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Abstract
We derive the variational formula of the Loewner driving function of a simple chord
under infinitesimal quasiconformal deformations with Beltrami coefficients supported
away from the chord. As an application, we obtain the first variation of the Loewner
energy of a Jordan curve, defined as the Dirichlet energy of its driving function.
This result gives another explanation of the identity between the Loewner energy and
the universal Liouville action introduced by Takhtajan and Teo, which has the same
variational formula. We also deduce the variation of the total mass of SLE8/3 loops
touching the Jordan curve under quasiconformal deformations.

Mathematics Subject Classification Primary 30C55 · 30C62; Secondary 30F60 ·
60J67

1 Introduction

One hundred and one years ago, Loewner introduced [14] a method to encode a sim-
ple planar curve by a family of uniformizing maps (called the Loewner chain) which
satisfies a differential equation driven by a real-valued function. This method has
become a powerful tool in geometric function theory. It was instrumental in the proof
of Bieberbach conjecture by De Branges [5] (which was also the original motiva-
tion of Loewner) and was revived around 2000 as a fundamental building block in
the definition of the Schramm–Loewner Evolution [18]. On the other hand, quasi-
conformal mapping is one of the fundamental concepts in geometric function theory
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and Teichmüller theory. Thus, we find it natural to investigate the interplay between
quasiconformal maps and the Loewner transform. We will further comment on the
motivation of this work and discuss follow-up questions in Sect. 4. We mention that
analytic properties of the Loewner driving function have been investigated in, e.g., [6,
12, 13, 15–17].

Our first result shows how quasiconformal deformations of the ambient domain
H = {z ∈ C : Im(z) > 0} affect the driving function of a simple chord inH connecting
0 to ∞.

Theorem 1.1 Let η be a simple chord in (H; 0,∞) under capacity parametrization
and ν ∈ L∞(H) be an infinitesimal Beltrami differential whose support is compact and
disjoint from η. For ε ∈ R such that ‖εν‖∞ < 1, letψεν be the unique quasiconformal
self-map of H with Beltrami coefficient εν such that ψεν(0) = 0 and ψεν(z) − z =
O(1) as z → ∞. Denote the capacity and driving functions of the parametrized chord
ψεν ◦ η in (H, 0,∞) by aεν· and λεν· , respectively. Then,

∂λεν
t

∂ε

∣
∣
∣
∣
ε=0

= − 2

π
Re

∫

H

ν(z)

(
g′
t (z)

2

gt (z) − λt
− 1

z

)

d2z (1.1)

and

∂aεν
t

∂ε

∣
∣
∣
∣
ε=0

= 1

π
Re

∫

H

ν(z)
(

g′
t (z)

2 − 1
)

d2z (1.2)

where d2z is the Euclidean area measure, λ· is the driving function of η, g· is the
Loewner chain of η.

Our proof relies on the simple but crucial observation that the Loewner driv-
ing function and the capacity parametrization of the curve can be expressed by
the pre-Schwarzian and Schwarzian derivatives, respectively, of well-chosen maps
(Lemma 2.1).

We extend our considerations to the Loewner driving function associated with a
Jordan curve γ ⊂ Ĉ = C ∪ {∞}, now defined on R instead of R+. The loop driving
function was defined in [21] and can be thought of as a consistent family of chordal
Loewner driving functions. See Sect. 3.1 for the precise definition. We point out that
for a given Jordan curve, there are a few choices we make to define its driving function
t 
→ λt :

• the orientation of γ ;
• a point on γ called the root, which we denote by γ (−∞) = γ (+∞) (we also use

γ (±∞) when we do not emphasize the difference between the start point and the
end point of the parametrization);

• another point on γ , which we call γ (0);
• a conformal map H0 : Ĉ � γ [−∞, 0] → C � R+, such that H0(γ (0)) = 0 and

H0(γ (+∞)) = ∞, where γ [−∞, 0] denotes the closed subinterval of γ (as a set)
going from the root to γ (0) following the orientation of the curve.
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Then, we can complete the continuous parametrization of γ on (−∞, 0) ∪ (0,+∞)

in a unique way such that for each s ∈ R, the chord γ (· + s) traverses the simply
connected domain Ĉ�γ [−∞, s] in capacity parametrization.1 Moreover, the chordal
driving function of γ (· + s) in Ĉ � γ [−∞, s] is given by λ·+s − λs (see Lemma 3.2).

If the orientation and the root of γ are fixed, different choices of γ (0) and H0 result
in changes to the driving function of the form

λ̃t = c
(

λc−2(t+s) − λc−2s

)

(1.3)

for some c > 0 and s ∈ R. Such transformations do not change the Dirichlet energy
of λ. Rather surprisingly, the Dirichlet energy of the loop driving function does not
depend on the choice of the root or the orientation either, as shown in [17, 20]. These
symmetries are further explained by the following theorem.

Theorem 1.2 (See [21]) The Loewner energy of γ , defined as

I L(γ ) = 1

2

∫ +∞

−∞
|λ̇t |2 dt (1.4)

equals 1/π times the universal Liouville action S introduced by Takhtajan and Teo in
[19], defined as

S(γ ) :=
∫

D

∣
∣
∣
∣

f ′′

f ′ (z)
∣
∣
∣
∣

2

d2z +
∫

D∗

∣
∣
∣
∣

g′′

g′ (z)
∣
∣
∣
∣

2

d2z + 4π log

∣
∣
∣
∣

f ′(0)
g′(∞)

∣
∣
∣
∣
. (1.5)

Here, f : D → 
 and g : D
∗ → 
∗ are conformal maps such that g(∞) = ∞, 


and
∗ are respectively the bounded and unbounded connected components of C�γ ,
and g′(∞) = limz→∞ g′(z). If γ passes through ∞, we replace γ by A(γ ) where A
is any Möbius transformation of Ĉ sending γ to a bounded curve.

Remark 1.3 Although it may not be so apparent from (1.5), it will follow immediately
from the definition of the loop driving function and (1.4) that I L is invariant under
Möbius transformations of Ĉ. See Remark 3.4. A Jordan curve for which S is finite is
called a Weil–Petersson quasicircle.

Using Theorem 1.1, we obtain in Sect. 3 the following first variation formula of the
Loewner energy. This formula coincides with that of the universal Liouville action S
in [19, Ch.2, Thm.3.8] divided by π , thus giving another explanation of the identity
I L = S/π . This variational formula was crucial in [19] to show that S is a Kähler
potential of the Weil–Petersson Teichmüller space.

Theorem 1.4 Let μ ∈ L∞(C) be an infinitesimal Beltrami differential with compact
support in Ĉ�γ . For ε ∈ Rwith ‖εμ‖∞ < 1, letωεμ : Ĉ → Ĉ be any quasiconformal
mapping with Beltrami coefficient εμ. Let γ εμ = ωεμ(γ ). Then,

1 For the simplicity of notation, we assumed here that the capacity parametrization of γ is bi-infinite. See
Footnote 3 for further details regarding this assumption.
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d

dε

∣
∣
∣
∣
ε=0

I L (γ εμ) = − 4

π
Re

[∫



μ(z)S [ f −1](z) d2z +

∫


∗
μ(z)S [g−1](z) d2z

]

, (1.6)

where f and g are the conformal maps in Theorem 1.2 and S [ϕ] = ϕ′′′/ϕ′ −
(3/2)(ϕ′′/ϕ′)2 is the Schwarzian derivative of ϕ.

In the language of conformal field theory, this theorem states that the holomorphic
stress-energy tensor of the Loewner energy is given by a multiple of the Schwarzian
derivative of the uniformizing map on each complementary component of the curve.

Remark 1.5 The Loewner energy of γ εμ does not depend on the choice of the
solution ωεμ to the Beltrami equation, as all such solutions are equivalent up to post-
compositions by Möbius transformations of Ĉ. In [19], μ is an L2-harmonic Beltrami
differential supported on only one side of the curve γ . Here, we allow the support of
μ to be on both sides of γ but require it to be disjoint from γ .

Since the support of μ is away from γ , there exists a (not necessarily simply
connected) domain D containing γ such that D ∩ supp(μ) = ∅. In particular, ωεμ

is conformal in D. In [22, Thm.4.1], the second author showed that the change of
the Loewner energy under a conformal map in the neighborhood of the curve could
be expressed in terms of the SLE8/3 loop measure introduced in [26], which is the
induced measure obtained by taking the outer boundary of a loop under Brownian
loop measure [9, 11]. Combining this with Theorem 1.4, we immediately obtain the
following variational formula for the SLE8/3 loop measure.

Corollary 1.6 For every domain D containing γ such that D∩supp(μ) = ∅, we have

d

dε

∣
∣
∣
∣
ε=0

W (γ εμ, ωεμ(D)c; Ĉ)

= 1

3π
Re

[∫




μ(z)S [ f −1](z) d2z +
∫


∗
μ(z)S [g−1](z) d2z

]

(1.7)

whereW (γ εμ, ωεμ(D)c; Ĉ) denotes the total mass of loops intersecting both γ εμ and
the complement of ωεμ(D) under the SLE8/3 loop measure on Ĉ.

2 Deformation of chords in the half-plane

2.1 Variation of the chordal Loewner driving function

Let η : (0,+∞) → H be a continuously parametrized simple chord from 0 to ∞. For
general η, there exists a unique conformal map H � η(0, t] → H with the expansion

z + 2at
z

+ O

(
1

z2

)

as z → ∞
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where at > 0 is a constant known as (one-half of) the half-plane capacity of the curve
η[0, t]. We call t 
→ at the capacity function of η. Let us denote T+ := limt→+∞ at ∈
(0,+∞]. 2 After an appropriate time change, we may assume that η is parametrized
by its (one-half) half-plane capacity: i.e., at = t . The family of uniformizing maps
gt : H � η(0, t] → H satisfying

gt (z) = z + 2t

z
+ O

(
1

z2

)

as z → ∞

under this capacity parametrization is called the Loewner chain corresponding to η.
The function [0, T+) → R, t 
→ λt := gt (η(t)) is called the driving function of the
curve η.

We consider deformations of η under quasiconformal self-maps of H. Let ν ∈
L∞(H) be a complex-valued function with compact support inH�η. The measurable
Riemann mapping theorem states that for ε ∈ R with |ε| < 1/‖ν‖∞, there exists a
unique quasiconformal self-map ψεν : H → H which solves the Beltrami equation

∂z̄ψ
εν = (εν)∂zψ

εν (2.1)

and has ψεν(0) = 0 and ψεν(z) − z = O(1) as z → ∞. We adopt the following
notations, illustrated in Fig. 1.

• Denote the deformed chord by ηεν := ψεν ◦ η.
• Let gεν

t : H � ηεν(0, t] → H be the Loewner chain associated with the deformed
curve ηεν[0, t].

• Denote the driving function of ηεν by λεν
t := gεν

t (ηεν(t)).
• Note that ηεν is not necessarily parametrized by its half-plane capacity. Denote
the capacity function of ηεν[0, t] by aεν

t , so that gεν
t (z) = z + 2aεν

t z−1 + O(z−2)

as z → ∞.

This section aims to prove Theorem 1.1. For this, we first express λεν
t and aεν

t in
termsof the pre-Schwarzian andSchwarzianderivatives of an appropriately conjugated
Loewner chain (Lemma 2.1).We then find the first variations of these derivatives using
the measurable Riemann mapping theorem (Proposition 2.2).

The centered Loewner chain

ft (z) := gt (z) − λt , (2.2)

satisfies ft (η(t)) = 0 and

ft (z) = z − λt + 2t

z
+ O

(
1

z2

)

as z → ∞. (2.3)

Let ι(z) := −1/z be the inversion map. Define the inverted Loewner chain by

f̃t (z) := ι ◦ ft ◦ ι(z) = − 1

ft (−1/z)
. (2.4)

2 See [8, Thm.1] for an example where T+ < ∞.
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Fig. 1 Acommutative diagram illustrating the quasiconformalmaps and relatedLoewner chains in Sect. 2.1.
The gray shaded areas denote the support of the Beltrami differentials. The arrows in red are quasiconformal
maps, and those in black are conformal maps

Then, f̃t : H�(ι◦η(0, t]) → H is the uniformizingmapwith normalization f̃t (0) = 0,
f̃ ′
t (0) = 1, and f̃t (ι ◦ η(t)) = ∞. Combining the expansion (2.3) of ft at ∞ with

(2.4), we see that as z → 0,

f̃t (z) = − 1

−z−1 − λt − 2t z + O(z2)
= z − λt z

2 + (λ2t − 2t)z3 + O(z4). (2.5)

Similarly, define

f εν
t (z) := gεν

t (z) − λεν
t and f̃ εν

t (z) := ι ◦ f εν
t ◦ ι(z). (2.6)

A calculation analogous to (2.5) using the series expansion of gεν
t at ∞ leads to

f̃ εν
t (z) = z − λεν

t z2 + ((λεν
t )2 − 2aεν

t )z3 + O(z4) as z → 0. (2.7)

By the Schwarz reflection principle, f̃t and f̃ εν
t extend respectively to conformal maps

onC�ι(η(0, t]∪η(0, t]) andC�ι(ηεν(0, t]∪ηεν(0, t]), where · denotes the complex
conjugate. In particular, they are conformal in some neighborhood of 0.

Recall that the pre-Schwarzian (also known as non-linearity) and Schwarzian
derivatives of a conformal map ϕ are, respectively,

N ϕ = ϕ′′

ϕ′ and S ϕ = ϕ′′′

ϕ′ − 3

2

(
ϕ′′

ϕ′

)2

. (2.8)

The chain rules for the pre-Schwarzian and Schwarzian derivatives are
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N [ f ◦ g] = ((N f ) ◦ g)g′ + N g and S [ f ◦ g] = ((S f ) ◦ g)(g′)2 + S g (2.9)

for any conformal maps f and g such that f ◦ g is well-defined.

Lemma 2.1 Consider f̃t and f̃ εν
t as conformal maps extended by reflection to a neigh-

borhood of 0. Then,

λt = −1

2
N f̃t (0), λεν

t = −1

2
N f̃ εν

t (0), and aεν
t = − 1

12
S f̃ εν

t (0). (2.10)

Proof The lemma follows from inspecting the coefficients of (2.5) and (2.7). �
Let εν̃t be the Beltrami coefficient of the quasiconformal map

ψ̃εν̃t := f̃ εν
t ◦ ι ◦ ψεν ◦ ι ◦ f̃ −1

t = ι ◦ f εν
t ◦ ψεν ◦ f −1

t ◦ ι. (2.11)

In particular, ψ̃εν̃0 = ι ◦ ψεν ◦ ι is the quasiconformal map which deforms ι ◦ η to
ι ◦ ηεν . Note that ψ̃εν̃t is conformal in a neighborhood of 0 and satisfies ψ̃εν̃t (0) = 0,
(ψ̃εν̃t )′(0) = 1, and ψ̃εν̃t (∞) = ∞.

Proposition 2.2 Let ν̃t be the Beltrami differential defined above. Then,

∂λεν
t

∂ε

∣
∣
∣
∣
ε=0

= 2

π
Re

∫

H

ν̃t (z) − ν̃0(z)

z3
d2z

= 2

π
Re

∫

H

ν̃0(z)

(
f̃ ′
t (z)

2

f̃t (z)3
− 1

z3

)

d2z

= − 2

π
Re

∫

H

ν(z)

(
f ′
t (z)

2

ft (z)
− 1

z

)

d2z (2.12)

and

∂aεν
t

∂t

∣
∣
∣
∣
ε=0

= 1

π
Re

∫

H

ν̃t (z) − ν̃0(z)

z4
d2z

= 1

π
Re

∫

H

ν̃0(z)

(
f̃ ′
t (z)

2

f̃t (z)4
− 1

z4

)

d2z

= 1

π
Re

∫

H

ν(z)
(

f ′
t (z)

2 − 1
)

d2z. (2.13)

Proof of Theorem 1.1 It suffices to substitute ft (z) = gt (z) − λt in Proposition 2.2. �
Proof of Proposition 2.2 We can extend ψ̃εν̃t to a quasiconformal self-map of the Rie-
mann sphere Ĉ = C ∪ {∞} by reflecting it with respect to the real axis. The Beltrami
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coefficient for this extension of ψ̃εν̃t is εν̂t where

ν̂t (z) :=

⎧

⎪⎨

⎪⎩

ν̃t (z) if z ∈ H,

0 if z ∈ R,

ν̃t (z) if z ∈ H
∗.

(2.14)

Then, by the measurable Riemann mapping theorem,

ψ̃εν̃t (ζ ) = ζ − ε

π

∫

C

ν̂t (z)

(
1

z − ζ
− 1

z
− ζ

z2

)

d2z + o(ε) (2.15)

locally uniformly in ζ ∈ C as ε → 0. Moreover, since ∂ε commutes with ∂ζ when
applied to ψ̃εν̃t and ν̂t has a compact support in C � {0}, we have

∂

∂ε

∣
∣
∣
∣
ε=0

N ψ̃εν̃t (0) = − 2

π

∫

C

ν̂t (z)

z3
d2z = − 4

π
Re

∫

H

ν̃t (z)

z3
d2z, (2.16)

∂

∂ε

∣
∣
∣
∣
ε=0

S ψ̃ ν̃t (0) = − 6

π

∫

C

ν̂t (z)

z4
d2z = −12

π
Re

∫

H

ν̃t (z)

z4
d2z. (2.17)

Since f̃ εν
t = ψ̃εν̃t ◦ f̃t ◦(ψ̃εν̃0)−1 and ψ̃εν̃t (z), f̃t (z), and ψ̃εν̃0(z) all behave as z+o(z)

as z → 0, we have from Lemma 2.1 and the chain rules (2.9) that

−2λεμ
t = N f̃ εμ

t (0) = N ψ̃εν̃t (0) + N f̃t (0) − N ψ̃εν̃0(0)

= N ψ̃εν̃t (0) − 2λt − N ψ̃εν̃0(0), (2.18)

−12aεμ
t = S f̃ εμ

t (0) = Sψ
ενt
t (0) + S f̃t (0) − Sψεν0(0)

= Sψ
ενt
t (0) − 12t − Sψεν0(0). (2.19)

Combining these with (2.16) and (2.17), we obtain the first equalities in (2.12) and
(2.13).

Observe that ψ̃εν̃t = f̃ εν
t ◦ ψ̃εν̃0 ◦ f̃ −1

t , where f̃ εν
t and f̃ −1

t are conformal maps.
Hence, by the composition rule for Beltrami coefficients,

ν̃t ( f̃t (z)) = ν̃0(z)
f̃ ′
t (z)

2

| f̃ ′
t (z)|2

. (2.20)

Substituting (2.20) into (2.16) and (2.17), we have that

∂

∂ε

∣
∣
∣
∣
ε=0

N ψ̃εν̃t (0) = − 4

π
Re

∫

H

ν̃0(z)
f̃ ′
t (z)

2

f̃t (z)3
d2z, (2.21)

∂

∂ε

∣
∣
∣
∣
ε=0

S ψ̃εν̃t (0) = −12

π
Re

∫

H

ν̃0(z)
f̃ ′
t (z)

2

f̃t (z)4
d2z. (2.22)

We thus have the second equalities in (2.12) and (2.13).
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Finally, recall that ψ̃εν̃0 = ι ◦ ψεν ◦ ι. Since the inversion map ι(ζ ) = −1/ζ is
conformal,

ν̃0(−1/ζ ) = ν(ζ )
|ζ |4
ζ 4 . (2.23)

Recall that f̃t (z) = −1/ ft (−1/z), and hence f̃ ′
t (z) = f ′

t (−1/z)/(z ft (−1/z))2.
Substituting z = −1/ζ in (2.21) and (2.22), we obtain the final equalities in (2.12)
and (2.13). �

2.2 Variation of chordal Loewner energy

Let η : (0, T+) → H be a simple chord from 0 to ∞ parametrized by half-plane
capacity (i.e., at = t) and t 
→ λt be its Loewner driving function. The Loewner
energy of η (resp. the partial Loewner energy of η up to time T ∈ (0, T+)) is

I C (η) = 1

2

∫ T+

0
λ̇2t dt resp. I C (η(0, T ]) = 1

2

∫ T

0
λ̇2t dt

if λ is absolutely continuous and λ̇ is its almost everywhere defined derivative with
respect to t . We set I C (η) = ∞ if λ is not absolutely continuous. If I C (η) < +∞,
then T+ = +∞; see [23, Thm. 2.4].

We also define the Loewner energy of a simple chord η in a simply connected
domain D connecting two distinct prime ends a, b as

I CD;a,b(η) := I C (ϕ(η))

where ϕ is any conformal map D → H with ϕ(a) = 0 and ϕ(b) = ∞. The partial
Loewner energy in (D; a, b) is defined similarly.

When λt is absolutely continuous, we can compute the first variations of λ̇εν
t and

ȧεν
t .

Proposition 2.3 Forall ε ∈ (−1/‖ν‖∞, 1/‖ν‖∞), the functions t 
→ λεν
t −λt and t 
→

aεν
t are continuously differentiable. Furthermore, if t 
→ λt is absolutely continuous,
then t 
→ λεν

t is also absolutely continuous and, for almost every t ,

∂λ̇εν
t

∂ε

∣
∣
∣
∣
ε=0

= 1

π
Re

∫

H

ν(z)

(

12
f ′
t (z)

2

ft (z)3
− 2λ̇t

f ′
t (z)

2

ft (z)2

)

d2z (2.24)

and

∂ ȧεν
t

∂ε

∣
∣
∣
∣
ε=0

= − 4

π
Re

∫

H

ν(z)
f ′
t (z)

2

ft (z)2
d2z. (2.25)
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Proof From the Loewner equation ∂t gt (z) = 2/(gt (z) − λt ), we have

∂t ( ft (z) + λt ) = 2

ft (z)
and ∂t f

′
t (z) = −2 f ′

t (z)

ft (z)2
.

Recalling f̃t (z) = −1/ ft (−1/z), it follows that f̃ ′
t (z) is continuously differentiable in

t . From (2.14) and (2.20),we see that (ε, t) 
→ εν̂t is continuously differentiable. Then,
λεν
t −λt = − 1

2 (N ψ̃εν̃t (0)−N ψ̃εν̃0(0)) and aεν
t −t = − 1

12 (S ψ̃εν̃t (0)−S ψ̃εν̃0(0))
are continuously differentiable in the same variables [1].

We can check directly from the integral representations of ∂εN ψ̃εν̃t (0) and
∂εS ψ̃εν̃t (0) that they are continuously differentiable in t . If λt is absolutely con-
tinuous, then we have from (2.12) that for almost every t ,

∂λ̇εν
t

∂ε

∣
∣
∣
∣
ε=0

= −1

2

∂2(N ψ̃εν̃t (0))

∂ε∂t

∣
∣
∣
∣
ε=0

= −1

2

∂2(N ψ̃εν̃t (0))

∂t∂ε

∣
∣
∣
∣
ε=0

= − 2

π
Re

∫

H

ν(z)∂t

(
f ′
t (z)

2

ft (z)

)

d2z.

Similarly, (2.13) implies

∂ ȧεν
t

∂ε

∣
∣
∣
∣
ε=0

= 1

π
Re

∫

H

ν(z) ∂t
(

f ′
t (z)

2) d2z.

Using the formulas for ∂t ft and ∂t f ′
t above, we have

∂t
(

f ′
t (z)

2) = −4
f ′
t (z)

2

ft (z)2
and ∂t

(
f ′
t (z)

2

ft (z)

)

= −6
f ′
t (z)

2

ft (z)3
+ λ̇t

f ′
t (z)

2

ft (z)2
.

This completes the proof. �

Proposition 2.3 allows us to compute the first variation of the chordal Loewner
energy for a finite portion of the chord ηεν .

Corollary 2.4 Let T ∈ (0, T+). Suppose λt is absolutely continuous on [0, T ] and
λ̇t ∈ L2([0, T ]). Then,

∂

∂ε

∣
∣
∣
∣
ε=0

I C (ηεν(0, T ]) = 12

π
Re

∫

H

ν(z)
∫ T

0
λ̇t

f ′
t (z)

2

ft (z)3
dt d2z. (2.26)

Proof From Proposition 2.3, we see that (λ̇εν
t )2/ȧεν

t is integrable on [0, T ] whenever
|ε| < 1/‖ν‖∞. Moreover, we obtain that for almost every t ∈ [0, T ],

∂

∂ε

∣
∣
∣
∣
ε=0

(λ̇εν
t )2

ȧεν
t

= 2λ̇t
∂λ̇εν

t

∂ε

∣
∣
∣
∣
ε=0

− λ̇2t
∂ ȧεν

t

∂ε

∣
∣
∣
∣
ε=0

= 24λ̇t
π

Re
∫

H

ν(z)
f ′
t (z)

2

ft (z)3
d2z.
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Quasiconformal deformation of the chordal Loewner driving function…

Since ν is compactly supported in H � η, the integral on the right-hand side is contin-
uous in t and hence bounded on [0, T ]. Using the Leibniz integral rule, we conclude
that

I C (ηεν(0, T ]) = 1

2

∫ T

0

∣
∣
∣
∣

dλεν
t

daεν
t

∣
∣
∣
∣

2

daεν
t = 1

2

∫ T

0

(λ̇εν
t )2

ȧεν
t

dt

= I C (η[0, T ]) + ε

∫ T

0

12λ̇t
π

Re

[∫

H

ν(z)
f ′
t (z)

2

ft (z)3
d2z

]

dt + o(ε)

as ε → 0. �

3 Deformation of Weil–Petersson quasicircles

In this section, we consider the Loewner chain for a Jordan curve by conjugating the
chordal Loewner chain by z 
→ z2. This simple operation relates the integrand in (2.26)
to a Schwarzian derivative (Proposition 3.8) which leads to the proof of Theorem 1.4.

Convention. We take the branch of the complex square root function
√
z (or z1/2)

on C to be the one with the image in H ∪ R+.

3.1 Loop driving function

We first recall the definition of the Loewner driving function for a Jordan curve. See
Fig. 2 for an illustration of the maps used in Sect. 3.

Let γ : [−∞,+∞] → Ĉ be a Jordan curve where γ (−∞) = γ (+∞). We
choose a family of uniformizing maps Ht : Ĉ � γ [−∞, t] → C � R+ such that
Ht (γ (t)) = 0 and Ht (γ (+∞)) = ∞ for each t ∈ R. Note that each Ht is unique up
to a real multiplicative factor. We fix a consistent normalization such that for every
s < t , Ht ◦ H−1

s (z) = z + o(z) as z → ∞. Note that it suffices to fix the map H0 and
then normalize Ht for t �= 0 so that Ht ◦ H−1

0 has the correct asymptotic behavior.
This is possible since if we write

ht = Ht ◦ H−1
0 and ft (z) =

√

ht (z2), (3.1)

then ft is a conformal map taking a some neighborhood of ∞ in H to another neigh-
borhood of ∞ in H. Schwarz reflection applied to ft in a neighborhood of ∞ shows
that ft is holomorphic at ∞. Normalizing ht as above is equivalent to normalizing ft
such that ft (z) = z + O(1) as z → ∞.

Definition 3.1 Define the (loop) driving function t 
→ λt and the (loop) capacity
function t 
→ at from the expansion

ft (z) = z − λt + 2at
z

+ O

(
1

|z|2
)

as z → ∞. (3.2)
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Fig. 2 A commutative diagram illustrating the quasiconformal maps and related conformal mapping-out
functions in Sect. 3. The gray shaded areas denote the support of the Beltrami differentials. The arrows in
red are quasiconformal maps, and those in black are conformal maps

We always have λ0 = a0 = 0 and t 
→ at is continuous and strictly increasing.
If at → ±∞ when t → ±∞, then we can reparametrize γ such that at = t for
every t ∈ R. In this case, we say that γ is capacity-parametrized by R.3 We remind
the reader that the capacity parametrization and the corresponding driving function
depend on the choices of the orientation of γ , γ (±∞), γ (0), and H0.

The reader may wonder about the different behaviors of the map ft depending on
the sign of t , which seem to give a different meaning to the term “capacity.” This
difference is not fundamental as the designation of the point of zero capacity on γ is
artificial. We shall view the capacity given by ft as the “relative capacity” with respect
to our choice of the part γ [−∞, 0]. Precisely, it means the following.

Lemma 3.2 Suppose γ is a Jordan curve, capacity-parametrized by R, with driving
function t 
→ λt . Then, for every s ∈ R,

√
Hs ◦ γ (· + s) defined on R+ is a simple

chord in (H; 0,∞) parametrized by capacity. Moreover, its chordal driving function
is given by λ·+s − λs .

Proof When s = 0, η(·) = √
H0 ◦ γ (·) is a simple chord in H from 0 to ∞. For

t > 0, the conformal map ht takes H0(Ĉ � γ [−∞, t]) onto C � R+. Hence, ft is a
conformal map from H � η(0, t] onto H. Therefore, when t > 0, (3.2) simply means

3 Similar to the chordal case, a general Jordan curve γ may not have infinite capacity at either end of the
root. A priori, at → T± as t → ±∞ where T+ ∈ (0, +∞] and T− ∈ [−∞, 0). In other words, γ may be
capacity-parametrized by a strict sub-interval of R. However, we show in Lemma A.1 that if I L (γ ) < +∞
(see Definition 3.5), then the capacity parametrization of γ must be defined on all of R. Throughout Sect. 3,
we assume that γ is capacity-parametrized by R.
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Quasiconformal deformation of the chordal Loewner driving function…

that 2at = 2t is the half-plane capacity of η[0, t] and (λt )t≥0 is the chordal driving
function of η by (2.3).

For general s ∈ R, we note that ( ft+s ◦ f −1
s )t≥0 is a centered Loewner chain

associated with the curve
√
Hs ◦ γ (· + s). Moreover, (3.2) implies

ft+s ◦ f −1
s (z) = z − (λt+s − λs) + 2(at+s − as)

z
+ O

(
1

z2

)

as z → ∞

for all t ≥ 0. Thus, t 
→ λt+s − λs and t 
→ at+s − as are respectively the driving
function and the capacity function corresponding to the chain ( ft+s ◦ f −1

s )t≥0. In
particular, the assumption at = t for all t ∈ R means that the chain ( ft+s ◦ f −1

s )t≥0
is also in capacity parametrization. �
Remark 3.3 The loop driving function generalizes the chordal Loewner driving func-
tion. If η is a simple chord in (H; 0,∞) with driving function λ : R+ → R, then the
Jordan curve γ := η(·)2 ∪ R+ with the same orientation as η (from 0 to ∞), root ∞,
γ (0) = 0, and H0(z) = z, has the driving function (λ̃t )t∈R where λ̃t = λt if t ≥ 0
and λ̃t = 0 if t ≤ 0.

Remark 3.4 Let γ be a Jordan curve capacity-parametrized by R using the conformal
map H0. If A : Ĉ → Ĉ is aMöbius transformation, then the loop t 
→ γ̃ (t) := A(γ (t))
has the same driving function as γ when we choose its capacity parametrization using
the conformal map H̃0 = H0 ◦ A−1. Moreover, the conformal maps corresponding to
Ht and ht for γ̃ are H̃t = Ht ◦ A−1 and h̃t = H̃t ◦ H̃−1

0 = Ht ◦ H−1
0 = ht . Hence,

the map ft remains unchanged, and so are the capacity and driving functions.

Definition 3.5 The Loewner energy of a Jordan curve γ is

I L(γ ) = 1

2

∫ +∞

−∞
λ̇2t dt,

where (λt )t∈R is the driving function of γ described above. See also Lemma A.1.
Theorem 1.2 shows that this energy does not depend on the parametrization of the
curve (but we will not use this fact in our proof).

The next corollary is immediate after Lemma 3.2.

Corollary 3.6 For all s < t , the partial chordal Loewner energy of γ (s, t] in the simply
connected domain Ĉ � γ [−∞, s] is given by

IC
Ĉ�γ [−∞,s](γ (s, t]) = 1

2

∫ t

s
λ̇2r dr

where the slit domain Ĉ�γ [−∞, s] is always understood with the two marked prime
ends being the two ends of γ [−∞, s].
Proof It suffices to notice that

√
Hs(·) maps Ĉ � γ [−∞, s] conformally onto H.

Hence, the partial chordal Loewner energy of γ (s, t] in Ĉ � γ [−∞, s] equals that
of

√
Hs(γ (s, t]) in H, which has the driving function r 
→ λs+r − λs defined for

r ∈ [0, t − s] by Lemma 3.2. �
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3.2 Variation of Loewner energy for a part of the quasicircle

We now consider deformations of a Jordan curve γ . Let μ ∈ L∞(Ĉ) be a complex-
valued function with compact support in Ĉ � γ . For ε ∈ R with ‖εμ‖∞ < 1, let
ωεμ : Ĉ → Ĉ be a quasiconformal homeomorphism which satisfies the Beltrami
equation

∂z̄ω
εμ = (εμ)∂zω

εμ.

Denote the deformation of γ under the quasiconformal map ωεμ as

γ εμ = ωεμ ◦ γ.

Again we choose a family of uniformizing maps H εμ
t : Ĉ � γ εμ[−∞, t] → C � R+

with H εμ
t (γ εμ(t)) = 0 and H εμ

t (γ εμ(+∞)) = ∞, normalized so that H εμ
t ◦ ωεμ ◦

H−1
t (z) = z + o(z) as z → ∞ for each t ∈ R.
We define analogously the chains (hεμ

t )t∈R and ( f εμ
t )t∈R, the driving function

(λ
εμ
t )t∈R, and the capacity function (aεμ

t )t∈R. That is,

hεμ
t = H εμ

t ◦ (H εμ
0 )−1 and f εμ

t (z) =
√

hεμ
t (z2).

Then, by our choice of normalization, hεμ
t (z) = z + o(z) and f εμ

t (z) = z + O(1) as
z → ∞. We define λ

εμ
t and aεμ

t from the expansion

f εμ
t (z) = z − λ

εμ
t + 2aεμ

t

z
+ O

(
1

z2

)

as z → ∞.

Remark 3.7 The map ωεμ, and hence the Jordan curve γ εμ, is unique only up to a
post-composition by some Möbius transformation. The choice of ωεμ does not affect
our analysis, because the first step in it is always to apply the appropriately normalized
uniformizing map H εμ

t from Ĉ � γ εμ[−∞, t] onto C � R+.

In this subsection, we translate Corollary 2.4 into an analogous formula for the
Weil–Peterson curve γ and its deformation γ εμ. The following is the main result.

Proposition 3.8 Suppose s < t and IC
Ĉ�γ [−∞,s](γ (s, t]) < ∞. Then,

∂

∂ε

∣
∣
∣
∣
ε=0

I C
Ĉ�γ εμ[−∞,s](γ

εμ[s, t]) = − 4

π
Re

∫

C�γ

μ(z)(S Ht (z) − S Hs(z)) d
2z.

(3.3)

The following lemma is a straightforward calculation used in the proof of Proposi-
tion 3.8.
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Lemma 3.9 Suppose λt is absolutely continuous. Then, for each z ∈ H0(Ĉ � γ ), the
Schwarzian S ht (z) is absolutely continuous in t . Moreover, for almost every t ,

∂

∂t
S ht (z) = − 3h′

t (z)
2

4ht (z)5/2
λ̇t . (3.4)

Proof From the relation

S ht+u(z) = S [ht+u ◦ h−1
t ](ht (z)) · h′

t (z)
2 + S ht (z),

we deduce

∂

∂t
S ht (z) = ∂

∂u

∣
∣
∣
∣
u=0

(S ht+u(z) − S ht (z)) = h′
t (z)

2 · ∂

∂u

∣
∣
∣
∣
u=0

S [ht+u ◦ h−1
t ](ht (z)).

Hence, it suffices to show that

∂

∂u

∣
∣
∣
∣
u=0

S [ht+u ◦ h−1
t ](ht (z)) = − 3λ̇t

4ht (z)5/2
. (3.5)

To see this, note that f̃u := ft+u◦ f −1
t solves theLoewner equation (seeLemma3.2)

∂u f̃u(z) = 2

f̃u(z)
− λ̇t+u .

Since h̃u(z) := ht+u ◦ h−1
t (z) = f̃u(

√
z)2, we have

∂u h̃u(z) = 2 f̃u(
√
z)∂u f̃u(

√
z) = 4 − 2λ̇t+u h̃u(z)

1/2.

Then, because h̃0(z) = z,

∂(S h̃u(z))

∂u

∣
∣
∣
∣
u=0

= (

∂u h̃u(z)
∣
∣
u=0

)′′′ = (4 − 2λ̇t z
1/2)′′′ = − 3λ̇t

4z5/2
. (3.6)

Replacing z in (3.6) with ht (z), we obtain (3.5). This completes the proof. �

Proof of Proposition 3.8 Let us first consider the case s = 0. Letting η(t) =√
H0 ◦ γ (t) andηε(t) =

√

H εμ
0 ◦ γ εμ(t) =

√

H εμ
0 ◦ ωεμ ◦ γ (t), we haveηε = ψε◦η

where ψε(z) =
√

(H εμ
0 ◦ ωεμ ◦ H−1

0 )(z2). Let εν be the Beltrami coefficient corre-
sponding to the quasiconformal map ψε : H → H. Let εμ0 denote the Beltrami
coefficient of H εμ

0 ◦ ωεμ ◦ H−1
0 . Then, ν(ζ ) = μ0(ζ

2)(|ζ |2/ζ 2).
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Substituting this ν into (2.26) and letting ζ = √
z, since ft (ζ ) = √

ht (z) and
f ′
t (ζ )/ζ = h′

t (z)/
√
ht (z), we get

∂

∂ε

∣
∣
∣
∣
ε=0

I C (ηε(0, T ]) = 12

π
Re

∫

H

ν(ζ )

∫ T

0
λ̇t

f ′
t (ζ )2

ft (ζ )3
dt d2ζ

= 3

π
Re

∫

C�R+
μ0(z)

∫ T

0
λ̇t

h′
t (z)

2

ht (z)5/2
dt d2z.

Applying Lemma 3.9, we have

∂

∂ε

∣
∣
∣
∣
ε=0

I C (ηε(0, T ]) = − 4

π
Re

∫

C�R+
μ0(z)

∫ T

0

∂(S ht (z))

∂t
dt d2z

= − 4

π
Re

∫

C�R+
μ0(z)S hT (z) d2z.

Recalling our definition of εμ0, we haveμ0(H0(z)) = μ(z)(H ′
0(z)

2/|H ′
0(z)|2). More-

over, from HT = hT ◦ H0, we have

S hT (H0(z)) · H ′
0(z)

2 = S HT (z) − S H0(z).

Hence,

∫

C�R+
εμ0(z)S hT (z) d2z =

∫

C�γ

εμ(z)(S HT (z) − S H0(z)) d
2z.

Therefore, the case s = 0 holds. In fact, this implies (3.3) for any s ∈ R because the
parametrization of γ is arbitrary up to translations as discussed in Lemma 3.2. �

3.3 Variation of the loop Loewner energy

The goal of this subsection is to prove Theorem 1.4. Let H+∞ : Ĉ � γ → C � R

be any conformal map which maps 
 → H and 
∗ → H
∗. Note that the map H+∞

restricted to 
 coincides with f −1 (as in Theorem 1.4) post-composed by a Möbius
transformation, so S H+∞|
 = S [ f −1]. Similarly, S H+∞|
∗ = S [g−1]. In view
ofCorollary 3.6 andProposition 3.8, it suffices to show that as s → −∞ and t → +∞,
we have

∫

C�γ

μ(z)(S Ht (z) − S Hs(z)) d
2z →

∫

C�γ

μ(z)S H+∞(z) d2z, (3.7)

and

d

dε

∣
∣
∣
∣
ε=0

∫ t

s

∣
∣
∣
∣

dλεμ
r

daεμ
r

∣
∣
∣
∣

2

daεμ
r → d

dε

∣
∣
∣
∣
ε=0

∫ +∞

−∞

∣
∣
∣
∣

dλεμ
r

daεμ
r

∣
∣
∣
∣

2

daεμ
r . (3.8)
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For this, we need a few lemmas.

Lemma 3.10 Supposeγ (±∞) = ∞. Then,S Hs → 0 locally uniformly as s → −∞.

Proof Given any R > 0, there exists a large negative sR such that for s ≤ sR , we have
γ [−∞, s] ∩ {z : |z| < R} = ∅. Then, Hs is conformal on RD. By the Nehari bound,

|S Hs(z)| ≤ 6
(

R(1 − |z|2/R2)
)2

for every z ∈ RD. The right-hand side of the inequality tends uniformly to 0 as
R → +∞ on any compact subset of C. �
Lemma 3.11 Suppose γ (±∞) = ∞. Then, S Ht → S H+∞ locally uniformly on
C � γ as t → +∞.

Proof Choose either component of C � γ and call it U+∞. Let us denote by γU (s)
the prime end of γ (s) as viewed from U+∞.

Let γt = γ [−∞, t] and denote by γU
t := ⋃

s∈(−∞,t) γU (s) the prime ends of γt
accessible fromU+∞. Let�t be the hyperbolic geodesic inC�γt connecting γ (t) and
γ (+∞). Let Ut be the component of C � (γt ∪ �t ) such that the prime ends of γt as
viewed fromUt comprise γU

t . Observe that if hm(z, D; ·) is the harmonic measure on
the domain D as viewed from z ∈ D, then z ∈ Ut if and only if hm(z, C � γt ; γU

t ) >

1/2.
We claim that if z ∈ U+∞, then z ∈ ⋃

T≥0
⋂

t≥T Ut . Suppose z ∈ U+∞. Choose
a sufficiently small constant a ∈ (0, 1) such that hm(0, D � [a, 1], [a, 1]) > 1/2.
Since γ (±∞) = ∞, for all sufficiently large t > 0, we can find R > 0 such that
γt ∩ BaR(z) �= ∅ but γ (t,+∞) ∩ BR(z) = ∅. Then,

hm(z, C � γt ; γU
t ) ≥ hm(z, BR(z) � γt ; γU

t ) = hm(z, BR(z) � γt ; γt ).

By the Beurling projection theorem,

hm(z, BR(z) � γt , γt ) ≥ hm(0, RD � [aR, R]; [aR, R])
= hm(0, D � [a, 1]; [a, 1]) > 1/2.

This completes the proof of the claim.
Note that Ht is a conformal mapwhich sendsC�(γt ∪�t ) ontoC�R. Then, by the

Carathéodory kernel theorem, Ht post-composed with an appropriate Möbius trans-
formation converges locally uniformly on U+∞ to H+∞ as t → ∞. Consequently,
S Ht → S H+∞ locally uniformly on U+∞ as t → ∞. An analogous argument
applies to the other component of Ĉ � γ . �
Proof of Theorem 1.4 Given γ (±∞) = ∞, the limit (3.7) follows by applying Lem-
mas 3.10 and 3.11. Otherwise, choose a Möbius map A : Ĉ → Ĉ so that A(∞) =
γ (±∞). If H+∞ : Ĉ�γ → C�R is a conformalmap as in the theoremstatement, then
H+∞◦A is a conformalmap from Ĉ�γ ontoC�RwithS [H ◦A] = S H ·(A′)2. The
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pullback A∗μ of μ under ϕ satisfies μ(A(z)) = (A∗μ)(z)(A′(z))2/|A′(z)|2. Letting
ζ = A(z), we have

∫

Ĉ�γ

μ(ζ )S H+∞(ζ ) d2ζ =
∫

Ĉ�A−1◦γ

A∗μ(z)S [H ◦ A](z) d2z,

so we can consider the curve A−1 ◦ γ instead.
To show (3.8), it suffices to prove that we can switch between the integral over

t ∈ (−∞,+∞) and the derivative in ε. To this end, we prove that the following
integral is absolutely convergent:

∫ +∞

−∞

∣
∣
∣
∣

∂

∂ε

∣
∣
∣
∣
ε=0

(λ̇
εμ
t )2

ȧεμ
t

∣
∣
∣
∣
dt < +∞. (3.9)

Recall from the proof of Corollary 2.4 that for t ≥ 0,

∂

∂ε

∣
∣
∣
∣
ε=0

(λ̇
εμ
t )2

ȧεμ
t

= 24λ̇t
π

Re
∫

H

ν(z)
f ′
t (z)

2

ft (z)3
d2z (3.10)

where ν is the push-forward of the Beltrami differential μ under the map
√
H0 as

displayed in Fig. 2. Using Lemma 3.2 and the composition rule (2.20) for Beltrami dif-
ferentials, it is straightforward to check that (3.10) is true for all t ∈ R. FromLemma 2,
the assumption that

∫ +∞
−∞ |λ̇t |2 dt < ∞, and the Cauchy–Schwarz inequality, it fol-

lows that
∫ +∞
−∞

∣
∣
∣λ̇t

f ′
t (z)

2

ft (z)3

∣
∣
∣ dt is finite and locally uniform in z. This implies (3.9) since

ν is compactly supported and ‖ν‖∞ < ∞. Therefore, for any −∞ ≤ s ≤ t ≤ +∞,

∂

∂ε

∣
∣
∣
∣
ε=0

∫ t

s

∣
∣
∣
∣

dλεμ
r

daεμ
r

∣
∣
∣
∣

2

daεμ
r = ∂

∂ε

∣
∣
∣
∣
ε=0

∫ t

s

(λ̇
εμ
r )2

ȧεμ
r

dr =
∫ t

s

∂

∂ε

∣
∣
∣
∣
ε=0

(λ̇
εμ
r )2

ȧεμ
r

dr .

(3.11)

Letting s → −∞ and t → +∞, by the dominated convergence theorem and (3.9),
we conclude (3.8). This proves Theorem 1.4 as explained at the beginning of the
subsection. �

4 Remarks and open questions

While Loewner chains have been studied extensively due to their applications in the
study of Schlicht functions and, more recently, in that of Schramm–Loewner evolution
(SLE), their infinitesimal variations seem to have been overlooked. Our investigation
of this topic is motivated by an effort to understand the large deviations of SLE at a
deeper level. Roughly speaking, an SLE curve is a non-self-intersecting curve whose
Loewner chain is driven by a constantmultiple ofBrownianmotion.We refer the reader
to the textbooks [2, 7, 10, 25] for detailed introductions to SLE and its applications.
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Theorem 1.2 implies that the Loewner energy is at the same time the action
functional of an SLE loop [4, 20] and the Kähler potential on the Weil–Petersson
Teichmüller space T0(1) [19, 21], thus building a bridge between two fundamentally
different perspectives on the geometry of the space of Jordan curves in Ĉ. On the
SLE side, Jordan curves are viewed as dynamically growing slits, which are naturally
described through the language of Loewner chains. The link from SLE to Loewner
energy comes from stochastic analysis and the fact that the action functional of a
Brownian motion is its Dirichlet energy. On the Kähler geometry side, there are no
dynamics. Instead, all geometric structures are expressed infinitesimally on the tangent
spaces of T0(1). The reason behind the fact that the action functional of SLE coincides
with the Kähler potential of the unique homogeneous Kähler metric on T0(1) remains
a mystery. See [24] for an expository article on this link.

Our motivation lies in building tools that can be used to reconcile these two distinct
viewpoints. The current work serves as the first step in one of the possible directions to
this end by elucidating which infinitesimal variations of the Loewner driving function
correspond to those on T0(1). Natural questions going forward are how the complex
structure, the symplectic form, the Weil–Petersson metric, and the group structure
on T0(1) are encoded in the Loewner driving function. Through these identifications,
there is hope to build a more robust connection between random conformal geometry
and Teichmüller theory and shed new light on their relationship.

There are yet other possible avenues in the study of quasiconformal deformations
of SLE. For example, there is an interesting open question [3, Conj. 7.1] to identify
the conformal dimension of SLE, which is the minimal Hausdorff dimension of the
image of an SLE curve under quasiconformal mappings. The relevance of our work
in this direction is that some of our results are sufficiently general to be applied in
this context. For instance, the variational formula for the Loewner driving function
(Theorem 1.1) does not assume any regularity on the driving function, so it can be
applied even when the driving function is a Brownian motion. On the other hand, there
is room for improvement in our results. The most obvious limitation is that we require
the support of the Beltrami differential to be away from the curve so as not to deal with
improper integrals. The deformations we considered in this work are thus conformal in
a neighborhood of the curve, and in this regard, we are still in the same setup as in the
conformal restriction of SLE considered in [9]. To understand general quasiconformal
deformations of SLE, we need to allow the supports of Beltrami differentials to touch
the curve. We think this is an interesting question that may require taking into account
the stochastic nature of SLE.
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A Appendix: Large time behavior of finite-energy Loewner chains

A priori, a Jordan curve may have finite total capacity. However, we now show that if
a Jordan curve has finite Loewner energy, then its capacity must be infinite at both its
initial and terminal parts.

Lemma A.1 Let γ : [T−, T+] → Ĉ be a Jordan curve parametrized by capacity,
where T− ∈ [−∞, 0), T+ ∈ (0,+∞] and γ (T−) = γ (T+) is the root. More precisely,
this means that there is a conformal map H0 : Ĉ � γ [T−, 0] → C � R+ such
that for at defined as in Definition 3.1, we have at = t for all t ∈ [T−, T+]. If
I L(γ ) := 1

2

∫ T+
T− |λ̇t |2 dt < ∞, then T− = −∞ and T+ = +∞.

Consequently, the capacity parametrization of a finite-energy Jordan curve must take
all of R as its domain, which justifies the formula in Definition 3.5.

Proof If the Loewner energy of the chord γ (0, T+) traversing the domain Ĉ�γ [T−, 0]
is finite, then its total capacity T+ must be infinite by [23, Thm. 2.4]. By definition,
this chordal Loewner energy is bounded above by the loop Loewner energy I L(γ ).

Let us now consider T−. By Carathéodory’s theorem, the conformal map
√
H0 from

Ĉ � γ [T−, 0] onto H extends continuously to a bijection between the prime ends of
Ĉ � γ [T−, 0] and R ∪ {∞}. Note that √

H0(γ (0)) = 0 and
√

H0(γ (T−)) = ∞, and
for each t ∈ (T−, 0), one of the prime ends at γ (t) is mapped to a point xt ∈ R+.
Let ft and λt be defined as in (3.1) and (3.2). By Lemma 3.2, the Loewner equation
∂t ft (z) = 2/ ft (z) − λ̇t holds for t ∈ (T−, 0) as well. This implies

∂

∂t
(Re ft (z))

2 = 4(Re ft (z))2

| ft (z)|2 − 2λ̇t (Re ft (z)).

(See (A.3) below.) For T ∈ (T−, 0), we deduce from above using Schwarz reflection
that

d( ft (xT ))2

dt
= 4 − 2λ̇t ft (xT ), t ∈ (T , 0]. (A.1)
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Assume, for the sake of contradiction, that I L(γ ) < +∞ and T− > −∞. Since
fT (xT ) = 0, we deduce from (A.1) using the Cauchy–Schwarz inequality that

sup
t∈[T ,0]

| ft (xT )|2 ≤ 4|T | + 2

(∫ 0

T
|̇λt |2 dt

) 1
2
( ∫ 0

T
| ft |2 dt

) 1
2

≤ 4|T−| + 2
√

I L(γ )|T−|
(

sup
t∈[T ,0]

| ft (xT )|2
) 1

2

.

Completing the square in the above inequality, we obtain

|xT |2 ≤ sup
t∈[T ,0]

| ft (xT )|2 ≤ |T−|
(

2 +
√

I L(γ )
)2

. (A.2)

By assumption, the right-hand side of (A.2) is a finite quantity independent of T ∈
(T−, 0). This is a contradiction since t 
→ xt maps [T−, 0] onto [0,+∞]. �

The following lemma is used in the proof of Theorem 1.4 to switch the order
between the derivative and the integral in (3.8). Note that if λt = 0 for all t , then
ft (z) = √

z2 + 4t . In particular, ft (z)2/(4t) → 1 and 2|t |1/2| f ′
t (z)| → 1 as t →

±∞.

Lemma 2 Let γ be a Jordan curve with I L(γ ) < ∞. Let Ht and ft be the uniformizing
maps defined in Sect. 3.1. Then, as t → ±∞, ft (z)2/(4t) → 1 and | f ′

t (z)| =
|t |−1/2+o(1) locally uniformly for z ∈ H0(Ĉ � γ ).

Proof The starting point of this proof is similar to that of Lemma A.1. Let us denote
ft (z) = ut + ivt , where ut ∈ R and vt > 0. The real and imaginary parts of the
Loewner equation ∂t ft (z) = 2/ ft (z) − λ̇t correspond to

u̇t = 2ut
u2t + v2t

− λ̇t and v̇t = − 2vt
u2t + v2t

. (A.3)

Let us consider the t → +∞ limit first. Given ε > 0, since γ has finite Loewner
energy, we can choose a large T0 so that

∫ +∞
T0

λ̇2t dt < ε. Since

du2t
dt

= 4u2t
u2t + v2t

− 2λ̇t ut ,

for T0 ≤ t ≤ T , we have

u2t ≤ u2T0 + 4
∫ T

T0

u2t
u2t + v2t

dt + 2
∫ T

T0
|λ̇t ut | dt

≤ u2T0 + 4(T − T0) + 2

( ∫ T

T0
λ̇2t dt

)1/2( ∫ T

T0
u2t dt

)1/2

.

(A.4)
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Hence,

sup
t∈[T0,T ]

u2t ≤ u2T0 + 4(T − T0) + 2

(

ε(T − T0) sup
t∈[T0,T ]

u2t

)1/2

.

Completing the square, we obtain

(

sup
t∈[T0,T ]

u2t

)1/2

≤ (

u2T0 + (4 + ε)(T − T0)
)1/2 + (

ε(T − T0)
)1/2

.

Then, there exists a T1 ≥ T0 such that for all T ≥ T1,

sup
t∈[T0,T ]

u2t ≤ u2T0 + 4(1 + ε)(T − T0). (A.5)

Now, from

∂

∂t
Re( ft (z)

2) = d(u2t − v2t )

dt
= 4 − 2λ̇t ut ,

we have

∣
∣Re( fT (z)2) − 4T

∣
∣ ≤ |Re( fT0(z)2)| + 4T0 + 2

∫ T

T0
|λ̇t ut | dt

≤ |Re( fT0(z)2)| + 4T0 + 2

(

ε(T − T0) sup
t∈[T0,T ]

u2t

)1/2

.

Substituting (A.5), we can find a T2 ≥ T1 such that for all T ≥ T2,

∣
∣Re( fT (z)2) − 4T

∣
∣ ≤ 5

√
εT .

Since the choice of ε was arbitrary, we conclude Re( ft (z)2)/(4t) → 1 as t → +∞.
As for Im( ft (z)2) = 2utvt , note that (A.3) implies vt is monotonically decreasing.

Hence, (A.5) implies Im( ft (z)2)/t → 0 as t → +∞. Combining the limits of the
real and imaginary parts, we obtain ft (z)2/(4t) → 1 as t → +∞. Moreover, since
fT0(z) = uT0 + ivT0 depends continuously on z whereas T0 was chosen independently
of z, the limit we proved converges uniformly on each compact subset of H0(Ĉ � γ ).

Let us now consider the t → −∞ limit. This time, since the Loewner energy of γ

is finite, we can find a large negative T̃0 such that
∫ T̃0
−∞ λ̇2t dt < ε. Hence, (A.4) implies

that there exists a T̃1 ≤ T̃0 such that for all T ≤ T̃1,

sup
t∈[T ,T̃1]

u2t ≤ u2
T̃0

+ 4(1 + ε)|T − T0|.
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Again, we have

∣
∣Re( fT (z)2) − 4T

∣
∣ ≤ |Re( fT0(z)2)| + 4|T̃0| + 2

(

ε|T − T̃0| sup
t∈[T ,T̃0]

u2t

)1/2

,

and choosing ε to be arbitrarily small, we obtain Re( ft (z)2)/(4t) → 1 as t → −∞.
For the imaginary part of ft (z)2, we consider

∂

∂t
Im( ft (z)

2) = d(2utvt )

dt
= −2λ̇tvt .

Since Re( ft (z)2) = u2t − v2t , we have that as T → −∞,

sup
t∈[T ,T̃0]

v2t ≤ sup
t∈[T ,T̃0]

|Re( ft (z)2)| + sup
t∈[T ,T̃0]

u2t ≤ (8 + o(1))|T |.

Hence, using the Cauchy–Schwarz inequality as above, we have

∣
∣Im( fT (z)2)

∣
∣ ≤ ∣

∣Im( fT̃0(z)
2)

∣
∣ + 2

∫ T̃0

T
|λ̇tvt | dt = o(T )

as T → −∞. Therefore, ft (z)2/(4t) → 1 as t → −∞. Again, this limit converges
uniformly on compact subsets of H since fT̃0(z) depends continuously on z and T̃0
can be chosen independently of z on a compact set.

Finally, to estimate | f ′
t (z)|, consider the equation

∂

∂t
log | f ′

t (z)| = Re

(
∂t f ′

t (z)

f ′
t (z)

)

= −Re
2

ft (z)2
.

As t → ±∞, the right-hand side behaves as (−1/2 + o(1))t−1. We thus obtain
| f ′

t (z)| = |t |−1/2+o(1) as claimed. �
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