to write

(25) m(γt,H \D;H) = −a
6

∫ t

0

Sfs(Us) ds,

where fs is a conformal transformation of gs(D) onto H with f(Us) ∈ R.

♣The only functionals of the Brownian loop measure that we will need are of the type
on the left-hand side of (24). We might consider using the right-hand side of (24) as the
definition of m(γt,H \D;H). However, it is not so easy to see from this formulation to see
that if γ is a curve in H connecting boundary points 0, x, then

m(γt,H \D;H) = m(γRt ,H \D;H),

where γRt denotes the reversal of the path. This is immediate from the loop measure description

of the quantity.

♣The formula (24) comes from a Brownian bubble analysis of the Brownian loop measure.

Suppose γ is a simple curve from 0 to ∞ in H. If l is a loop in H that intersects γ, we can

consider the first time (using the time scale of γ) that the loop intersects γ. If l intersects γ

first at time t, then l is a “boundary bubble” in H \ γt rooted at γ(t). We therefore can write

the Brownian loop measure, restricted to loops intersecting γ, as an integral of the Brownian

bubble measure in decreasing family of domains H \ γt. We can think of γ as an “exploration

process” for the Brownian loop measure. This idea is used in the construction of conformal

loop ensembles by Sheffield and Werner [28]. This exploration idea is important in our analysis

of SLEκ in an annulus.

Although the Brownian loop measure is a measure on unrooted loops, it is often
convenient to choose roots of the loops. For example, if η is an unrooted loop, we
can choose the root to be the closest point to the origin, say e−r+iθ. (Except for a
set of measure zero, this point will be unique). The rooted loop is then a Brownian
bubble in the domain Or := C\Dr. This is the basis for the following computation.

Proposition 3.7. Suppose D ⊂ D is a simply connected domain with dist(0, ∂D) >
e−r. Then,

m(Dr,D \D;D) =
1

π

∫ ∞
r

∫ 2π

0

ΓOs(e
−s+iθ;D) ds dθ,

where Os = D \ Ds.
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Lemma 3.8. There exists c < ∞ such that the following is true. Suppose D ⊂ D
is a simply connected domain containing the origin and g : D → D is the conformal
transformation with g(0) = 0, g′(0) > 0. Suppose that r ≥ log g′(0) + 2. Let
φ : g(Ar ∩ D) → As be a conformal transformation sending C0 to C0 and let
h = φ ◦ g which maps Ar ∩D onto As. Then if u = r − log g′(0), z ∈ Cr, w ∈ C0,

|s− u| ≤ c e−u, |φ′(w)− 1| ≤ c e−u, |h′(z)− g′(0)| ≤ c g′(0) e−u,∣∣mD(Dr,D \D)− log(r/u)
∣∣ ≤ c e−u.

Proof. The Koebe-1/4 theorem applied to g−1 shows that dist(0, ∂D) ≥ [4g′(0)]−1.
Applying the distortion theorem to g restricted to Du+ 3

2
, we see that there exists

c <∞ such that if |w| ≤ e−r,

|g(w)− g′(0)w| ≤ c e−2u,

|g′(w)− g′(0)| ≤ c e−u.
In particular, if |w| = e−r, then

(26) |g(w)| = e−u [1 +O(e−u)].

Using this and monotonicity, we see that

(27) s = u+O(e−u).

Let U denote the conformal annulus g(Ar∩D) so that φ maps U onto the annulus
As. By conformal invariance we see that log |g(z)|/s equals the probability that a
Brownian motion starting at z exits U at g(Cr). However, we know that the inner
boundary of U lies within distance O(e−2u) of Cu. If the Brownian motion gets
that close to Cu, the probability that it does not exit at Cu is O(e−u/u). Therefore,

log |g(z)|
s

=
log |z|
u

[1 +O(e−u/u)].

Hence, from (27), we get

log |g(z)| = log |z| [1 +O(e−u)],

which implies |g′(eiθ)| = 1 + O(e−u). The argument to show that |h′(e−r+iθ)| =
g′(0)[1 +O(e−u)] is similar.

By conformal invariance and symmetry,

EAr∩D(Cr, ∂D) = EAs(Cs, C0) = EAs(C0, Cs) = 2πs−1.

Similarly, if

v̂(z) = Pz{Bσ̂ ∈ C0} = 1− log |z|
r

,

where σ̂ = inf{t : Bt 6∈ Ar}, then

2πr−1 = EAr (Cr, C0) =

∫
Cr

∂nv̂(z) |dz|.

By the strong Markov property, we can write

EAr (Cr, C0) =

∫
D∩∂D

[
1− log |z|

r

]
dEAr (Cr, dz).
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The term 1 − log |z|
r is the probability that a Brownian motion starting at z exits

Ar at C0. Therefore, using (27),∫
D∩∂D

log |z|
r

dEAr (C0, dz) = 2π [s−1 − r−1] = 2π [u−1 − r−1 +O(e−u/u2)].

Lemma 3.1 implies that if V ⊂ ∂D and z, w ∈ Cr,
EAr (z, V ) = EAr (w, V ) [1 +O(e−u)],

and hence

EAr (z, V ) =
1

2π
EAr (C0, V ) [1 +O(e−u)].

Lemma 3.1 can also be used to see that if w ∈ D ∩ ∂D, z ∈ Cr,

HAr (w,Cr) =
1

2

log |w|
r

[1 +O(e−u)].

Therefore, using (27),

ΓAr (z,Ar ∩D) =

∫
D∩∂D

HAr (w, z) dEAr∩D(z, w) =
u−1 − r−1

2
[1 +O(e−u)].

From Proposition 3.7 we know that the quantity we are interested in can be
written as

1

π

∫ 2π

0

∫ ∞
r

ΓAt(e
−t+iθ;At ∩D) dt dθ =

∫ ∞
0

[
1

u+ t
− 1

r + t

]
[1 +O(e−u−t)] dt.

By computing the integral we see that this quantity equals

log(r/u) +O(e−u).

�

We will need to consider the Brownian loop measure in an annulus. If we fix
the origin as a marked point, we can divide loops into two sets: those with nonzero
winding number around zero and those with zero winding number. If A is a confor-
mal annulus such that 0 and∞ lie in different components of Ac, then the measure
of the set of loops in A with nonzero winding number is finite. It is a conformal
invariant which we calculate in the next proposition.

Proposition 3.9. Let m∗(r) denote the Brownian loop measure of loops in Ar that
have nonzero winding number. Then

m∗(r) =
r

6
− 2

∫ r

0

δ(s) ds,

where δ(s) is defined as in (21). In particular, there exists C > 0 such that as
r →∞,

(28) em
∗(r) = C r−1 er/6 [1 +O(r−1)].

Proof. By focusing on the point of the loop of largest radius (see the appendix of
[18]), we can give the expression

m∗(r) = 2π

∫ r

0

∑
k∈Z\{0}

1

π
HSs(0, 2πk) =

1

6
− 2δ(r).

Proposition 3.5 implies that there exists c such that

m∗(r) =
r

6
− log r + c+O(r−1), r →∞,
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from which (28) follows with C = ec.
�

Corollary 3.10.

• Suppose D ⊂ D is a simply connected domain containing the origin and
suppose that dist(0, ∂D) > e−r. Let 0 ≤ s < r be defined by saying that the
annulus D \ Dr is conformally equivalent to As. Then the Brownian loop
measure of loops in Ar of nonzero winding number that intersect D \D is
m∗(r)−m∗(s).
• Under the same assumptions, the Brownian loop measure of loops in D of

nonzero winding number that intersect D\D is log g′(0)/6 where g : D → D
is the conformal transformation with g(0) = 0, g′(0) > 0.

Proof. The first assertion follows immediately and the second is obtained by con-
sidering comparing D \Ar and D \Ar as r →∞. �

We ill use the following estimate in the discussion in the next section but it will
not figure in our main results. See [15] for a proof.

Proposition 3.11. Let k(r) denote the mD−r measure of loops that intersect both
A−r \A−r+1 and D. Let k′(r) be the measure of such loops that do not separate the
origin from C0. Then as r →∞,

k(r) = r−1 +O(r−2), k′(r) = O(r−2).

In particular, if V1, V2 are disjoint compact sets, then there exists Λ(V1, V2) such
that as r →∞,

mD−r (V1, V2) = log r − Λ(V1, V2) + o(1).

3.6. Chordal SLEκ in simply connected domains. We will review two equiv-
alent ways to construct SLEκ in simply connected domains for κ = 2/a ≤ 4. See
[14, 24, 17, 19] for more details. Suppose D is a simply connected subdomain of H
with dist(0,H \ D) > 0. Let w be a nonzero ∂D-analytic point; we allow w = ∞
as a possibility. Let Φ : D → H be the unique conformal transformation with
Φ(0) = 0,Φ(w) =∞, |Φ′(w)| = 1. Here we are using the conventions about deriva-
tives as discussed in Section 3.1. The most important example for this paper is
D = Sr and w = x+ ir for some x ∈ R.

Let gt be the solution of the Loewner equation

∂tgt(z) =
a

gt(z)− Ut
, g0(z) = z,

where Ut = −Bt is a standard Brownian motion defined on the probability space
(Ω,F ,P). Then the corresponding curve γ is SLEκ in H from 0 to ∞ which with
P-probability one is a simple curve with γ(0,∞) ⊂ H.

Let

T = TD = inf{t > 0 : γ(t) 6∈ D}.
For t < T , let

wt = gt(w), γ∗t = Φ ◦ γt,
and let ĝt be the unique conformal transformation of H \ γ∗t onto H with ĝt(z) =
z + o(1) as z →∞. Let

Φt = ĝt ◦ Φ ◦ g−1
t .
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Then ĝt satisfies the Loewner equation

∂tĝt(z) =
aΦ′t(Ut)

2

ĝt(z)− Ût
, ĝ0(z) = z,

where Ût = ĝt(γ
∗(t)) = Φt(Ut). Then Φt is the unique conformal transformaton of

gt(D \ γt) onto H with Φt(Ut) = Ût,Φt(wt) = ∞, |Φ′t(wt)| = |g′t(w)|−1. Moreover,
using only the Loewner equation, one can show that

(29) Φ̇t(Ut) = −3b

2
Φ′′t (Ut), Φ̇′t(Ut) =

aΦ′′t (Ut)
2

4Φ′t(Ut)
− 2aΦ′′′t (Ut)

3

where Φ̇t(Ut), Φ̇
′
t(Ut) denote ∂tΦt(x), ∂tΦ

′
t(x) evaluated at x = Ut.

Let

(30) Ht = H∂gt(D\γt)(x,wt), Kt = |g′t(w)|bHt(Ut)
b = Φ′t(Ut)

b.

The second equality for Kt follows from the scaling rule for the Poisson kernel. A
straightforward Itô’s formula calculation using (29) shows that

dKt = Kt

[
ac

12
SΦt(Ut) dt+

bH ′t(Ut)

Ht(Ut)
dUt

]
,

where S denotes the Schwarzian derivative. Let

Mt = exp

{
−ac

12

∫ t

0

SΦs(Us) ds

}
Kt

= exp
{c

2
mH(γt,H \D)

}
|g′t(w)|bHt(Ut)

b.

(To check the second equality, recall that we have parametrized so that hcap(γt) =
at.) Then Mt is a local martingale satisfying

dMt =
bH ′t(Ut)

Ht(Ut)
Mt dUt =

bΦ′′t (Ut)

Φ′t(Ut)
Mt dUt.

We can use Girsanov theorem to define a new probability measure P∗ obtained
by weighting by the local martingale Mt. (The Girsanov theorem is stated for
nonnegative martingales; since we only have a local martingale, we need to use
stopping times. However, as long as t < T , there is no problem.) The Girsanov
theorem states that

(31) dUt =
bH ′t(Ut)

Ht(Ut)
dt+ dWt, t < T,

where Wt is a standard Brownian motion with respect to P∗.
Another application of Itô’s formula using (29) shows that if Ut satisfies (31),

then Ût = Φt(Ut) satisfies

dÛt = Φ′t(Ut) dWt.

The upshot is that, with respect to the measure P∗, ηt has the distribution of (a
time change of) SLEκ from 0 to∞ in H. Since γt = Φ−1 ◦ηt, this implies that with
respect to P∗, γt has the distribution of SLEκ from 0 to w in D. The Girsanov

transformation (31) is sufficent for understanding the probability measure µ#
D(0, w).

Note that it is determined by the logarithmic derivative of Ht; the “compensator”
terms do not need to be computed.

The example of importance in this paper is D = Sr and w = x + ir. It will

suffice for us to consider the probability measure µ#
Sr

(0, w). The drift term in (31)



24 GREGORY F. LAWLER

is somewhat complicated to write down; however, at time t = 0, we can use (6) to
see that it equals bL(r, x) where

(32) L(r, x) =
H ′∂Sr (0, x+ ir)

H∂Sr (0, x+ ir)
=
π

r
tanh

(πx
2r

)
,

where the prime denotes derivative in the first component. This measure is the
same (modulo time change) as the conformal image of SLEκ from 0 to ∞ in H; in
particular, with probability one, the path leaves Sr at w.

In analyzing annulus SLEκ we will be studying measures that will turn out to be

absolutely continuous with respect to µ#
Sr

(0, x + ir). To review the issues that we
need to address, let us recall the case of SLEκ from 0 to ∞ in a simply connected
domain D with H\D bounded and dist(0,H\D) > 0. In this case, when we weight
by the appropriate local martingale Mt, then with P∗-probability one, T =∞ and
γ(t)→∞. If T =∞ and γ(t)→∞, then a deterministic estiamte gives

M∞ = exp
{c

2
mH(γ,H \ γ)

}
1{γ ⊂ D},

and since this happens with P∗-probability one,

(33) E[M∞] = M0 = Φ′(0)b.

♣The argument we will use for the annulus is similar to the proof for simply connected

domains, so it is worth reviewing the main steps. Suppose D is a simply connected domain

with H \D bounded and w =∞. Here we were able to guess the exact form for the partition

function for µD(0,∞), Φ′D(0)b. Direct Itô’s formula calculation shows that Mt as above gives

a local martingale. However, to justify (33), we need that fact that the curve weighted by

the local martingale goes to infinity without leaving the domain. This gives the necessary

“uniform integrability”.

In the annulus case, we will consider two measures on curves from 0 to w = x+ ir in Sr. We

will use the Feynman-Kac theorem applied to a slightly different process to give a candidate

for the partition function. Although we will not have an explicit form of it, we will know that

it satisfies a certain PDE and hence gives us a local martingale. Having a local martingale

is not sufficient; we will also need to show that the process weighted by the local martingale

leaves the domain at w. This will give the analogue of (33). The argument for the annulus,

as well as the argument here, will require κ ≤ 4.

3.7. Shrinking domains. We will need a generalization of this where the domain
D is replaced with a decreasing family of domains {Dt : t > 0}. Although what
we describe can be done more generally, we will restrict to the case that we need
in this paper. This will lead to a process that we call locally chordal SLEκ in an
annulus.

Let D = Sr and w ∈ ∂Sr \{0}. (The case S∞ = H, w =∞ corresponds to radial
SLE and is discussed in the next subsection.) Let

(34) γ̃t =
⋃

k∈Z\{0}

(γt + 2πk), Dt = D \ γ̃t.

and

D̂t = D \ (γ̃t ∪ γt) = ψ−1[D \ ηt],
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where ηt = ψ ◦ γt. In other words, when we slit the domain D = Sr by γt we also
add slits at the 2πk translates of γt.

Let T denote the first t > 0 such that either γ(t) ∈ ∂Sr or ηt disconnects the
origin from the unit circle,

T = inf{t > 0 : γt 6⊂ Dt}.

Let D̃t = gt(D̂t), and, as before, Ut = gt(γ(t)). We want to study the process that
evolves at time t like chordal SLEκ from γ(t) to w in the domain Dt. Equivalently,
the process after conformal transformation by gt evolves like chordal SLEκ from
Ut to wt = gt(w) in D̃t. The latter process can be defined in two equivalent ways.
Let Ht(x) = H∂gt(D\γt)(x,wt) as in the previous section and let

H̃t(x) = H∂D̃t
(x,wt), Qt(x) =

H̃t(x)

Ht(x)
.

The process can be considered as either of the following.

• SLEκ in H from 0 to ∞ weighted by H̃t(Ut)
b.

• SLEκ in Sr from 0 to w weighted by Qt(Ut)
b.

♣If Jt is a positive process, then “weighting by Jt” is in the sense of the Girsanov thoerem.
If Jt satisfies

dJt = Jt [Rt dt+At dUt] .

then

Nt := exp

{
−
∫ t

0

Rs ds

}
Jt,

is a local martingale satisfying
dNt = AtNt dUt.

When we use the Girsanov theorem (using stopping times so that the local martingale is a
martingale), then

dUt = At dt+ dWt,

where Wt is a Brownian motion in the new measure.

Let

(35) ∆t =
Q̇t(Ut)

Qt(Ut)
,

where Q̇t(Ut) denotes ∂tQt(x) evaluated at x = Ut. Our assumptions allow us to
conclude that ∆t is well defined and continuous for t < T .

As in (30), we define

Kt = |g′t(w)|b H̃t(Ut)
b = |g′t(w)|bHt(Ut)

bQt(Ut)
b.

Using the previous calculation and the chain rule, we see that Kt satisfies

dKt = Kt

[(
−b∆t +

ac

12
SΦt(Ut)

)
dt+

b H̃ ′t(Ut)

H̃t(Ut)
dUt

]
.

If

Ct = exp

{∫ t

0

∆s ds

}
,

Mt = Cbt exp

{
−ac

12

∫ t

0

SΦs(Us) ds

}
Kt,
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then Mt is a local martingale satisfying

dMt =
b H̃ ′t(Ut)

H̃t(Ut)
Mt dUt.

The term

−a
6

∫ t

0

SΦs(Us) ds

can be interpreted in terms of Brownian loops, but we need to be careful. At time
s, −SΦs(Us)/6 represents the measure of Brownian bubbles in H rooted at Us that
intersect gs(Ds). For every Brownian loop l, let s(l) be the smallest s such that
s(l) ∩ γs 6= ∅. Then

−a
6

∫ t

0

SΦs(Us) ds = m̃t,

where m̃t = log Λ̃t is the Brownian loop measure of l in D with s(l) ≤ t and
l ∩D \Ds(l) 6= ∅. Then the local martingale is

Mt = Cbt Λ̃
c/2
t Ht(Ut)

b Qbt = Cbt Λ̃
c/2
t H̃t(Ut)

b.

Note that the only term in Mt that has nontrivial quadratic variation is H̃t(Ut)
b.

Therefore, when we weight by the local martingale, the process looks locally like
SLEκ from γ(t) to w in Dt. We call it locally chordal SLEκ (we have defined it only
for κ ≤ 4.) This gives a probability measure on paths starting at 0 in Sr. We will
use κ ≤ 4 to show that with probability one the paths leave Sr at w. We can also
view the paths as living in the annulus Ar and going from 1 to e−r+ix with a known
total winding number. In Section 3.9 we will use an annulus reparametrization of
the curve.

3.8. Radial SLEκ raised to H. Suppose D is a simply connected domain, z ∈ ∂D,
w ∈ D, and ∂D is locally analtyic at z. Radial SLEκ in D from z to w is a measure
on paths

µD(z, w) = ΨD(z, w)µ#
D(z, w),

that satisfies the conformal covariance rule

f ◦ µD(z, w) = |f ′(z)|b |f ′(w)|b̃ µ#
f(D)(f(z), f(w)).

The conformal covariance rule determine the total mass up to a multiplicative
constant and for convenience we choose the constant so that ΨD(1, 0) = 1.

To obtain the probability measure µ#
D(0, w) where w ∈ H, we weight chordal

SLEκ by a particular local martingale. Let gt be the conformal maps for chordal
SLEκ from 0 to ∞, and let w ∈ H. Let Zt = gt(w)− Ut and

Mt = |g′t(w)|b̃HH(Zt, Ut)
b,

where b, b̃ are the boundary and interior scaling exponents, respectively, as in (1).
Then Mt is a local martingale and the measure on the paths obtained by weighting
by this local martingale is that of radial SLEκ. In the weighted measure, the path
stops at finite (half plane capacity) time Tw at which γ(Tw) = w. This determines

the probability measure µ#
H (0, w) and conformal invariance determines the measure

for all simply connected D. Although this is not the same definition as originally
given by Schramm [25], the Girsanov theorem shows that it is equivalent.

One can also understand the relationship between radial and chordal SLEκ using
the Brownian loop measure. Suppose that γt is a simple curve in H starting at the
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origin and let ηt = ψ ◦ γt. We will assume that t is small so that ηt is also simple.
Let

h̃t : D \ ηt → D

be the conformal transformation with h̃′t(0) > 0 and suppose the curve has been
parametrized so that h′t(0) = et. Let gt : H \ γt be the usual conformal transforma-
tion with driving function Ut; one can show that

∂thcap[γt] |t=0= 2,

which is why this is a standard choice of parametrization for chordal SLE. Let
γ̃t, γ̂t be as in the previous subsection and let ht be a conformal transformation
ht : H \ γ̂t → H such that ψ(ht(z)) = h̃t(ψ(z)). This transformation is determined
uniquely by requiring that

ht(iy) = i[y − t] + o(1), y →∞.

We define φt by

ht = φt ◦ gt.

Let µ1, µ2 denote µH(0,∞) and µD(1, 0). The latter measure can be viewed
as a measure on curves γt by pulling back by ψ. (Note that |ψ′(0)| = 1 so the
derivative factor in the scaling rule equals one.) We view these measures on the
initial segment γt. The measure µ2 is supported on curves such that γt ∩ γ̃t 6= ∅.
Note that µ2 � µ1, and let Yt(γt) denote the Radon-Nikodym derivative so that
dµ2 = Y dµ1. Let Ψ∗ denote the partition function for the raised radial SLE; in
particular, Ψ∗H(0,∞) = 1.

Although the loop measure is conformally invariant, we must be careful here
because ψ : H → D is not one-to-one. Indeed, each loop l′ in D has an infinite
number of preimages in H. If l′ is a loop in D that intersects ηt, we can specify a
unique preimage by considering the smallest s such that ηs ∈ l′ and then rooting l′

at ηs. We associate to l′ the corresponding loop l in H rooted at γs.
Also, the loops of nonzero winding number in D have preimages that are not

loops in H. Since the paths have been parametrized so that h̃′(0) = et, Corollary
3.10 implies that the measure of such loops is deterministic and equal to t/6. Using
this idea, we get the formal expression

Y (γt) = Ct exp
{c

2
[m̂(γt)− (t/6)]

} Ψ∗H\γ̂t(γ(t), 0)

ΨH\γt(γ(t), 0)
.

Here Ct is a normalization to make this a probability measure and m̂(γt) denotes
the measure of loops l in H that intersect γt with the following property.

• Let s be the smallest time with γt ∈ l. Then

l ∩ γ̃s 6= ∅.

In other words, the loop hits a translate of γt before it hits γt where time
is measured on the curve γt.

The ratio of partition functions is only formal but we can make sense of it by writing

Ψ∗H\γ̂t(γ(t),∞)

ΨH\γt(γ(t),∞)
=

Ψ∗H\γ̂t(γ(t),∞)

ΨH\γ̂t(γ(t),∞)

ΨH\γ̂t(γ(t),∞)

ΨH\γt(γ(t),∞)
.
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The first term on the right equals one since, formally,

Ψ∗H\γ̂t(γ(t),∞)

ΨH\γ̂t(γ(t),∞)
=
|h′t(γ(t))|b Ψ∗H(ht(γ(t)),∞)

|h′t(γ(t))|b ΨH(ht(γ(t)),∞)
= 1.

For the second term, we use the formal computation

ΨH\γ̂t(γ(t),∞)

ΨH\γt(γ(t),∞)
=
|g′t(γ(t))|b Ψgt(H\γ̂t)(gt(γ(t)),∞)

|g′t(γ(t))|b ΨH(Ut,∞)
= Ψgt(H\γ̂t)(Ut,∞),

and conformal covariance,

Ψgt(H\γ̂t)(Ut,∞) = φ′t(Ut)
b.

Therefore,

Yt(γt) = Ct e
−ct/12 exp

{c

2
m̂(γt)

}
φ′t(Ut)

b.

This is a local martingale (and a martingale for κ ≤ 4) for chordal SLEκ and
when we weight by the martingale we get locally chordal SLEκ from γ(t) to ∞
in H \ γ̂t. Although we are considering chordal SLEκ, we are using the radial
parametrization. This is the same as radial SLEκ viewed on the covering space H.
It remains to find the normalization factor Ct. Since the weighted measure locally
looks like chordal SLEκ in the infinitely slit domain and hence after mapping by ht
looks like chordal SLEκ, we get that Ct = eb̃t for some b̃. To find the exponent we
need only differentiate at 0. The measure of loops that hit both γt and a translate
of γt is of order t2 and hence

∂tm̂(γt)
∣∣
t=0

= 0.

We claim that

(36) ∂tφ
′
t(Ut)

∣∣
t=0

= −1

6
,

and hence

b̃ =
c

12
+
b

6
.

Let us sketch the proof of (36). We write “small error” for errors that are o(t)
as t ↓ 0. The quantity φ′t(Ut) is the probability that a Brownian excursion in H \ γ̂t
from γ(t) to ∞ does not hit γ̃t. Up to small error, it is the probability that an
excursion in H from 0 to ∞ does not hit γ̃t. The set γ̃t is a union of curves of
half-plane capacity 2t rooted at the points 2πk, k ∈ Z \ {0}. The probability that
an excursion hits the translate γt + 2πk is exactly

∂yq(iy)

where q(z) = Ez[Im[Bτ ]], B is a standard Brownian motion and τ is the first time
that it leaves H \ [γt + 2πk]. As t ↓ 0, up to small error this equals

1

(2πk)2
hcap[γt] =

t

2π2
.

The probability of hitting more than one translate is O(t2), and hence, up to small
error, the probability that the excursion hits γ̃t is∑

k∈Z\{0}

t

2π2
=
t

6
.
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♣In the last computation we use the fact that for a small curve rooted at x ∈ R, the
expected value of Im(Bτ ) is given by the half-plane capacity times a multiplicative constant
of the Poisson kernel. In order to keep track of constants (perhaps made especially confusing
by our definition of H), it is useful to remember that for large y if D = H \ D,

Eiy[Im(Bτ )] ∼ 1

y
= HH(y, 0).

Hence, we get the general relation,

Ez[Im(Bτ )] ∼ HH(z, x) hcap[γt].

The estimate (13) is done similarly. In this case, the probability that an excursion
from 0 to x+ ir in Sr hits the translate γt + 2πk is exactly, ∂yq(y) where

q(z) =
Ez[HSr (Bτ , x+ ir)]

H∂Sr (0, x+ ir)
.

Here τ is the first time that the Brownian motion leaves Sr \ [γt+2πk]. Up to small
error, if Bτ 6∈ ∂Sr,

HSr (Bτ , x+ ir) = Im[Bτ ]HSr (2πk, x+ ir).

Also, as y ↓ 0,

∂yEiy [Im(Bτ )] |y=0= hcap[γt]HSr (0, 2πk) [1 + o(1)].

3.9. Annulus Loewner equation. We will need to consider the annulus Loewner
equation which is similar to the chordal equation (16). We will need to define the
annulus equation in the covering space Sr. We start with some defintions. Assume
U : [0,∞) −→ R is continuous with U0 = 0 and such that the chordal equation (16)
produces a simple curve. Recall that ψ(z) = eiz, τr = inf{t : Imγ(t) = r}, and let
ηt = ψ ◦ γt. Let

γ̃t =
⋃

k∈Z\{0}

(γt + 2πk), γ̂t = γt ∪ γ̃t,

T = inf{t : γt ∩ γ̃t 6= ∅}.
Equivalently, T is the first time that the curve ηt is not simple. Note that T 6= τr
for each r; indeed, by the definition of T , there must be an s < T with Imγ(s) =
Imγ(T ). Let

Sr,t = Sr \ γt, Ŝr,t = Sr \ γ̂t.
If t < T ∧ τr, there is a unique r(t) = r(t, γt) ∈ (0, r] such that there is a

conformal transformation
h̄t : Ar \ ηt → Ar(t),

with h̄t(C0) = C0. The transformation h̄t is unique up to a rotation. This transfor-
mation can be raised to the covering space Sr to give a conformal transformation

ht : Ŝr,t → Sr(t)

with ht(±∞) = ±∞. This transformation is unique up to a real translation, and
we specify it uniquely by requiring

ht(Ut) = Ut.

We define φt by
ht = φt ◦ gt.
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Note that φt is the unique conformal transformation of gt(Sr,t) onto Sr(t) with
φt(±∞) = ±∞ and φt(Ut) = Ut. Although r(t) depends on the curve γ, the next
lemma shows that its derivative at 0 is independent of γ assuming γ has the capacity
parametrization.

Lemma 3.12. If γ is a curve with hcap[γt] = at, then ṙ(0) = −a/2 = −1/κ.

Proof. We will consider excursion measure defined by

ED(V1, V2) =
1

2π2

∫
V1

∫
V2

HD(z, w)|dz| |dw|.

This definition assumes V1, V2 are nice boundaries, but this is a conformal invariant
(see [17, Chapter 5]) and hence is defined for rough boundaries as well. In this
normalization, Er := EAr (C0, Cr) = 1/r. Consider Dt = Ar \ ηt where η = ψ ◦
γ. We only need to consider small t for which η is a simple curve in Ar. Let
E(t) = EDt(Cr, C0∪ηt). By definition of r(t) and conformal invariance of excursion
measure, E(t) = 1/r(t). Therefore, by the chain rule

(37) Ė(0) =
ṙ(0)

r2
.

Suppose r > 1 and t is sufficiently small so that D1 ⊂ Dt. Then using the strong
Markov property,

EAr (Cr, C1)− ED(Cr, Dt) = ED1∩Ar (Cr, C1) E [q(Bτt)] =
1

r − 1
E
[
− log |Bτt |

r

]
.

Here B is a Brownian motion started uniformly on Cs, τt is the first time that it
leaves Dt and q(z) denotes the probability that a Brownian motion starting at z
hits Cr before C0,

q(z) =
− log |z|

r
.

Therefore,

Ė(0) =
1

r2

r

r − 1
∂tE[log |Bρt∧σr |] |t=0 .

where ρt is the first time to leave Dt and σr is the first time to hit Cr. We claim
that

(38) ∂tE[log |Bρt∧σr |] |t=0=
r − 1

r
∂tE[log |Bρt |] |t=0 .

To see this, we first note that the probability starting at C1 of hitting Cr before
C0 is 1/r. Also, given ρt < σr, the probability of hitting Cr before C0 is O(dt/r)
where dt = diam(γt) = o(1). Also, since we start with the uniform distribution on
C1, the distribution of σr given that σr < σ0 is also uniform. Therefore,

E[log |Bρt | ; σr < ρt] =
1

r
E[log |Bρt |] [1 +O(dt)].

and hence

∂tE[log |Bρt | ; σr < ρt]|t=0 =
1

r
∂tE[log |Bρt |]|t=0.

from which (38) follows. Note that the right-hand side of (38) is the same if we
start the Brownian motion at the origin.

By comparison with (37), we see that ṙ(0) is independent of r(0), and we can
compute ṙ(0) by letting r ↓ 0. In this case, we get the comparison of the chordal
Loewner equation to the radial Loewner equation. �
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We define

σs = inf{t : r(t) = s}.
Let γ∗ be γ with the “annulus parametrization”

γ∗(s) = γ(σs), 0 ≤ s ≤ r,

and let

U∗s = Ur(s), h∗s = hσs .

The direction of “time” is reversed so one must be careful with minus signs.

♣In the annulus parametrization, the radius takes the place of time. However, the direction

of “time” is reversed, so one must take some care with minus signs.

We will just state the annulus Loewner equation (see, e.g., [1, 12]). It can also
be described in terms of excursion reflection Brownian motion (this helps motivate
the formulas), see [5, 16]. We review the facts here. Let HSr (z, x) = HSr (z − x)
denote the complexification of the Poisson kernel in Sr which recall by (4) is given
by

HSr (z) = − π

2r
coth

(πz
2r

)
,

and satisfies

ImH(z) = HSr (z, 0),

HSr (z) = −1

z
+O(|z|), z → 0,

and if x ∈ R,

ReHSr (x) = − π

2r
coth

(πx
2r

)
, ReHSr (x+ ir) = − π

2r
tanh

(πx
2r

)
.

There exists a unique holomorphic function with period 2π

Hr : Sr → Hr,

such that

Hr(z) = −1

z
+ o(1), z → 0,

and such that the induced map

H̄r(eiz) = Hr(z)

is a conformal transformation of Ar onto a domain of the form H \ L for some
horizontal line segment L. One can find this using excursion reflected Brownian
motion (ERBM) as we now sketch. The imaginary part Hr = ImHr will be the
Poisson kernel for ERBM in the annulus. We can write

(39) Hr(z) =
Im(z)

2r
+HAr (e

iz, 1) =
Im(z)

2r
− π

2r

∑
k∈Z

Im coth
(πz

2r

)
.

In this formula, the infinite sum represents the contribution to the ERBM Poisson
kernel by paths that do not hit the “hole” D \ Ar. The first term gives the contri-
bution of paths that hit the hole first. The probability of hitting the hole before
hitting C0 is Im(z)/r. Given that it hits the hole, the distribution of the first visit
to C0 is uniform on the circle and hence the value of the kernel is 1/2 (recall that
in our normalization, HD(0, 1) = 1/2.)
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One can check that the sum in (39) absolutely convergent. However, the real
parts are not absolutely convergent so we must take a little care in the definition
of Hr. We write

Hr(z) =
z

2r
− π

2r
coth

(z π
2r

)
− π

2r

∞∑
k=1

[
coth

(
(z + 2kπ)π

2r

)
+ coth

(
(z − 2kπ)π

2r

)]

=
z

2r
− π

2r

PP∑
k

coth

(
(z + 2kπ)π

2r

)
,

where we write
PP∑

k
f(k) = lim

N→∞

N∑
k=−N

f(k).

Lemma 3.13. As z → 0,

(40) Hr(z) = −1

z
+ z

(
1

2r
− Γ(r) +

1

12

)
+O(|z|3),

where Γ(r) is as defined in (20).

Proof. We use the first expression for the definition of Hr. Note that as z → 0,

coth z =
1

z
+
z

3
+O(|z|3),

and hence

π

2r
coth

(z π
2r

)
=

π

2r

[
2r

zπ
+
zπ

6r
+O(|z|3)

]
=

1

z
+
π2z

12r2
+O(|z|3)

Also the derivative at z = 0 of

− π

2r

∞∑
k=1

[
coth

(
(z + 2kπ)π

2r

)
+ coth

(
(z − 2kπ)π

2r

)]
is 1

12 − δ(r).
�

Note that

Hr(z + ir) =
z + ir

2r
− π

2r

PP∑
k

tanh

(
(z + 2kπ)π

2r

)
= −HI(r, x)

2
+
i

2
,

where HI is as defined in Section 3.2.
The chordal equation (16) can be written as

∂tgt(z) = −aHH(gt(z)− Ut).

The annulus Loewner equation is similar,

∂tht(z) = 2 ṙ(t)Hr(t)(ht(z)− Ut),

or equivalently,

(41) ∂rh
∗
r(z) = 2Hr(h∗r(z)− U∗r ).
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An important observation is that if r(0) = r, then for small t, the functions gt, ht,
and h∗

r− at2
are very close near the origin. For future reference, we also note that

(42) ∂s log(h∗s)
′(x+ ir) |s=r= 2H′r(x+ ir) = −H′I(r, x).

♣There may appear to be some arbitrariness in the choice of the real translation for the
complex kernel HH(gt(z)−Ut). It turns out that this choice is not so important. We will write

d[h∗r(z)− U∗r ] = 2Hr(h∗r(z)− U∗r )− dU∗r .

If we had chosen a different real translation of Hr, it would cancel here when we took the

difference.

♣We have written the annulus equation in the covering space Sr. We would also consider
the function given by

fs(e
iw) = eihs(w), 0 ≤ s ≤ r.

There is a curve η : (0, r)→ Ar with η(0+) = 1 such that fs is a conformal transformation of

Ar \γs onto Ar−s. Such a transformation is defined up to a rotation, but specifying continuity

and fs(η(r − s)) = U∗s determines the rotation.

We will need to compare the chordal and annulus equations at time t = 0. Recall
that φt is defined by

ht(z) = φt(gt(z)),

and that φt(Ut) = Ut = gt(γ(t)). Although gt is not smooth at γ(t), it is not
difficult to show that φt is analytic in a neighborhood of Ut and we can give the
derivatives. We summarize the facts we need in this lemma whose simple prove we
omit.

Lemma 3.14. Suppose Kj,t(z), j = 1, 2, t ∈ [0, ε] are analytic functions in a punc-
tured neighborhood of the origin and are continuous in t. Suppose Ut is a continuous
function with U0 = 0 and gt, ht satisfy

∂tgt(z) = K1,t(gt(z)− Ut), ∂tht(z) = K2,t(ht(z)− Ut),
with g0(z) = h0(z). Suppose that for all t, K1,t −K2,t is analytic in the (unpunc-
tured) neighborhood. If φt is defined by ht(z) = φt(gt(z)), then

(43) φ̇0(z) = [K2,0 −K1,0](z), φ̇′0(z) = [K2,0 −K1,0]′(z).

We now return to the locally chordal SLEκ from 0 to z0 = x+ ir in Sr. Given
the path γt, the process is moving infinitesimally like SLEκ in Ŝr,t from γ(t) to

z0. By conformal invariance we can also view it in gt(Ŝr,t) from Ut to gt(z0) or in

ht(Ŝr,t) = Sr(t) from Ut to ht(z0). Using the last perspective and (31) and (32), we
see that

dUt = bL(r(t), Rt) dt− dWt,

where Rt = Re[ht(z0)] − Ut and Wt is a standard Brownian motion. We choose a
time parametrization so that the radius evolves linearly. If U∗t = Uσ(t) as above,

dU∗t = bκL(r − t, R∗t ) dt−
√
κ dBt.

Using (42), we see that if ft = h∗r−t,

∂t[Reft(z0)] = HI(r − t, R∗t ),
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and hence

(44) dR∗t = [HI(r − t, R∗t )− bκL(r − t, R∗t )] dt+
√
κ dBt.

We have written locally chordal SLEκ in the annulus as a one-dimensional SDE
stopped at a finite time r. The next lemma shows that the process leaves Sr at z0.
The equivalent statement is the following.

Lemma 3.15. If Xt satisfies

dXt = [HI(r − t,Xt)− bκL(r − t,Xt)] dt+
√
κ dBt, 0 ≤ t < r,

then with probability one Xr− = 0.

♣This lemma should not be surprising. If we considered chordal SLEκ from 0 to x + ir

in Sr we know that (for κ ≤ 4) the path leaves the domain at x+ ir. This lemma stays that

the same thing for locally chordal SLEκ. Since for r near zero, locally chordal and chordal

SLEκ are almost the same, the lemma has to be true. One should expect κ ≤ 4 to come into

the proof, and this is the case.

Proof. We discuss the most delicate case, κ = 4 for which bκ = 1; if κ < 4, then
bκ > 1 and the argument is easier. Our equation is

dXt = [HI(r − t,Xt)− L(r − t,Xt)] dt+ 2 dBt.

If Ys = Xr−e−s , then Ys satisfies

dYs = m(s, Ys) ds+ 2 e−s/2 dWs,

where

m(s, y) = e−s
[
HI(e

−s, y)− L(e−s, y)
]
,

and Ws is a standard Brownian motion. It suffices to show that for every ε > 0,
with probability one, |Ys| ≤ ε for all s sufficiently large. By symmetry it suffices to
show that that lim supYs ≤ 0. Let

Zs =

∫ s

0

2 e−r/2 dWr,

and note that with probability one Z∞ exists and is finite.
Using Lemma 3.2, we can see that there exists sε such that m(s, y) ≤ 0 for

s ≥ sε, y ≥ ε/2. Therefore, if Ys ≥ ε and s ≥ sε,

Yr ≤ ε+ max
t≥sε
|Zt − Zsε |.

Therefore, it suffices to show that with probability one lim inf Yn ≤ 0. In other
words, for every ε > 0, s < ∞, y > 0, the probability that the process reaches ε
given Ys = y equals one.

Although the drift m(s, y) is negative, the absolute value is very small at y
slightly larger than an integer multiple of 2π. However, we also know from Lemma
3.2 that for all y, m(s, y) ≤ −c e−s. Given this, we can see that if we start near 2πk,
there is at least a positive probability that there will exist s with Ys ≤ 2πk−c1 e−s.
Given this, there is a positive probability that the process will never return to
{y ≥ 2πk − (c1/2) e−s} and since the drift is negative, this will imply that it will
get near 2π(k − 1). This happens with positive probability, but if it fails and we
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are near 2πk at a larger time s′ we can find s′′ > s′ for which Ys′′ ≤ 2πk− c1 e−s
′′
.

Eventually we will succeed and get to 2π(k − 1). We can iterate this argument.
�

4. Definition of µD(z, w)

4.1. Definition of boundary SLEκ for κ ≤ 4. We fix κ ∈ (0, 4]. In this sec-
tion, we will define boundary SLEκ as proposed in [18]. It is a (positive) measure
µD(z, w) on simple curves γ in a domain D connecting distinct ∂D-analytic bound-
ary points z and w. If D is simply connected, then the definition is the same as
that of chordal SLEκ. We write

ΨD(z, w) = ‖µD(z, w)‖

for the total mass of the measure. We conjecture that ΨD(z, w) <∞ for all D, z, w.
In the case of simply connected domains, we know this is true, and in this paper
we will show it for 1-connected domains for κ ≤ 4. From the construction it will
follow that ΨD(z, w) <∞ for all domains if κ ≤ 8/3 (c ≤ 0).

Suppose D1 ⊂ D is a subdomain of D that agrees with D in neighborhoods of z
and w. We let µD(z, w;D1) be µD restricted to curves γ ⊂ D1. Let

ΨD(z, w;D1) = ‖µD(z, w;D1)‖.

We will show that µD(z, w;D1) < ∞ for all such simply connected D1 for κ ≤ 4.

The measure µ#
D(z, w;D1) is defined to be the probability measure obtained by

normalization

µ#
D(z, w;D1) =

µD(z, w;D1)

ΨD(z, w;D1)
.

If ΨD(z, w) <∞, we write µ#(z, w) for the probability measure.

♣What we call boundary SLE should really be called boundary/boundary SLE, but

this terminology is a bit cumbersome. In later subsections, we also discuss boundary/bulk,

bulk/boundary, and bulk/bulk cases.

In this definition and later on we use the convention as described below equa-
tion (3) that if formulas are written with derivatives, then sufficient smoothness is
assumed.

Definition If κ ≤ 4 and b, c are as in (1), boundary SLEκ is the unique family
of measures (modulo reparametrization) {µD(z, w)}, where D ⊂ C and z, w are
distinct ∂D-analytic points, satisfying the following.

• For each D, z, w, µD(z, w) is a positive measure on curves γ : [0, tγ ] → D
with γ(0) = z, γ(tγ) = w, γ ⊂ D. The total mass is denoted by

ΨD(z, w) = ‖µD(z, w)‖.

The normalization is chosen so that ΨH(0, 1) = 1.
• Conformal covariance If f : D → f(D) is a conformal transformation,

then

(45) f ◦ µD(z, w) = |f ′(z)|b |f ′(w)|b µf(D)(z, w).
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• It follows from (45) that the probability measures are conformally invariant,

f ◦ µ#
D(z, w;D1) = µ#

f(D)(f(z), f(w); f(D1)),

and if ΨD(z, w) <∞,

(46) f ◦ µ#
D(z, w) = µ#

f(D)(z, w).

In particular, µ#
D(z, w;D1) (resp., µ#

D(z, w)) can be defined for nonan-
alytic boundary points provided that there is a conformal transforma-
tion f : D → f(D) such that f(z), f(w) are ∂f(D)-analytic (resp., with
Ψf(D)(f(z), f(w)) <∞).
• Domain Markov property. If ΨD(z, w) < ∞, then for the probability

measure µ#
D(z, w), the conditional probability measure of the remainder of

a curve γ given an initial segment γt, is that of µ#
D\γt(γ(t), w). If D1 ⊂ D is

simply connected, for the probability measure µ#
D(z, w;D1), the conditional

probability measure of the remainder of a curve γ given an initial segment

γt, is that of µ#
D\γt(γ(t), w;D1 \ γt).

• Boundary perturbation. Suppose D′ ⊂ D are domains that agree in
neighborhoods of ∂D′-analytic boundary points z, w. Then µD′(z, w) is
absolutely continuous with respect to µD(z, w) with Radon-Nikodym de-
rivative Y = YD,D′,z,w given by

(47) Y (γ) =
dµD′(z, w)

dµD(z, w)
(γ) = 1{γ ⊂ D′} exp

{c

2
mD(γ,D \D′)

}
.

We will now construct the measure and in the process show uniqueness. For

simply connected domains, we set ΨD(z, w) = H∂D(z, w)b and µ#
D(z, w) to be the

conformal image of ΨH(0,∞) under a conformal transformation. The discussion
in Section 3.6 shows that this is the unique family of measures that satisfy the
conditions above for simply connected D.

Definition Suppose D is a domain and z, w are distinct ∂D-analytic boundary
points. Let D1 be a simply connected subdomain of D that agrees with D in
neighborhoods of z, w. Then µ̂D(z, w;D1) is the measure absolutely continuous
with respect to µD1

(z, w) with Radon-Nikodym derivative

(48)
dµ̂D(z, w;D1)

dµD1
(z, w)

(γ) = 1{γ ⊂ D1} exp
{
−c

2
mD(γ,D \D1)

}
.

♣A minus sign appears on the right-hand side above. This is because we are writing the

derivative of the measure on the larger domain with respect to that on the smaller domain.

The next proposition establishes a necessary consistency condition for the mea-
sures µ̂D(z, w;Dj) in order to define µD(z, w).

Proposition 4.1. Suppose D is a domain and z, w are distinct ∂D-analytic bound-
ary points. Let D1, D2 be simply connected subdomains of D that agree with D in
neighborhoods of z, w. For j = 1, 2, let νj be µ̂D(z, w;Dj) restricted to curves γ
with γ ⊂ D1 ∩D2. Then ν1 = ν2.



SLE IN MULTIPLY CONNECTED DOMAINS 37

Proof. Suppose γ ⊂ D1 ∩ D2. Then there exists simply connected D̂ ⊂ D1 ∩ D2

that agrees locally with D near z, w such that γ ⊂ D̂. Hence it suffices to show
that for every simply connected domain D̂, ν1 and ν2, restricted to curves in D̂,
agree. Suppose γ ⊂ D̂. Since Dj , D̂ are simply connected,

dµDj (z, w)

dµD̂(z, w)
(γ) = exp

{
−c

2
mDj (γ,Dj \ D̂)

}
.

Combining this with (48), we get

dµ̂D(z, w;Dj)

dµD̂(z, w)
(γ) = exp

{
−c

2
mD(γ,D \ D̂)

}
.

Here we use the fact that the loops inD that intersect γ andD\D̂ can be partitioned
into two sets: those that intersect D \D1 and those that are contained in D1. �

Given Proposition 4.1 we can make the following definition.

Definition Suppose D is a domain and z, w are distinct ∂D-analytic boundary
points. Then µD(z, w) is the measure on simple paths (modulo parametrization)
such that for each simply connected D1 ⊂ D, µD(z, w) restricted to curves γ ⊂ D1

is µ̂D(z, w;D1).

In other words, µD(z, w;D1) = µ̂D(z, w;D1) for simply connected D1. It follows
immediately from the definition that the family of measures {µD(z, w)} satisfies
(47). Suppose D is a domain and z, w are distinct ∂D-analytic points and D1

is a simply connected domain as above. Suppose f : D → f(D) is a conformal
transformation. Then f : D1 → f(D1) is also a conformal transformation, and
hence

f ◦ µD1(z, w) = |f ′(z)|b |f ′(w)|b µf(D1)(f(z), f(w)).

Conformal invariance of the loop measure then implies that

f ◦ µD(z, w;D1) = |f ′(z)|b |f ′(w)|b µf(D)(z, w; f(D1)).

Since this is true for every simply connected D1, the family {µD(z, w)} satisfies
(45).

In this paper, we will show the following. (While we prove it in this paper, we
could also derive this from [31].)

Proposition 4.2. If D is a conformal annulus, then ΨD(z, w) <∞ and the family
{µD(z, w)} restricted to conformal annuli satisfies the domain Markov property.

When considering the measure µD(z, w) for multiply connected domains, there
are two cases.

• The chordal case: z, w in the same component of ∂D. Then there exists
simply connected D̂ such that D ⊂ D̂.

• The crossing case: z, w in different components of ∂D. Then there exists
1-connected D̂ such that D ⊂ D̂.

Proposition 4.3. Suppose D is a domain and z, w are distinct ∂D-analytic
points.

• If κ ≤ 8/3, then ΨD(z, w) <∞.
• If 8/3 < κ ≤ 4, then for every simply connected D1 ⊂ D that agrees with
D near z, w, ΨD(z, w;D1) <∞.



38 GREGORY F. LAWLER

Proof. If κ ≤ 8/3, we can consider D as a subdomain of a simply connected or 1-

connected domain D̂ and since c ≤ 0, (47) implies that ΨD(z, w) ≤ ΨD̂(z, w) <∞.
If 8/3 < κ ≤ 4, then c > 0, and (48) implies that ΨD(z, w;D1) ≤ ΨD1

(z, w) <
∞. �

Proposition 4.4. The family {µD(z, w)} satisfies the domain Markov property.

Proof. Without loss of generality we may assume that D is a subdomain of H whose
boundary includes R and z = 0. Let D1 be a simply connected domain as above
for which we know ΨD(z, w;D1) <∞ and let γt be an initial segment. To be more
precise, let t be a finite stopping time for chordal SLEκ in D1. Let Ft be the
corresponding σ-algebra generated by γt. For γ ⊂ D1, let

Y (γ) =
µD(z, w;D1)

µD1
(z, w)

(γ) = exp
{c

2
mD(γ,D \D1)

}
.

Let P,E denote probability and expectation with respect to the probability measure

µ#
D1

(z, w). Then,

ΨD(z, w;D1) = ΨD1
(z, w)E [Y ] .

By the domain Markov property for SLEκ is simply connected domains,

E[Y | Ft] = exp
{c

2
mD(γt, D \D1)

}
E∗t [Y ],

where E∗t denotes expectation with respect to µ#
D1\γt(γ(t), w).

We will do the chordal case comparing to simple connected domains. The cross-
ing case is similar using conformal annuli. Suppose z, w are in the same component
of ∂D. Without loss of generality, we may assume that D is a subdomain of H and
z, w ∈ R. We know that

dµD(z, w)

dµH(z, w)
(γ) = 1{γ ∈ D} exp

{c

2
mH(γ,H \D)

}
.

Let P,E denote probabilities and expectations with respect to the measure µ#
H (z, w).

Let

Yt = 1{γt ⊂ D} exp
{c

2
mH(γt,H \D)

}
, Y = Y∞.

Suppose we are given an initial segment γt and let Ht = H \ γt. Here t can be
a stopping time and we assume that t < T = inf{s > 0 : γ(s) ∈ R} = inf{s >
0 : γ(s) = w}. (The equality is true with P probability one.) Let gt denote the
corresponding map and let F = Ft denote the σ-algebra generated by t. By the
domain Markov property of SLEκ in simply connected domains,

E [Y | F ] = Yt E∗t
[
exp

{c

2
mHt(γ,Ht \D)

}]
,

where E∗t denotes expectations with respect to µ#
Ht

(γ(t), w). More generally if E is
an event depending on the path γ \ γt,

E [Y 1E | F ] = Yt E∗t
[
1E exp

{c

2
mHt(γ,Ht \D)

}]
,

If ΨD(z, w) <∞, the proof for µ#
D(z, w) is similar and we omit it.

�

Proposition 4.5. If z, w are ∂D-analytic, then µD(w, z) is the same as the reversal
of µD(z, w).
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Proof. In the case of simply connected domains, this was proved by Zhan [30].
Given this, the general case follows. �

We end this section with a number of remarks.

• In our definition we have started with the parameter κ and defined the
quantities b, c in terms of κ. We could have made b, c free parameters, but
then we would find out that there was only a one-dimensional family of
pairs (b, c) for which we could define such measures. To establish this fact,
we would use Schramm’s argument and κ (as a function of b or c) would
be introduced.
• Implicit in the domain Markov property is the assumption that the the

initial segment may be chosen using a stopping time. This makes it a
condition on curves modulo reparametrization. Perhaps this should be
called the strong domain Markov property.
• It is also useful to have the measures µD(x,∞) where D ⊂ H with H \D

bounded and dist(x,H \D) > 0. To get this we find a conformal transfor-
mation

f : D′ → D

with f(z) = 0, f(w) = ∞ and use the conventions about derivatives as in
Section 3.1. Under this convention, we see that ΨH(0,∞) = 1. If D ⊂ H
is simply connected with H \ D bounded and dist(0,H \ D) > 0, then
ΨD(0,∞) = Φ′D(0)b where ΦD : D → H is a conformal transformation
with ΦD(∞) =∞,Φ′D(∞) = 1.

4.2. Definition of boundary/bulk and bulk/bulk SLEκ for κ ≤ 4. The
boundary SLEκ is a measure on curves connecting two boundary points in a do-
main D. We extend this definition to allow one boundary point and one interior
point (the radial or reverse radial case) or two interior points (the bulk case). In all
the cases we will write µD(z, w) for the measure, ΨD(z, w) for the total mass, and if

ΨD(z, w) <∞ µ#
D(z, w) for the corresponding probability measure. The definition

will be the same as the first definition in Section 4.1 except that (45) is replaced
with the following more general formula. Note that this definition subsumes the
previous one.

• Conformal covariance If f : D → f(D) is a conformal transformation,
z, w are D-analytic, and f(z), f(w) are f(D)-analytic, then

(49) f ◦ µD(z, w) = |f ′(z)|bz |f ′(w)|bw µf(D)(z, w),

where bζ = b if ζ is a boundary point and bζ = b̃ if ζ is an interior point.

♣We are writing µD(z, w) for all the cases in order not to add more notation. It is

important to remember that the definitions of these measures are different (although related,

of course) depending on whether z, w are boundary or interior points.

If D is simply connected, z is ∂D-analytic and w ∈ D, then we define µD(z, w)
by

µD(z, w) = ΨD(z, w)µ#
D(z, w),

where µ#
D(z, w) is radial SLEκ as in Section 3.3. The partition function ΨD(z, w)

is determined up to a multiplicative constant by the rule (49), and we choose
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the constant so that ΨD(1, 0) = 1. Using the relationship in Section 3.8, one
can check that this satisfies the necessary conditions. In particular, the boundary
perturbation rule (47) holds for simply connected domains.

It was essentially shown in [31], and we will reprove it here, that radial SLEκ can
be given as a limit of boundadry/boundary SLEκ in the annulus. The following
theorem makes a more precise estimate.

Theorem 4.6. There exists c <∞, q > 0 such that the following holds. Let t > 0
and let γt denote an initial segment of a path in D starting at 1 such that if g :
D \ γt → D is a conformal transformation with g(0) = 0, g′(0) > 0, then g′(0) = et.

Suppose that r ≥ t+ 2, 0 ≤ θ < 2π, and let µ1 = µD(1, 0), µ2 = µ#
Ar

(1, e−r+iθ), both
considered as probability measures on initial segments γt. Let Y = dµ2/dµ1. Then

(50) |Y (γt)− 1| ≤ c e(t−r)q.

Moreover, there exists c0 ∈ (0,∞) such that

(51) Ψ(1, e−r+ix) = c0 e
(b−b̃)r rc/2 [1 +O(e−qr)].

We will write

µAr (1, e
−r+ix) = c0 e

(b−b̃)r rc/2 µD(1, 0) [1 +Ot(e
−qr)],

as shorthand for (50) and (51).

♣We can see the interior scaling exponent as coming from a computation from the annulus
partition function. Suppose D is a bounded domain, 0 ∈ D and w ∈ ∂D is D-analytic.
Suppose that ε is small and |z| = ε. Let Dε denote the conformal annulus obtained by
removing the closed disk of radius ε. Then by analysis of the annulus partition function which
is a boundary/boundary quantity, we see as ε→ 0,

ΨDε(1, z) ∼ c ε
b̃−b [log(1/ε)]c/2,

and hence we can define ΨD(1, 0) (up to an arbitrary multiplicative constant) by

ΨD(1, 0) ∼ εb−b̃ [log(1/ε)]−c/2 ΨDε(1, ε).

If f : D → f(D) is a conformal transformation with f(0) = 0, then f(Dε) is approximately
the disk of radius f ′(0) ε, and

ΨDε(1, z) ∼ |f ′(1)|b |f ′(z)|b ΨDεf′(0)(f(1), f(z))

∼ |f ′(1)|b |f ′(0)|b ΨDεf′(0)(f(1), f(z))

Therefore, if u = |f ′(0)|,

ΨD(1, 0) ∼ εb−b̃ [log(1/ε)]−c/2 ΨDε(1, z)

∼ |f ′(1)|b ub̃ (uε)b−b̃ [log(1/ε)]−c/2 Ψf(D)uε(f(1), f(uz))

Note that the logarithmic term which includes the central charge does not contribute to the

scaling exponent.

We now define boundary/bulk and bulk/boundary SLE. The consistency of this
definition follows from the fact that (47) holds for simply connected domains.

Definition If z ∈ D and w is a ∂D-analytic boundary point, then µD(w, z) and
µD(z, w) are defined as follows.
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• If D is simply connected,

µD(w, z) = |f ′(w)|−b |f ′(z)|−b̃ f ◦ µD(1, 0),

where f : D −→ D is the conformal transformation with f(1) = w, f(0) = z.
• If D ⊂ D1 where D1 is simply connected and agrees with D near z and w,

then

dµD(w, z)

dµD1(w, z)
(γ) = 1{γ ⊂ D} exp

{c

2
mD(γ,D1 \D)

}
.

• µD(z, w) is defined to be the measure obtained from µD(w, z) by reversing
the paths.

We can define bulk/bulk SLEκ similarly. There is technical issue if D is all of
C. Let us define D to be regular if with probability one a Brownian motion exits
the domain D.

Definition If z, w are distinct points of a regular domain D, then µD(z, w) is
defined by

µD(z, w) = c−1
0 lim

r→∞
e2(b̃−b)r rc/2 µDr (z + e−r, w + e−r),

where
Dr = {ζ ∈ D : |ζ − z| > e−r, |ζ − w| > e−r}.

We could also have defined

µD(z, w) = c−1
0 lim

r→∞
e2(b̃−b)r rc/2 µDr (z + e−r+iθ, w + e−r+iθ

′
),

for any θ, θ′. Alternatively, we could define

µD(z, w) = c′ lim
r→∞

e(b̃−b)r µDr,z (z + e−r+iθ, w + e−r+iθ
′
),

where
Dr,z = {ζ ∈ D : |ζ − z| > e−r}.

Our choice of definition has the advantage that it follows immediately that µD(w, z)
is the reversal of µD(z, w). If we want to let D = C, we have to renormalize.

Proposition 4.7. If z, w ∈ D, then There exists Ψ(z, w) ∈ (0,∞) such that

ΨD−r (z, w) = Ψ(z, w) r−c/2 [1 +O(r−1)].

Proof. This essentially follows from Proposition 3.11. �

Using this as a guide, we define

µ(z, w) = c′ lim
r→∞

rc/2 µA−r (z, w).

This satisfies the conformal covariance rule

f ◦ µ(z, w) = |f ′(z)|b̃ |f ′(w)|b̃ µ(f(w), f(w)),

where f is a linear fractional transformation (conformal transformation of the Rie-
mann sphere). Conformal covariance implies that there exists c′′ ∈ (0,∞) such that
for all z, w,

Ψ(z, w) = c′′ |z − w|−2b̃.

The probability measure µ#(z, w), which is invariant under linear fractional trans-
formations, is called whole plane SLEκ. While we have defined µ(z, w) as a limit,
we could also imagine being able to define it directly. In this case, we get µD(z, w)
by a (normalized) boundary perturbation rule.
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Proposition 4.8. If D is a domain and z, w ∈ D are distinct, then

dµD(z, w)

dµ(z, w)
(γ) = 1{γ ⊂ D} exp

{
−c

2
Λ(γ, ∂D)

}
where Λ(γ, ∂D) is as defined in Proposition 3.11.

Proof. For r sufficiently large so that γ ⊂ D−r,
dµD(z, w)

dµA−r (z, w)
(γ) = exp

{c

2
mA−r (γ,A−r \D)

}
.

Proposition 3.11 implies that as r →∞,

mA−r (γ,A−r \D) = log r − Λ(γ, ∂D) + o(1).

Therefore,

dµD(z, w)

rc/2 dµA−r (z, w)
(γ) ∼ exp

{
−c

2
Λ(γ, ∂D)

}
, r →∞.

�

♣While it might seem natural to define µ(z, w) using whole plane SLE and then the

proposition to define µD(z, w), there is a disadvantage in this approach. The reason is that

it is not so easy to prove that µD(z, w) satisfies the conformal covariance relation for con-

formal transformations of D since the quantity Λ(γ, ∂D) is not conformally invariant under

transformations of D.

Example If κ = 2, then ΨD(z, w) is proportional to the usual Green’s function
for Brownian motion with Dirichlet boundary conditions. For this, it is well known
that

ΨA−r (0, 1) ∼ r,
which agrees with the formula since c = −2. Also, b̃ = 0 which implies that
ΨD(z, w) is a conformal invariant. This is well known for the Green’s function.

4.3. Multiple paths. Extending the definition of SLEκ to multiple is straightfor-
ward as in [13]. Suppose z = (z1, . . . , zk),w = (w1, . . . , wk) are distinct analytic
points in a domain D. The points can be bulk or boundary points. The measure
µD(z,w) is defined by giving its Radon-Nikodym derivative Y with respect to the
product measure

µD(z1, w1)× · · · × µD(zk, wk).

Let γ̄ = (γ1, . . . , γk) be a k-tuple of paths (modulo reparametrization) in D where
γj goes from zj to wj . Then

(52) Y = 1{γj ∩ γl = ∅, j 6= l} exp

c

2

k∑
j=2

mD(γj , γ1 ∪ · · · ∪ γj−1)

 .

♣One can consider the measure on multiple paths in the context of the λ-SAW. On the
discrete level, the measure on a k-tuple of paths ω̄ = (ω1, . . . , ωk) is

exp
{
−β(|ω1|+ · · ·+ |ωk|) + λmRW (ω1 ∪ · · · ∪ ωk, D, n)

}
.

The exponential factor on the right hand side of (52) compensates for overcounting of loops

that intersect γ̄.
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5. Crossing SLEκ in an annulus

In this section we study the measure µAr (1, e
−r+iθ) which is a measure on simple

paths (modulo reparametrization) η from 1 to e−r+iθ in Ar. Let us recall the
definition. Suppose D′ is a simply connected subdomain of Ar that agrees with Ar
in neighborhoods of 1 and w = e−r+iθ. Then if η is a curve in D′ connecting 1 and
w,

dµAr (1, w)

dµD′(1, w)
(η) = exp

{
−c

2
mAr (η,Ar \D′)

}
.

We can write

(53) mAr (η,Ar \D′) = m̂Ar (η,Ar \D′) +m∗(r),

where m∗(r) denotes the measure of the set of loops in Ar of nonzero winding
number and m̂Ar (η,Ar \ D′) is the measure of the set of loops of zero winding
number that intersect both η and Ar \D′. Here we use the fact that every loop of
nonzero winding number intersects both η and Ar \D′. (This construction assumes
that there is a unique point on the Brownian loop that goes through the point η(t).
For each curve η this is true up to a set of loops of measure zero. See the discussion
after Theorem 12 in [24].)

Let γ be the continuous preimage under ψ of η with γ(0) = 0, and let D be the
simply connected domain containing γ such that ψ(D) = D′. Each loop `′ in Ar
has an infinite number of preimages under ψ. For each loop `′ in Ar that intersects
η, we choose a unique such preimage as follows. Consider the first time t such that
η(t) ∈ `′. We make `′ a rooted loop by choosing the root to be η(t). Then we
choose ` to be the (rooted) preimage of `′ that is rooted at γ(t). The definition of
` implies that if it is rooted at γ(t), then

(54) ` ∩ γ̃t = ∅,

where, as before,

γ̃t =
⋃

k∈Z\{0}

(γt + 2πk).

We will call a loop ` γ-good if it intersects γ and satisfies (54). Then `↔ `′ gives a
bijection between γ-good loops in Sr and loops in Ar of zero winding number that
intersect η.

If r > 0, x ∈ R, we define the measure νSr (0, x+ ir) by the relation

dνSr (0, x+ ir)

dµD(0, x+ ir)
(γ) = exp

{
−c

2
mSr (γ, Sr \D; ∗)

}
, γ ⊂ D

where mSr (γ, Sr \D; ∗) denotes the Brownian loop measure of γ-good loops in Sr
that intersect both γ and Sr \D. Recall that

dµSr (0, x+ ir)

dµD(0, x+ ir)
(γ) = exp

{
−c

2
mSr (γ, Sr \D)

}
,

This leads to an alternative, equivalent definition of νSr (0, x+ ir). Note that ψ ◦ γ
is a simple curve if and only if γ ∩ γ̃ = ∅.
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Definition The measure νSr (0, x+ ir) is the measure absolutely continuous with
respect to µSr (0, x+ ir) with Radon-Nikodym derivative

(55)
dνSr (0, x+ ir)

dµSr (0, x+ ir)
(γ) = 1{γ ∩ γ̃ = ∅} exp

{c

2
mSr (γ)

}
,

where mSr (γ) is the measure of loops in Sr that intersect γ but are not γ-good.
We call this annulus SLEκ in Sr from 0 to x+ ir.

We can relate annulus SLEκ in Sr to SLEκ in Ar by conformal covariance. We
define νAr (1, x) by

νAr (1, x) = |ψ′(0)|−b |ψ′(x+ ir)|−b e−cm
∗(r)/2 ψ ◦ νSr (0, x+ ir)

= ebr e−cm
∗(r)/2 ψ ◦ νSr (0, x+ ir),(56)

We think of this as annulus SLEκ from 1 to e−r+ix restricted to curves of a partic-
ular winding number. The term e−cm

∗(r)/2 is discussed in Proposition 3.9. Annulus
SLEκ is obtained by summing over all winding numbers

(57) µAr (1, e
−r+iθ) =

∑
k∈Z

νAr (1, θ + 2πk).

5.1. Main result. We will show that the partition function for annulus SLE on Sr
can be given in terms of a functional of locally chordal SLEκ. Recall the functions
HI from Section 3.2, A from (14), and L from (32).

Theorem 5.1. If Ψ̃(r, x) = ‖νSr (0, x+ ri)‖, then

Ψ̃(r, x) = V (r, x) ΨSr (0, x+ ri).

Here

(58) V (r, x) = Ex
[
exp

{
−2b

∫ r

0

A(r − s,Xs) ds

}]
,

where Xt, 0 ≤ t ≤ r satisifes

(59) dXt = [HI(r − t,Xt)− bκL(r − t,Xt)] dt+
√
κ dBt,

and Bt is a standard Brownian motion. In particular, Ψ̃(r, x) is C1 in r, C2 in x

and Ψ̃(r, x) ≤ ΨSr (0, x+ ri).

We used the functional in (58) as our definition, but as we show now, it is the
solution of a PDE. Let us define V (0, x) ≡ 1.

Proposition 5.2. The function V (r, x) satisifes 0 ≤ V (r, x) ≤ 1, is continuous on
[0,∞)× (−π, π) and for r > 0 satisfies the equation

(60) V̇ = −2bAV + [HI − bκL] V ′ +
κ

2
V ′′,

where dot refers to r-derivatives and primes refer to x-derivatives.
Moreover, for fixed r, x 7→ V (r, x) is an odd function that is decreasing in |x|.

Proof. For r > 0, the function HI ,L are smooth and A ≥ 0. Hence (60) follows
from the Feynman-Kac formula, see, e.g, [7, Section 6.5] or [10, Section 5.7.b].
Combining (15) with Lemma 3.15, we see that V (0+, x) = 1 for |x| < 2π. For
the last assertion, we use Proposition 3.4 which states that A(r, x) is an increasing
function of |x|. It is not difficult to see that if 0 < x1 < x2 <∞, then we can couple
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process X1
t , X

2
t on the same probability space, each satisfying (74) with Xj

0 = xj
and such that |X1

t | ≤ |X2
t | for all t. In this coupling, we have∫ r

0

A(r − s,X1
s ) ds ≤

∫ r

0

A(r − s,X2
s ) ds.

�

5.2. Radon-Nikodym derivative. Similarly to the approach for simply con-
nected domains as in Section 3.6, we will find an appropriate nonnegative local
martingale and use the Girsanov theorem to analyze the process weighted by the
local martingale. Suppose (Ω,F , P̂) is a probability space under which Ut = −Bt is
a standard Brownian motion. Let gt be the solution to the Loewner equation (16)
producing the random curve γ. Let γt, γ̃t, γ̂t be as above and fix r, z0 = x+ ir. The
following proposition is the particular case of Section 3.6 for D = Dr, w = x+ ir..

Proposition 5.3. If

Jt = |g′t(z0)|bH∂gt(Sr\γt)(Ut, gt(z0))b exp
{c

2
mH(γt,H \ Sr)

}
,

then Jt is a local martingale for t < τr. Moreover, if one uses Girsanov, then under
the weighted measure γ has the distribution of SLEκ from 0 to x+ ir.

Let P,E denote expectations in the weighted measure under which γ has the

distribution of µ#
Sr

(0, x+ ir).
If ` is an (unrooted) loop in Sr, let

s̃(`) = min{t : ` ∩ γ̃t 6= ∅},
s(`) = min{t : ` ∩ γt 6= ∅}.

It is not hard to show, using the fact that two-dimensional Brownian motion does
not hit points, that the loop measure of the set of loops with s(`) = s̃(`) < ∞ is
zero. Let

Λt = Λt(γt, r) = 1{T > t} exp {mt} ,
where mt = mt,r(γt) denotes the measure of the set of loops in Sr that satisfy

s̃(`) < s(`) ≤ t.
Theorem 5.1 can be rephrased as follows.

Theorem 5.4. If γ has distribution µ#
Sr

(0, x+ ir), then

(61) E
[
Λc/2
τr

]
= V (r, x).

We will prove (61) in a series of propositions. Recall the definition of A from
(14). Let

Rt = Re[ht(z0)]− Ut, Vt = V (r(t), Rt),

Qt = QSr\γt(γ(t), z0;Sr \ γ̂t), Kt = exp

{
2

∫ t

0

ṙ(s) A(r(s), Rs) ds

}
.

(62) Nt = Λ
c/2
t Qbt K

ab
t , Ot = K−abt Vt,

Mt = NtOt = Λ
c/2
t Qbt Vt.

By conformal invariance,

H∂gt(Sr\γ̂t)(Ut, gt(z0)) = QtH∂gt(Sr\γt)(Ut, gt(z0)).
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Therefore,

φ′t(Ut) |φ′t(gt(z0))|H∂ht(Sr\γ̂t)(U
∗
t , ht(z0)) = QtH∂gt(Sr\γt)(Ut, gt(z0)),

and hence

φ′t(Ut) |h′t(z0)|H∂ht(Sr\γ̂t)(U
∗
t , ht(z0)) = |g′t(z0)|QtH∂gt(Sr\γt)(Ut, gt(z0)).

Therefore, we can write

JtNt = Ct(z0)H∂ht(Sr\γ̂t)(U
∗
t , ht(z0))b,

where

Ct(z0) = φ′t(Ut)
−b |h′t(z0)|b exp

{
−c

2
mH(γt,H \ Sr)

}
Λ
c/2
t Kab

t ,

Important observations are that Ct(z0) is C1 in t and Ct(z0) = Ct(z0 + 2π).

Lemma 5.5. Suppose γ is a parametrized with hcap[γ(0, t]] = at. Let γ̃t be as
above and Qt = QSr\γt(γ(t), x+ ir;Sr \ γ̂t). Then

∂tQt |t=0= −aA(r, x).

Proof. See (13). �

Proposition 5.6.

• Nt is a local martingale with respect to P for t < T ∧ τr. In particular,
JtNt is a P̂-local martingale.

• With respect to P∗, the curve γ at time t grows like SLEκ from γ(t) to z0

in S̃t,r.

Proof. This is a particular case of Section 3.7. �

Let P∗,E∗ denote the probabilities and expectations obtained from P by weight-
ing by the local martingale Nt. This is the same as the measure obtained from P̃
by weighting by JtNt. We have seen that this is locally chordal SLEκ and we can
consider the path in the annulus parametrization.

Proposition 5.7. Suppose V is as defined in (58). Then

M∗t = exp

{
−2b

∫ t

0

A(r − s,R∗s) ds
}
V (r − t, R∗t ),

is a local martingale satisfying

(63) dM∗t =
√
κ
V ′(r − t, R∗t )
V (r − t, R∗t )

M∗t dBt.

Moreover, if we weight by the local martingale using Girsanov theorem then with
probability one in the weighted measure, R∗r− = 0.

Proof. The relation (63) follows immediately from Itô’s formula. For the second
claim, we note that in the unweighted measure we have R∗r− = 0. Since V is
decreasing in |x|, the additional drift given by the weighting points toward the
origin. �

Proposition 5.8. Suppose γ is a simple curve in Sr from 0 to z0 with T > τr.
Then,

Mτ− = Λ
c/2
τ− ∈ (0,∞).
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Proof. Easy estimates show that under the assumptions, Qτ− = 1, r(τ−) = 0,
Rτ− = 0. Proposition 5.2, then gives Vτ− = 1. The assumptions also imply that
dist(γτ , γ̃τ ) > 0, which implies 0 < Λτ− <∞. �

Proposition 5.9. Ot, t < τr ∧ T is a local martingale with respect to P∗. In
particular, Mt = NtOt, t < τr ∧T is a local martingale with respect to P, and JtMt

is a local martingale with respect to P̂.

Proof. This is a restatement of the previous proposition in terms of the original
parametrization. �

Let P′ denote the probability measure obtained from weighting by the local
martingale Mt.

Proposition 5.10. With P′ probability one, τr < T and

(64) M0 = V (r, x), Mτr = Λc/2
τr ,

In particular,

V (r, x) = M0 = E [Mτr ] = E
[
Λc/2
τr

]
.

Proof. The drift given by weighting by this martingale has a stronger drift to the
origin than for locally chordal SLEκ and we know that that the latter one is good.

�

♣There is a general principle that is being used here that is worth stressing. Suppose

Mt is a positive local martingale for t < τ . The martingale convergence theorem implies

that with probability one the limit Mτ = limt→τ−Mt exists. However, one cannot conclude

E[M0] = E[Mτ ] without more assumptions. One way to establish this equality is to consider

the paths weighted by the local martingale. If Mτ exists and is finite with probability one in

the new measure, then we have uniform integrability and E[M0] = E[Mτ ]. In our case we

establish that in the new measure we have R∗r− = 0. If the latter fact holds, then we use an

easy deterministic estimate about curves to see that Mτ <∞.

♣At this point of the paper, the argument went very quickly, so it is a good idea to explain

what has happened. The goal was to estimate the expectation (with respect to chordal SLEκ
in Sr from 0 to z0) of a random variable which is the exponential of the measure of a certain

set of bad loops. For a curve γ and a loop l, we say that l is bad if l intersects γ, say at

first time s′, but also intersects γ̃ at first time s < s′. Suppose we have seen γt. Then we

can split the bad loops into three sets: those with s < s′ ≤ t; those with s < t < s′; and

those with t < s < s′. When we weight only by the first two sets of loops, we get the local

martingale Nt, and the probability measure is locally chordal SLEκ. Lemma 3.15 shows that

this is supported simple curves with γ ∩ γ̃ = ∅. We then weight again to include the third set

of loops and this leads to the function V . Since we can show directly that V is decreasing

in |x| (and here we were lucky with the monotonicity proved in Proposition 3.4), we can see

that the extra drift given by weighting by these loops points towards the origin and hence this

measure is also supported simple curves with γ ∩ γ̃ = ∅. This allows us to justify the equation

E[M0] = E[Mτr ].
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6. Annulus SLEκ from 0 to x in Sr

The same ideas can be used to analyze νSr (0, x) where 0 < |x| < 2π. For ease,
we will assume x > 0, but the x < 0 case is done the same way. We will only sketch
the ideas, since this case is also considered in [31]. Topological constraints restrict
the values of x; if |x| ≥ 2π and γ connects 0 and x, then η = ψ ◦γ is not simple. As
before, we define the measure by giving the Radon-Nikodym derivative as in (55)

dνSr (0, x)

dµSr (0, x)
(γ) = Y (γ) = 1{γ ∩ γ̃ = ∅} exp

{c

2
m(γ)

}
.

The relevant functions are the following.

(65) Ã(r, x) =
π2

4r2

∑
k∈Z\{0}

sinh2(πx/2r)

sinh2(π2k/r) sinh2(π(x− 2πk)/2r)
,

(66)

H̃I(r, x) =
π

2r
coth

(πx
2r

)
+

π

2r

∞∑
k=1

[
coth

(
π(x+ 2π)

2r

)
+ coth

(
π(x− 2π)

2r

)]
.

(67) L̃(r, x) = −∂xHSr (0, x)

bHSr (0, x)
=
π

r
coth

(πx
2r

)
.

Lemma 6.1. If y ∈ R and

f(x) =
sinh2 x

sinh2(x− y)
+

sinh2 x

sinh2(x+ y)
,

then f is increasing for 0 ≤ x < y.

Proof. Since

f(x) =
cosh(2x)− 1

cosh(2x− 2y)− 1
+

cosh(2x)− 1

cosh(2x+ 2y)− 1
,

it suffices to show for every y ∈ R, that

F (x) =
coshx− 1

cosh(x− y)− 1
+

coshx− 1

cosh(x+ y)− 1
,

is increasing for 0 ≤ x < y. Using the sum rule, we get

cosh(x− y)− 1 + cosh(x+ y)− 1 = 2 coshx cosh y − 2,

Letting r = cosh y ≥ 1, we get

[cosh(x− y)− 1] [cosh(x+ y)− 1] = (coshx cosh y − 1)2 − sinh2 x sinh2 y

= (r coshx− 1)2 − (r2 − 1)(cosh2 x− 1)

= cosh2 x− 2r coshx+ r2

= (coshx− r)2.

Therefore,

F (x) =
2r (coshx− r−1) (coshx− 1)

(coshx− r)2
= 2r eG(cosh x),

where

G(t) = log(t− 1

r
) + log(t+ 1)− 2 log (t− r).
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Since r ≥ 1, G′(t) > 0 for 0 < t < r and hence G and F are increasing.
�

Definition The function Ṽ (r, x), 0 ≤ r <∞, 0 < x < 2π is defined by

(68) Ṽ (r, x) = Ex
[
exp

{
−2b

∫ σ

0

Ã(r − s,Xs) ds

}]
,

where Xt, 0 ≤ t < σ satisifes

(69) dXt =
[
2H̃I(r − t,Xt)− bκ L̃(r − t,Xt)

]
dt+

√
κ dBt,

with Bt is a standard Brownian motion and

σ = inf{t : Xt = 0}.

We define V (r, 0) = 1.

An important observation is that if Xt satisfies (69) with X0 ∈ [0, 2π), then with
probability one σ < r and Xt ∈ [0, 2π) for 0 ≤ t ≤ σ. Hence this is well defined.

The function Ṽ , 0 < r <∞, 0 < x < 2π

(70) ˙̃V (r, x) = −2b Ã(r, x) Ṽ (r, x)+
[
2H̃I(r, x)− bκ L̃(r, x)

]
Ṽ ′(r, x)+

κ

2
Ṽ ′′(r, x),

where dot refers to r-derivatives and primes refer to x-derivatives.
The definition of µAr (1, e

iθ) for 0 < θ < 2π takes a little more thought. We
write

µAr (1, e
iθ) = µAr (1, e

iθ;R) + µAr (1, e
iθ;L)

where µAr (1, e
iθ;R) denotes µAr (1, e

iθ) restricted to curves η such that the origin
lies in the component of D \ η whose boundary includes (eiθ, 1). Then similarly to
(56) we write

dµAr (1, e
ix)

d[ψ ◦ νSr (0, x)]
(η) = ebr exp

{
−c

2
m∗(r, η)

}
,

where m∗(r, η) denotes the measure of the set of loops in Ar of nonzero winding
number that intersect η. Unlike the crossing case, the quantity on the right hand
side depends on η. It is not hard to give an expression for this. Let Ã denote the
component of Ar \ η that contains Cr on its boundary. let rγ = rγ,r be such that

Ã is conformally equivalent to Arγ . Then m∗(rγ) denotes the measure of loops of

nonzero winding number in Ã and hence

m∗(r, η) = m∗(r)−m∗(rγ).

We could have also defined µAr (1, e
iθ) by

dµAr (1, e
iθ)

dµD(1, eiθ)
(γ) = 1{γ ⊂ Ar} exp

{c

2
mD(γ,D \Ar)

}
.

Since these both satisfy (48), they must give the same measure.
There is a subtlety that is worth mentioning. Let J denotes the closed disk

about 0 of radius e−r so that Ar = D \ J and f : Ar → D ⊂ D is a conformal
transformation that sends ∂D to ∂D. Informally we can write f(J) = K where
D = D \K, but the conformal map f is not defined on J . If z, w ∈ ∂D, then

f ◦ µAr (z, w) = |f ′(z)|b |f ′(w)|b µD(f(z), f(w)).
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This gives one way to construct µD(f(z), f(w)). But we also define it by the
Radon-Nikodym derivative. Suppose γ ⊂ Ar, then f ◦ γ ⊂ D and

dµAr (z, w)

dµD(z, w)
(γ) = exp

{c

2
mD(γ, J)

}
,

dµD(f(z), f(w))

dµD(f(w), f(w))
(f ◦ γ) = exp

{c

2
mD(f ◦ γ,K)

}
.

However, since f is not a conformal transformation of the disk, we have no reason
to believe that mD(γ, J) = mD(f ◦ γ,K).

7. Annulus SLEκ in Ar

In the last section we considered the measure νSr (0, x + ir) which we called
annulus SLEκ in the strip Sr. This was analyzed by comparing the measure to
chordal SLEκ in Sr. Recall from (56) that the measure on paths given by annulus
SLEκ restricted to a particular winding number is

νAr (1, x) = ebr e−cm
∗(r)/2 ψ ◦ νSr (0, x+ ir).

The term ebr = |ψ′(x + ir)|b comes from conformal covariance and m∗(r) is the
Brownian loop measure of loops in Ar of nonzero winding number. Annulus SLEκ
in Ar from 1 to e−r+iθ is obtained from summing over all winding numbers

µAr (1, e
−r+iθ) =

∑
k∈Z

νAr (1, θ + 2πk).

In this section we will compare νAr (1, x) and µAr (1, e
−r+iθ) to to radial SLEκ

in order to derive PDEs for the annulus partition functions. We will rederive an
equation from [31].

7.1. The differential equation. Let Ψ̃(r, x) = |νSr (0, x + ir)| be as in the pre-

vious section, and let F̂ (r, x) and F (r, x) denote the partition functions associated
to annulus SLEκ and annulus SLEκ restricted to a particular winding number,
respectively. In other words,

F (r, x) = |νAr (0, x)| = β(r) Ψ̃(r, x),

where

β(r) = exp

{
br − cm∗(r)

2

}
= ebr e−cr/12 exp

{
c

∫ r

0

δ(s) ds

}
,

and

F̂ (r, x) = ΨAr (1, e
−r+ix) =

∞∑
k=−∞

F (r, x+ 2πk).

Since

(71) F (r, x) = β(r) Ψ̃(r, x) ≤ β(r) ΨSr (0, e
x+ir) � β(r) r−2b

[
cosh

(πx
2r

)]−2b

,

we see that F̂ (r, x) < ∞. Recall the functions J and HI from Section 3.2. As
before, we will use dot for r-derivatives and primes for x-derivatives.
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Proposition 7.1. F satisfies the differential equation

(72) Ḟ =
κ

2
F ′′ + HI F

′ +

[
bH′I + b+ b̃ (6Γ(r)− 1)− b

r

]
F.

Moreover, F̂ satisfies the same equation.

♣As in [31], we check that this is consistent with what we know about κ = 2 for which

b = 1, b̃ = 0. For κ = 2, from arguments based on the loop-erased walk we know that the
SLE2 partition function for any domain D should be given by a multiple of the excursion
Poisson kernel, H∂D(z, w). Hence a solution to (72) should be

F̂ (r, x) = H∂Ar (1, e−r+ix)

= er
∑
k∈Z

H∂Sr (0, x+ 2πk + i)

=
1

2
er J(r, x).

If this is so, then Proposition 7.1 implies that if Φ(r, x) = 2re−rF̂ (r, x) = r J(r, x), then

Φ̇ = Φ′′ + HI Φ′ + H′I Φ. But we noted this relation in (11).

We set

α(r) = b+ b̃ [6Γ(r)− 1] = b− b̃+ (2b+ c) Γ(r),

Θ(r, x) = Θκ(r, x) = H′I(r, x) +
α(r)

b
− 1

r
,

which allows us to write (72) as

(73) Ḟ =
κ

2
F ′′ + HI F

′ + bΘF.

We will establish (73) for F . We note that F (r, x) is C1 in r and C2 in x. Indeed,

in the previous section we showed the same for Ψ̃(r, x), and it is easy to show that
m∗(r) is continuous in r and hence β(r) is differentiable. Hene we can use Itô’s
formula freely. Before proceeding, let us show that this will also imply the result

for F̂ . Let X
(r)
t , 0 ≤ t ≤ r, denote a solution to the SDE

(74) dX
(r)
t = HI(r − t,X(r)

t ) dt+
√
κ dBt.

Then (73) and the Feynman-Kac formula implies that for r > t > 0,

F (r, x) = Ex
[
F (r − t,X(r)

t ) exp

{
b

∫ t

0

Θ(r − s,X(r)
s ) ds

}]
,

where Ex denotes expectations assuming X
(r)
0 = x. (We do not need to consider

the delicate case t = r so the conditions for the Feynman-Kac formula are easily
verified.) Using this and (71), we can see that

F̂ (r, x) = Ex
[
F̂ (r − t,X(r)

t ) exp

{
b

∫ t

0

Θ(r − s,X(r)
s ) ds

}]
,

and by invoking the Feynman-Kac theorem again, we see that F̂ also satisfies (73).
To prove the proposition for F we compare radial SLEκ (from 1 to 0 in D)

and annulus SLEκ (from 1 to e−r+iθ in Ar) for κ = 2/a ≤ 4. These measures,
restricted to an initial segment of the path which has not reached Cr, are absolutely
continuous.



52 GREGORY F. LAWLER

It is useful to view radial SLEκ raised onto the covering space H as we now
describe. We describe radial SLEκ as a periodic function on H. We return to the
radial Loewner equation (17) which we write as

(75) ∂Gt(z) =
a

2
cot2(Gt(z)− Ut), G0(z) = z,

and view as an equation on H. Here Ut is a standard Brownian motion with U0 = 0
and cot2(z) = cot(z/2). There is a corresponding curve γ in H such that with
probability one, for all t, γt ∩ γ̃t = ∅. Let ηt = ψ ◦ γt and define g̃t by

g̃t(e
iz) = eiGt(z).

Then g̃t is the unique conformal transformation of D \ ηt onto D with g̃t(0) =
0, g̃′t(0) > 0. In fact, g̃′t(0) = eat/2. Radial SLE is usually described in terms of the
differential equation for g̃t.

We now relate the equation (75) to the annulus Loewner equation described in
Section 3.9. We fix an “initial radius” r. As in that section, we define r(t) and ht
by saying that

ht : Sr \ γ̂t → Sr(t)

is a conformal transformation satisfying ht(z+2π) = ht(z)+2π with ht(±∞) = ±∞
and ht(γ(t)) = Ut. Recall that

∂tht(z) = 2ṙ(t)Hr(t)(ht(z)− Ut).

We define Φt by

ht = Φt ◦Gt,
and define h̃t, Φ̃t by

h̃t(e
iz) = eiht(z), φ̃t(e

iz) = eiΦt(z),

so that h̃t = φ̃t ◦ g̃t. Note that h̃t is the unique conformal transformation of Ar \ ηt
onto Ar(t) with h̃t(η(t)) = eiUt . Also, for real x,

|φ̃′t(eix)| = Φ′t(x).

We note that (12) implies that for r(t) ≥ 2 and x ∈ R,

|Φ′t(x)| = 1 +O(e−r(t)), |Φ′′t (x)| = O(e−r(t)).

As in that section, we let

σs = inf{t : r(t) = s}, h∗s = hσs ,

and we set

h̃∗s = h̃σs , φ̃∗s = φ̃σs , g̃∗s = g̃σs .

Lemma 7.2. Under the assumptions above,

∂t|φ̃′t(1)| |t=0= ∂tΦ
′
t(0) |t=0= a

[
Γ(r)− 1

2r

]
,

∂s|(φ∗r−s)′(1)| |s=0= 2 Γ(r)− 1

r
.

Here Γ(r) is as defined in (20).
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Proof. Note that
a

2
cot2(z) = a

[
1

z
− z

12

]
+O(|z|3).

Recall that ṙ(0) = −a/2 and from (40) we have

−aHr(z) = a

[
1

z
+ z

(
Γ(r)− 1

12
− 1

2r

)]
+O(|z|3),

Therefore, the first result follows from (43) and the second from φ̃t = φ̃∗r(t). �

Let µ1, µ2, µ3 denote µD(1,−1), µD(1, 0), and νAr (1, x), respectively, and let w =
e−r+ix. Let zt = eiUt = g̃t(η(t)), ζt = g̃t(−1), wt = g̃t(w), xt = argwt, where
xt is chosen to be continuous in t with x0 = x. If t < τr, these three measures
are absolutely continuous with respect to each other and we can write down the
Radon-Nikodym derivatives. Recall from Section 3.8 that

dµ2

dµ1
(ηt) =

g̃′t(0)b̃ ΨD(zt, 0)

|g̃′t(−1)|b ΨD(zt, ζt)
=

g̃′t(0)b̃

|g̃′t(−1)|b ΨD(zt, ζt)
.

Using similar reasoning for annulus SLE with respect to chordal SLE, we get

dµ3

dµ1
(ηt) =

|g̃′t(w)|b |νg̃t(Ar)(zt, xt)| exp
{

c
2 mD(Dr, ηt)

}
|g̃′t(−1)|b ΨD(zt, ζt)

.

We have not actually defined the measure νg̃t(Ar)(zt, xt), so let us describe it now.
Since g̃t(At) is a conformal annulus whose outer boundary is the unit circle, we can
define νg̃t(Ar)(zt, xt) in the same way that νAr (1, x) was defined. In other words,
it is annulus SLE between zt and wt in the conformal annulus g̃t(Ar) restricted to
curves of a particular winding number. The choice of winding number is determined
by continuity in t.

Let

Mt =
dµ3

dµ2
(ηt) = g̃′t(0)−b̃ |g̃′t(w)|b |νg̃t(Ar)(zt, xt)| exp

{c

2
mD(Dr, ηt)

}
.

We see that Mt is a local martingale for radial SLEκ. Let h̃t = φ̃t ◦ g̃t. Conformal
covariance implies that

|νg̃t(Ar)(zt, xt)| = |φ̃′t(eiUt)|b |φ̃′t(g̃t(w))|b ΨAr(t)(e
iUt , φ̃t(g̃t(w))).

Therefore,

Mt = g̃′t(0)−b̃ |φ̃′t(eiUt)|b exp
{c

2
mD(Dr, ηt)

}
|h̃′t(w)|b F (r(t), Rt),

where

Rt = Re[ht(z)− Ut].
We have shown the following.

Proposition 7.3. If Ut is a standard Brownian motion, then

Mt = J(t)F (r(t), Rt),

is a local martingale where

J(t) = g̃′t(0)−b̃ |φ̃′t(eiUt)|b exp
{c

2
mD(Dr, ηt)

}
|h̃′t(w)|b,

and Rt = Re[ht(x+ ir)− Ut].
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Using this proposition, we can write down a differential equation for F (s, x).
It is convenient to write the local martingale in the annulus parametrization. Let
U∗s = Uσr−s . Then U∗s is a martingale with quadratic variation σr−s. Let R∗s =
h∗r−s(z)− U∗s . Then

dR∗s = ∂sh
∗
r−s(z) dt+ dU∗s

Note that

∂sh
∗
r−s(z) = HI(r, x), ∂sσr−s |s=r= 2/a = κ.

The last proposition becomes the following.

Proposition 7.4. For fixed r > 0, if R∗s = h∗r−s(z)− U∗s and

M∗s = J∗(r − s)F (r − s,R∗s),
where

J∗(s) = (g̃∗s )′(0)−b̃ |̃(φ∗s)′(eiUσs )|b exp
{c

2
mD(Ds, ησs)

}
|(h̃∗s)′(w)|b,

then M∗s is a martingale.

If we write dots for r-derivatives, then by considering the martingale at time
s = 0 and using Itô’s formula, we get the equation

Ḟ =
κ

2
F ′′ + HI F

′ − J̇ F,

where

−J̇(r) = ∂sJ(r − s) |s=0 .

All the remains for proving Proposition 7.1 is to calculate −J̇(r).

Lemma 7.5.

−J̇(r) = α(r) + bH′I(r, x)− b

r
.

Proof. We have parametrized radial SLEκ such that

∂tg̃
′
t(0) = (a/2) g′t(0),

and hence

∂t log
[
g̃′t(0)−b̃

]
|t=0 = −ab̃

2
=
b(1− a)

4
,

∂s log
[
(g̃∗r−s)

′(0)−b̃
]
s=0

= −b̃.

The relationship between the Brownian loop measure and the bubble measure im-
plies

∂s
c

2
mD(Dr, ησr−s) |s=0=

2

a
∂t

c

2
mD(Dr, ηt)|t=0 = c ΓD(1, Ar) = c Γ(r).

Lemma 7.2 shows that

∂s log |(φ̃∗r−s)′(U∗s )|b |s=0= − b
r

+ 2bΓ(r).

Recall that if z = x+ ir, w = eiz = e−r+ix, h̃∗s(w) = eih
∗
s(z), and hence

|(h̃∗r−s)′(w)| = er e−Im[h∗r−s(z)] |(h∗r−s)′(z)| = es |(h∗r−s)′(z)|.
Therefore, using (42), we have

∂s log |(h̃∗r−s)′(w)|b |s=0= b+ bH′I(r, x).
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Adding all the terms, gives

b− b̃+ (c + 2b) Γ(r) + bH′I(r, x)− b

r
= α(r) + bH′I(r, x)− b

r
.

�

7.2. Comparing annulus SLE with radial SLE large r. We now have an
essentially complete description of annulus SLEκ. In our framework, this is a
measure µAr (1, e

−r+ix) of total mass F̂ (r, x). In the next subsection, we will prove
the following.

Theorem 7.6. There exist c∗, q ∈ (0,∞) such that uniformly in x,

F̂ (r, x) = c∗ r
c/2 e(b−b̃)r [1 +O(e−qr)], r →∞.

Let µ2 = µD(1, 0) as before and let µ4 = µAr (1, e
−r+ix) with corresponding

probability measure µ#
4 . Suppose t is sufficiently small so that a curve starting at

the unit disk cannot reach Cr by time t. Then, similarly to the previous section, if
w = e−r+ix and ζt = g̃t(γ(t)), we can write

dµ4

dµ2
(ηt) =

|g̃′t(w)|b

g̃′t(0)b̃
exp

{c

2
mD(Dr, ηt)

}
|µg̃t(Ar\ηt)(ζt, g̃t(w))|.

Proposition 7.7. There exists q > 0 such that uniformly over t > 0, r ≥ ta
2 + 2,

and all initial segments γt,

dµ4

dµ2
(ηt) = c∗ e

r(b−b̃) rc/2 [1 +O(e−qu)],

where u = r − ta
2 . In particular, there exists c <∞ such that∣∣∣∣∣dµ#

4

dµ#
2

(ηt)− 1

∣∣∣∣∣ ≤ c e−qu.
Proof. Let φt : g̃t(Ar \ ηt) → As be a conformal transformation sending C0 to C0

and let ht = φt ◦ g̃t. Using conformal covariance, we write

dµ4

dµ2
(ηt) =

|h′t(w)|b |φ′t(ζt)|b

g̃′t(0)b̃
exp

{c

2
mD(Dr, ηt)

}
|µAs(ht(w), φt(ζt))|.

Suppose t is given, r ≥ ta
2 +2 and let u = r− ta

2 . Recall that in our normalization

g̃′t(0) = eat/2. Using the deterministic estimates from Lemma ??, we get

|h′t(w)|b = eatb/2 [1 +O(e−u)],

|φ′t(ζt)|b = 1 +O(e−u),

exp
{c

2
mD(Dr, ηt)

}
= (r/u)c/2 [1 +O(e−u)],

s = u+O(e−u),

|µAs(ht(w), φt(ζt))| = c∗ u
c/2 e(b−b̃)u [1 +O(e−u)].

Combining these estimates gives the first equality and since the dominant factor
does not depend on the initial segment, the second equality follows. �
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7.3. Proof of Theorem 7.6. Let

λ(r) = rb exp

{
−
∫ r

1

α(s) ds

}
,

K1(r, x) = λ(r)F (r, x),

K(r, x) = λ(r) ΨAr (1, e
−r+ix) = λ(r) F̂ (r, x) =

∑
k∈Z

F (r, x+ 2πk).

Proposition 3.5 gives

α(r) = b− b̃+ (2b+ c) Γ(r) = b− b̃+
2b+ c +O(e−r)

2r
,

and hence

λ(r) = λ∞ r−c/2 e(b̃−b)r [1 +O(r−1e−r)].

Therefore, to prove Theorem 7.6, it suffices to show that there exists K∞ ∈ (0,∞)
and c <∞ such that

|K(r, x)−K∞| ≤ c e−r.
Since

λ̇(r) = λ(r)

[
b

r
− α(r)

]
,

it follows from Proposition 7.1 that K1,K satisfy

K̇1 =
κ

2
K ′′1 + HIK

′
1 + bH′I K1,

(76) K̇ =
κ

2
K ′′ + HIK

′ + bH′I K.

The Feynman-Kac representation tells us that if r > t > 0,

(77) K(r, x) = Ex
[
K(r − t,X(r)

t ) exp

{∫ t

0

J(r − s,X(r)
s ) ds

}]
,

where X
(r)
t satisfies (74). Recall that

(78) |HI(r, x)|, |J(r, x)| ≤ c0 e−r, r ≥ 1,

which implies

(79)

∣∣∣∣∫ r−t

0

H′I(z,X
(r)
s ) ds

∣∣∣∣ ≤ c e−t, exp

{
b

∫ r−1

0

H′I(z,X
(r)
s ) ds

}
� 1,

and for r ≥ 1,

K(r, x) � Ex [K(Xr−1)] ≤ cEx [exp {−2bXr−1}] ,

where Xs = X
(r)
s .

♣Those experienced with PDEs can probably skip the rest of this section. Since |HI | +
|H′I | = O(e−r), for large r the equation (76) is well approximated by the standard heat

equation K̇ = κ
2
K′′. One just needs to keep track of the error terms. I have taken a

probabilistic approach using coupling, but this is just personal preference.

We will use standard coupling techniques to analyze the equation. Here is the
basic estimate. We write x ≡ y if (y − x)/2π ∈ Z.
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Lemma 7.8. There exist u > 0, c <∞ such that the following holds. Suppose r ≥ 2

and Xt = X
(r)
t , Zt = Z

(r)
t are independent solutions to (74) with X0 = x, Z0 = y

with x ≤ y < x+ 2π. Let
T = inf{t : Xt ≡ Zt}.

Then,
P{T ≥ t} ≤ c e−ut,

and if t ≤ 1,
P{T ≥ t2} ≤ c t−1 (y − x).

If we define

Yt =

{
Zt t < T
ZT + (Xt −XT ) t ≥ t

Then Yt satisfies (74) with Y0 = y and Yt ≡ Xt for t ≥ T .

Proposition 7.9.

• There exist 0 < c1 < c2 <∞ such that

(80) c1 ≤ K(r, x) ≤ c2, r ≥ 1, x ∈ R.
• There exists K∞ ∈ (0,∞) and u > 0 and c <∞ such that

|K(r, x)−K∞| ≤ c e−ur.

Proof. For fixed r, x ≤ y ≤ x + 2π, let Xt, Yt, T be as in Lemma 7.8 and let
m−(r),m+(r) be the minimum and maximum, respectively, of K(r, x) for 0 ≤ x ≤
2π. From (77) and (79), we see that c1m−(1) ≤ K(r, x) ≤ c2m+(1). Using (79),

K(r, x) = Ex
[
F (r/2,Kr/2)

]
[1 +O(e−r/2)].

This gives (80). Combining this with the coupling, we see that

K(r, x) = K(r, y)
[
1 +O(e−ur)

]
.

�
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