KAREN BUTT
 UNIVERSITY OF MICHIGAN
 APPROXIMATE
 MARKED LENGTH SPECTRUM
 RIGIDITY

APPROXIMATE MARKED LENGTH SPECTRUM RIGIDITY

(M, g) negatively curved surface

- Marked length spectrum $\left(\mathrm{MLS}_{g}\right)$
function that keeps track of lengths of closed geodesics
- Rigidity (Otal '90, Croke '91)

$$
\mathrm{MLS}_{g_{1}}=\mathrm{MLS}_{g_{2}} \Longrightarrow g_{1}=g_{2}
$$

- Approximate rigidity (B '20)

$$
\mathrm{MLS}_{g_{1}} \approx \mathrm{MLS}_{g_{2}} \Longrightarrow g_{1} \approx g_{2}
$$

THE LENGTH SPECTRUM

Definition: The length spectrum of (M, g) is the set of lengths of all closed geodesics

THE LENGTH SPECTRUM

What does the length spectrum tell us about the underlying metric?

```
For closed hyperbolic surfaces,
length spectrum \(\longleftrightarrow\) Laplace spectrum
(Huber '59)
```

"Can you hear the shape of a drum?"
No (Vignéras '80)

THE MARKED LENGTH SPECTRUM

Fact: Every closed curve in M is freely homotopic to a unique closed geodesic

$$
\begin{aligned}
& \mathrm{MLS}_{g}:\left\{\begin{array}{c}
\text { free homotopy } \\
\text { classes }
\end{array}\right\} \longrightarrow \mathbb{R} \\
& \text { free homotopy } \begin{array}{c}
\text { class }
\end{array} \longmapsto \begin{array}{c}
\text { length of closed } \\
\text { geodesic }
\end{array}
\end{aligned}
$$

RIGIDITY - CONSTANT NEGATIVE CURVATURE

What does the marked length spectrum tell us about the underlying metric?

9g-9 theorem

For any hyperbolic surface of genus g, there are $9 g-9$ simple closed curves whose lengths determine the surface up to isometry
\Longrightarrow MLS rigidity

APPROXIMATE RIGIDITY - CONSTANT NEGATIVE CURVATURE

Theorem (Thurston '98): For hyperbolic surfaces, $\mathrm{MLS}_{g_{1}} \approx \mathrm{MLS}_{g_{2}} \Longrightarrow g_{1} \approx g_{2}$
maximal length ratio $=$ minimal Lipschitz constant

VARIABLE NEGATIVE CURVATURE

Analogy

constant curvature holomorphic functions
variable curvature smooth functions

MLS RIGIDITY IN VARIABLE NEGATIVE CURVATURE

Theorem (Otal '90, Croke '91)

A negatively curved metric on a closed surface is determined up to isometry by its marked length spectrum
$\mathrm{MLS}_{g_{1}}=\mathrm{MLS}_{g_{2}} \Longrightarrow g_{1}=g_{2}$

METHODS - DYNAMICAL SYSTEMS

Part 1: construct a map that preserves geodesics

Part 2: construct a map that preserves distances

The geodesic flow $\varphi^{t}: T^{1} M \rightarrow T^{1} M$ is Anosov

Anosov closing lemma: "almost closed orbits" are shadowed by closed orbits

APPROXIMATE RIGIDITY

Main question:

$$
\begin{aligned}
& \mathrm{MLS}_{g_{\varepsilon}} \approx \mathrm{MLS}_{g} \Longrightarrow g_{\varepsilon} \approx g \\
& 1-\varepsilon \leq \frac{\mathrm{MLS}_{g_{\varepsilon}}}{\mathrm{MLS}} \leq 1+\varepsilon
\end{aligned}
$$

APPROXIMATE MLS RIGIDITY IN PINCHED NEGATIVE CURVATURE

Theorem (B'20)

Let (M, g) and $\left(M, g_{\varepsilon}\right)$ be metrics of pinched negative curvature satisfying

$$
1-\varepsilon \leq \frac{\mathrm{MLS}_{g_{\varepsilon}}}{\mathrm{MLS}_{g}} \leq 1+\varepsilon
$$

Then, given $A>1$, there exists ε small enough such that there is a map $f: M \rightarrow M$ satisfying

$$
\frac{1}{A} \leq \frac{d_{g_{\varepsilon}}(f(p), f(q))}{d_{g_{0}}(p, q)} \leq A
$$

METHODS

Step 1: Gromov limit (Pugh '87)

$$
\mathrm{MLS}_{g_{0}}=\mathrm{MLS} g_{g}
$$

METHODS

Step 2: Adapt Otal's proof to show (M, g_{0}) is isometric to (M, g)

APPROXIMATE MARKED LENGTH SPECTRUM RIGIDITY

(M, g) negatively curved surface

- Marked length spectrum $\left(\mathrm{MLS}_{g}\right)$
function that keeps track of lengths of closed geodesics
- Rigidity (Otal '90, Croke '91)

$$
\mathrm{MLS}_{g_{1}}=\mathrm{MLS}_{g_{2}} \Longrightarrow g_{1}=g_{2}
$$

- Approximate rigidity (B '20)

$$
\mathrm{MLS}_{g_{1}} \approx \mathrm{MLS}_{g_{2}} \Longrightarrow g_{1} \approx g_{2}
$$

