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Quantum surface vs. smooth surface

Definition (Formal)

Let γ ∈ (0, 2) be a constant and
U ⊂ C be a simply connected domain.
A γ-LQG surface is a two-dimensional
Riemannian manifold (U, g) with the
random metric tensor

g = eγh(dx2 + dy2)

where h is an instance of the Gaussian
free field in U.

We can parameterize any simply connected
smooth surface with isothermal coordinates:
the metric tensor takes the form

ef (z)(dx2 + dy2)

where f is a smooth function.

Area of a set A:
∫
A ef (z) d2z

Length of a path P:
∫ 1
0 ef (P(t))/2|P ′(t)|dt

Distance between points z ,w : infP:z→w len(P)
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Mollifications of the whole-plane GFF

Definition (Formal)

A whole-plane GFF h is a centered Gaussian process on C with

Cov(h(z), h(w)) = G (z ,w) := log
(|z | ∨ 1)(|w | ∨ 1)

|z − w |
.

A whole-plane GFF is defined rigorously as a random distribution.

Circle average: hε(z) = (h, λz,ε)
▶ λz,ε is the uniform probability measure on ∂Bε(z).
▶ A whole-plane GFF has normalization h1(0) = 0.

Heat kernel average: h∗ε(z) = (h ∗ pε2/2)(z)
▶ pε2/2(dw) = 1

πε2 exp(−
|z−w |2

ε2 )dw
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LQG measure (area)

For a smooth Riemannian metric ef (dx2 + dy2), the area measure is ef (z) d2z .

Definition (Duplantier–Sheffield, 2008)

The γ-LQG measure w.r.t. GFF h is the a.s. weak limit

µh(dz) := lim
ε→0

εγ
2/2eγhε(z) d2z .

A special case of Gaussian multiplicative chaos (Kahane, 1985)

▶ µh(dz) = limε→0 ε
γ2/2eγh

∗
ε (z) d2z in probability. (Shamov, 2014)

Nontrivial when γ ∈ (0, 2).
▶ No point mass, µh(U) > 0 a.s. for every nonempty open U.
▶ Mutually singular w.r.t. the Lebesgue measure.

Zero measure when γ ≥ 2.
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LQG metric (distance)
For a smooth Riemannian metric ef (dx2 + dy2), d(z ,w) = infP:z→w

∫ 1
0 ef (P(t))/2|P ′(t)| dt.

Definition (Gwynne–Miller, 2019)

The γ-LQG metric w.r.t. GFF h is the limit

Dh(z ,w) := lim
ε→0

a−1
ε

[
inf

P:z→w

∫ 1

0
eξh

∗
ε(P(t))|P ′(t)|dt

]
in probability w.r.t. the local uniform topology on C× C.

ξ := γ/dγ , where dγ > 2 is the “fractal dimension of γ-LQG.”
(Ding–Gwynne, 2018; Ding–Zeitouni–Zhang, 2018)

aε: Normalization factor chosen so that the limiting sequence is tight.
(Ding–Dubédat–Dunlap–Falconet, 2019)

For ξ < 2/d2, induces the Euclidean topology.

For ξ > 2/d2, Dh exists but with singular points. (Ding–Gwynne, 2021)
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Simulations of LQG measure and metric (by J. Miller)

γ = 0.75 γ = 1.25 γ = 1.75

LQG measure

All sub-squares have
approximately the same γ-LQG
measure. They are colored
according to their Euclidean size.

γ = 0.75 γ = 1.25 γ = 1.75

LQG metric

Simulations of γ-LQG metric
balls. The colors indicate
distances to the center of the
ball. The black lines are
geodesics to the center.
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LQG measure vs. LQG metric

LQG measure: µh(dz) = limε→0 ε
γ2/2eγhε(z) d2z

LQG metric: Dh(z ,w) = limε→0 a
−1
ε

[
infP:z→w

∫ 1
0 e

γ
dγ

h∗ε(P(t))|P ′(t)|dt
]

Theorem (Berestycki–Sheffield–Sun, 2014)

The GFF h is almost surely determined by µh.

Question (Gwynne and Miller, 2019)

Does the LQG metric a.s. determine the LQG measure?

More concretely, can the LQG measure be recovered as some sort of Minkowski content
measure w.r.t. the LQG metric?
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Answer for γ =
√
8/3

Theorem (Miller–Sheffield, 2016)

The Brownian map is equivalent to the γ-LQG sphere for γ =
√

8/3.

Theorem (Le Gall, 2021)

Let H(r) = r4 log log(1/r). There exists a constant κ > 0 such that, almost surely for every
Borel subset A of the Brownian map,

Vol(A) = κ lim
ε→0

inf

{∑
i∈I

H(diam(Ui )) : A ⊂
⋃
i∈I

Ui , diam(Ui ) < ε ∀i

}
.

That is, the volume measure of the Brownian map is a constant multiple of the Hausdorff
measure w.r.t. the gauge function H.

dγ is the Hausdorff dimension of the γ-LQG metric. (Gwynne–Pfeffer, 2019)
d√

8/3
= 4 is the only known value of dγ .
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Minkowski dimension of the LQG metric

Nε(A): number of Dh-balls of radius ε required to cover A ⊂ C.
The Dh-Minkowski dimension of A is δ if Nε(A) = ε−δ+o(1).

Theorem (Ang–Falconet–Sun, 2020)

For any compact set K ⊂ C and ζ > 0, we a.s. have

sup
ε∈(0,1)

sup
z∈K

µh(Bε(z ;Dh))

εdγ−ζ
< ∞ and inf

ε∈(0,1)
inf
z∈K

µh(Bε(z ;Dh))

εdγ+ζ
> 0.

Consequently, the Minkowski dimension of γ-LQG is dγ .
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Minkowski content on the LQG metric space

Nε(A): number of Dh-balls of radius ε required to cover A ⊂ C.
The Dh-Minkowski dimension of A is δ if Nε(A) = ε−δ+o(1).

The Minkowski content of a δ-dimensional set A is the constant c s.t. Nε(A) ∼ cε−δ.

Theorem (Gwynne–S., 2022)

Let γ ∈ (0, 2). There exists a deterministic sequence {bε}ε>0 depending only on γ such for
every random bounded Borel set A ⊂ C with µh(∂A) = 0 a.s.,

lim
ε→0

b−1
ε Nε(A) = µh(A) in probability.

Consequently, Dh a.s. determines µh.

Our choice of {bε}ε>0 satisfies:

There exists c > 1 such that c−1ε−dγ ≤ bε ≤ cε−dγ for all ε ∈ (0, 1).

ε → εdγbε is a slowly varying function. That is, limε→0 brε/bε = r−dγ for every r > 0.
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LQG metric determines the conformal structure

Theorem (Ang–Falconet–Sun, 2020)

Let γ ∈ (0, 2). The whole-plane GFF h is almost surely determined by the random pointed
metric measure space (C, 0,Dh, µh), up to rotation and scaling of C.

That is, the map (C, h, 0) 7→ (C, 0,Dh, µh) has a measurable inverse.
▶ Generalization of the convergence of the Tutte embedding of the Poisson–Voronoi

tessellation of the Brownian map to
√
8/3-LQG. (Gwynne–Miller–Sheffield, 2018)

Our theorem says that we can use the Minkowski content to construct a measurable
inverse of the natural projection (C, 0,Dh, µh) 7→ (C, 0,Dh).

Corollary

The pointed metric space (C, 0,Dh) almost surely determines its parameterization on C and
the associated GFF h modulo rotation and scaling of C.

This is a generalization of the equivalence between
√
8/3-LQG and the Brownian map.
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The normalization constant

The γ-quantum cone is the LQG surface (C, hγ , 0)
obtained by:

▶ Sampling a point from the γ-LQG measure µh;
▶ Re-centering at the sampled point, then zooming in.

hγ agrees with h − γ log | · | when restricted to D.
Let η be the whole-plane space-filling SLEκ curve
from ∞ to ∞, sampled independently of the quantum
cone hγ .

▶ For κ ≥ 8, η agrees locally with ordinary SLEκ.
▶ For κ ∈ (4, 8), η is obtained by recursively filling in

bubbles in an ordinary SLEκ.

Parameterize η s.t. η(0) = 0, µhγ (η([s, t])) = t − s.

Definition

bε := E[Nε(η([0, 1]);Dhγ )] where κ = 16/γ2.

η([0, 1])

η((−∞, 0])

η([1,∞))

η([1,∞))

η((−∞, 0])

η([0, 1])

η(0)

η(1)

η(1)

η(0)

κ ∈ [8,∞)

κ ∈ (4, 8)
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Proof overview
Step 1. Minkowski content approximations of SLE segments are tight.

For each p ≥ 1, there is a constant Cp < ∞ such that for every fixed s < t,

sup
0<ε<(t−s)1/dγ

E[(εdγNε(η[s, t]))
p] < Cp|t − s|p.

Consequently, we can pick a subsequence εn → 0 such that

(ε
dγ
n Nεn(η[s, t]) : s < t rational)

d→ (X[s,t] : s < t rational).

Step 2. Minkowski contents of SLE segments are additive.

Let N◦
ε (η[s, t]) = Nε({z ∈ η[s, t] : Dhγ (z , ∂η[s, t]) ≥ ε}).

We prove that limε→0 |Nε(η[s, t])− N◦
ε (η[s, t])| = 0 a.s.

Therefore,

(ε
dγ
n N◦

εn(η[s, t]) : s < t rational)
d→ (X[s,t] : s < t rational).

κ ∈ [8,∞)

κ ∈ (4, 8)

Consequently, X[r ,s] + X[s,t] = X[r ,t] a.s. for each rational r < s < t.

12 / 16



Application of the mating-of-trees theorem
The internal metric in U ⊂ C is defined as

DU
hγ (z ,w) := inf

U⊃P:z→w
length(P;Dhγ ).

For s < t, let Us,t := int(η[s, t]). Consider the curve-decorated metric measure space

S[s,t] := (Us,t ,D
Us,t

hγ , µhγ |Us,t , η(· − s)|[0,t−s]).

Theorem (Duplantier–Miller–Sheffield, 2014)

1 Stationarity. For each fixed s < t, we have S[s,t]
d
= S[0,t−s].

2 Independence. For each fixed s0 < t0 ≤ s1 < t1 ≤ · · · ≤ sk < tk ,
S[s0,t0],S[s1,t1], . . . ,S[sk ,tk ] are independent.

Key observation: N◦
ε (η[s, t]) is measurable w.r.t. S[s,t].

For each fixed s < t, we have X[s,t]
d
= X[0,t−s].

For s0 < t0 ≤ · · · ≤ sk < tk , we have that X[s0,t0], . . . ,X[sk ,tk ] are independent.
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Proof overview
Step 3. Minkowski contents of SLE blocks are LQG measures.

Define Yt := X[0,t] for t ≥ 0 and Yt := X[t,0] for t < 0. Then X[s,t] = Yt − Ys a.s.

{Yt}t∈Q a.s. extends to a continuous process {Yt}t∈R by the Kolmogorov continuity thm.

{Yt}t∈R satisfies the following properties.
▶ Stationary and independent increments
▶ Continuous paths
▶ Positive increments: Ys < Yt a.s. whenever s < t.

Lemma

There exists a constant c > 0 depending only on γ such that for every s < t,

lim
ε→0

P{εdγNε(η[s, t]) > c(t − s)} = 1.

The only process satisfying these conditions is Yt = ct where c > 0 is deterministic.

We replace the normalization constant from ε−dγ to b−1
ε so that c = 1.
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Proof overview

Proposition

For every s < t, limε→0 b
−1
ε Nε(η[s, t]) = t − s in probability.

Step 4. Extend to other bounded Borel sets with thin boundary.

Approximate such a set A from inside and outside with small space-filling SLE blocks.

To use the squeeze theorem, we need

µhγ (∂A) = lim
ε→0

µhγ (Bε(∂A)) = 0.

Step 5. Extend to other GFF variants by absolute continuity.

Outlook
1 Further applications of the mating-of-theory to the LQG metric?

▶ Quantum boundary length as Minkowski content
▶ Need an observable of the LQG metric which is determined locally.
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Outlook

2 SLEκ-decorated γ-LQG where κ ̸= 16/γ2

▶ (C, 0,Dhγ , µhγ , η)
d
= (C, 0, s1/dγDhγ , sµhγ , η(s·))

d
= (C, η(t),Dhγ , µhγ , η(·+ t))

▶ Tightness of Minkowski content approximations follow from

E[(diam(η([0, 1]);Dhγ ))
p] < ∞ for all p ∈ R.

▶ Its proof uses standard LQG estimates but it does not use the mating-of-trees theory.

Theorem (Gwynne–S., 2022)

Almost surely, η parameterized by µh on the metric space (C,Dhγ ) is locally Hölder continuous
with any exponent < 1/dγ and is not locally Hölder continuous with any exponent > 1/dγ .

▶ Used in the study of meandric permutons (Borga–Gwynne–Sun, 2022)
▶ E.g., the conjectured scaling limit of uniform meandric permutations:

a γ-LQG surface decorated with two independent SLE8 curves with γ =
√

1
3 (17−

√
145).
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