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Abstract

We study Liouville quantum gravity (LQG) in the supercritical (a.k.a. strongly coupled)

phase, which has background charge Q ∈ (0, 2) and central charge cL = 1+6Q2 ∈ (1, 25). Recent

works have shown how to define LQG in this phase as a planar random geometry associated

with a variant of the Gaussian free field, which exhibits “infinite spikes.” In contrast, a number

of results from physics, dating back to the 1980s, suggest that supercritical LQG surfaces should

behave like “branched polymers”: i.e., they should look like the continuum random tree.

We prove a result which reconciles these two descriptions of supercritical LQG. More pre-

cisely, we show that for a family of random planar maps with boundary in the universality class

of supercritical LQG, if we condition on the (small probability) event that the planar map is

finite, then the scaling limit is the continuum random tree.

We also show that there does not exist any locally finite measure associated with supercritical

LQG which is locally determined by the field and satisfies the LQG coordinate change formula.

Our proofs are based on a branching process description of supercritical LQG which comes from

its coupling with CLE4 (Ang and Gwynne, 2023).
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1 Introduction

Liouville quantum gravity (LQG) is a canonical one-parameter family of random geometries on an

orientable surface with given topology. Conceived by Polyakov [Pol81], LQG was studied initially

in the physics literature in the context of string theory and two-dimensional quantum gravity and

since has become an active area of mathematical research.

LQG is indexed by the parameter cL > 1 called the (Liouville) central charge. (Some works

on LQG alternatively consider the matter central charge cM = 26−cL.) Heuristically speaking,

an LQG surface of given topology is described by a random metric g sampled from the “uniform

measure on the space of Riemannian metric tensors weighted by (det∆g)
−(26−cL)/2,” where ∆g is

the Laplace–Beltrami operator of the surface with the metric g. While this definition does not

make literal sense, there are various ways to define LQG rigorously that we discuss below. These

definitions utilize alternative parameters, with common choices being the background charge

Q > 0 and the coupling constant γ ∈ (0, 2] ∪ {z ∈ C : |z| = 2} related by the formulae

cL = 1 + 6Q2 and Q =
2

γ
+

γ

2
. (1.1)

The geometric properties of an LQG surface depend heavily on the value of its central charge,

which can be classified into subcritical, critical, and supercritical phases as summarized in Table 1.

In the physics literature, LQG is said to be weakly coupled in the subcritical and critical phases

(cL ≥ 25) and strongly coupled in the supercritical phase (cL ∈ (1, 25)). In this paper, we are

primarily interested in the latter case.

Over the past two decades, the subcritical and critical phases of LQG have been studied at

length in the mathematical community. In these cases, the so-called DDK ansatz [Dav88, DK89]

states that, when defined on a domain U ⊆ C, the metric tensor associated with LQG should take

the form

g = eγh(dx2 + dy2) (1.2)
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Central charge cL Background charge Q Coupling constant γ

Subcritical (25,∞) (2,∞) (0, 2)

Critical 25 2 2

Supercritical (1, 25) (0, 2) γ ∈ C \ R with |γ| = 2

Table 1: The phases of LQG and their parameter ranges.

where dx2 + dy2 is the Euclidean metric tensor and h is a variant of the Gaussian free field (GFF)

on U . (We assume that the reader is familiar with the GFF and we refer to the surveys [She07,

WP21, BP24] for detailed introductions to it.) A GFF is rigorously defined only as a random

generalized function and thus the metric tensor (1.2) does not make a priori sense. Nevertheless,

the geometry associated with (1.2) can be made rigorous through a renormalization procedure

approximating h by a sequence of continuous functions. Indeed, as the limit of such approximations,

the LQG area measure was constructed in [DS11] as a Gaussian multiplicative chaos measure (see

also [Kah85, RV11]). Furthermore, the distance function associated with LQG (or simply, the

LQG metric) was constructed in a series of works culminating in [DDDF20, GM21b] again by

a renormalization procedure involving smooth approximations to the GFF h. We also note the

vast literature on the deep connections between LQG in the subcritical and critical phases and

various mathematical objects including Schramm–Loewner evolution (SLE), random planar maps,

conformal field theory, and random permutations; we direct the reader to the surveys [Gwy20,

GHS23, She23, BP24, GKR24] as starting points.

1.1 Physics predictions on the behavior of supercritical LQG and the main
contributions of this paper

In the context of string theory, it is the supercritical phase of LQG which is expected to be physically

relevant: indeed, the regime cL ∈ {1, . . . , 25} is the one that was originally considered by Polyakov

[Pol81] to model the worldsheets swept out by strings moving in R26−cL . The reader may refer

to [AG23b, Remark 1.4] for further explanation on the above-mentioned string theory connection.

Moreover, given the recent works [CJ16, Jaf16, Cha19a, Cha19b, MP19, MP24, CPS23] which

have shown that Wilson loop observables in lattice gauge theory can be represented as sums over

surfaces in Rd, it is plausible that supercritical LQG may be relevant to Yang–Mills theory. To

be specific, the surfaces appearing in the surface-sum representation for U(N) lattice gauge theory

in the N → ∞ limit might be related to supercritical LQG; we note such connections are still

speculative and refer the reader to [CPS23, Section 7] for more on this.

However, when compared to the subcritical and critical phases, the supercritical phase of LQG

has stayed much more mysterious. There are a number of works in the physics literature painting

the underlying geometry of supercritical LQG in different lights.

(a) One line of thought (e.g., [Sei90], see also [GM93, Figure 10]) suggests that when extending

the conformal field theory to the regime cL ∈ (1, 25), the geometry of the surface is torn apart

by “infinite spikes” at a dense set of points. In fact, this picture of supercritical LQG is

consistent with the mathematical literature [GHPR20, DG23a, DG23b, Pfe24, AG23b], where

it is represented as a random geometry constructed from a variant of the GFF with a dense set

of singular points which are at infinite distance from all other points.
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(b) A drastically different viewpoint is taken in the works [DFJ84, ADFO86, Cat88, BH92, BJ92,

CKR92, ADJT93, Dav97], where, by often using numerical and heuristic analyses of random

planar maps weighted by (det∆graph)
(cL−26)/2 as an approximation of LQG, they suggest that

LQG in the supercritical regime should look like a continuum random tree, or as it is often

called in the physics literature, a branched polymer.

(c) Yet another picture arises in the works of Gervais et al. [GN84, GN85, GR94, GR96, CGS97,

Ger95, Ger96, Ger97], where, based on an algebraic study of the path integral formulation of

LQG, it is claimed that there are some special integrable algebraic structures associated with

supercritical LQG at the specific values cL = 7, 13, 19. Moreover, for these values of cL, these

authors define finite local operators which gives rise to a so-called “area element” (e.g., (4.3)

in [GR94]), which could conceivably be interpreted as a measure associated with LQG.

(d) There are also purely algebraic approaches to supercritical LQG based on conformal field theory.

See, e.g., [Rib14] for an introduction to this approach.

While the branched polymer picture seems to have the most support in the physics literature,

there have been no mathematically rigorous results in support of this view prior to this work. In

the works [GHPR20, APPS22], a possible reconciliation of the branched polymer and the infinite

spikes pictures was suggested. Namely, it was suggested that, while a supercritical LQG surface

a priori has infinite spikes at a dense set of points, it degenerates to a branched polymer when

“conditioned” on the zero-probability event of having no infinite spikes. However, previous to our

work, it was unclear whether this heuristic explanation is correct. Furthermore, it was not clear

how to make this idea rigorous, especially given that we need to condition on the zero-probability

event of a supercritical LQG surface having no infinite spikes at all.

Our goal in this work is to present a rigorous formulation of a supercritical LQG surface rec-

onciling the two viewpoints (a) and (b). Moreover, in disagreement with the claim in (c), we

establish that it is not possible to construct a measure associated with supercritical LQG for any

value of cL ∈ (1, 25): this was unclear from the previous mathematical literature (see [GHPR20,

Questions 6.1–2]). We now give a quick overview of the main results of this paper.

1. We establish a link between the branched polymer and infinite spikes pictures via a discrete

model of supercritical LQG. We consider a model of random planar maps with boundary (see

Section 1.2) which can be expected to converge to supercritical LQG in the scaling limit (see

Theorem 1.2). While a map in this model has a finite perimeter p ∈ N, it has infinitely many

vertices (and thereby “infinite spikes”) with positive probability. In fact, the probability of the

map with perimeter p being infinite increases to 1 as p → ∞ (Proposition 1.3). We establish

that upon conditioning this planar map on the rare event that it contains finitely many

vertices, we obtain a continuum random tree in the scaling limit as p → ∞ (Theorem 1.4).

The physics papers referenced in (b) considered finite planar maps (e.g., with a fixed number

of edges), so they were implicitly conditioning the surface to be finite.

2. One interpretation of the “area element” described in (c) above is that for the values cL =

7, 13, 19, a supercritical LQG surface has a locally finite volume form associated to it. In

other words, given a GFF h, one would expect to find a locally finite Borel measure mh

which is locally determined by and compatible with the geometry of a supercritical LQG

surface associated with h. Nonetheless, in Theorem 1.5, we show that there does not exist
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any natural notion of a locally finite and locally determined volume measure for the entire

range cL ∈ (1, 25) of supercritical LQG.

We now introduce these results in further detail, first giving a precise description of our random

planar map model of supercritical LQG. This is followed by statements of the main results of this

paper and the ideas of their proofs.

1.2 A discrete model of supercritical LQG

As mentioned above, we give a rigorous meaning to “conditioning a supercritical LQG surface to

have no infinite spikes” by considering a discrete model in the universality class of supercritical

LQG, for which there is a natural notion of conditioning it to have finite size. In particular, we

consider a random loop-decorated planar map which is a discrete analog of the supercritical LQG

disk decorated with a conformal loop ensemble of parameter κ = 4 (CLE4) as constructed recently

in [AG23b]; see Section 2 for an introduction to this continuum model. The planar map model

that we shall work with is a slight modification of that in [AG23b] and is also related to the gasket

decomposition of the loop O(n) model from [BBG12]. We refer the reader to Remark 4.4 for a

further discussion on the relations between these discrete models.

We begin with a few basic definitions. A planar map is a planar graph embedded into the

Riemann sphere considered up to orientation-preserving homeomorphisms. Our planar map M

will have a designated root face, which we view as the “outside” of a planar map which has the

“topology” of a disk. The boundary ∂M of the map M is the subgraph of M consisting of vertices

and edges incident to the root face. The non-root faces of M are its interior faces, denoted as

F(M). Given a face f , we use per(f) to denote the half-perimeter of f . That is, 2 per(f) is equal

to the number of edges incident to f , where an edge is counted twice if it is incident to f on both

of its sides (see, e.g., the root face f in Figure 2(a) with per(f) = 13).

We shall construct the model inductively, with two types of random planar maps inserted into

the existing planar map one after another.

• The first kind is a rooted bipartite1 Boltzmann map conditioned on a fixed boundary length,

which should be understood as the discrete counterpart of the CLE4 gasket. In particular, we

fix a critical non-generic weight sequence q = (qi)i∈N of type a = 2, and choose our maps from

the probability measure P(p)
q on rooted bipartite planar maps with boundary perimeter 2p.

We define these precisely in Section 4.1, and at this point we simply note that a Boltzmann

map sampled from the law P(p)
q is expected to converge in the p → ∞ scaling limit to the

gasket of a CLE4 on an independent critical LQG disk. (See Lemma 4.16 for a rigorous result

on the convergence of perimeters of faces to length of CLE4 loops in support of this). We

also emphasize that these Boltzmann maps are not required to have simple boundaries; for

example, we may sample from P(p)
q a tree with p edges, which, we note, has no interior faces

(F(M) = ∅).

• The second kind of random planar map that we need is a “ring” with two distinguished faces

— an outer face fout and an inner face fin — such that both fout and fin have even degrees.

See Figure 1 for an example of a ring. These rings are inserted into each interior face of a

1A graph is called bipartite if all of its faces have even degrees. We choose to work with bipartite Boltzmann

maps so as to utilize the random walk bijections of [BFG04] and [JS15] (see Proposition 4.7). We expect our results

to hold in a greater generality without assuming the planar maps to be bipartite.
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fin

fout

Figure 1: An example of a ring sampled from P(4)
ring with the outer boundary colored in green and

the inner boundary in purple. For this ring, per(fout) = 4 and per(fin) = 10.

Boltzmann map. They are analogous to the loops in the loop O(n) model (see [BBG12]) on

the dual map, where the two faces of a ring correspond to the inside and outside of a loop.

Let Q ∈ (0, 2) be the background charge associated with the given universality class of

supercritical LQG and define

βQ :=
π
√

4−Q2

Q
. (1.3)

We fix a sequence of probability measures
(
P(p)
ring

)
p∈N of rings such that under P(p)

ring, we have

per(fout) = p a.s. and the ratio per(fin)/per(fout) is approximately equal in distribution to

exp(βQY ) where Y is a Rademacher random variable. This is the law of the ratio of inner

and outer LQG lengths of CLE4 loops on supercritical LQG in the setting of [AG23b] (see

(2.11)).

For concreteness, we can choose the law of per(fin) under P(p)
ring to be equal to the law of

⌊p exp(βQY )⌋, and let P(p)
ring to be supported on rings where all vertices are on the boundary

of either the inner or outer face and all faces other than fout and fin are quadrilaterals.

However, we can allow a more general class of distributions of rings, and this is specified later

in Definition 4.3.

With these building blocks at hand, we now iteratively construct a discrete model of supercritical

LQG. See Figure 2 for an illustration of the following construction.

Definition 1.1. Fix p ∈ N. Let P(p)
∞ denote the law of the Markov chain {(Mi,Fi)}i∈N∪{0} defined

below, where Mi is a rooted bipartite planar map whose root face has degree 2p and Fi ⊆ F(Mi).

As can be seen below, Fi denotes the set of interior faces of Mi where Boltzmann maps are to be

inserted in the subsequent step.

• We start with M0 sampled from the law P(p)
q and set F0 = F(M0).

• The induction step consists of two phases.

(i) Given (Mi,Fi), sample rings {R(f)}f∈Fi
conditionally independently from P(per(f))

ring . For

each f ∈ Fi, glue the outer boundary of the ring R(f) to the edges encircling f with

a uniform choice among the possible rotations of R(f) relative to f . Define the inner

6



(a)

(c)

(e)

(d)

(b)

(f)

Figure 2: An illustration of the iterative construction in Definition 1.1 with p = 13. (a) The

outermost gasket M0 is sampled from P(p)
q . The collection F0 comprises the inner faces of M0.

(b) Given M0, a ring R(f) is sampled conditionally independently for each face f ∈ F0. The

outer/inner boundaries of the rings are colored in green/purple, respectively. The ring in the top-

right of the figure has inner perimeter zero. (c) The rings are attached to the corresponding faces,

with the possible rotations chosen uniformly. The rings are identified with red loops that separate

inner and outer boundaries. These loops are the discrete analogs of CLE4 loops in the coupling

of supercritical LQG disk with CLE4. (d) Given the previous figure, for each ring R(f), sample

conditionally independent Boltzmann maps from Pperin(f)
q where perin(f) is the inner half-perimeter

of the ring R(f). (e) The Boltzmann maps are glued to the inner boundaries of the rings, with the

possible rotations chosen uniformly. These comprise the map M1 colored purple and their inner

faces F1 colored yellow. (f) The map after another iteration, with M0 colored in green, M1 in

purple, and M2 in blue. In this case, F2 = ∅ as the Boltzmann maps comprising M2 do not have

non-root (inner) faces. The construction terminates at this stage, giving us a finite map.
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perimeter perin(f) of f to be that of R(f) (i.e., per(fin) with fin being the inner face of

R(f)).

(ii) Conditioned on the rings {R(f)}f∈Fi
glued to the marked faces Fi ⊆ F(Mi) in the

previous phase, for each f ∈ Fi, sample an independent Boltzmann map M(f) from

P(perin(f))
q . (If perin(f) = 0, then we declare M(f) to be a single point.) Glue its outer

boundary to the inner boundary of the ring R(f), again choosing uniformly among the

possible rotations of M(f) relative to the inner boundary of R(f).

The new map Mi+1 is the one resulting from gluing in all of the rings {R(f)}f∈Fi
and the

Boltzmann maps {M(f)}f∈Fi
into each f ∈ Fi as described above. The new marked faces are

Fi+1 :=
⋃

f∈Fi
F(M(f)).

• There is a positive probability that the above iterative construction terminates after a finite

number of steps. For example, it could be that M0 is a tree, in which case F0 = ∅. Also,

given Fi ̸= ∅, we may have Fi+1 = ∅ if for every f ∈ Fi, either the inner boundary of the

ring R(f) is a single vertex (that is, per(fin) = 0) or F(M(f)) = ∅ (i.e., the Boltzmann map

M(f) is a tree). These events can happen with positive probabilities since for every p ∈ N,
the Boltzmann map with perimeter 2p has a positive chance of having no interior faces.

If Fi = ∅ for some i ∈ N ∪ {0}, we define (Mj ,Fj) := (Mi,∅) for all j ≥ i and set M := Mi.

In this case, we say that the resulting map M is finite, as it has finitely many vertices.

• Otherwise, we define M =
⋃∞

i=0M0, where we note that we have the natural inclusions

M0 ⊆ M1 ⊆ · · · . More formally, we define M to be the projective limit of Mi as i → ∞. That

is, M is the unique (infinite) planar map with an embedding of the whole chain (Mi,Fi)i∈N∪{0}
into M such that every vertex and edge of M appears in some Mi under this embedding. We

say that the resulting map M is infinite, as it has infinitely many vertices.

We shall refer to the map M0 in the above process as the outermost gasket of the discrete

supercritical map M . Also, for any f ∈
⋃

i∈N∪{0} Fi, we will use M |f to denote the submap of M

inside the inner boundary of the ring R(f). Finally, let P(p)
F be the probability measure obtained

by conditioning P(p)
∞ to output a finite map M .

1.3 Main result 1: supercritical LQG disk conditioned to be finite is a branched
polymer

Our first main result (Theorem 1.4) is that our discrete model of supercritical LQG disk given

in Definition 1.1, conditioned on the event that it is finite, degenerates into a continuum tree

as the perimeter of its boundary tends to infinity. We expect that a planar map sampled from

P(p)
∞ , when scaled appropriately, would converge to a supercritical LQG surface with central charge

cL = 1+6Q2. We establish this scaling limit for the loops appearing in our discrete and continuum

models, observing that the joint law of the lengths of the discrete loops scaled by 1/p converges to

the joint law of the supercritical LQG lengths of the CLE4 loops. We refer the reader to [AG23b,

Section 3.2] for a further discussion on the relation between our discrete and continuum models of

supercritical LQG.

Theorem 1.2 (See Proposition 4.15 for a precise statement). Consider the loop-decorated planar

map sampled from the unconditioned law P(p)
∞ defined in Definition 1.1. For each n ∈ N, let
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(χn
i )i∈N be the inner half-perimeters of the nth generation rings {perin(f) : f ∈ Fn−1} arranged in

a decreasing order and padded by zeros. Let (Zn
i )i∈N be the inner supercritical LQG lengths of the

nth generation CLE4 loops in the coupling of [AG23b], arranged in a decreasing order. Then, as

p → ∞, we have

(p−1χn
i )i,n∈N

d→ (Zn
i )i,n∈N (1.4)

jointly with respect to the product topology on RN×N.

When we condition on the event that the map sampled from P(p)
∞ is finite, we are looking at

an event that becomes increasingly rarer as the outermost half-perimeter p tends to ∞. Using

Theorem 1.2 as a key input, we show that this probability decays exponentially in p.

Proposition 1.3. For p ∈ N, define

F (p) = P(p)
∞ (M is finite). (1.5)

Then, there exists a constant α ∈ (0,∞) depending only on Q ∈ (0, 2) such that as p → ∞,

lim
p→∞

− logF (p)

p
= α. (1.6)

Note that Proposition 1.3 implies that a map sampled from P(p)
∞ is actually infinite with positive

probability (i.e., F (p) < 1) for large p, which is not a priori obvious. In fact, we show that F (p) < 1

for all p ∈ N (Lemma 5.2). The value of the constant α is unknown as it is shown to exist via

subadditivity, nor do we know whether this α depends on the particular random planar map model

or just on cL.

We now give the first main result of this paper after stating a few preliminaries. We use the

abbreviation CRT to refer to the law of Aldous’s continuum random tree [Ald91a], which is a

canonical random tree constructed out of a Brownian excursion. We describe the scaling limit

using the Gromov–Hausdorff distance, which is a canonical metric on the space of compact metric

spaces defined up to isometry. (These concepts are reviewed in Section 4.4.) Also, given a planar

map M with vertex set VM and graph distance dM , for r ∈ R, let rM denote the metric space

(VM , rdM ).

Theorem 1.4. For each p ∈ N, let M (p) be the planar map sampled from P(p)
F — i.e., by con-

ditioning a map drawn from P(p)
∞ to be finite. Then, there is a constant θF depending on q such

that
θF√
p
M (p) d→ CRT (1.7)

with respect to the Gromov–Hausdorff distance.

As discussed earlier in Section 1.1, this result provides a rigorous reconciliation of the “infinite

spikes” picture (a) and the “branched polymer” description (b) of supercritical LQG. The heuristic

reasoning behind Theorem 1.4 is that the iterative construction of the map in Definition 1.1 can be

thought of, in some sense, as a supercritical branching process. As is the case for the Bienaymé–

Galton–Watson (BGW) processes, it turns out that our planar map becomes “subcritical” when

conditioned to be finite, and we use this subcriticality to show that the planar map sampled from

P(p)
F degenerates to a branched polymer in the scaling limit. In fact, our proof of Theorem 1.4

relies on the previous results [Bet15, JS15, KR20, Mar22] on the convergence of rescaled subcritical

Boltzmann maps to the CRT. We refer the reader to Section 1.5 for a more detailed overview of

the proof.
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1.4 Main result 2: non-existence of supercritical LQG volume measure

In the subcritical and critical phases, an LQG surface with the disk topology is associated with

two natural measures: a length measure on the boundary and an area measure in the bulk. In

saying that these measures are “natural,” we mean that they are intrinsic to the LQG surface in the

following sense: (i) they are locally determined by the background GFF h and (ii) they transform

appropriately under a conformal change of coordinates (see (1.8) and (2.2) for the precise condition).

In the recent work [AG23b], it was shown that for a supercritical LQG disk, there exists a natural

notion of a boundary length measure.

Given this result, one may wonder if it is also possible to construct a natural volume measure

in the bulk of a supercritical LQG surface. In this work, we establish that there does not exist any

such locally finite, nontrivial measure. To state the result, we require the following notion of local

absolute continuity with respect to the GFF. Let h̃ be a Dirichlet GFF on an open set U ⊆ C. A

random generalized function h on U is said to be locally absolutely continuous to a GFF if for

every z ∈ U , there exists a open neighborhood V ⊊ U containing z with a compact closure in U

such that the law of h|V is absolutely continuous to that of h̃|V . We are now ready to state the

second main result of this article.

Theorem 1.5. Fix the background charge Q ∈ (0, 2). Suppose that for each domain U ⊂ C, we
have a measurable mapping h 7→ mh from generalized functions on U to Borel measures on U .

Assume further that the following conditions hold whenever h is a random generalized function on

a domain U ⊂ C which is locally absolutely continuous to a GFF.

• Locality: Almost surely, for any fixed V ⊆ U , we have (mh)|V = m(h|V ).

• Coordinate change: For any fixed conformal map f : Ũ → U , we almost surely have

mh◦f+Q log |f ′|(A) = mh(f(A)) (1.8)

for every Borel subset A ⊆ Ũ .

Then, any such mapping m must be trivial in the following sense: for any random generalized

function h on a domain U ⊆ C which is locally absolutely continuous to a GFF, the measure mh is

either a.s. equal to the zero measure or a.s. assigning infinite mass to every Euclidean open subset

of U .

In the above statement, we do not care how the mapping h 7→ mh is defined when h is not

absolutely continuous with respect to a GFF. For instance, we could require it to be identically

zero for concreteness. (A similar setup appears in the definition of LQG metric in [DFG+20,

GM21b, Pfe24, DG23b].)

While the above theorem is stated with mh being a positive measure, we note that by the

usual decomposition of signed measures into positive and negative parts, it follows immediately

that there does not exist any natural signed (or even complex) bulk measure in the supercritical

phase of LQG. This rules out some possible constructions for the volume measure of supercritical

LQG, including some versions of Gaussian multiplicative chaos (GMC): e.g., supercritical GMC in

either the dual phase [BJRV13] or the glassy phase [MRV16], as well as some version of complex

GMC [LRV15]. It also rules out a construction based on finding a natural operator other than the

exponential of the field h such as in the works of Gervais et al. reviewed in Section 1.1.
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Finally, we note that all of the three conditions for mh — a random measure, locally determined

by h, and satisfying the coordinate change rule — are necessary in Theorem 1.5. Here are examples

of functionals of the field h which satisfy a strict subset of these conditions.

(a) A clear candidate for a random measure locally determined by a GFF h is the β-LQG measure

µh where β ∈ (0, 2]. However, this does not satisfy the coordinate-change rule (1.8) for any

Q ∈ (0, 2).

(b) Since a GFF h in U is an element of the Sobolev space H−ε(U) for ε > 0 (see, e.g., [WP21]),

∆h can be defined as a generalized function in H−(2+ε)(U) for ε > 0. While ∆h is not a random

measure, it is a local functional of h and satisfies

∆(h ◦ f +Q log |f ′|) = (∆h) ◦ f (1.9)

trivially for any conformal f and Q ∈ R since ∆ log |f ′| = 0.

(c) Let h be a Gaussian field on U ⊊ C. Fix β ∈ (0, 2] and let α = Q − ( 2β + β
2 ). Recall that

the conformal radius of a domain U viewed from z ∈ U is defined as CR(z;U) := |g′(0)| where
g : D → U is a conformal map sending 0 to z. Consider

mh(dz) := CR(z;U)αµ
(β)
h (dz) (1.10)

where µ
(β)
h is the β-LQG measure on U . Then, for a conformal map f : U → Ũ and a GFF h̃

on Ũ , the pullback of mh̃ under f is given by

f∗mh̃(dz) = CR(f(z); Ũ)αµ
(β)

h̃
(df(z))

= |f ′(z)|αCR(z;U)αµ
(β)

h̃◦f+( 2
β
+β

2
) log |f ′|

(dz) = mh̃◦f+Q log |f ′|(dz).
(1.11)

Hence, this mh is a random Borel measure satisfying the coordinate change rule (1.8) with

Q ∈ (0, 2). Nevertheless, mh does not satisfy the locality condition of Theorem 1.5 since

the measure m(h|V ) on a domain V ⊆ U also depends on the background domain U via the

conformal radius factor appearing in (1.10).

(d) In Section 3.3, we give a natural family of random measures on supercritical LQG disks con-

structed via the multiplicative cascade associated to the coupling of supercritical LQG with

nested CLE4. These measures satisfy the coordinate change rule (1.8), but they are not local.

Remark 1.6. For cL ∈ (1, 25), the LQG metric does not induce the Euclidean topology. In

particular, the α-thick points for α > Q lie at infinite distance from every other point (see [Pfe24,

Proposition 1.11]), and consequently LQG metric balls have empty Euclidean interior. Could there

be a measure satisfying the hypotheses of Theorem 1.5 which assigns finite mass to LQG metric

balls, but infinite mass to Euclidean open sets?

We expect that no such measure exists. It is shown in [Pfe24, Proposition 1.14] that almost

surely for every s < r, a supercritical LQG metric ball of radius r cannot be covered by finitely

many supercritical metric balls of radius s. This means that if we have a measure mh associated

with a supercritical LQG surface with field h, then either mh assigns very small mass to most

supercritical LQG metric balls, or mh assigns infinite mass to every supercritical LQG metric ball.

In particular, there cannot be any measure mh which is “compatible with the supercritical LQG

metric Dh” in the same sense that the LQG measure is compatible with the metric in the subcritical

case.
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1.5 Proof outline

This article is divided into two main parts: continuous (Sections 2–3) and discrete (Sections 4–7).

Throughout both parts, the central idea is to consider the multiplicative cascade of lengths of loops

on a supercritical LQG disk or its discrete analog. The linchpin between the two is Theorem 1.2, in

which we establish the convergence of the discrete cascade of loop lengths in Definition 1.1 to the

continuum cascade of loop lengths in the CLE4-coupled supercritical LQG disk of [AG23b]. This

is the supercritical analog of [CCM20], which considered the convergence of the discrete cascade

originating from the gasket decomposition [BBG12] of loop O(n) model decorated planar maps

with n ∈ (0, 2) to the continuum cascade of subcritical γ-LQG disks coupled with independent

CLEκ with κ = γ2 ∈ (8/3, 4) in [MSW22].

The first part of this work concentrates on the proof of Theorem 1.5. In Section 2, we recall

from [AG23b] the definition of a supercritical LQG disk and its coupling with (nested) CLE4. We

identify the exact law of the multiplicative cascade on the boundary lengths of CLE4 loops in

this coupling (Corollary 2.8). In Section 3.1, we draw classical facts from the branching random

walk literature to analyze the law of the multiplicative cascade and show, in particular, that the

number of CLE4 loops of any given size tends to infinity as we look at further generations of loops

(Proposition 3.1). Given these results on the lengths of CLE4 loops, the proof of Theorem 1.5

in Section 3.2 follows straightforwardly from the fact the supercritical LQG disks enclosed by

CLE4 loops of the same generation are conditionally independent given their boundary lengths

(Proposition 2.7). Section 3.3 gives the construction of a natural family of (non-local) measures on

supercritical LQG disks using its coupling with nested CLE4.

In the second part, we analyze the behavior of our random planar map model of supercritical

LQG and prove Theorem 1.4. Section 4 recalls from the random planar maps literature the two

key tools for our analysis: the connection between Boltzmann maps and random walks (Proposi-

tion 4.7) and the convergence of the boundaries of large subcritical Boltzmann maps to the CRT

(Proposition 4.19).

In Section 5, we consider the probability F (p) that a map sampled from our discrete model P(p)
∞

of supercritical LQG with boundary length 2p is finite. Recalling the convergence (Theorem 1.2)

of the discrete perimeter cascade of our model to the continuum perimeter cascade of the CLE4-

coupled supercritical LQG disk, we use the existence of large loops in the latter (Proposition 3.1

again) to conclude that F (p) → 0 as p → ∞ (Lemma 5.1). We then prove Proposition 1.3 based

on a slightly modified form of the standard subadditivity argument which allows for logarithmic

errors, which we establish using the random walk description of Boltzmann maps.

In Section 6, we analyze the behavior of our discrete model P(p)
F of a supercritical LQG disk

conditioned to be finite. We first identify that the marginal law on the outermost gasket M
(p)
0

under this conditioning is that of a subcritical Boltzmann map (Proposition 6.2). From here,

we extrapolate the subcriticality of the entire map M (p) sampled from P(p)
F in the sense that the

expected size of maps added in subsequent generations decays exponentially (Corollary 6.7). In

particular, the size of the submaps ofM (p) inside each face of the outermost gasketM
(p)
0 is of smaller

order than the diameter of the boundary ∂M (p) (Proposition 6.13). Throughout this analysis, we

find another use for Proposition 1.3 in that it allows us to use p and −α−1 logF (p) interchangeably

for large values of p in many of our estimates. This is useful due to the relation

F (p) = E

[ ∏
f∈F0

F (perin(f))

]
, (1.12)
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where F0 is the collection of interior faces of the outermost gasket M
(p)
0 . This recursive identity is

immediate from the construction of our model in Definition 1.1.

We finally prove Theorem 1.4 in Section 7. Applying the results of Section 6 and the convergence

of the entire subcritical Boltzmann map to the CRT (Proposition 4.19), we see that a map M (p)

sampled from P(p)
F is “thin” in the sense that the maximum graph distance from an interior vertex

of M (p) to the boundary ∂M (p) is of smaller order than the diameter of ∂M (p). Thus, the problem

at hand reduces to showing the convergence to the CRT when we equip ∂M (p) with the restriction

of the graph distance dM(p) on the entire map (Proposition 7.1). We adapt the proof of the

convergence of ∂M (p) with the graph distance d∂M(p) in [KR20] by showing that the two distances

dM(p) and d∂M(p) are equivalent on ∂M (p) (Proposition 7.10). This follows from a law of large

numbers argument based on the spine decomposition of the critical looptree structure of ∂M (p)

identified in [CK15, Ric18].

Notational comments Throughout the paper, we shall have multiple occasions to use the Bi-

enaymé-Galton-Watson (or Galton–Watson) tree, which which refer to as a BGW tree. For any

planar map M , we denote its vertex set as VM and use dM (x, y) to denote the graph distance

between vertices x and y in M . Also, we will use Vol(M) to denote the total number of vertices

present in a planar map M . Let N denote the set {1, 2 . . . } of positive integers and N# = N ∪ {0}
denote the nonnegative integers. For a < b ∈ R, the double interval [[a, b]] refers to [a, b] ∩ Z.

Acknowledgements We thank Morris Ang, Bruno Balthazar, Nicolas Curien, William Da Silva,

Antti Kupiainen, David Kutasov, Eveliina Peltola, Josuha Pfeffer, Scott Sheffield, Xin Sun, and

Paul Wiegmann for helpful discussions. M.B. acknowledges the partial support of the NSF grant

DMS-2153742. E.G. was partially supported by a Clay research fellowship and the NSF grant

DMS-2245832. J.S. was partially supported by a Kwanjeong Educational Foundation scholarship.

This work was completed in part during visits by M.B. and J.S. to the Thematic Program on

Randomness and Geometry at the Fields Institute, whose hospitality is gratefully acknowledged.

2 Background on the supercritical LQG disk

2.1 Supercritical LQG disk

We begin with a general definition of an LQG surface, which is a two-dimensional domain equipped

with a generalized function considered up to a conformal change of parameterization. The following

is a generalization of the definitions in [DS11, She16, DMS21], etc., to the supercritical case Q ∈
(0, 2).

Definition 2.1. Let cL > 1 and let Q =
√
(cL − 1)/6 > 0 be the corresponding background charge.

Consider the set of tuples (U, h,A) where U ⊂ C is open, h is a generalized function on U , and A
a sequence of compact subsets of U (this is some sort of “decoration” which could be a collection

of curves, points, etc.). Let ∼Q be an equivalence relation on such tuples where we define

(U, h,A) ∼Q (Ũ , h̃, Ã) (2.1)

if there is a conformal map f : Ũ → U such that

h̃ = h ◦ f +Q log |f ′| and f(Ã) = A. (2.2)
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A Liouville quantum gravity (LQG) surface of central charge cL, which we often call a Q-

LQG surface, is an equivalence class under ∼Q. A representative of an LQG surface is called an

embedding.

In the theory of LQG, the generalized function h is always a Gaussian free field (GFF) or some

variant of it, and we now give a quick introduction to the GFF. A GFF on a domain U ⊂ C is a

centered Gaussian generalized function h with the covariance kernel G given by a Green’s function2

corresponding to the Laplacian on U . That is, if we denote the paring of h with a smooth function

f ∈ C∞(U) as (h, f), then this is a Gaussian random variable with

E[(h, f1)(h, f2)] =
∫
U×U

f1(z1)G(z1, z2)f2(z2) dz1dz2. (2.3)

for any smooth functions f1, f2 ∈ C∞(U). We note that the GFF is said to have Dirichlet/zero

boundary conditions if the Green’s function G is defined with zero boundary conditions. The

same is true with Neumann/free boundary conditions.

We note that the definition of the equivalence relation ∼Q in (2.2) is given to reflect the confor-

mal covariance of the LQG measure [DS11, SW16] and the LQG metric [GM21a] in the subcritical

regime (cL > 25, Q > 2). Thus, if h is a GFF on U and µh and Dh are the LQG measure and the

metric corresponding to the field h with central charge cL, then for a conformal map f : Ũ → U

with h̃ given by (2.2), we have f∗µh̃ = µh and f∗Dh̃ = Dh almost surely, where, as usual, f∗ is used

to denote the push-forward with respect to f . This result extends to the critical case (cL = 25,

Q = 2) for the LQG measure [DRSV14, Theorem 13] and is expected to hold for the LQG metric

in the critical/supercritical regime (cL ∈ (1, 25], Q ∈ (0, 2]) but is so far known only for complex

affine f [DG23b, Propositon 1.9] (see also [Dev23, Theorem 1.4]). This is the context in which the

analogous conformal covariance condition (1.8) is required in our definition of a supercritical LQG

measure in Theorem 1.5.

We now present the definition of the supercritical LQG disk in [AG23b], which is based on the

critical LQG disk defined in [AHPS23]. Let νh be the critical LQG boundary measure corresponding

to the field h; this was constructed in [DRSV14] as

νh := lim
ε→0

√
log(1/ε)εehε(z)|dz| (2.4)

where hε is a mollification of h of size ε and |dz| denotes the Lebesgue measure on the boundary

of the domain. Also see [APS19, Section 4.1.2] for its construction as a limit of subcritical LQG

boundary measures. As observed in [AG23a, Lemma 2.1], the conformal covariance relation f∗νh̃ =

νh given (2.2) follows from this limiting construction thanks to the analogous result for subcritical

boundary measures [DS11, Section 6].

Definition 2.2 (Critical LQG disk). Let S = R × (0, 2π). Let B : R → (−∞, 0] be a random

function such that (Bs/
√
2)s≥0 and (B−s/

√
2)s≥0 are independent 3-dimensional Bessel processes

started at 0, and let h| : S → R be the random function which is identically equal to Bs on each

vertical segment {s} × (0, 2π). Let h† be the lateral part of a free-boundary GFF on S (i.e., the

orthogonal projection to the subspace of generalized functions on S which has zero mean on every

vertical segment) sampled independently from h|. Define h := h|+h† and ĥ := h− log νh(∂S). For
L > 0, the critical LQG disk with boundary length L is the 2-LQG surface (S, ĥ+logL)/∼2.

2We assume that the Green’s function G is normalized so that G(z, w) ∼ − log |z − w| as w → z.
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Definition 2.3 (Supercritical LQG disk). Fix Q ∈ (0, 2) and L > 0. Let (U, hC) be an embedding

of the critical LQG disk with boundary length L given in Definition 2.2. Let hD be an independent

zero-boundary GFF on U . Then, the supercritical LQG disk with central charge cL = 1+6Q2

and boundary length L (also called the Q-LQG disk with boundary length L) is the Q-LQG

surface (U, h)/∼Q with

h :=
Q

2
hC +

√
4−Q2

2
hD. (2.5)

We note that for any L̃ > 0, if (U, h) is an embedding of a Q-LQG disk with boundary length

L, then (U, h + 2
Q log(L̃/L))/∼Q is a Q-LQG disk with boundary length L̃. The supercritical

LQG length measure on the boundary of a Q-LQG disk is defined as

nh := νhC “ = eh
C |dz| = e

2
Q
h|dz|” (2.6)

where νhC is the critical LQG boundary length measure associated with the field hC given in

Definition 2.3. The second half of (2.6) is an informal expression based on the following heuristic

reasoning: since hD is a zero-boundary GFF, we have hD|∂U= 0 and hence hC |∂U= 2
Qh|∂U . Thus, if

(U, h) is an embedding of a Q-LQG disk, f : Ũ → U is a conformal map, and h̃ = h ◦ f +Q log |f ′|,
then we have f∗nh̃ = nh almost surely [AG23b, Lemma 2.8].

2.2 Coupling with CLE4

For κ ∈ (8/3, 4], the conformal loop ensemble (CLEκ) on a simple connected domain U ⊊ C is a

random countable collection of disjoint non-nested Jordan curves in U which look locally like SLEκ.

It can be defined via branching SLE curves [She09] or as the outer boundaries of the outermost

clusters of a Brownian loop soup on U [SW12]. We are interested in the critical case κ = 4, which

corresponds to the Brownian loop soup of intensity 1/2.

The coupling of CLE4 with a supercritical LQG disk in [AG23b] is given by combining two

different couplings. First, we record the following integrable description of CLE4 on an independent

critical LQG disk proved in [AG23a] (see [BBCK18, CCM20, MSW22] for the subcritical analog).

Proposition 2.4. Let (U, hC) be an embedding of the critical LQG disk with boundary length L > 0.

Let Γ be a (non-nested) CLE4 in U sampled independently from hC . For each loop ℓ ∈ Γ, let Uℓ ⊂ U

be the open region enclosed by ℓ and Z(ℓ) := νhC (ℓ) denote the critical LQG length of the loop ℓ.

(a) The 2-LQG surfaces {(Uℓ, h
C |Uℓ

)/ ∼2}ℓ∈Γ are conditionally independent critical LQG disks

given their boundary lengths {Z(ℓ)}ℓ∈Γ.

(b) Let (ζ(t))t≥0 be a 3/2-stable Lévy process with no downward jumps3 and τL := inf{t ≥ 0 : ζ(t) =

−L}. Denote by (∆ζ)↓L the sizes of upward jumps of ζ in [0, τL] enumerated in a decreasing

order. Define the probability distribution ρ(L) on (R+)
N so that for each measurable function

F : (R+)
N → R, we have ∫

F dρ(L) =
E[(τL)−1F ((∆ζ)↓L)]

E[(τL)−1]
. (2.7)

3We note that this is defined up to the choice of the scale parameter C > 0, where the Lévy measure of the process

is equal to Cx−5/2 1{x>0} dx. The precise choice of C is irrelevant for us, since, as discussed in the introduction of

[CCM20], any choice of C yields the same distribution ρ(L).
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The sequence of boundary lengths {Z(ℓ)}ℓ∈Γ arranged in a decreasing order has the law ρ(L).

Note that by the scaling relation for stable processes,

(∆ζ)↓L
d
= L · (∆ζ)

↓
1. (2.8)

The second coupling that we recall is the level-line coupling of CLE4 with zero-boundary GFF

due to Miller and Sheffield (see [ASW19] for a proof).

Proposition 2.5. Given a domain U ⊊ C, there is a coupling of the zero-boundary GFF hD and

the (non-nested) CLE4 in U such that Γ is almost surely determined by hD and the following holds:

There exists a sequence of random variables {Yℓ}ℓ∈Γ such that, conditioned on Γ, {Yℓ}ℓ∈Γ are i.i.d.

Rademacher random variables and {hD|Uℓ
− πYℓ}ℓ∈Γ are independent zero-boundary GFFs on the

respective domains {Uℓ}ℓ∈Γ.
The coupling of a supercritical LQG disk with CLE4 in [AG23b] is obtained by sampling inde-

pendent fields hC and hD on a domain U ⊊ C such that (U, hC)/∼Q is a critical LQG disk with

boundary length L > 0 and hD is a zero-boundary GFF, and then defining the field h as in (2.5)

and the CLE4 Γ as a function of hD as in Proposition 2.5.

It is straightforward to adapt Proposition 2.4 to this supercritical coupling except that, since

hD has a “height gap” of size πYℓ across the loop ℓ ∈ Γ as in Proposition 2.5, the supercritical field

h has a corresponding gap of size βQYℓ across the loop ℓ where βQ := π
√
4−Q2/Q as defined in

(1.3). This means that the length of loop ℓ measured using the Q-LQG length measure (2.6) is

different based on whether we use the field to the inside or outside of ℓ. More precisely, define the

outer boundary length of ℓ as

nouth (ℓ) := νhC (ℓ) (2.9)

and the inner boundary length of ℓ as

ninh (ℓ) = nh|Uℓ
(ℓ) := νhC+βQYℓ

(ℓ). (2.10)

In particular, the two lengths are related by ratio

ninh (ℓ)

nouth (ℓ)
= eβQYℓ . (2.11)

The notation nh|Uℓ
(ℓ) makes sense since if we let fℓ : D → Uℓ be a conformal map, then combining

the coordinate change rule (2.2) of aQ-LQG surface and the definition (2.6) of theQ-LQG boundary

length of a domain, we have ninh (ℓ) = n(h|Uℓ
)◦fℓ+Q log |f ′

ℓ|(∂D).

Proposition 2.6 ([AG23b, Theorem 2.9]). Let Q ∈ (0, 2] and (U, h) be an embedding of a Q-LQG

disk with boundary length L > 0. There exists a coupling (h,Γ) of h with a (non-nested) CLE4 Γ

on U such that the following is true. For each loop ℓ ∈ Γ, let Uℓ ⊂ U be the open region enclosed

by ℓ and ZQ(ℓ) := ninh (ℓ) be the supercritical LQG length of the loop ℓ measured using the field h|Uℓ

within the loop.

(a) The Q-LQG surfaces {(Uℓ, h|Uℓ
)/ ∼Q}ℓ∈Γ are conditionally independent Q-LQG disks given

their boundary lengths {ZQ(ℓ)}ℓ∈Γ.

(b) Let {Z(ℓ)}ℓ∈Γ be the sequence with the law ρ(L) given in (2.7), and let {Yℓ}ℓ∈Γ be independent

Rademacher random variables which are also independent from {Z(ℓ)}ℓ∈Γ. Recall the constant

βQ := π
√

4−Q2/Q. Then, {ZQ(ℓ)}ℓ∈Γ has the same law as {Z(ℓ) exp(βQYℓ)}ℓ∈Γ if both are

arranged in decreasing orders. Let us denote this law as ρ
(L)
Q .

In this coupling, Γ is neither independent from nor a.s. determined by h.
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2.3 Coupling with nested CLE4 and the perimeter cascade

For a simply connected domain U ⊊ C, the nested CLE4 Γ on U is obtained from the non-nested

CLE4 by the following inductive procedure. Let Γ0 := {∂U}. Given collections of loops {Γi}i∈[[0,n]],
sample a conditionally independent CLE4 Γℓ for each open region Uℓ enclosed in a loop ℓ ∈ Γn

and let Γn+1 =
⋃

ℓ∈Γn Γℓ. The nested CLE4 is defined as Γ :=
⋃

n∈N# Γn, where we recall that

N# = N ∪ {0}. We call the elements of Γn as nth generation loops.

Given a zero-boundary GFF hD in a simply connected domain U ⊊ C, we can produce the

CLE4 Γℓ in this iterative construction as a function of the zero-boundary GFF hD|Uℓ
− πYℓ as in

Proposition 2.5. Sampling an embedding (U, hC) of a critical LQG disk independently from hD and

again defining h as a linear combination of hC and hD as in (2.5), we have the following coupling

of a supercritical LQG disk and a nested CLE4.

Proposition 2.7 ([AG23b, Theorem 2.13]). Let Q ∈ (0, 2] and let (U, h) be an embedding of a

Q-LQG disk with boundary length L > 0. There exists a coupling of (h,Γ) of h with a nested CLE4

Γ on U such that the following is true. For each loop ℓ ∈ Γ, define Uℓ ⊂ U to be the subdomain

enclosed by ℓ and ZQ(ℓ) = νinh (ℓ) to be the inner boundary length of the loop ℓ measured using h|Uℓ

as defined in (2.10). Let Γ(ℓ) := {ℓ̃ ∈ Γ : ℓ̃ ⊂ Uℓ} be the subcollection of CLE4 loops Γ which are

inside the loop ℓ.

(a) For each n ∈ N, if we condition on the inner boundary lengths {ZQ(ℓ)}ℓ∈Γn of the nth level

loops, then the Q-LQG surfaces {(Uℓ, h|Uℓ
,Γ(ℓ))/∼Q}ℓ∈Γn are conditionally independent nested-

CLE4-decorated Q-LQG disks with given boundary lengths.

(b) In particular, conditioned on the inner boundary lengths {ZQ(ℓ)}ℓ∈Γn of the nth level loops,

those of (n+1)th level loops in each ℓ ∈ Γn — i.e., {ZQ(ℓ̃)}ℓ̃∈Γℓ
— are conditionally independent

with distribution ρ
(ZQ(ℓ))
Q defined in Proposition 2.6.

In this coupling, Γ is neither independent from nor a.s. determined by h.

Consequently, the inner boundary lengths {ZQ(ℓ)}ℓ∈Γ form a multiplicative cascade. To specify

its law, let us index the loops of nested CLE4 by the Ulam tree

U :=
⋃

n∈N#

Nn where N0 := {∅}. (2.12)

That is, each element of U other than ∅ is a word consisting of finitely many positive integers. For

u ∈ U , let |u| denote the length of the word (“generation”): e.g., if u = u1u2 . . . un, then |u| = n.

Define |∅| = 0. We assign a partial order ≺ on U where u ≺ v if |u| < |v| and the first |u| letters
of v is equal to u. If u ≺ v, then we call u an ancestor of v and v a descendant of u. If u ≺ v

and |u| + 1 = |v|, then u is the parent of v and v is a child of u. We define ∅ to be the parent

of every element of U with length 1. Now, given the coupling (h,Γ) as in Proposition 2.7, let us

inductively build a bijection between Γ and U so that Γn is mapped to Un := {u ∈ U : |u| = n}.
In particular, if ℓ ∈ Γn is indexed by u = u1u2 . . . un ∈ U , then the loops in Γℓ (i.e., the non-nested

CLE4 in Uℓ consisting of the outermost loops of Γ(ℓ)) are indexed by the children of u. Moreover,

for k ∈ N, let uk = u1u2 . . . unk ∈ U be the index of the loop ℓk ∈ Γℓ with the kth largest value of

the critical LQG length νhC (ℓk) among such loops. The following statement is a rephrasing of the

law of {ZQ(ℓ)}ℓ∈Γ described in Proposition 2.7 given this setup.
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Corollary 2.8. Fix Q ∈ (0, 2] and recall βQ := π
√

4−Q2/Q. Let {Xu
k }u∈U ,k∈N be a collection of

random variables such that for each fixed u ∈ U , the sequence {Xu
k }k∈N has the law ρ(1) defined in

Proposition 2.4. Furthermore, as u is varied in U , the sequences {Xu
k }k∈N are mutually independent.

Let {Yu}u∈U be i.i.d. Rademacher random variables sampled independently of {Xu
k }u∈U ,k∈N. Define

Z(∅) = ZQ(∅) = 1 and, for u = u1u2 . . . un ∈ U ,

Z(u) =
n∏

i=1

X
u1...ui−1
ui and ZQ(u) = Z(u)

n∏
i=1

eβQYu1...ui =
n∏

i=1

(
X

u1...ui−1
ui eβQYu1...ui

)
. (2.13)

Then, under the coupling of a unit boundary length Q-LQG disk with nested CLE4 in Proposi-

tion 2.7, {ZQ(ℓ)}ℓ∈Γ has the same law as {ZQ(u)}u∈U with the above bijection between Γ and U .

3 Non-existence of the supercritical volume measure

In this section, we analyze the multiplicative cascade ZQ = (ZQ(u))u∈U of inner boundary lengths

in the coupling of supercritical LQG with CLE4 presented in Section 2. The key observation is

Proposition 3.1, which states that there almost surely exist infinitely many quantum-macroscopic

CLE loops in this coupling. This shall eventually lead to a proof of Theorem 1.5, and this is the

main content of this section.

Another consequence of Proposition 3.1 is that the probability F (p) = P(p)
∞ (M is finite) tends

to 0 as the outermost boundary length p increases to ∞ (Lemma 5.1), which is proved in Section 5.

This lemma is the first step in the proof of Proposition 1.3, where we strengthen this first estimate

for F (p) to an exponential decay in p.

3.1 The perimeter process contains infinitely many macroscopic loops

Recall the multiplicative cascade ZQ = (ZQ(u))u∈U given in (2.13). In Corollary 2.8, we saw that

its law agrees with that of the inner boundary lengths of the CLE4 loops coupled with a unit

boundary length Q-LQG disk. The main property of the multiplicative cascade ZQ used in this

paper is the following.

Proposition 3.1. For a Borel subset A ⊂ (0,∞), denote by Nn(A;ZQ) the cardinality of the set

{u ∈ U : |u| = n,ZQ(u) ∈ A}. If the Lebesgue measure of A is positive, then Nn(A;ZQ) → ∞
almost surely as n → ∞.

Our analysis of the multiplicative cascade ZQ relies on rephrasing it in terms of a branching

random walk. Recall its law given in Corollary 2.8 and observe that the process SQ = (SQ(u))u∈U
given by SQ(u) = − logZQ(u) is a branching random walk, which almost surely does not go extinct

since each element in the multiplicative cascade ZQ has infinitely many descendants. We rephrase

here the results from the branching random walk literature in terms of the multiplicative cascade

ZQ.

The main property of the branching random walk SQ that we use is the location of its extreme

positions. This is a well-studied topic with precise asymptotic estimates [ABR09, HS09, AS10,

Aı̈d13]. For our purposes, however, the following cruder result on the velocity of the extreme

position suffices.

18



Lemma 3.2. For Q ∈ (0, 2), define the Biggins transform of the multiplicative cascade ZQ as

the function

ϕQ(θ) := E

[ ∑
|u|=1

(
ZQ(u)

)θ]
. (3.1)

Then,

lim
n→∞

1

n
log

(
sup
|u|=n

ZQ(u)

)
= µQ := inf

θ>0

1

θ
log ϕQ(θ) > 0 almost surely. (3.2)

Proof. This lemma is an immediate consequence of [Big76] (see also [Shi15, Theorem 1.3]). All we

need to show is µQ ∈ (0,∞).

We can compute ϕQ(θ) explicitly using the Biggins transform of the multiplicative cascade Z

from Corollary 2.8, which was calculated4 in equation (17) of [CCM20] to be

ϕ(θ) := E

[ ∑
|u|=1

(
Z(u)

)θ]
=

{
sec(πθ) if θ ∈ (32 ,

5
2),

+∞ otherwise.
(3.3)

Recall from (2.13) that if {Yi}i∈N are i.i.d. Rademacher random variables which are independent

of Z, then for each i ∈ N, we have ZQ(i) = Z(i) exp(βQYi). Hence,

ϕQ(θ) = E

[∑
i∈N

(
Z(i)

)θ
eβQYiθ

]
= ϕ(θ) · e

βQθ + e−βQθ

2
=

{
cosh(βQθ)/ cos(πθ) if θ ∈ (32 ,

5
2),

+∞ otherwise.
(3.4)

Hence, µQ < ∞. Note that ϕQ(θ) → ∞ as θ ↓ 3/2 and θ ↑ 5/2, so θ−1 log ϕQ(θ) attains its

minimum µQ in (3/2, 5/2). Moreover, ϕQ(θ) > 1 for all θ ∈ (3/2, 5/2), so µQ > 0.

Lemma 3.2 tells us that, almost surely, sup|u|=n Z
in
∞(u) grows exponentially fast. We extrapolate

Proposition 3.1 from this fact by showing that these large loops have many macroscopic children.

This requires the following estimate on the offspring distribution of the cascade ZQ.

Lemma 3.3. Let A ⊂ (0,∞) be a Borel subset with positive Lebesgue measure. Recall that we

denote by

N1(A;ZQ) =
∑
|u|=1

1{ZQ(u) ∈ A} (3.5)

the number of first-generation elements of ZQ whose sizes are in A. Then, for any fixed k ∈ N,
there exists a constant c > 0 such that

P
(
N1(L

−1A;ZQ) ≤ k
)
= O

(
e−cL15/16)

(3.6)

as L → ∞.

Proof. From the law of ZQ in (2.13), if (Z(i))i∈N are sampled from the law ρ
(1)
Q given in Propo-

sition 2.6 and {Yi}i∈N are i.i.d. Rademacher random variables independent from {Z(i)}i∈N, then
(ZQ(i))i∈N

d
= (Z(i) exp(βQYi))i∈N. Hence, with

c̃ = log(2/(1 + e−1)),

4The analysis in [CCM20] for the multiplicative cascade generated by the jumps of a spectrally positive α-stable

process applies to any α = a− 1/2 ∈ (1, 2).
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we have

E
[
e−N1(L−1A;ZQ)

]
= E

[∏
i∈N

E
[
e−1{Z(i)e

βQYi∈L−1A}
∣∣∣Z]]

= E
[∏
i∈N

e−1{Z(i)∈L−1e
βQA} + e−1{Z(i)∈L−1e

−βQA}

2

]
≤ E

[∏
i∈N

e−c̃1{Z(i)∈L−1(e
βQA∪e−βQA)}

]
= E

[
e−c̃N1(L−1(e

βQA∪e−βQA);Z)
]
,

(3.7)

where N1(·;Z) used in the last term above is defined by simply replacing ZQ by Z in (3.5). For

convenience, let us define

Ã = eβQA ∪ e−βQA

for the remainder of this proof.

Let us now recall the law of (Z(i))i∈N from Proposition 2.4. Let ζ be a 3/2-stable Lévy process

with no negative jumps started at 0, and let τ denote the hitting time of −1 of this process. That

is, for some scale parameter C > 0, with Γ(·) denoting the Gamma function, the Lévy measure

of ζ is (C/Γ(−3/2))1{x>0}x
−5/2dx and E[e−λτ ] = exp(−(λ/C)2/3) for λ ≥ 0. As mentioned in

Footnote 3, the scale parameter C does not change the law of the multiplicative cascade Z; hence,

we choose C = 1 for simplicity. Let (∆ζ)↓ denote the sequence consisting of the sizes of the jumps

of ζ up to the stopping time τ . Then,

E
[
e−c̃N1(L−1Ã;Z)

]
=

E
[
τ−1 exp

(
− c̃

∑
x∈(∆ζ)↓ 1{x ∈ L−1Ã}

)]
E
[
τ−1]

. (3.8)

For fixed t0 > 0, the number of jumps of ζ in the time interval [0, t0] whose sizes are in L−1Ã is a

Poisson random variable with rate given by t0 times the Lévy measure

Π(L−1Ã) :=
1

Γ(−3/2)

∫
L−1Ã

s−5/2 ds =
L3/2

Γ(−3/2)

∫
Ã
s−5/2 ds = L3/2Π(Ã). (3.9)

On the event {τ > t0}, this gives a lower bound for
∑

x∈(∆ζ)↓ 1{x ∈ L−1Ã}. Hence,

E
[
τ−1e

−c̃
∑

x∈(∆ζ)↓ 1{x∈L−1Ã} · 1{τ > t0}
]
≤ (t0)

−1e−(1−e−c̃)Π(Ã)L3/2t0 . (3.10)

It is well known that τ is a positive 2/3-stable random variable. We also have the tail estimate

P(τ ∈ dt) = exp(−(1 + o(1))t−5/3) dt as t ↓ 0 (3.11)

from, e.g., [Zol86, Chapter 2.5]. Letting cA = (1 − e−c̃)Π(Ã), for each fixed α ∈ (0, 3/2), we thus

have

E
[
τ−1e

−c̃
∑

x∈(∆ζ)↓ 1{x∈L−1Ã}
]
≤ E

[
τ−1 · 1{τ ≤ L−α}

]
+ E

[
τ−1e

−c̃
∑

x∈(∆ζ)↓ 1{x∈L−1Ã} · 1{τ > L−α}
]

≤
∫ L−α

0
t−1 exp(−(1 + o(1))t−5/3) dt+ Lα exp(−cAL

3
2
−α)

=
5

3

∫ ∞

L5α/3

1

s
e−(1+o(1))s ds+ Lα exp(−cAL

3
2
−α)

= O
(
e−c(L5α/3∧L3/2−α)

)
(3.12)
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as L → ∞. Optimizing over α, we have a constant c > 0 depending on A such that

E
[
e−N1(L−1Ã;Z)

]
= O(e−cL15/16

) as L → ∞. (3.13)

The lemma now follows by applying the Markov inequality to (3.7) and (3.13).

Proof of Proposition 3.1. Fix ε ∈ (0, µQ), where µQ is the constant defined in (3.2). By Lemma 3.3,

P(Nn+1(A;ZQ) ≤ k|Nn([e
n(µQ−ε),∞);ZQ) ≥ 1) ≤ O(e−ce

(15/16)(µQ−ε)n

).

Moreover, we saw in Lemma 3.2 that with probability one, Nn([e
n(µQ−ε),∞);ZQ) ≥ 1 for all

sufficiently large n. Since the above upper bound is summable, we conclude that for every positive

integer k, we have P(Nn(A;ZQ) ≤ k for infinitely many n) = 0. The positive integer k here can be

chosen arbitrarily large, so we conclude limn→∞Nn(A;ZQ) = ∞ almost surely.

3.2 Proof of non-existence

The proof of Theorem 1.5 is straightforward given our analysis of the multiplicative cascade ZQ in

the previous section.

Proof of Theorem 1.5. Suppose m is a functional satisfying the conditions given in the theorem.

For each L > 0, let P (L) denote the law of the total volume mh(D) where (D, h) is an embedding

of the Q-LQG disk with boundary length L.

Let (D, h,Γ) be an embedding of a unit boundary length Q-LQG disk coupled with nested CLE4

as in Proposition 2.7. Let (ℓu)u∈U be the indexing of the nested CLE4 Γ as described immediately

above Corollary 2.8. For u ∈ U , let Du denote the open set enclosed by ℓu, so that Du contains ℓv
for every v ≻ u. Then,

mh(D) = mh

(
D \

⋃
|u|=1

Du

)
+
∑
|u|=1

mh(Du) (3.14)

almost surely. Recall that conditioned on the inner boundary length ninh (ℓu) as defined in (2.10),

the equivalence class (Du, h|Du)/∼Q has the law of a Q-LQG disk with boundary length ninh (ℓu).

By the assumption on the coordinate change rule (1.8), conditioned on ℓ ∈ Γ as well as a con-

formal map f which takes the open disk Dℓ enclosed by ℓ to the unit disk D, we a.s. have

mh(Dℓ) = mh◦f+Q log |f ′|(D) since h◦f +Q log |f ′| is locally absolutely continuous to a GFF. There-

fore, the conditional law of mh(Du) given ℓu and ninh (ℓu) is given by P (ninh (ℓu)). Moreover, given

the inner boundary lengths {ninh (ℓu)}|u|=1, the supercritical LQG surfaces {(Du, h|Du)/ ∼Q}|u|=1

are conditionally independent and hence so are the volumes {mh(Du)}|u|=1. This implies that the

family of conditional laws {P (L)}L∈R+ satisfies exactly one of the following scenarios.

(1) There exists a set A ⊂ R+ of zero Lebesgue measure such that for every L ∈ R+ \ A, we have

P (L)(mh(D) = 0) = 1. Since the Lévy measure of a spectrally positive stable process is abso-

lutely continuous with respect to the Lebesgue measure on R+, in this case, by Proposition 2.6,

the inner boundary lengths {ninh (ℓu)}|u|=1 of the outermost CLE4 loops are all contained in A

with probability one. Hence, this condition is equivalent to the case that, almost surely, the

CLE4 gasket D \
⋃

|u|=1Du accounts for all of the mh-volume of the supercritical LQG disk:

i.e., mh(Du) = 0 for every |u| = 1.
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(2) On the complement of the first case, there exists a set A ⊂ R+ with a positive Lebesgue measure

and a constant ε > 0 such that if L ∈ A, then P (L)(mh(D) > ε) > ε.

We claim that in the first case, P (L)(mh(D) = 0) = 1 for every L ∈ (0,∞) and not just on a

subset of full Lebesgue measure. For this, let us choose a specific embedding (D, h(L)) of a Q-LQG

disk with boundary length L. As in Definition 2.3, we let

h(L) =
Q

2
(hC + logL) +

√
4−Q2

2
hD =

Q

2
hC +

√
4−Q2

2

(
hD +

Q√
4−Q2

logL

)
(3.15)

where hD is a zero boundary GFF on D independent from hC = ĥ ◦ f + log |f ′| where ĥ is the

field on the strip S = R × (0, 2π) in Definition 2.2 and f is a conformal map from D to S. Now

choose any L̃ ∈ (0,∞) such that P (L̃)(mh(D) = 0) = 1. Since hD + (Q/
√

4−Q2) log(L/L̃) is

absolutely continuous with respect to hD away from the boundary ∂D [MS16, Proposition 3.4],

the two Gaussian fields are absolutely continuous when restricted to the open ball Br(0) for any

r ∈ (0, 1). Then, since m
h(L̃)(Br(0)) = 0 a.s., we must have mh(L)(Br(0)) = 0 almost surely. Letting

r ↑ 1, we have P (L)(mh(D) = 0) = 1 for every L ∈ (0,∞) as claimed.

In the second case, considering the disks Du cut out by the nth generation CLE4 loops ℓu ∈ Γn,

we have

mh(D) ≥
∑
|u|=n

mh(Du) (3.16)

for every positive integer n. Proposition 3.1 implies that almost surely, by choosing a sufficiently

large n, we can find an arbitrarily large number of disks Du with |u| = n such that ninh (ℓu) ∈ A.

By Proposition 2.7, conditioned on the boundary lengths {ninh (ℓu)}|u|=n, each of these disks with

ninh (ℓu) ∈ A has an independent chance of size ε > 0 such that mh(Du) > ε. Thus, mh(D) = ∞
almost surely. Moreover, since (Du, hDu)/∼Q is a Q-LQG disk conditioned on its boundary length,

we almost surely have mh(Du) = ∞ for every u ∈ U . Now, this implies mh(U) = ∞ a.s. for

any open subset U of D, since there almost surely exists u ∈ U such that Du ⊂ U (this follows

from the local finiteness of nested CLE4 [APP23, Lemma 2.1]). Now, note that the field ĥ in

Definition 2.2, when restricted to compact subsets of S = R × (0, 2π) away from {0} × (0, 2π), is

mutually absolutely continuous with respect to a free-boundary GFF. Recalling the conformal map

f : D → S, we conclude the proof by noting that for any domain U ⊂ D at a positive distance

away from ∂D∪ f−1({0} × (0, 2π)), the field h|U is mutually absolutely continuous with respect to

a free boundary GFF on U since both hC |U and hD|U are. For general domains U ⊂ C, we apply

an affine transformation paired with the coordinate change rule (1.8).

3.3 Measure constructed from the multiplicative cascade

An important condition in Theorem 1.5 was that the supercritical LQG measure mh is locally

determined by the field h. We conclude this section by describing in Proposition 3.5 a natural

family of random measures on the CLE4-coupled supercritical LQG disk (D, h,Γ)/∼Q arising from

its multiplicative cascade structure. While they do not satisfy the locality condition as the CLE4 in

this coupling is not determined by the field h, they satisfy the Q-LQG coordinate change formula

(1.8) and almost surely assign finite and strictly positive values to each Euclidean open set.
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Recall from (3.4) the notation ϕQ(θ) = E[
∑

|u|=1(ZQ(u))
θ], which, for θ ∈ (3/2, 5/2), is finite

and takes the value cosh(βQθ)/ cos(πθ). For θ in this range, observe that

M (θ)
n :=

1(
ϕQ(θ)

)n ∑
|u|=n

(
ZQ(u)

)θ
(3.17)

is a martingale with respect to the natural filtration of the multiplicative cascade ZQ. In the

branching random walk literature,M
(θ)
n is called the additive martingale of the branching random

walk SQ(u) = − logZQ(u), which was introduced in [Kin75, Big77]. Since M
(θ)
n is nonnegative for

all n, it converges almost surely to a nonnegative random variable M
(θ)
∞ . A fundamental result

regarding the additive martingale is the Biggins martingale convergence theorem, which describes

the conditions under which the limit M
(θ)
∞ almost surely does not vanish. We describe this condition

for the multiplicative cascade ZQ. Recall the notation

µQ := inf
θ>0

1

θ
log ϕQ(θ)

from Lemma 3.2.

Lemma 3.4. For each Q ∈ (0, 2), there exists a unique θ∗ > 0 such that (1/θ∗) log ϕQ(θ
∗) = µQ.

Moreover, the following are equivalent.

(i) θ ∈ (32 , θ
∗)

(ii) {M (θ)
n }n∈N# is uniformly integrable.

(iii) M
(θ)
∞ > 0 a.s.

Proof. We first show that µQ = (1/θ∗) log ϕQ(θ
∗) is achieved at a unique value of θ∗ ∈ (32 ,

5
2). At

θ∗, we have
d

dθ

(
1

θ
log ϕQ(θ)

)∣∣∣∣
θ=θ∗

=
1

(θ∗)2

(
θ∗

ϕ′
Q(θ

∗)

ϕQ(θ∗)
− log ϕQ(θ

∗)

)
= 0. (3.18)

Using the explicit formula ϕQ(θ) = cosh(βQθ)/ cos(πθ) from (3.4), we furthermore have

d

dθ

(
θ
ϕ′
Q(θ)

ϕQ(θ)
− log ϕQ(θ)

)
= θ

(
π2

cos2(πθ)
+

(βQ)
2

cosh2(βQθ)

)
> 0 (3.19)

for all θ ∈ (32 ,
5
2). Hence, there can be at most one solution to the equation (3.18). Moreover, we

have θϕ′
Q(θ)/ϕQ(θ) < log ϕQ(θ) if θ ∈ (32 , θ

∗).

The Biggins martingale convergence theorem [Big77, Theorem 1] states that the following three

conditions are equivalent:

(i) M
(θ)
∞ > 0 a.s.

(ii) EM (θ)
∞ = 1

(iii) θ(ϕQ)
′(θ)/ϕQ(θ) < log ϕQ(θ) and E

[
M

(θ)
1 log+M

(θ)
1

]
< ∞.
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Figure 3: The unique value of θ∗ satisfying µQ = (1/θ∗) log ϕQ(θ
∗), obtained by solving (3.21)

numerically. We observe θ∗ ≈ 1.9647 as Q → 0.

We verify the third condition for each θ ∈ (3/2, θ∗) using the moment estimates for the criti-

cal multiplicative cascade Z in [CCM20, Lemma 13] (see Footnote 4). This result states that

E
[
(
∑

|u|=1 Z(u)θ)p
]
< ∞ for every p < 5

2θ . Recall from (2.13) that ZQ(i) = Z(i) exp(βQYi) for

i ∈ N where {Yu}i∈N are i.i.d. Rademacher random variables that are also independent from the

cascade Z. Therefore,

E
[
M

(θ)
1 log+M

(θ)
1

]
≤ E

[(
M

(θ)
1

)p]
= E

[( ∑
|u|=1

(Z(u))θeθβQYu

)p]
≤ epθβQ E

[( ∑
|u|=1

Z(u)θ
)p]

< ∞

(3.20)

choosing any p ∈ (1, 5
2θ ).

Using the explicit formula (3.4) for ϕQ, the equation (3.18) satisfied by θ∗ is equivalent to

π tan(πθ∗) + βQ tanh(βQθ
∗) =

1

θ∗
log

cosh(βQθ
∗)

cos(πθ∗)
. (3.21)

The numerical solution of this equation for the range Q ∈ (0, 2) is displayed in Figure 3.

For θ ∈ (32 , θ
∗) and u ∈ U , define

M (θ)
n (u) :=

1(
ϕQ(θ)

)n ∑
|v|=n,v≻u

(
ZQ(v)

)θ
and W (θ)

u := lim
n→∞

M (θ)
n (u), (3.22)

where W
(θ)
u is the a.s. limit of the uniformly integrable martingale {M (θ)

n (u)}n≥|u|. Note that, for

every u ∈ U and n ≥ k > |u|, we have

M (θ)
n (u) =

∑
|v′|=n,v′≻u

(
ZQ(v

′)
)θ(

ϕQ(θ)
)n =

∑
|v|=k,v≻u

∑
|v′|=n,v′≻v

(
ZQ(v

′)
)θ(

ϕQ(θ)
)n =

∑
|v|=k,v≻u

M (θ)
n (v). (3.23)

Thus, we have

W (θ)
u = lim

n→∞

∑
|v|=k,v≻u

M
(θ)
k (v) ≥

∑
|v|=k,v≻u

lim
n→∞

M
(θ)
k (v) =

∑
|v|=k,v≻u

W (θ)
v (3.24)
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almost surely by Fatou’s lemma. On the other hand, since {M (θ)
n (v)}n≥|v| is uniformly integrable

for each v ∈ N,

E
[
W (θ)

u

]
= E

[
M

(θ)
k (u)

]
=

∑
|v|=k,v≻u

E
[
M

(θ)
k (v)] =

∑
|v|=k,v≻u

E
[
W (θ)

v

]
= E

[ ∑
|v|=k,v≻u

W (θ)
v

]
. (3.25)

Hence,

W (θ)
u =

∑
|v|=k,v≻u

W (θ)
v a.s. (3.26)

and thus W
(θ)
u defines a random measure on U with respect to the product σ-algebra.

The analog of Lemma 3.4 holds for the derivative martingale

M∗
n :=

∑
|u|=n

(ZQ(u))
θ∗

(ϕQ(θ∗))n

(
n
ϕ′
Q(θ

∗)

ϕQ(θ∗)
− logZQ(u)

)
= −dM

(θ)
n

dθ

∣∣∣∣
θ=θ∗

(3.27)

defined in [BK04]. This fact can be verified by checking the conditions in [AS14] again using the

formulas in [CCM20]. Hence,

W ∗
u := lim

n→∞

∑
|v|=n,v≻n

ZQ(v)
θ∗

ϕQ(θ∗)n

(
n
ϕ′
Q(θ

∗)

ϕQ(θ∗)
− logZQ(v)

)
(3.28)

also defines a random measure for the product σ-algebra on U .
The following proposition gives a construction for a random finite measure ξ which is almost

surely determined by the CLE4-coupled supercritical LQG disk (D, h,Γ)/∼Q through the multi-

plicative cascade ZQ.

Proposition 3.5. Let (ℓu)u∈U be the loops of a nested CLE4 in D indexed so that u ≺ v if and only

if ℓu encloses ℓv. Denote the open set enclosed by ℓu as Du. Suppose {Wu}u∈U is a collection of

nonnegative random variables which satisfy Wu =
∑

k∈NWuk for every u ∈ U . Then, there exists

an almost surely unique random Borel measure ξ on D such that ξ(Du) = Wu. Moreover, if ξ(n)

is any sequence of random Borel measures on D such that ξ(n)(Du) = Wu almost surely for every

|u| ≤ n, then, almost surely, ξ(n) converges weakly to ξ as n → ∞.

Proof. Let C be a countable collection of nonnegative continuous functions on D such that two

(deterministic) Borel measures µ and µ̃ on D are the same if
∫
D f dµ =

∫
D f dµ̃ for every f ∈ C.

Uniqueness. Suppose ξ is a random Borel measure on D that almost surely satisfies ξ(Du) = Wu

for every u ∈ U . For each f ∈ C and n ∈ N, define

W
(n)
f− :=

∑
|u|=n

Wu · inf
z∈Du

f(z) and W
(n)
f+ :=

∑
|u|=n

Wu · sup
z∈Du

f(z). (3.29)

Note that since ξ(Du) =
∑

k∈N ξ(Duk), we have ξ(Du \(
⋃

k∈NDuk)) = 0 a.s for every u ∈ U . Hence,

W
(n)
f− =

∑
|u|=n

ξ(Du) · inf
z∈Du

f(z) ≤
∫
D
f dξ ≤

∑
|u|=n

ξ(Du) · sup
z∈Du

f(z) = W
(n)
f+ a.s. (3.30)

Also, since Duk ⊂ Du for every k ∈ N,

W
(n)
f− =

∑
|u|=n

ξ(Du) · inf
z∈Du

f(z) ≤
∑
|u|=n

∑
k∈N

ξ(Duk) · inf
z∈Duk

f(z) = W
(n+1)
f− a.s. (3.31)
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and similarly W
(n)
f+ ≥ W

(n+1)
f+ a.s. for every n. By [APP23, Lemma 2.1],

lim
n→∞

sup
|u|=n

diam(Du) → 0 a.s. (3.32)

Hence, for each ε > 0, there exists a positive integer N such that

P
(

sup
|u|≥N

sup
x,y∈Du

|f(x)− f(y)| ≤ ε

)
≥ 1− ε. (3.33)

On this event, 0 ≤ W
(n)
f+ −W

(n)
f− ≤ ε

∑
|u|=nWu = εW∅ for every n ≥ N . Taking ε ↓ 0, we have that

limn→∞W
(n)
f± =

∫
D f dξ almost surely. Since W

(n)
f± does not depend on the choice of ξ, we conclude

that this random measure is almost surely unique.

Existence. Suppose ξ(n) is a sequence of random Borel measures on D such that ξ(n)(Du) = Wu

almost surely for every |u| ≤ n. For instance, we may choose ξ(n) where, if Leb is the Lebesgue

measure on D, then
dξ(n)

dLeb
(z) =

∑
|u|=n

Wu

Leb(Du)
1{z ∈ Du}. (3.34)

We have W
(n)
f− ≤

∫
f dξ(n) ≤ W

(n)
f+ a.s. for continuous f : D → [0,∞), in an analogous way to (3.30).

Hence,

lim
n→∞

∫
D
f dξ(n) = lim

n→∞
W

(n)
f± =: Wf a.s. (3.35)

The convergence
∫
D f dξ(n)

d−→ Wf for all nonnegative continuous f on D implies the existence of a

random measure ξ such that (
∫
D f dξ)f∈C

d
= (Wf )f∈C jointly [Kal86, Lemma 5.1]. Recall that Wf

is a measurable function of (Wu, ℓu)u∈U . Since (
∫
D f dξ)f∈C determines ξ uniquely at each point in

the probability space, there exists a coupling of ξ with (Wu, ℓu)u∈U such that
∫
D f dξ = Wf a.s. for

every f ∈ C, and hence for every continuous f on D.
Let us now check that ξ(Du) = Wu a.s. for every u ∈ U . Fixing u ∈ U and choosing a sequence

of random continuous functions fk approximating 1Du from below, we have

ξ(Du) ≥ sup
k

Wfk = sup
k

sup
n

W
(n)
fk− a.s. (3.36)

Since ξ(n) is supported on
⋃

|v|=nDv, which almost surely does not intersect ηu = ∂Du when n > |u|,
we have supk W

(n)
fk− = ξ(n)(Du) = Wu almost surely. Hence, ξ(Du) ≥ Wu a.s. for every u ∈ U . Since

the loops of nested CLE4 are a.s. disjoint, we have∑
|u|=n

Wu ≤
∑
|u|=n

ξ(Du) ≤ ξ(D) =
∑
|u|=n

Wu a.s. (3.37)

Therefore, ξ(Du) = Wu almost surely for every u ∈ U .

A natural choice for the process W = (Wu)u∈U is to set either W = W (θ) for θ ∈ (32 , θ
∗) or

W = W ∗. For any of these choices, since the Q-LQG lengths (nh(ℓu))u∈U are invariant under

different choices of embedding the nested-CLE4-decorated supercritical LQG disk, the measure ξ

that we constructed also satisfies the Q-LQG coordinate change rule (1.8). We do not have a

suggestion for a value of θ that has a special meaning within the context of Liouville theory with

central charge cL ∈ (1, 25).
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Remark 3.6. The measure ξ violates the locality condition of Theorem 1.5; that is, ξ(U) is not

determined by the domain U ⊂ D and the local field h|U . Indeed, given the CLE4 loop ℓu ∈ Γ and

the field h|Du inside the loop ℓu, the value of ξ(Du) still depends on |u| — i.e., the generation of

the loop ℓu within the nested CLE4 Γ — since ϕQ(θ) > 1 for any Q ∈ (0, 2) and θ ∈ (3/2, θ∗).

Note that ξ is almost surely supported on the set of points which are surrounded by infinitely

many CLE4 loops. Using the many-to-one formula for the branching random walk (see, e.g., [Shi15,

Theorem 1.1]), one can check that ifW = W (θ) (resp.W ∗), then the corresponding random measure

ξ is a.s. supported on the points z ∈ D such that if ℓun is the nth generation CLE4 loop enclosing

z, then 1
n logZQ(un) → ϕ′

Q(θ)/ϕQ(θ) (resp. ϕ′
Q(θ

∗)/ϕQ(θ
∗)) as n → ∞. It would be interesting to

investigate how these points are related with the thick points of the field.

4 Background on random planar maps

We now move on to the second part of this article, which studies the random planar map model

of a supercritical LQG disk introduced in Section 1.2. We begin this section by giving the precise

definitions for the laws of planar maps involved in the construction of this discrete model. Its

connection to the continuum model described in Section 2 is given in Proposition 4.15, which states

that the perimeters of marked faces in our discrete model converge in the scaling limit to the lengths

of CLE4 loops on the supercritical LQG disk.

We also introduce the random walk representation of the perimeters of faces in a Boltzmann

map (Proposition 4.7), which is a key tool in the proof of Proposition 1.3 in Section 5. We finally

survey the convergence results for subcritical Boltzmann maps (Propositions 4.19 and 4.20) that

form the key input for the proof of Theorem 1.4 in Section 7.

4.1 Definitions of Boltzmann maps and ring distributions

There were two kinds of planar maps needed in the construction of Definition 1.1: Boltzmann maps

and rings. We first give the definition of a Boltzmann map with a fixed perimeter for the root face.

Recall that per(f) refers to the half-perimeter of the face f .

Definition 4.1. For p ∈ N, let M(p) denote the set of all finite bipartite rooted planar maps with

the degree of the root face equal to 2p. Given a weight sequence q = (qi)i∈N of nonnegative real

numbers, define the Boltzmann weight of a map M ∈
⋃

p∈NM(p) as

wq(M) =
∏

f∈F(M)

qper(f), (4.1)

where F(M) refers to the collection of inner (non-root) faces of M . We say that the weight sequence

q is admissible if W
(p)
q :=

∑
M∈M(p) wq(M) < ∞ for all p ∈ N. In this case, we define for each

p ∈ N the corresponding probability measure

P(p)
q (M) =

1

W
(p)
q

wq(M), M ∈ M(p) (4.2)

of Boltzmann maps with boundary length 2p.
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In the theory of Boltzmann maps, an important object is the generating function fq defined by

fq(x) = 1 +
∞∑
k=1

qk

(
2k − 1

k

)
xk. (4.3)

A weight sequence q is admissible if and only if the equation fq(x) has a fixed point on R+ [MM07,

Proposition 1]. Let Zq denote the smallest fixed point of fq(x). Boltzmann maps sampled from

P(p)
q can have different large-scale behaviors depending on the behavior of fq near Zq.

Definition 4.2. An admissible weight sequence q = (qi)i∈N is said to be critical if f ′
q(Zq) = 1

and subcritical otherwise. If q is a critical weight sequence which moreover satisfies

fq(x) = Zq − (Zq − x) + c(Zq − x)a−1/2 + o
(
(Zq − x)a−1/2

)
(4.4)

for some constants a ∈ (3/2, 5/2) and c > 0 as x ↑ Zq, then it is said to be critical non-generic

of type a. If (4.4) holds for a = 5/2 as x ↑ Zq, then the corresponding weight sequence is called

critical generic.

We refer to [Cur23, Theorem 5.4] for equivalent definitions of the criticality of a weight sequence.

As explained in [Cur23, Section 5.3], any critical weight sequence satisfies (4.4) for some a ∈
(3/2, 5/2]. In the critical generic case, there are no macroscopic faces and the scaling limit of the

Boltzmann maps as the number of total vertices tends to infinity is the celebrated Brownian map

[MM07, LG13, Mar18b]. The analogous scaling limit in the critical non-generic case depends on

the value of a and is called a stable map [LGM11]. The scaling limit in the subcritical case is the

continuum random tree; see Section 4.4 for further details.

For the remainder of this work, we fix q = (qi)i∈N# to be a critical non-generic weight se-

quence of type a = 2; an explicit example of such a weight sequence can be found in [Cur23, Sec-

tion 3.5.3]. A Boltzmann map M sampled from the law P(p)
q associated with such a weight sequence

can be thought of as a discrete version of the CLE4 gasket, in the sense that the set of perimeters

{per(fi)}i∈F(M) of the non-boundary faces converges in the scaling limit to the corresponding set of

lengths of loops in a critical LQG disk decorated with independent CLE4 (see Lemma 4.16). When

we need to talk about a general weight sequence, we will always use q = (qi)i∈N# instead.

We now define the distribution of rings which puts our discrete model in the universality class

of supercritical LQG with given central charge. As promised earlier in the introduction, we allow

the following more general distribution of rings in the rest of this article.

Definition 4.3. Let
(
P(p)
ring

)
p∈N be a sequence of probability measures on planar maps R with two

distinguished faces — an outer face fout and an inner face fin — such that per(fout) = p and

per(fin) ∈ N#. Let Rat(R) denote the ratio per(fin)/per(fout) of the ring R. We assume that this

sequence of distributions satisfy the following conditions.

(1) Background charge: Recall the background charge Q ∈ (0, 2) associated with supercritical

LQG. The law of Rat(R) under P(p)
ring converges in distribution to exp(βQY ) as p → ∞, where

Y is a Rademacher random variable and

βQ :=
π
√

4−Q2

Q
. (4.5)
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(2) Non-thickness: Let Vol(R) denote the total number of vertices in R. There is a constant C > 0

such that, for any p ∈ N, a ring R sampled from P(p)
ring satisfies Vol(R) ≤ C(per(fout)+per(fin))

almost surely.

(3) Non-triviality: P(p)
ring(Rat(R) > 0) > 0 for all p ∈ N.

(4) Lower tail: For each λ > 0, there exists a constant c > 0 such that E(p)
ring[e

−λpRat(R)] ≤ e−cp for

all p ∈ N.

(5) Upper tail: There exists a constant δ > 0 such that supp∈N E(p)
ring[(Rat(R))(2+δ)] < ∞.

(6) Gluing of boundaries: There exists a constant K < ∞ such that, for any p ∈ N, a ring R

sampled from P(p)
ring satisfies the following property almost surely: each vertex on the outer

boundary of R is at most distance K from its inner boundary, and vice versa.5

The main condition that we require is (1). We emphasize that the dependence of our planar map

model on the central charge cL is precisely through the constant βQ appearing in the law of Rat(R).

In terms of the continuum picture in [AG23b], the limiting law in the first condition corresponds to

the ratio between the inner and outer perimeters of a CLE4 loop in a CLE4-decorated supercritical

LQG disk (see (2.11)). The remaining conditions are technical hypotheses needed in our proofs

which we do not claim to be optimal. For instance, with a more restrictive law for the rings (e.g.,

per(fin)
d
= ⌊p exp(βQY )⌋ for all p ∈ N as in [AG23b]), many of the estimates in our work can be

improved. We refer the reader to Remark 6.5 for a further discussion of this point.

Remark 4.4. As stated previously, our construction in Definition 1.1 is similar to the one in

[AG23b] except for the following key difference. The planar map model of supercritical LQG

introduced in [AG23b] uses the gaskets of loop O(2) model planar maps instead of critical non-

generic Boltzmann maps of type a = 2. For n ∈ (0, 2), the distribution of the gasket of a loop O(n)

model planar map has been identified in [BBG12] with a critical non-generic Boltzmann map with

a = 2 + (1/π) arccos(n/2). However, this fact is not known for the case n = 2 that we are in.

The work [CCM20] provides an exact solvability of the perimeter process of the loop O(n) model

for n ∈ (0, 2) via an analysis of the gaskets in terms of the corresponding Boltzmann maps. This

analysis extends to critical non-generic Boltzmann maps of type a = 2, though we cannot as of yet

connect it to the O(2) loop model. Our choice of the gasket in Definition 1.1 is made to utilize this

integrability of the perimeters of faces of Boltzmann maps as the core ingredient for our proofs.

Another difference in our model from that of [AG23b] is the general class of rings that we allow

in Definition 4.3. Since Definition 1.1 outputs an infinite map with positive probability, it is a priori

conceivable that minor changes in the sequence
(
P(p)
ring

)
p∈N may drastically affect the law P(p)

F . Our

main result Theorem 1.4 implies that for any reasonable choice of ring distribution, its effect on the

global geometry of the planar map, when conditioned to be finite, becomes negligible as p → ∞.

5This condition is not needed in our proofs. However, it is imposed so that planar maps sampled from the

unconditioned law P(p)
∞ can be reasonably expected to converge in the scaling limit to the supercritical LQG disk

decorated by CLE4. For instance, this condition excludes a ring where the inner and outer boundaries are connected

through a single edge, since this would yield an outsize impact to the distances between the vertices to the inside and

the outside of the ring.
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4.2 The connection between Boltzmann maps and random walks

An important ingredient in this work is the understanding of the distribution of the perimeters of

the faces of a Boltzmann map sampled from P(p)
q — the probability measure on rooted bipartite

maps with boundary perimeter 2p which is proportional to the Boltzmann weight (4.1). A vital

object in this theory is the random walk generated by the following step distribution µq associated

with the weight sequence q.

Definition 4.5. Let q be an admissible weight sequence q. We associate to it a probability measure

µq on the set N# ∪ {−1} given by

µq(k) = (Zq)
k

(
2k + 1

k

)
qk+1 (4.6)

for k ≥ 0, and µq(−1) = 1/Zq.

We now define some statistics related to the random walk with step distribution µq. These will

appear in the perimeter process of Boltzmann maps.

Definition 4.6. Let q be an admissible weight sequence. Consider the random walk Sn =
∑n

i=1Xi

starting at 0 and with steps Xi sampled independently from µq. Let T
(p)
S = inf{n ≥ 0 : Sn = −p}

be the first time that this walk hits −p. Let L
(p)
S =

∑T
(p)
S

i=1 1{Xi=−1} be the total number of negative

steps (always −1) taken by the walk up to time T
(p)
S . Let χχχ

(p)
S = (χ

(p)
S (i))i∈N be the non-increasing

sequence of integers satisfying

{χ(p)
S (i)}

n∈[[1,T (p)
S ]]

= {Xn + 1}
n∈[[1,T (p)

S ]]
(4.7)

as multi-sets and χ
(p)
S (i) = 0 for i > T

(p)
S .

Given a Boltzmann map M sampled from P(p)
q , let χχχM = (χM (i))i∈N encode the half-perimeters

per(f) for f ∈ F(M) listed in a non-increasing order with duplicity, padded by χM (i) = 0 for

i > |F(M)|. A key tool in our proof is the encoding of the law of χχχM in terms of the random walk

in Definition 4.6. The following identity is given in [CCM20, Section 2.3.1] based on the bijections

of [BFG04, JS15].

Proposition 4.7. Let q be an admissible weight sequence and let M be a Boltzmann map sampled

from P(p)
q for any p ∈ N. Then, the law of χχχM is equal to that of χχχ

(p)
S weighted by (L

(p)
S + 1)−1.

That is, for any positive measurable function F : RN → R, we have

E(p)
q [F (χχχM )] =

E[(L(p)
S + 1)−1F (χχχ

(p)
S )]

E[(L(p)
S + 1)−1]

. (4.8)

Our proofs of Theorems 1.4 and 1.3 in Sections 5 and 6 make heavy uses of this random walk

encoding of Boltzmann maps and its basic properties that we now collect. First, from the following

lemma, we see that the drift of the random walk depends on whether the weight sequence is critical

or subcritical.

30



Lemma 4.8. Given an admissible weight sequence q, denote the mean of the associated random

walk step measure (4.6) as

mq :=
∞∑

k=−1

kµq(k). (4.9)

If q is subcritical, then mq < 0, whereas if q is critical, then mq = 0.

Proof. Note that mq = f ′
q(Zq) − 1 = d

dx [fq(x) − x]|x=Zq
. Since fq(0) > 0, we have f ′

q(Zq) ≤ 1.

The claim now follows directly from the definitions of critical and subcritical weight sequences in

Definition 4.2.

Here are further properties of the random walk associated with our critical non-generic weight

sequence q of type a = 2. These results can be stated with slight modification for other values of

a ∈ (3/2, 5/2) as well, but we do not stray away from the a = 2 case that we consider exclusively

in our work.

Lemma 4.9 ([Cur23, Proposition 5.10]). Let q be a critical non-generic weight sequence of type

a = 2. Then, as k → ∞, the sequence k3/2µq([k,∞)) converges to a non-zero limit depending on

q.

Lemma 4.10. Let q be a critical non-generic weight sequence of type a = 2. Let Sn = X1+ . . . Xn

be a random walk with step distribution µq, with the random variables T
(p)
S and L

(p)
S defined as in

Definition 4.6. Then, p−3/2T
(p)
S converges in distribution to a positive 2/3-stable random variable.

Moreover, there is a constant c > 0 depending only on q such that for all ε > 0 and p ∈ N, we have

P(T (p)
S ≤ εp3/2) ≤ P(L(p)

S ≤ εp3/2) ≤ e−cε−2
. (4.10)

Consequently, there exists a constant C > 0 such that E[(L(p)
S + 1)−1] ≥ Cp−3/2 for all p ∈ N.

Proof. The convergence of p−3/2T
(p)
S is established within the proof of [CCM20, Proposition 3] and

(4.10) is proved in Lemma 5 of the same article. To prove the last estimate, it suffices to show

E[(T (p)
S )−1] ≥ Cp−3/2 since L

(p)
S ≤ T

(p)
S . We know from (4.10) that {p3/2(T (p)

S )−1}p∈N is uniformly

integrable. Denoting by τ the positive 2/3-stable random variable that p−3/2T
(p)
S converges in law

to, we conclude p3/2E[1/T (p)
S ] → E[1/τ ]. This limit is finite, as can be checked from well-known

estimates on the density of τ (see, e.g., [Zol86, Chapter 2.5]).

We now move on to estimates for T
(p)
S and L

(p)
S corresponding to a subcritical weight sequence.

Lemma 4.11. Let q be a subcritical admissible weight sequence and let S denote the random walk

with step distribution µq. Then,

lim
p→∞

P
(
T
(p)
S > −2p/mq

)
= 0. (4.11)

Furthermore, for all p ∈ N, we have p−1ET (p)
S = ET (1)

S < ∞ and

E
[
(L

(p)
S + 1)−1

]
≥ E

[
(T

(p)
S + 1)−1

]
≥
(
pE[T (1)

S ] + 1
)−1

. (4.12)
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Proof. Note that {T (p)
S > −2p/mq} ⊆ {S⌊−2p/mq⌋ > −p}. Since E[S⌊−2p/mq⌋] ∼ −2p, by the law of

large numbers, the probability of the latter event decreases to 0 as p → ∞.

To obtain (4.12), note that ET (p)
S = p · ET (1)

S since the only possible negative jumps of S are

−1. We have ET (1)
S < ∞ from, e.g., [Gut74, Theorem 2.1]. The claim then follows by Jensen’s

inequality since the function x 7→ (x+ 1)−1 is convex.

As a simple instance of extracting information about Boltzmann maps from the corresponding

random walk, we show that (4.11) gives an upper bound on the number of faces in a subcritical

Boltzmann map. Recall that for a rooted planar map M , we use F(M) to denote the set of interior

(or non-root) faces of M .

Lemma 4.12. If q is a subcritical weight sequence, then P(p)
q (|F(M)| ≤ −2p/mq) → 1 as p → ∞.

Proof. Let Sn = X1 + · · · + Xn be a random walk starting from 0 with step distribution µq. By

Proposition 4.7, it suffices to show that

lim
p→∞

E[(L(p)
S + 1)−11{T (p)

S > −2p/mq}]
E[(L(p)

S + 1)−1]
= 0. (4.13)

In Lemma 4.13 below, we show that (L
(p)
S + 1)−1 is a bounded and decreasing function of the

sequence (X1, X2, . . . ), whence 1{T (p)
S ≥ −2p/mq} is an increasing function of the same sequence.

Thus, the FKG inequality implies that the ratio in (4.13) is bounded above by P(T (p)
S > −2p/mq),

which tends to 0 as p → ∞ by Lemma 4.11.

Lemma 4.13. Let (X1, X2, . . . ) be a sequence of integers taking values in {−1}∪N# and consider

the walk Sn = X1 + · · · +Xn for n ∈ N. Let T
(p)
S be the first time that the walk hits −p and L

(p)
S

be the total number of negative steps until this hitting time. Then, T
(p)
S and L

(p)
S are increasing

functions of the sequence (X1, X2, . . . ) for every p ∈ N.

Proof. Fix p ∈ N. Suppose (X̃1, X̃2, . . . ) is another sequence of integers such that Xi ≤ X̃i for

every i ∈ N. Let S̃n = X̃1 + · · ·+ X̃n and define T
(p)

S̃
and L

(p)

S̃
analogously. Since Si ≤ S̃i for all i,

we have T
(p)
S ≤ T

(p)

S̃
almost surely.

Let us show L
(p)
S ≤ L

(p)

S̃
. It suffices to show this for the case that Xj < X̃j at a unique index

j ∈ [[1, T
(p)

S̃
]] and Xi = X̃i for all other i ≤ T

(p)

S̃
, since we can make comparisons while changing

(Xi)i≤T
(p)

S̃

to (X̃i)i≤T
(p)

S̃

index-by-index. In fact, since T
(p)
S = T

(p)

S̃
if Xi = X̃i for every i ∈ [[1, T

(p)
S ]],

so we only need to consider the case that Xj < X̃j for some j ∈ [[1, T
(p)
S ]] and Xi = X̃i for all i ̸= j

in this interval. If Xj ̸= −1, then Xj is not counted in L
(p)
S , so T

(p)
S ≤ T

(p)

S̃
implies L

(p)
S ≤ L

(p)

S̃
.

If Xj = −1 and X̃j ≥ 0, then S̃
T

(p)
S

> S
T

(p)
S

= −p, so there exists at least one negative Xi among

T
(p)
S < i ≤ T

(p)

S̃
. Hence,

L
(p)

S̃
=

T
(p)
S∑
i=1

(1{Xi = −1} − 1i=j) +

T
(p)

S̃∑
i=T

(p)
S +1

1{X̃i = −1} ≥ (L
(p)
S − 1) + 1 = L

(p)
S . (4.14)

Hence, L
(p)
S ≤ L

(p)

S̃
whenever (X1, X2) ≤ (X̃1, X̃2, . . . ).
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4.3 Perimeter cascade of supercritical planar maps

In this subsection, we investigate the law of the perimeters of faces that appear in the iterative

construction of supercritical maps in Definition 1.1. Let us first define a process indexed by the Ulam

tree U =
⋃

n∈N# Nn which describes these perimeters along with their genealogy. For u ∈ Nn ⊂ U ,
denote |u| = n.

Definition 4.14. Given p ∈ N, let {(Mi,Fi)}i∈N# be the Markov chain in Definition 1.1 with the

law P(p)
∞ . Let M be the random planar map resulting from this chain. We define the processes

χχχin
M = (χin

M (u))u∈U and the indexing f : U → {∂M,∅}∪ (
⋃

i∈N# Fi) through the following inductive

procedure.

• Let f∅ = ∂M and χin
M (∅) = p.

• Suppose we have {(fu, χin
M (u))}|u|=i. Here is how we define {(fu, χin

M (u))}|u|=i+1.

– For each u ∈ U with |u| = i and fu ̸= ∅, recall that F(M(fu)) are the faces of the

Boltzmann map glued into the face fu ∈ Fi. With m = |F(M(fu))|, let fu1, fu2, . . . , fum
be an enumeration of the faces F(M(fu)) such that per(fu1), . . . ,per(fum) is in a non-

increasing order. Let χin
M (uk) be the inner half-perimeter perin(fuk) of the ring attached

to the face fuk.

– If fu = ∅ or k > |F(M(fu))|, let fuk = ∅ and χin
M (uk) = 0.

The main result of this subsection is that the above perimeter process χχχin
M converges in distri-

bution as p → ∞ to the multiplicative cascade ZQ of the inner boundary lengths of CLE4 loops in

a unit boundary length supercritical LQG disk.

Proposition 4.15. For each p ∈ N, let χχχin
M(p) denote the perimeter process of Definition 4.14

sampled from P(p)
∞ corresponding to the background charge Q ∈ (0, 2). Also, let (ZQ(u))u∈U be the

multiplicative cascade given in Corollary 2.8. Then, as p → ∞,(
p−1χin

M(p)(u)
)
u∈U

d→
(
ZQ(u)

)
u∈U (4.15)

with respect to the product topology on RU .

This result is the supercritical analog of [CCM20, Theorem 1], which gave the convergence of

the perimeter process in the loop O(n) model for n ∈ (0, 2) to a multiplicative cascade. Its proof

is based on the following description of the law of perimeters of faces in the Boltzmann maps that

constitute our planar map. Note the similarity between its law (4.8) and the law (2.7) of the lengths

of (non-nested) CLE4 loops on an independent unit boundary length critical LQG disk, which we

denoted ρ(1). It was proved in [CCM20] that, in fact, the former converges to the latter in the

scaling limit.6

Lemma 4.16 ([CCM20, Proposition 3]). Let q be a critical non-generic weight sequence of type a =

2. For each p ∈ N, let M (p)
0 be a Boltzmann map sampled from the law P(p)

q given in Definition 4.1

and recall that χχχ
M

(p)
0

refers to the decreasing sequence of half-perimeters of internal faces of M
(p)
0 .

6Though [CCM20] assumes a ∈ ( 3
2
, 5
2
) \ {2} throughout, their proof of this proposition only requires that the step

distribution of the random walk is centered and is in the domain of attraction of the totally asymmetric stable law

of parameter α = a− 1/2 ∈ (1, 2).

33



Then, as p → ∞, the law of the sequence (p−1χ
M

(p)
0

(i))i∈N converges to ρ(1) with with respect to

the product topology on RN.

Proof of Proposition 4.15. Comparing Definition 4.14 of the perimeter process χχχin
M(p) with the iter-

ative construction of the map M (p) in Definition 1.1, it suffices to show the convergence of the first

generation: i.e., (
p−1χin

M(p)(i)
)
i∈N

d→
(
ZQ(i)

)
i∈N (4.16)

as p → ∞.

Let M
(p)
0 be a Boltzmann map sampled from the law P(p)

q and let f1, f2, . . . , f|F(M(p)
0 )| be an

enumeration of its interior faces so that χ
M

(p)
0

(i) = per(fi) for each i. That is, per(f1), per(f2), . . . is

in a non-increasing order. For each face fi ∈ F(M
(p)
0 ), sample a ring Ri conditionally independently

from the law P(per(fi))
ring . By our choice of the ring distribution (Definition 4.3), the ratio Rat(Ri)

of the inner and outer parameters of the ring Ri converge jointly in distribution to exp(βQYi)

where Y1, Y2, . . . are i.i.d. Rademacher random variables. Hence, if we put per(fi)Rat(Ri) := 0 for

i > |F
M

(p)
0

| and let (Z(i))i∈N be a sequence with the law ρ(1) sampled independently from {Yi}i∈N,
then by Lemma 4.16 we have(

p−1χin
M(p)(i)

)
i∈N =

(
p−1per(fi)Rat(Ri)

)
i∈N

d→
(
Z(i)eβQYi

)
i∈N =

(
ZQ(i)

)
n∈N (4.17)

as p → ∞ with respect to the product topology on RN.

4.4 Convergence of subcritical Boltzmann maps to the continuum random tree

We now recall the definitions of the continuum random tree (CRT) and the Gromov–Hausdorff

distance that appear in our main result. Then, we survey the literature on convergence of subcritical

Boltzmann maps to the CRT, which shall provide key inputs to our proof of Theorem 1.4.

4.4.1 Continuum random tree

The Brownian CRT is a random real tree defined from a Brownian excursion that arises as the

scaling limit of a large class, as defined and investigated by Aldous in the pioneering works [Ald91a,

Ald91b, Ald93]. More recent results on the convergence of random discrete structures to the CRT

are surveyed in [Stu20].

Definition 4.17. Let e : [0, 1] → R+ be the normalized Brownian excursion. Consider the pseudo-

distance defined on the interval [0, 1] by

de(s, t) = es + et − 2 min
s∧t≤u≤s∨t

eu (4.18)

for s, t ∈ [0, 1]. Let ∼e be an equivalence relation on [0, 1] given by s ∼e t if and only if de(s, t) = 0.

The continuum random tree is the random metric space (Te, dTe) := ([0, 1], de)/ ∼e. The

equivalence class containing 0 and 1 is the root ∅ of the CRT (T, d). With an abuse of notation,

we also use the acronym CRT to denote the law of the above object.
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4.4.2 Gromov–Hausdorff convergence

The Gromov–Hausdorff distance measures how close two metric spaces are being isometric to each

other and has been used widely to describe convergence of random discrete structures to continuum

metric spaces.

Definition 4.18. Let X = (X, dX) and Y = (Y, dY ) be compact metric spaces. The following are

equivalent definitions for the Gromov–Hausdorff distance dGH(X ,Y) between X and Y.

(i) Given two compact sets K1,K2 in a metric space Z = (Z, d), recall that their Hausdorff

distance is given by

dH(K1,K2) =

(
sup

z1∈K1

d(z1,K2)

)
∨
(

sup
z2∈K2

d(z2,K1)

)
. (4.19)

Then,

dGH(X ,Y) = inf
Z,φX ,φY

dH(φX(X), φY (Y )) (4.20)

where the infimum is over all metric spaces Z = (Z, d) and isometric embeddings φX : X → Z,

φY : Y → Z.

(ii) A correspondence between X and Y is a subset R ⊂ X×Y such that R∩({x}×Y ) ̸= ∅ for

every x ∈ X and R∩ (X × {y}) ̸= ∅ for every y ∈ Y . The distortion of the correspondence

R is defined as

dis(R) = sup{|dX(x1, x2)− dY (y1, y2)| : (x1, y1), (x2, y2) ∈ R}. (4.21)

Then,

dGH(X ,Y) =
1

2
inf
R

dis(R) (4.22)

where the infimum is taken over all correspondences R of X and Y.

See, e.g., [BBI01, Section 7.3] for the equivalence of the two definitions. We shall often switch

between the above two equivalent formulations depending on which one is more convenient for the

particular application at hand.

4.4.3 Previous convergence results for subcritical maps

As mentioned earlier, the behavior of Boltzmann maps sampled from P(p)
q depends strongly on the

choice of the weight sequence q. If the weight sequence is critical non-generic, the corresponding

Boltzmann maps have macroscopic faces, and upon renormalizing distances appropriately, these

Boltzmann maps are expected to converge to a “stable map with a boundary” as in [LGM11]. On

the other hand, in the critical generic case, there are no macroscopic faces and the scaling limit is

known to be the Brownian map [MM07, LG13, Mar18b].

If the weight sequence is subcritical, there are again no macroscopic faces in the Boltzmann map,

but in this case, the scaling limit turns out to be a CRT. This was proved in [JS15, Mar22] for the

case of Boltzmann maps without boundary. We will need the analogous convergence for subcritical

Boltzmann maps with boundary (i.e., sampled from P(p)
q ) in two different flavors. First, we state

a result from [KR20, Corollary 5] about the convergence of the outer boundary of the Boltzmann

map to the CRT. Recall that for a planar map M with vertex set VM and graph distance dM , we

let rM refer to the metric space (VM , rdM ) for r ∈ R+.
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Proposition 4.19. Let q be a subcritical weight sequence. For each p ∈ N, let M (p)
0 be a Boltzmann

map sampled from P(p)
q . Then, there exists a constant Kq such that

Kq√
p
∂M

(p)
0

d→ CRT (4.23)

as p → ∞ with respect to the Gromov–Hausdorff distance.

The proof of this result in [KR20] is based on a bijection between the outer boundary ∂M
(p)
0

to a looptree associated with a critical Bienaymé–Galton–Watson process, which we follow closely

for our proof of Theorem 1.4. See Section 7.1 for further details.

With additional assumptions on the decay rate of µq, the entire map M (p) converges to a CRT.

Proposition 4.20. Let q be a subcritical weight sequence such that µq([k,∞)) = o(k−1) as k → ∞.

If M (p) has the law P(p)
q for each p ∈ N, then

1√
2p

M (p) d→ CRT (4.24)

as p → ∞ with respect to the Gromov–Hausdorff distance. Moreover,

1
√
p

max
v∈V

M(p)

dM(p)(v, ∂M (p))
d→ 0. (4.25)

Proof. For the proof of (4.24), in view of [Mar22, Theorem 1.3], it suffices to show that

1

p2

∑
f∈F(M(p))

[per(f)]2 → 0 (4.26)

in distribution as p → ∞. We use the connection between random walks and Boltzmann maps as

explained in Section 4.2. Let Sn = X1 + . . . Xn be a random walk with step distribution µq. By

Proposition 4.7, the convergence (4.26) is equivalent to

lim
p→∞

E
[

1

L
(p)
S +1

1
{∑T

(p)
S

i=1 (Xi + 1)2 > εp2
}]

E
[

1

L
(p)
S +1

] = 0 for all ε > 0. (4.27)

By Lemma 4.13, the indicator 1{
∑T

(p)
S

i=1 (Xi + 1)2 > εp2} is an increasing function of the sequence

(X1, X2, . . . ) while (L
(p)
S + 1)−1 is a decreasing function of the same sequence. Using the FKG

inequality, the problem at hand reduces to checking

P
( T

(p)
S∑
i=1

(Xi + 1)2 > εp2
)

→ 0. (4.28)

Since q is subcritical, in view of Lemma 4.11, it suffices to show that

P
( ⌊−2p/mq⌋∑

i=1

(Xi + 1)2 > εp2
)

→ 0. (4.29)
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This follows by the law of large numbers for i.i.d. heavy tailed random variables (e.g., [Kal21,

Theorem 6.17] with p = 1/2 therein).

In fact, the convergence (4.24) holds because the boundary of (2p)−1/2M (p) converges to the

CRT, whereas its interior faces disappear under the scaling limit as expressed in (4.25). This

reasoning, first given heuristically in [Bet15], was stated within the proof of [Mar22] in terms of

the “key bijection” between (a uniformly chosen negative pointed map version of) M (p) and a

labelled forest combining those of [BFG04] and [JS15]. In this bijection, the leaves of the forest

are in bijection with the non-distinguished vertices of M (p). Moreover, we can check directly from

its construction (see [Mar18a, Section 2.3]) that each tree in the forest contains a leaf that is

mapped to a vertex on ∂M (p). Since the labels on the leaves correspond to the graph distance

to the distinguished vertex in M (p), the maximum distance from any vertex in M (p) to ∂M (p) is

bounded above by the maximum difference of the labels in each tree. The latter quantity is equal

to max L̃(p)−min L̃(p) in the notation of [Mar22]. By Theorem 2.6(1) in that paper, it follows from

(4.26) that p−1/2(max L̃(p) −min L̃(p)) → 0 in distribution as p → ∞. This proves (4.25).

5 The probability that a supercritical map is finite

The goal of this section is to prove Proposition 1.3, which will be done via a subadditivity argument.

A priori, it is not even clear if F (p) = P(p)
∞ (M is finite) < 1 for any value of p, so we turn to this

first. We saw in Proposition 3.1 that in the continuum limit, macroscopic loops are abundant

at all stages in the supercritical multiplicative cascade ZQ. We now employ a comparison to a

supercritical Bienaymé–Galton–Watson (BGW) tree to deduce the non-triviality of F .

Lemma 5.1. We have the convergence F (p) → 0 as p → ∞.

Proof. For each positive integer p, let nq = nq(p) be a constant to be determined later. Let M

be a map sampled from P(p)
F and recall the associated perimeter cascade χχχin

M = (χin
M (u))u∈U from

Definition 4.14. Consider the random variable

Nm = #{u ∈ U : |u| = mnq, χ
in
M (u) > p}. (5.1)

Then,

F (p) ≤ P(p)
∞ (Nm = 0 for some m ∈ N). (5.2)

The goal now is to show that the right-hand side of this inequality tends to 0 as p → ∞. We do

so by constructing a supercritical BGW process whose size at each generation m is stochastically

dominated by Nm and has a sufficiently small extinction probability.

As a consequence of Proposition 3.1, for each q ∈ (0, 1), we can find nq ∈ N such that

P(#{u ∈ U : |u| = nq, ZQ(u) > 2} ≥ 100) ≥ q. (5.3)

Combining this with the distributional convergence of Proposition 4.15, we see that for each suffi-

ciently large p ∈ N, we can choose q = q(p) ∈ (0, 1) with q increasing to 1 as p → ∞ such that for

every integer p̃ ≥ p, we have

P(p̃)
∞ (#{u ∈ U : |u| = nq, χ

in
M (u) > p} ≥ 100) ≥ q. (5.4)

37



Now, consider a BGW process with offspring distribution µ such that µ(100) = q and µ(0) = 1− q.

Let Zm denote the number of offspring of this BGW process in generation m and define

Ñm = #{u ∈ U : |u| = mnq, χ
in
M (uk) > p for 1 ≤ k ≤ m

where uk is the ancestor of u with |uk| = knq}.
(5.5)

Then, (Ñ1, Ñ2, . . . ) sampled from P(p)
∞ is a BGW process whose offspring distribution µ̃ satisfies

µ̃(k) ≥ µ(k) for all k > 0, whence (Z1, Z2, . . . ) is stochastically dominated by (Ñ1, Ñ2, . . . ). Since

Ñm ≤ Nm for every m,

(N1, N2, . . . ) ≥SD (Z1, Z2, . . . ). (5.6)

On the other hand, for the corresponding supercritical BGW process, we know that the extinction

probability P(Zm = 0 for some m ∈ N) tends to 0 as q → 1. By stochastic domination, we conclude

P(p)
∞ (Nm = 0 for some m) → 0 as p → ∞ as claimed.

Lemma 5.2. For every p ∈ N, we have 0 < F (p) < 1.

Proof. Fix p ∈ N and let M be a map sampled from P(p)
∞ . Let us first show F (p) > 0. The

construction of the map M in Definition 1.1 terminates right away if the gasket M0 has no interior

faces. Since M0 has the marginal law of a Boltzmann map sampled from P(p)
q , in terms of the

random walk representation of the perimeter process χM0 (Proposition 4.7), this corresponds to

the event that Xi = −1 for all i ∈ [[1, p]]. Using the trivial bound L
(p)
S ≥ p, we thus have

F (p) ≥
E
[
(L

(p)
S + 1)−11{Xi = −1 ∀i ∈ [[1, p]]}

]
E
[
(L

(p)
S + 1)−1

] =
(p+ 1)−1(µq(−1))p

E
[
(L

(p)
S + 1)−1

] ≥ (µq(−1))p = (Zq)
−p > 0.

(5.7)

We now prove F (p) < 1. Choose a face f1 ∈ F0 = F(M0) with the longest perimeter: that

is, per(f1) = maxf∈F0 per(f) = χM0(1). Note that for each k ∈ N, we have P(p)
q (per(f1) > k) =

µq([k,∞)) > 0 from Lemma 4.9. We now fix k to be large enough that supm>k F (m) < 1/2. Then,

F (p) ≤ E(p)
∞
[
F (perin(f1))

]
≤ P(p)

∞ (perin(f1) ≤ k) + P(p)
∞ (perin(f1) > k) sup

m>k
F (m)

≤ 1− 1

2
P(p)
∞ (perin(f1) > k).

(5.8)

Recall from Definition 4.3 that Rat(R) for a ring R sampled from P(m)
ring converges in distribution

to exp(βQY ) where Y is a Rademacher random variable. Hence, we may assume (by choosing a

larger k if necessary) that infm>k P
(m)
ring(Rat(R) ≥ 1) > 0. Since perin(f1) is the inner half-perimeter

of the ring sampled from P(per(f1))
ring , we have

P(p)
∞ (perin(f1) > k) ≥ P(p)

q (χM0(1) > k) · inf
m>k

P(m)
ring(Rat(R) ≥ 1) > 0. (5.9)

This combined with (5.8) completes the proof.

Proof of Proposition 1.3. We first show the existence of α ∈ [0,∞) such that −p−1 logF (p) → α

as p → ∞. By a standard subadditivity argument (see [dBE52, Theorem 23]), it suffices to find a

rational function g(p, q) and p0 > 0 such that if p, q ≥ p0, then

F (p+ q) ≥ g(p, q)F (p)F (q). (5.10)
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Note that α = infp(−p−1 logF (p)) < ∞ from Lemma 5.2.

By the construction of supercritical planar maps from Definition 1.1, we have the recursive

relation

F (p+ q) = E(p+q)
∞

[ ∏
f∈F0

F (perin(f))

]
= E(p+q)

q

[∏
i∈N

E(χM0
(i))

ring

[
F (χM0(i)Rat(R))

]]
. (5.11)

Now, we transfer the above expression to one involving the corresponding random walk in Defini-

tion 4.6. Let {Xi}i∈N be i.i.d. random variables with the law µq and let Sn = X1 + · · · + Xn be

the corresponding random walk. Given the walk S, sample Ri conditionally independently for each

i ∈ N from the marginal law of Rat(R) under P(Xi+1)
ring . By an application of Proposition 4.7 along

with (4.7), we can rewrite (5.11) as

F (p+ q) =
E
[
(L

(p+q)
S + 1)−1

∏T
(p+q)
S

i=1 F ((Xi + 1)Ri)
]

E
[
(L

(p+q)
S + 1)−1

] . (5.12)

We now consider the modified walk Ŝj := S
j+T

(p)
S

+ p, which is the part of the walk S from

the first hitting time of −p up to the hitting time of −(p + q), translated upwards by p. Also

denote X̂i = X
i+T

(p)
S

and R̂i = R
i+T

(p)
S

for simplicity. Then, since the only possible negative

steps of S are of unit size, T
(p+q)
S = T

(p)
S + T

(q)

Ŝ
and L

(p+q)
S = L

(p)
S + L

(q)

Ŝ
. Moreover, rearranging

(X
T

(p)
S +1

+ 1, . . . X
T

(p+q)
S

+ 1) in a decreasing order and then padding zeroes to its end yields χχχ
(q)

Ŝ
,

which is independent from χχχ
(p)
S by the strong Markov property of the walk S. As a consequence,

from (5.12), we obtain that for some constant C1,

F (p+ q) ≥
E
[
(L

(p)
S + 1)−1

∏T
(p)
S

i=1 F ((Xi + 1)Ri) · (L(q)

Ŝ
+ 1)−1

∏T
(q)

Ŝ
j=1 F ((X̂j + 1)R̂j)

]
E
[
(L

(p+q)
S + 1)−1

]
=

E
[
(L

(p)
S + 1)−1

∏T
(p)
S

i=1 F ((Xi + 1)Ri)
]
· E
[
(L

(q)

Ŝ
+ 1)−1

∏T
(q)

Ŝ
j=1 F ((X̂j + 1)R̂j)

]
E
[
(L

(p+q)
S + 1)−1

]
=

E
[
(L

(p)
S + 1)−1

]
E
[
(L

(q)

Ŝ
+ 1)−1

]
E
[
(L

(p+q)
S + 1)−1

] F (p)F (q)

≥ C1(p+ q + 1)

p3/2q3/2
F (p)F (q)

(5.13)

where, in the last line, we used L
(p+q)
S ≥ p+ q along with Lemma 4.10. We have thus shown (5.10)

with g(p, q) = (p+ q + 1)/(pq)2.

We now show that, in fact, α > 0. Starting again from from (5.12), since T
(p)
S ≥ L

(p)
S ≥ p, we

have

F (p) =
E
[
(L

(p)
S + 1)−1

∏T
(p)
S

i=1 F ((Xi + 1)Ri))
]

E
[
(L

(p)
S + 1)−1

] ≤
E
[∏p

i=1 F ((Xi + 1)Ri))
]

E
[
(L

(p)
S + 1)−1

]
≤ Cp3/2

(
E[F ((X1 + 1)R1)]

)p (5.14)
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for some constant C; for the second inequality, we used Lemma 4.10 and that {(Xi + 1)Ri}i∈[[1,p]]
are i.i.d. Since µq([k,∞)) > ∞ for all k and P(m)

ring(Rat(R) ≥ 1) → 1/2 as m → ∞, we have

P((X1+1)R1 > 0) > 0. Thus, E[F ((X1+1)R1)] < 1 by Lemma 5.2. This completes the proof.

6 Estimates on the size of a supercritical map conditioned to be

finite

The broad intuition of this section is that supercritical LQG conditioned to be finite should in some

sense look “subcritical,” similar to what happens for BGW trees.

Recall from Definition 1.1 the Markov chain (Mi,Fi) with the law P(p)
∞ , where Mi are the

partial maps which increase to the whole map M and Fi are the set of “active” faces inside with

the next layer of rings and critical Boltzmann maps are inserted. The law P(p)
F on finite planar

maps appearing in Theorem 1.4 can then be naturally considered as the marginal law on M when

we condition the chain (Mi,Fi)i∈N# to terminate at a finite time. That is, there exists n ∈ N such

that Mi = M and Fi = ∅ for all i ≥ n. We thus use P(p)
F to also denote this conditional law of the

chain terminated at a finite time.

The plan is to first prove that the marginal law of the outermost gasketM0 for a mapM sampled

from P(p)
F is that of a subcritical Boltzmann map (Proposition 6.2). From here, we extrapolate that

the expected total sum of the inner perimeter lengths decreases exponentially (Corollary 6.7). Using

this estimate, we conclude that the map M sampled from P(p)
F looks essentially like its outermost

gasket M0 in the sense that the volumes of submaps M |f within the faces f ∈ F0 = F(M0) grow

slower than p1/2 (Proposition 6.13).

6.1 Law of the gasket sampled from P(p)
F

We first establish that the outermost gasket M0 for a map M sampled from P(p)
F is a subcritical

Boltzmann map. Recall the notation perin(f) for the inner half-perimeter of the ring attached to

each face f ∈ F0 = F(M0). Here is an explicit description of the corresponding weight sequence,

which is subcritical.

Lemma 6.1. Let q be the critical non-generic weight sequence with a = 2 as in Definition 4.2.

Consider the weight sequence q′ given by

q′k = P(k)
ring[F (perin(f))] · qk (6.1)

where perin(f) is the half-perimeter of the inner face of the ring sampled from the distribution

P(k)
ring in Definition 4.3. (In particular, the outer half-perimeter of the ring is k.) Then, the weight

sequence q′ is admissible and subcritical.

Proof. For every k ∈ N, since P(k)
ring(perin(f) > 0) > 0 by the non-triviality condition in Defini-

tion 4.3, we have q′k < qk by Lemma 5.2. Hence, q′ is admissible. Recall the generating function

fq(x) = 1 +
∑
k≥1

qk

(
2k − 1

k

)
xk (6.2)

for the weight sequence q. Since q′k < qk for all k ∈ N, we have fq′(Zq) − Zq < 0. Moreover,

since limx↓0(fq′(x) − x) = 1, we must have Z ′
q < Zq. We conclude that q′ is subcritical since

(fq′)′(Zq′) ≤ (fq′)′(Zq) < (fq)
′(Zq) = 1.
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Proposition 6.2. For every p ∈ N, the marginal law of the outermost gasket M0 under P(p)
F is

equal to P(p)
q′ .

Proof. Consider the chain (Mi,Fi) sampled from P(p)
∞ . By construction, the random variables

{perin(f)}f∈F0 are conditionally independent given the outermost gasket M0. Now, we know that

P(p)
∞ (M is finite |M0, {perin(f)}f∈F0) =

∏
f∈F0

F (perin(f)). Hence, for any measurable set A on the

space of finite planar maps with outer boundary length p,

P(p)
F (M0 ∈ A) =

P(p)
∞ (M0 ∈ A, M is finite)

P(p)
∞ (M is finite)

=
E(p)
∞
[
1{M0 ∈ A} ·

∏
f∈F0

F (perin(f))
]

E(p)
∞
[∏

f∈F0
F (perin(f))

]
=

E(p)
q [1{M0 ∈ A} ·

∏
f∈F0

E(per(f))
ring [F (perin(f))]]

E(p)
q [
∏

f∈F E[F (perin(f))]]

= P(p)
q′ (M0 ∈ A)

(6.3)

as claimed.

We now show that conditioning M to be finite leads to the removal of all macroscopic loops.

Lemma 6.3. There exists a constant ∆ > 2 such that for any fixed ε > 0, we have

lim
p→∞

P(p)
F

(
sup
f∈F0

perin(f) ≤ εp1/∆
)

= 1. (6.4)

The following lemma is needed for the proof of Lemma 6.3.

Lemma 6.4. Let q′ be the weight sequence defined by (6.1). Then, there exists constants c > 0

such that µq′([k,∞)) = O(e−ck) as k → ∞.

Proof. Recall from (4.6) that µq′(k) = (Zq′)k
(
2k+1
k

)
q′k+1 is the random walk step measure associated

with the weight sequence q′. As we saw in the proof of Lemma 6.1, Zq′ ≤ Zq. Hence,

µq′(k) = (Zq′)k
(
2k + 1

k

)
q′k+1 ≤ (Zq)

k

(
2k + 1

k

)
E(k+1)
ring [F (perin(f))] qk+1

= E(k+1)
ring [F ((k + 1)Rat(R))]µq(k)

(6.5)

where perin(f) is the inner half-perimeter of the ring R sampled from P(k)
ring.

The lower tail condition in Definition 4.3 implies that there exist constants ε, c > 0 satisfying

P(k)
ring(Rat(R) < ε) = O(e−ck) (6.6)

as k → ∞. Hence, by the exponential decay of F (p) proved in Proposition 1.3, choosing a smaller

constant c if necessary, we have that for all k large enough,

E(k)
ring[F (kRat(R))] ≤ sup

p≥kε
F (p) + P(k)

ring(Rat(R) < ε) ≤ O(e−ck). (6.7)

Here, we used the trivial bound F ≤ 1. We conclude that as k → ∞,

µq′(k) ≤ E(k+1)
ring [F ((k + 1)Rat(R))]µq(k) ≤ O(e−ck) (6.8)

since µq(k) decays polynomially in k by Lemma 4.9.
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We now use above results to bound supf∈F0
perin(f) as claimed.

Proof of Lemma 6.3. Let {Xi}i∈N be i.i.d. random variables with the law µq′ and, given these,

sample Ri conditionally independently for each i ∈ N from the marginal law of Rat(R) under

P(Xi+1)
ring . By Propositions 4.7 and 6.2, if L

(p)
S is the number of negative steps in the random walk

Sn = X1 + · · ·+Xn up to the first time T
(p)
S that this walk visits −p, then

P(p)
F

(
sup
f∈F0

perin(f) > εp1/∆
)

=
E
[
(L

(p)
S + 1)−11

{
sup

i∈[[1,T (p)
S ]]

(Xi + 1)Ri > εp1/∆
}]

E
[
(L

(p)
S + 1)−1

] . (6.9)

Using the trivial bound (L
(p)
S +1)−1 ≤ (p+1)−1 and the estimate 1/E[(L(p)

S +1)−1] ≤ pE[T (1)
S ] + 1

from Lemma 4.11, we can find a constant C > 0 such that for all p,

E
[
(L

(p)
S + 1)−11

{
sup

i∈[[1,T (p)
S ]]

(Xi + 1)Ri > εp1/∆
}]

E[(L(p)
S + 1)−1]

≤ C P
(

sup
i∈[[1,T (p)

S ]]

(Xi + 1)Ri > εp1/∆
)
. (6.10)

By Lemma 4.12, it suffices find ∆ > 2 such that

lim
p→∞

P
(

sup
i∈[[1,−2p/mq′ ]]

(Xi + 1)Ri > εp1/∆
)

= 0 (6.11)

to complete the proof. We can pick ∆ = 2 + δ/3 where δ > 0 is the constant appearing in the

upper bound condition of Definition 4.3, since then, for sufficiently large p,

P((X1 + 1)R1 > εp1/∆) ≤ P(X1 + 1 > ε(log p)2) + P(R1 > p1/(2+δ/2))

≤ µq′((ε(log p)2 − 1,∞)) + sup
k∈N

P(k)
ring(Rat(R) > p1/(2+δ/2)) = o(p−1)

(6.12)

by applying Lemma 6.4 to the first term and the upper tail condition of Definition 4.3 to the second

term. Since (Xi + 1)Ri are identically distributed, taking the union bound over i ∈ [[1,−2p/mq′ ]]

gives (6.11).

Remark 6.5. Lemma 6.3 can be improved if we impose further restrictions on the distribution

of rings than in Definition 4.3. For instance, the random planar model for supercritical LQG disk

suggested in [AG23b, Section 3.2] has the property that the inner half-parameter of a ring sampled

from P(k)
ring is exactly equal to ⌊k exp(±βQ)⌋ with probability 1/2. In this case, we can replace εp1/∆

with ε(log p)2 in (6.4) since supk P
(k)
ring(Rat(R) > c) = 0 for sufficiently large c.

6.2 Maps sampled from P(p)
F are subcritical

Now that we have identified that the marginal law of the outermost gasket M0 sampled from P(p)
F

is that of a subcritical Boltzmann map, we extrapolate from here an exponential decay in i for the

total perimeter of the maps added at step i of the iterative construction.

We find it useful to consider

h(p) := − logF (p) (6.13)
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with h(0) = 0 as a proxy for p, since h(p) ≍ p by Proposition 1.3. The goal of this subsection is

to obtain the following estimate. The fact that s0 < 1 in the following proposition is the sense

in which the iterative construction of a map sampled from P(p)
F behaves as a subcritical branching

process.

Proposition 6.6. There exists a constant s0 ∈ (0, 1) such that for all p ∈ N, we have

E(p)
F

[ ∑
f∈F0

h(perin(f))

]
≤ s0h(p). (6.14)

By a simple iteration argument, we obtain from Proposition 6.6 the following exponential decay

for the expected total perimeter of each generation for a supercritical map conditioned to be finite.

Corollary 6.7. There exist constants c > 0 and s0 ∈ (0, 1) such that for all p ∈ N and all i ∈ N,
we have

E(p)
F

[ ∑
f∈Fi

h(perin(f))

]
≤ c(s0)

ip. (6.15)

Proof. By the iterative construction of P(p)
∞ in Definition 1.1, conditioning the whole planar map

M to be finite given {perin(f)}f∈Fi
is equivalent to conditioning each submap M(f) glued into the

inner face of the ring R(f) attached in f ∈ Fi to be finite. In particular, this implies

E(p)
F

[ ∑
f̃∈Fi+1

h(perin(f̃))

∣∣∣∣{perin(f)}f∈Fi

]
=
∑
f∈Fi

E(perin(f))
F

[ ∑
f̃∈F(M(f))

h(perin(f̃))

]
≤ s0

∑
f∈Fi

h(perin(f)).

(6.16)

The claim follows immediately from Proposition 6.6 by an induction on i.

The rest of this subsection deals with the proof of Proposition 6.6. The argument is somewhat

convoluted due to the lack of a precise estimate for F (p). The following simple lemma illustrates

that the main challenge in the proof of Proposition 6.6 is the requirement that s0 < 1.

Lemma 6.8. There exist constants C, c > 0 such that for all p and all s > 1, we have

P(p)
F

( ∑
f∈F0

h(perin(f)) > sh(p)

)
≤ Ce−c(s−1)p. (6.17)

Proof. Let Es denote the event {
∑

f∈F0
h(perin(f)) > sh(p)}. By Bayes’ rule, we have

P(p)
F (Es) = F (p)−1P(p)

∞ (Es)P(p)
∞ (M is finite|Es). (6.18)

By Definition 1.1 of P(p)
∞ along with the relation F (p) = e−h(p), we have

P(p)
∞ (M is finite|Es) ≤ e−sh(p). (6.19)

Using the trivial bound P(p)
∞ (Es) ≤ 1, we obtain P(p)

F (Es) ≤ e−(s−1)h(p) from (6.18). Note that by

Proposition 1.3 and Lemma 5.2, there is a constant c > 0 such that h(p) ≥ cp for all p.
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Note that (6.19) holds for any s > 0. For the proof of Proposition 6.6, we improve upon the

trivial bound P(p)
∞ (Es) ≤ 1 so that we can take s ∈ (0, 1). More precisely, we show the following

estimate, which allows us to later replace Es with the event {
∑

f∈F0
h(perin(f)) ∈ [sh(p), rh(p)]}

for an appropriate choice of parameters 0 < s < 1 < r.

Lemma 6.9. For each r > 0, there is a constant cr > 0 depending on r such that for all p, we have

P(p)
∞

( ∑
f∈F0

h(perin(f)) < rh(p)

)
≤ e−crp. (6.20)

Proof. As in the proof of Lemma 6.3, we use the random walk encoding (Proposition 4.7) of M0

sampled from P(p)
∞ , which by construction is a critical non-generic Boltzmann map sampled from

P(p)
q . Let Sn = X1 + · · ·+Xn be a random walk with step distribution µq and, given S, let Ri be

sampled conditionally independently for each i ∈ N from the marginal law of Rat(R) under P(Xi+1)
ring .

Since h(p) = − logF (p) ≍ p (Proposition 1.3), there exists a constant a > 0 such that

P(p)
∞

( ∑
f∈F0

h(perin(f)) < rh(p)

)
≤ P(p)

∞

( ∑
f∈F0

perin(f) < arp

)
. (6.21)

By Proposition 4.7 as well as the bound 1/E[(L(p)
S +1)−1] = O(p3/2) coming from Lemma 4.10, we

have

P(p)
∞

( ∑
f∈F0

perin(f) < arp

)
=

E
[
(L

(p)
S + 1)−11

{∑T
(p)
S

i=1 (Xi + 1)Ri < arp
}]

E[(L(p)
S + 1)−1]

≤ C0p
3/2 P

( T
(p)
S∑
i=1

(Xi + 1)Ri < arp

) (6.22)

for some constant C0 > 0.

To complete the proof, it suffices to show that for some constant cr depending on r, we have

P
( T

(p)
S∑
i=1

(Xi + 1)Ri < arp

)
≤ e−crp. (6.23)

The key ingredient is Lemma 4.10, which states that that T
(p)
S is very unlikely to be much smaller

than p3/2. Consequently, for any constant c > 0, there exist positive constants C2 and C3 such that

P(T (p)
S ≤ cp) ≤ C2e

−C3p (6.24)

for all p. Each of the i.i.d. nonnegative random variables {(Xi+1)Ri}i∈N have a positive probability

of being nonzero. By the standard Chernoff bound, we know that there exist positive constants C4

and C5 such that for all ℓ ∈ N, we have

P
( n∑

i=1

(Xi + 1)Ri ≤ C4n

)
≤ e−C5n. (6.25)
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Thus,

P
( T

(p)
S∑
i=1

(Xi + 1)Ri ≤ arp

)
≤ P

(
T
(p)
S < arp/C4

)
+

∞∑
n=⌈arp/C4⌉

P
( n∑

i=1

(Xi + 1)Ri ≤ C4n

)
. (6.26)

We complete the proof by substituting (6.24) and (6.25) to the right-hand side.

We now improve upon the result of Lemma 6.8.

Lemma 6.10. For each r > 1, there is a constant cr > 0 such that for any s ∈ (0, 1) and for all p

large enough, we have

P(p)
F

( ∑
f∈F0

h(perin(f)) ∈ [sh(p), rh(p)]

)
≤ e(1−s)h(p)−crp. (6.27)

Proof. Let E denote the event {
∑

f∈F0
h(perin(f)) ∈ [sh(p), rh(p)]}. By using Bayes’s rule as in

(6.18), we have

P(p)
F (E) = F (p)−1P(p)

∞ (E)P(p)
∞ (M is finite|E). (6.28)

From the iterative construction ofM under P(p)
∞ , we have the inequality P(p)

∞ (M is finite|E) ≤ e−sh(p)

just as in (6.19). Recalling F (p) = e−h(p) and applying Lemma 6.9, we complete the proof by

choosing a slighter smaller cr if necessary.

We are now ready to complete the proof of Proposition 6.6 for large p.

Lemma 6.11. There exists constants s0 ∈ (0, 1) and p0 ∈ N such that for all p ≥ p0, we have

E(p)
F

[ ∑
f∈F0

h(perin(f))

]
≤ s0h(p). (6.29)

Proof. Fix ε > 0. By combining Proposition 1.3 with Lemma 6.10 for s ∈ (0, 1) sufficiently close

to 1, we find that there exist constants p0 ∈ N, c, C > 0, and s0 ∈ (0, 1) such that for all p ≥ p0,

P(p)
F

( ∑
f∈F0

h(perin(f)) ∈ [s0h(p), (1 + ε)h(p)]

)
≤ Ce−cp. (6.30)

By Lemma 6.8, the constants p0, C, and c can be chosen such that for all p ≥ p0 and α ≥ (1 + ε),

P(p)
F

( ∑
f∈F0

h(perin(f)) > αh(p)

)
≤ Ce−c(α−1)p. (6.31)

Combining the two estimates, we that for all p ≥ p0,

E(p)
F

[ ∑
f∈F0

h(perin(f))− s0h(p)

]
+

≤ (1 + ε− s0)h(p) · P(p)
F

( ∑
f∈F0

h(perin(f)) ∈ [s0h(p), (1 + ε)h(p)]

)

+ E(p)
F

[( ∑
f∈F0

h(perin(f))

)
· 1
{ ∑

f∈F0

h(perin(f)) > (1 + ε)h(p)

}]

≤ (1 + ε− s0)h(p) · Ce−cp +

∫ ∞

1+ε
P(p)
F

( ∑
f∈F0

h(perin(f)) > αh(p)

)
h(p) dα

≤ C̃p(e−cp + e−cεp)

(6.32)
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for some constant C̃ > 0. Since this bound tends to 0 as p → ∞, we obtain (6.29) by slightly

increasing p0 and s0 if necessary.

The proof of Proposition 6.6 for smaller values of p is achieved via the following lemma.

Lemma 6.12. For each p0 ∈ N, there is a constant s0 ∈ (0, 1) such that for all p ∈ [[1, p0]], we have

E(p)
F

[ ∑
f∈F0

h(perin(f))

]
≤ s0h(p). (6.33)

Proof. Let us denote

Z := P(p)
∞
(
M is finite

∣∣{perin(f)}f∈F0

)
=
∏
f∈F0

F (perin(f)). (6.34)

Note that E(p)
∞ [Z] = F (p). Moreover,

E(p)
F

[ ∑
f∈F0

h(perin(f))

]
=

E(p)
∞
[(∑

f∈F0
h(perin(f))

)
P(p)
∞
(
M is finite

∣∣∑
f∈F0

h(perin(f))
)]

F (p)

= F (p)−1E(p)
∞ [Z log(1/Z)].

(6.35)

Since the function x 7→ x log(1/x) is strictly concave for x > 0, by Jensen’s inequality,

E(p)
F

[ ∑
f∈F0

h(perin(f))

]
< F (p)−1(E(p)

∞ [Z]) log(1/(E(p)
∞ [Z])) = logF (p)−1 = h(p). (6.36)

In particular, the inequality is strict, so we can find s0 ∈ (0, 1) as in (6.33) for any finite set of

p.

Proof of Proposition 6.6. Combine Lemmas 6.11 and 6.12.

6.3 Estimates on the largest volume of submaps of finite supercritical maps

The goal of this subsection is to obtain the following estimate on the maximum volume of submaps

inserted into each face f ∈ F0 of the gasket M0, where the volume of a map refers to the total

number of its vertices. This result will be used in Lemma 7.1 to show that the submaps {M |f}f∈F0 ,

which are parts of M inside f , become negligible as p → ∞ when we rescale so that the gasket M0

converges to the continuum random tree.

Proposition 6.13. For M sampled from P(p)
F ,

1
√
p
sup
f∈F0

Vol(M |f )
d→ 0 (6.37)

as p → ∞.

The main idea for the proof of Proposition 6.13 is that instead of the volume of the whole map,

it suffices to keep track of the sum of the perimeters of the rings. More precisely, let us denote the

total perimeter of a map M sampled from P(p)
F over all generations as

TPerm(M) := p+
∑

f∈
⋃

i∈N# Fi

(perout(f) + perin(f)) (6.38)

where perout(f) and perin(f) are, respectively, the outer and inner half-perimeters of the ring R(f)

inserted into the face f ∈
⋃

i∈N# Fi.
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Lemma 6.14. There is a constant C > 1 such that for any p ∈ N, if M is a map sampled from

P(p)
F , then Vol(M) ≤ C · TPerm(M) almost surely.

Proof. Recalling the construction of supercritical maps from Definition 1.1, we have

Vol(M) ≤ Vol(M0) +
∑

f∈
⋃

i∈N# Fi

(Vol(R(f)) + Vol(M(f))) (6.39)

where R(f) is the ring inserted into the face f and M(f) is the Boltzmann map inserted into the

inner face of the ring R(f). By the non-thickness condition in Definition 4.3, there is a constant C

such that for any ring R(f), we have Vol(R(f)) ≤ C(perout(f) + perin(f)). Observe also that the

outermost gasket M0 satisfies Vol(M0) ≤ 2(p+
∑

f∈F0
perout(f)), and similarly

Vol(M(f)) ≤ 2

(
perin(f) +

∑
f̃∈F(M(f))

perout(f̃)

)
(6.40)

for every Boltzmann map M(f) added during the construction. Hence, we obtain

Vol(M) ≤ 2p+ (C + 2)
∑

f∈
⋃

i∈N# Fi

(perout(f) + perin(f)) ≤ (C + 2)TPerm(M) (6.41)

by combining all of the above bounds.

The first step in the proof of Proposition 6.13 is to show that the gasket decomposition of a

map sampled from P(p)
F does not go on for many steps.

Lemma 6.15. Let M be a map sampled from P(p)
F . Let Text(M) := min{i : Fi = ∅} be the total

number of iterations in the construction of M . Then, there exist constants c, C > 0 such that for

every p and n, we have P(p)
F (Text(M) > n) ≤ Cpe−cn.

Proof. If Text(M) > n, then
∑

f∈Fn
h(perin(f)) > 0. Since infp′∈N h(p′) > 0 by Proposition 1.3 and

Lemma 5.2, Markov’s inequality implies

P(p)
F

( ∑
f∈Fn

h(perin(f)) > 0

)
= P(p)

F

( ∑
f∈Fn

h(perin(f)) ≥ inf
p′∈N

h(p′)

)
≤

E(p)
F

[∑
f∈Fn

h(perin(f))
]

infp′∈N h(p′)
.

(6.42)

The claim now follows from Corollary 6.7.

Now, we show that with high probability, the total perimeter at is kept small at every level.

Lemma 6.16. Consider the events

Gt :=

{∑
f∈Fi

perin(f) ≥ t for some i

}
and G̃t :=

{∑
f∈Fi

perout(f) ≥ t for some i

}
. (6.43)

Then, there is a constant c > 0 such that P(p)
F (Gt ∪ G̃t) ≤ e−ct/F (p) for all t.
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Proof. By Proposition 1.3 and Lemma 5.2, there exists c > 0 such that h(p) ≥ cp for all p ∈ N.
The proof again uses the Bayes’s rule argument from (6.18). Note that we have

P(p)
F (Gt) ≤ F (p)−1P(p)

∞ (M is finite|Gt). (6.44)

On the event Gt, define It := inf{i ∈ N# :
∑

f∈Fi
perin(f) ≥ t}, so that

∑
f∈FIt

h(perin(f)) ≥ ct.

Further conditioning on It, FIt , and {perin(f)}f∈FIt
, we have

P(p)
∞ (M is finite|Gt) = E(p)

∞
[
P(p)
∞ (M is finite|It,FIt , {perin(f)}f∈FIt

)
∣∣Gt

]
= E(p)

∞

[ ∏
f∈FIt

F (perin(f))

∣∣∣∣Gt

]
= E(p)

∞

[
e
−

∑
f∈FIt

h(perin(f))
∣∣∣∣Gt

]
≤ e−ct.

(6.45)

Substituting the above into (6.44) gives P(p)
F (Gt) ≤ e−ct/F (p).

Define Ĩt analogously on the event G̃t. Then, similarly to (6.45), there is a constant c̃ > 0 such

that

P(p)
∞ (M is finite|G̃t) = E(p)

∞
[
P(p)
∞ (M is finite|It,FIt , {perout(f)}f∈FIt

)
∣∣G̃t

]
= E(p)

∞

[ ∏
f∈FIt

Eperout(f)
ring

[
F (perin(f))

]∣∣∣∣G̃t

]

≤ E(p)
∞

[ ∏
f∈FIt

Eperout(f)
ring

[
e−c·perin(f)

]∣∣∣∣G̃t

]

≤ E(p)
∞

[
e
−c̃

∑
f∈FIt

perout(f)
∣∣∣∣G̃t

]
≤ e−c̃t

(6.46)

where we used the lower tail condition in Definition 4.3 for the penultimate inequality. Using

Bayes’s rule as in (6.44), we obtain P(p)
F (G̃t) ≤ e−c̃t/F (p).

Combining the above two lemmas, we obtain a bound on TPerm(M) for a finite supercritical

map M .

Lemma 6.17. Given δ > 0, there exist positive constants C and c such that for all t ≥ kδ and all

k ∈ N, we have

P(k)
F (TPerm(M) ≥ tk) ≤ Ce−c

√
t. (6.47)

Proof. Using Lemma 6.14 along with the notation of Lemmas 6.15 and 6.16, we have

P(k)
F

(
TPerm(M) ≥ tk

)
≤ P(k)

F

(
Text(M) ≥

√
t
)
+ P(k)

F

(
Gk

√
t/2 ∪ G̃k

√
t/2

)
. (6.48)

By Lemma 6.15, the first term on the right-hand side is bounded above by C1ke
−c1

√
t ≤ C ′

1e
−c′1

√
t for

some constants C1, C
′
1, c1, c

′
1 > 0, where we have used that t ≥ kδ. By Lemma 6.16, the second term

in (6.48) is bounded above by C2e
c2k(1−

√
t) ≤ C ′

2e
−c′2

√
t for some positive constants C2, C

′
2, c2, c

′
2.

This completes the proof.

We are now ready to complete the proof of Proposition 6.13.

48



Proof of Proposition 6.13. By Lemma 6.14, it suffices to show that

1
√
p
sup
f∈F0

TPerm(M |f )
d→ 0. (6.49)

By Lemmas 4.12 and 6.3, we know that for some constant ∆ > 2, we have

lim
p→∞

P(p)
F

(
sup
f∈F0

perin(f) ≤ p1/∆ and |F0| ≤ − 2p

mq′

)
= 1. (6.50)

Denote the above event as Ap. Now, for any fixed ε > 0,

P(p)
F

(
sup
f∈F0

TPerm(M |f ) ≥ ε
√
p

)
≤ P(p)

F

(
Ac

p

)
+

(
− 2p

mq′

)
sup

k≤p1/∆
P(k)
F

(
TPerm(M) ≥ ε

√
p
)

= P(p)
F

(
Ac

p

)
+

(
− 2p

mq′

)
sup

k≤p1/∆
P(k)
F

(
TPerm(M) ≥ k(ε

√
p/k)

)
.

(6.51)

The second term tends to 0 as p → ∞ by Lemma 6.17 and the fact that 1/∆ < 1/2, thus proving

(6.49).

7 Convergence to the CRT

We finally prove Theorem 1.4 in this section, showing that the map M (p) sampled from P(p)
F con-

verges to the continuum random tree after appropriate scaling. While we have so far used M to

denote a sample from P(p)
F , we will always use M (p) to denote such a sample from now so as to

avoid confusion in the many convergence statements in this section. We denote its outermost gasket

(M0 in the iterative construction of Definition 1.1) as M
(p)
0 . We recall the notation that if f is an

internal face of M
(p)
0 (or ∂M (p)), then M (p)|f denotes the edges and vertices that bound this face

in M
(p)
0 as well as those of M (p) that are glued into this face.

In Proposition 6.2, we saw that the marginal law on the outermost gasket M
(p)
0 sampled from

P(p)
F is that of a subcritical Boltzmann map P(p)

q′ . Then, by Proposition 4.20, there is a a constant

θq′ > 0 such that (θq′/
√
p)M

(p)
0 converges to the CRT. Our goal in this section is to upgrade this

result to one for the entire map M (p) by showing that the submaps added into the faces of M
(p)
0

change distances by a constant factor.

To do so, instead of the outermost gasket M
(p)
0 , we will work with its outer boundary ∂M (p),

which consists of the vertices and edges that border the root face of M (p). The reason is that

the scaling limit of ∂M (p) is also the CRT by Proposition 4.19, and it has additional integrability

through its connection with BGW trees studied in the works [CK15, Ric18]. For the first step, we

reduce Theorem 1.4 to a convergence statement for a “projection” of the whole map M (p) to its

boundary ∂M (p).

For the rest of the section, given a graph M , we denote its set of vertices and the graph

distance on it by VM and dM , respectively. We remind the reader that rM denotes the metric

space (VM , rdM ) for r ∈ R+.
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Proposition 7.1. Let M (p) be sampled from P(p)
F and denote d∂

M(p) := dM(p) |V
∂M(p)×V

∂M(p)
. Then,

there exists a constant θF such that

X (p) :=

(
V∂M(p) ,

θF√
p
d∂
M(p)

)
d→ CRT (7.1)

as p → ∞ in the Gromov–Hausdorff distance.

Proof of Theorem 1.4 assuming Proposition 7.1. Let

L(p) := max
v∈V

M
(p)
0

min
w∈V

∂M(p)

dM(p)(v, w) (7.2)

be the maximum distance from a vertex in M
(p)
0 to the boundary ∂M (p). Recalling that M

(p)
0

sampled from P(p)
F is a subcritical Boltzmann map, we see from Proposition 4.20 that L(p)/

√
p → 0

in distribution as p → ∞. Combining this with Proposition 6.13,

1
√
p

max
f∈F(∂M(p))

diam(M (p)|f ) ≤
1
√
p

(
L(p) + max

f̃∈F(M(p)
0 )

diam(M (p)|f̃ )
)

(7.3)

converges to 0 in distribution as p → ∞.

Now consider X (p) as naturally embedded within (θF/
√
p)M (p). Under this isometric embedding,

the Hausdorff distance between the VM(p) and V∂M(p) is bounded above by the left-hand side of

(7.3). Hence, dGH(X (p), (θF/
√
p)M (p)) → 0 in distribution as p → ∞.

The rest of this section is thus dedicated to the proof of Proposition 7.1. The main idea is to

study the looptree structure of ∂M (p) in association with Bienaymé–Galton–Watson trees. The

argument proceeds along the same lines as the proof of Proposition 4.19 in [KR20], which uses the

spinal decomposition to prove the convergence of critical looptrees to the CRT. The additional

work we do is to show that the addition of vertices and edges going from ∂M (p) to M (p) affect the

scaling limit merely by multiplying distances by a deterministic constant.

7.1 Boundaries of Boltzmann maps and looptrees

We begin by introducing the connection between looptrees and boundaries of Boltzmann maps.

First, a few notations: T refers to a rooted plane tree, by which we mean a tree with a distinguished

vertex (called the root and denoted by ∅) and an ordering specified among the children of any

vertex. Thus, intuitively, we can think of the root of a rooted plane tree being at the bottom and

the children of any vertex being located above the corresponding vertex.

Here are the definitions of the looptree and the contracted looptree associated with a rooted

planar tree as given in [CK15].

Definition 7.2. Let T be a rooted plane tree. We define Loop(T ) to be a planar map which has

the same set of vertices as T , with an edge between v1, v2 ∈ VLoop(T ) if and only if either of the

following are true.

(1) v1 and v2 are the consecutive children of a common parent in T .

(2) v1 is the leftmost/rightmost child of v2 in T , or vice versa.
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∅

π(∅)

Figure 4: From left to right: a tree T , the corresponding looptree Loop(T ), and the contracted

looptree Loop(T ). The root vertex ∅ ∈ VT and the corresponding vertices on Loop(T ) and π(∅) ∈
Loop(T ) are marked with arrows.

Scoop

Figure 5: A planar map (left) and the corresponding scooped-out map (right).

The contracted looptree Loop(T ) is obtained from Loop(T ) by contracting every edge (u, v) for

which v is the rightmost child of u in T .

See Figure 4 for an illustration of this definition. Let π denote the natural projection from VT
to VLoop(T ). We note that π is one-to-one on the leaves of T (i.e., vertices with no children).

For v ∈ VT , let fv ∈ F(Loop(T )) be the face enclosed by the vertices π(children of v in

T ) ⊂ VLoop(T ). This forms a one-to-one correspondence between the faces of Loop(T ) and the

non-leaf vertices of T . Let fv = ∅ if v is a leaf in T .

As observed in [CK15, Lemma 4.3] (see also [Ric18, Lemma 4.1] for the statement for non-

triangulations), if M is a rooted planar map (i.e., with a fixed outermost face on the right of the

root edge, and the root vertex ∅ given by the incident vertex of the root edge), then ∂M is almost

a looptree: we just need to duplicate each single edge connecting loops into a double edge. This

procedure was described in detail in [CK15, Section 2.3].

Definition 7.3. Given a rooted planar map M , define the scooped-out map Scoop(M) as the

outer boundary ∂M modified so that every edge e in ∂M which is adjacent to the outermost face

on both sides is duplicated.

Given a rooted planar mapM , it is straightforward to see that there is a unique rooted plane tree

TM such that Scoop(M) = Loop(TM ) and π(root vertex of TM ) = root vertex of Scoop(M). We use

∅ to refer to both root vertices. Note that Scoop(M) and ∂M can be different planar maps but define

the same metric space. Hence, (7.1) can be stated equivalently with Scoop(M (p)) = Loop(TM(p))

in place of ∂M (p).

For M (p) sampled from P(p)
F , note that TM(p) = T

M
(p)
0

. The key fact is that since M
(p)
0 is a

subcritical Boltzmann map, T
M

(p)
0

has the distribution of a BGW tree. The following proposition

is an immediate application of the relationship between the boundary of a subcritical Boltzmann

map and a BGW tree described in [CK15, Lemma 4.3] and [Ric18, Proposition 3.6, Lemma 4.1]

given Proposition 6.2.
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Proposition 7.4. There is a finite variance measure νq′ on the nonnegative even integers such

that for every p ∈ N, the rooted tree T (p) := TM(p) is a critical BGW tree with offspring distribution

νq′ conditioned to have 2p+ 1 total vertices.

We now describe how to sample M (p) given T (p). First, let P̂(p)
q′ denote the law of a Boltzmann

map with weight sequence q′ conditioned to have a simple boundary of perimeter 2p. For p = 1,

this includes the map consisting of one edge and no interior faces. As usual, let F(∂M) be the

collection of inner faces of ∂M (i.e., excluding the root face of M).

Lemma 7.5 ([Ric18, Corollary 3.7]). Suppose M is a Boltzmann map with distribution P(p)
q′ . Given

∂M , the submaps {M |f}f∈F(∂M) are conditionally independent, with the conditional law of M |f
given by P̂(per(f))

q′ for each f ∈ F(∂M).

Let P̂(p)
F be the probability measure on the chain (M

(p)
i ,F

(p)
i )i∈N# obtained from P(p)

F by con-

ditioning on M
(p)
0 (and thus M (p)) having a simple boundary. Since the marginal law of P(p)

F on

the outermost gasket M
(p)
0 is that of a Boltzmann map (Proposition 6.2), we obtain the following

variation from Lemma 7.5.

Lemma 7.6. Let M (p) be sampled from P(p)
F . The maps {M (p)|f}f∈F(∂M(p)) are conditionally in-

dependent given ∂M (p), and the conditional distributions are equal to P̂(per(f))
F .

We thus have a complete description of the conditional law of M (p) given T (p).

7.2 The spine decomposition of the boundary map

In this subsection, we introduce the spine decomposition of T (p) that we use to prove Proposition 7.1.

Definition 7.7. Given a rooted plane tree T with root ∅ and vertex u ∈ VT , we define the trunk

Trunk(T , u) as the induced subgraph obtained by considering the unique path ∅, v1, v2, . . . , vk−1, u

from ∅ to u in the tree T along with all the vertices that are the immediate children of ∅, v1, . . . , vk−1.

The goal is to construct Trunk(T , Vunif) when Vunif is a uniformly chosen random vertex of a

BGW tree T . This is done in two steps: first sample the random distance between ∅ and Vunif ,

and then construct the entire trunk given this distance. The latter law is given in terms of ν∗q′ , the

sized biased version of νq′ , defined as

ν∗q′(i) =
i · νq′(i)∑

k∈N# k · νq′(k)
(7.4)

for i ∈ N# as first given in [Kes86]. Since νq′ has a finite variance, ν∗q′ has a finite mean.

Definition 7.8. Given h ∈ N, let Trunk∗h be a random plane tree of height h distributed as follows.

Denoting its “spine” as v0, . . . , vh−1 where v0 is the root, each vertex vi has an independent number

of children with distribution ν∗q′ . Given the topology of the tree (that is, the tree without the

orderings between its vertices), the location of vi+1 is chosen uniformly among the children of vi,

with this choice being conditionally independent for all the values of i.

Again, we sample M (p) from P(p)
F and define its root vertex to be the head of the root edge

of the Boltzmann map M
(p)
0 (cf. Section 4). We denote by T (p) the unique plane tree such that

Scoop(M (p)) = Loop(T (p)) where its root vertex inherited from M (p) is equal to π(∅). We now

record the spine decomposition of the BGW tree T (p) as described in Proposition 7.4.
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Lemma 7.9 ([KR20, Theorem 3]). Let V
(p)
unif be a uniform vertex chosen from T (p). There exists a

constant c > 0 such that if X is a positive random variable with density cxe−x2
dx, then

dTV

(
Trunk(T (p), V

(p)
unif),Trunk

∗
⌊X√

p⌋
)
→ 0 (7.5)

as p → ∞. Here, dTV denotes the total variation distance.

The following key technical lemma links the metric structure of M (p) to that of T (p), allowing

us to rephrase the main task in the proof of Proposition 7.1 in terms of the spine decomposition

of the BGW tree T (p). It is similar in its statement and proof to [KR20, Lemma 15(ii)], with

compares distances in a subcritical Boltzmann map M to that in the associated tree TM . Recall

that π denotes the natural projection from V
(p)
T to VLoop(T (p)) = VScoop(M(p)) = V∂M(p) ⊂ VM(p) .

Proposition 7.10. Let V
(p)
unif be a uniformly chosen vertex on T (p). Then, there exists a constant

θ̂F such that
1
√
p

(
dM(p)(π(∅), π(V (p)

unif))− θ̂F dT (p)(∅, V (p)
unif)

) d→ 0 (7.6)

as p → ∞.

Proof. Observe that given the unique path (v0, v1, v2, . . . vh) from v0 = ∅ to vh = V
(p)
unif in T (p)

(hence h = dT (p)(∅, V (p)
unif)), if we define

Yi := dM(p)(π(vi), π(vi+1)) (7.7)

for each i = 0, 1, . . . , h− 1, then we have

dM(p)(π(∅), π(V (p))) =
h−1∑
i=0

Yi. (7.8)

This is because any path from π(∅) to π(vh) in M (p) must pass through the faces of ∂M (p) which

are conjoined by π(v1), π(v2), . . . , π(vh−1) in this exact order.

Let pi denote half the number of children of ki. The following description is an immediate

consequence of Proposition 7.4 and Lemma 7.6.

Given (p0, p1, . . . , ph−1), the Yi are conditionally independent. The conditional distri-

bution of Yi agrees with that of dMi(v, w) where Mi is sampled from P̂(pi)
F and v, w are

vertices sampled conditionally independently given Mi from the uniform distribution

on ∂Mi.

Let p̂ be sampled from ν∗q′ and M̂ from P̂(p̂)
F . Let Ŷ = d

M̂
(v, w), where v and w are vertices sampled

conditionally independently given M̂ from the uniform distribution on ∂M̂ . Then, since Ŷ ≤ p̂ and

ν∗q′ has a finite mean, E[Ŷ ] < ∞. Let Ŷ0, Ŷ1, . . . be i.i.d. random variables with the law of Ŷ .

We claim that (7.6) holds with θ̂F := E[Ŷ ]. By Lemma 7.9, there exists a random variable X

independent from {Ŷi}i∈N# with density cxe−x2
dx such that the total variation distance between

the two random-length sequences (Y0, Y1, . . . , Yℓ−1) and (Ŷ0, Ŷ1, . . . , Ŷ⌊X√
p⌋) tends to 0 as p → ∞.

Hence, it suffices to check that

1
√
p

( ⌊X√
p⌋∑

i=1

Ŷi − ⌊X√
p⌋E

[
Ŷ
]) d→ 0 (7.9)
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as p → ∞. This is an immediate consequence of the law of large numbers: note that for any

0 < x1 < x2 < ∞ and ε > 0, we have

sup
x∈[x1,x2]

P
(

1

x
√
p

⌊x√p⌋∑
i=1

(Ŷi − E[Ŷ ]) ≥ ε

x

)
→ 0 (7.10)

as p → ∞.

7.3 Proof of Proposition 7.1

We now move on to defining the various height functions on T (p). Let ∅ = v0, v1, . . . , v2p be the

enumeration of vertices of T (p) in lexicographic order (i.e., depth-first search). Given a metric d(p)

on T (p), we define the corresponding height function H : [0, 1] → [0,∞) as

HT (p);d(p)

(
i

2p

)
= d(p)(∅, vi) for i = 0, 1, . . . , 2p (7.11)

and linearly interpolated in between. Recall that π denotes the natural projection from VT to

VLoop(T ). There are three height functions that we will be particularly interested in.

• H
(p)
T defined from the graph metric dT (p) on T (p).

• H
(p)
Loop defined from the pull-back of the graph metric on Loop(T (p)) by π (that is, d(p)(v, w) =

dLoop(T (p))(π(v), π(w))).

• H
(p)
M defined from the pull-back of the graph metric on M (p) by π (that is, d(p)(v, w) =

dM(p)(π(v), π(w)).

We also need the contour function of T (p). This time, let ∅ = w0, w1, . . . , w4p = ∅ be the

enumeration of the vertices with T (p) (with duplicity) as we follow along the contour of T (p). Define

C
(p)
T : [0, 1] → [0,∞) as

C
(p)
T

(
i

4p

)
= dT (p)(∅, wi) for i = 0, 1, . . . , 4p (7.12)

and linearly interpolated in between.

Lemma 7.11. Let σ2
q′ be the variance of the offspring distribution νq′ for the BGW tree T (p)

found in Proposition 7.4 and let θ̂F refer to the constant found in Proposition 7.10. Denote θF :=

θ̂Fσq′/(2
√
2). Let (et : 0 ≤ t ≤ 1) be the normalized Brownian excursion. Then, as p → ∞, the

joint convergence(
σq′

2
√
2p

C
(p)
T (t),

σq′

2
√
2p

H
(p)
T (t),

θF√
p
H

(p)
M (t)

)
0≤t≤1

d−→
(
et, et, et

)
0≤t≤1

(7.13)

holds in the space C([0, 1])3 endowed with the supremum norm in each coordinate.

Proof. The proof is nearly identical to that of [KR20, Proposition 13]. Comparing Lemma 15(ii)

in [KR20] with Proposition 7.10, all that needs to be shown is the tightness of the processes

((1/
√
p)H

(p)
M )p∈N. This follows from [KR20, Lemma 15(i)], which states that ((1/

√
p)H

(p)
Loop)p∈N is

tight,7 since we have dM(p)(π(v), π(w)) ≤ dLoop(T (p))(π(v), π(w)) for every v, w ∈ VT (p) .

7To be precise, the statement in [KR20, Lemma 15] is for the height function associated with the non-contracted

looptree. The proof for the contracted looptree also holds as well, as discussed in Section 6.1 of the same paper.
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We are finally ready to complete the proof of Proposition 7.1 and thereby that of Theorem 1.4.

The proof proceeds in a similar manner as [KR20, Section 5.4].

Proof of Proposition 7.1. We begin by choosing a Skorokhod embedding of (T (p))p∈N and e in

the same probability space such that the convergence in (7.13) holds almost surely. Again let

∅ = v
(p)
0 , v

(p)
1 , . . . , v

(p)
2p be the enumeration of vertices of T (p) in lexicographic order and let π be the

projection from T (p) onto Loop(T (p)). Let Te be the CRT defined from the Brownian excursion e

and let pe denote the canonical projection map from [0, 1] to Te. We now define a correspondence

R(p) between X (p) and Te by

R(p) =
{(

π(v
(p)
i ),pe(s)

)
∈ X (p) × Te : i = ⌊2ps⌋, s ∈ [0, 1], i ∈ [[0, 2p]].

}
, (7.14)

Recall that the distortion of this correspondence is defined as

dis(R(p)) = sup

{ ∣∣∣∣ θF√p
dM(p)(v, w)− de(s, t)

∣∣∣∣ : (v,pe(s)), (w,pe(t)) ∈ R(p)

}
. (7.15)

We now show that dis(R(p)) → 0 almost surely as p → ∞, arguing by contradiction. If this

convergence were not true, then there would be an ε > 0 such that with positive probability,

there exists a sequence of integers pn with corresponding indices ipn , jpn and spn , tpn for which

(v
(pn)
ipn

,pe(spn)), (v
(pn)
jpn

,pe(tpn)) ∈ R(pn) and∣∣∣∣ θF√p
dM(pn)(v

(pn)
ipn

, v
(pn)
jpn

)− de(spn , tpn)

∣∣∣∣ > ε. (7.16)

Passing to a subsequence if necessary, we may assume that

lim
n→∞

ipn
2pn

= lim
n→∞

spn = s and lim
n→∞

jpn
2pn

= lim
n→∞

tpn = t (7.17)

for some constants 0 ≤ s < t ≤ 1.

For 0 ≤ i < j ≤ 2p, let m(p)(i, j) ∈ [[0, 2p]] be the smallest index so that v
(p)

m(p)(i,j)
is the most

recent common ancestor of v
(p)
i and v

(p)
j in T (p). Let f

(p)
i ∈ F(∂M (p)) be the face bounded by

π(children of v
(p)
i ). We claim that∣∣∣∣∣dM(p)(π(v

(p)
i ), π(v

(p)
j ))−

(
H

(p)
M

(
i

2p

)
+H

(p)
M

(
j

2p

)
− 2H

(p)
M

(
m(p)(i, j)

2p

))∣∣∣∣∣ ≤ 2per(f
(p)

m(p)(i,j)
).

(7.18)

This is because if wi and wj are the children of m(p)(i, j) which are the ancestors of v
(p)
i and v

(p)
j ,

respectively, then a geodesic from π(v
(p)
i ) to π(v

(p)
j ) in M (p) must pass through π(wi) and π(wj).

Hence, the difference in the left-hand side is equal to

|dM(p)(π(wi), π(wj))− dM(p)(π(wi), π(v
(p)

m(p)(i,j)
))− dM(p)(π(wj), π(v

(p)

m(p)(i,j)
))|. (7.19)

Since geodesics for the all three pairs must stay in M (p)|
f
(p)

m(p)(i,j)

, each of them are bounded above

by the maximal distance between two boundary points of this face, which is at most per(f
(p)

m(p)(i,j)
).
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Recalling Proposition 4.19, since p−1/2∂M (p) converges in distribution to a multiple of the CRT

with respect to the Gromov–Hausdorff distance, we have p−1/2maxi∈[[0,2p]] per(f
(p)
i ) → 0 almost

surely as p → ∞ (see [KR20, Equation (15)]). Moreover, if we let b(p)(i) := 2i−H
(p)
T (i/(2p)) ∈ [[0, 4p]]

denote the first time that we encounter v
(p)
i in the enumeration of vertices of T (p) in contour order,

then

H
(p)
T

(
m(p)(i, j)

2p

)
= C

(p)
T

(
b(p)(m(p)(i, j))

4p

)
= inf

b(p)(i)
4p

≤u≤ b(p)(j)
4p

C
(p)
T (u). (7.20)

Lemma 7.11 implies ( b
(p)(2pt)

4p )0≤t≤1 → (t)0≤t≤1 almost surely in C([0, 1]) and

sup
0≤t≤1

∣∣∣∣∣b(p)(2pt)4p
− t

∣∣∣∣∣+ sup
0≤t≤1

∣∣∣∣ θF√p
H

(p)
M (t)− σ

2
√
2p

H
(p)
T (t)

∣∣∣∣→ 0 (7.21)

almost surely as p → ∞. Hence,

lim
n→∞

θF√
pn

dM(pn)

(
π(v

(pn)
ipn

), π(v
(pn)
jpn

)
)
= es + et − 2 inf

s≤u≤t
eu = de(s, t) = lim

n→∞
de(spn , tpn) (7.22)

almost surely. This is a contradiction, thus proving dis(R(p)) → 0 as p → ∞.
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[DFG+20] Julien Dubédat, Hugo Falconet, Ewain Gwynne, Joshua Pfeffer, and Xin Sun. Weak LQG metrics

and Liouville first passage percolation. Probab. Theory Related Fields, 178(1-2):369–436, 2020.
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